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We study Extremal Combinatorics problems where local properties are used to derive
global properties. That is, we consider a given configuration where every small piece of
the configuration satisfies some restriction, and use this local property to derive global
properties of the entire configuration. We study one such Ramsey problem of Erdős and
Shelah, where the configurations are complete graphs with colored edges and every small
induced subgraph contains many distinct colors. Our bounds for this Ramsey problem
show that the known probabilistic construction is tight in various cases. We study one
Discrete Geometry variant, also by Erdős, where we have a set of points in the plane such
that every small subset spans many distinct distances. Finally, we consider an Additive
Combinatorics problem, where we are given sets of real numbers such that every small
subset has a large difference set.

We derive new bounds for all of the above problems. Our proof technique is based on
introducing a variant of additive energy, which is based on edge colors in graphs.

1. Introduction

Erdős and Shelah [6, Section V] initiated the study of the following problem.
For positive integers n,k,`, we consider edge colorings of the complete graph
Kn such that every induced subgraph over k vertices contains at least `
colors. Let f(n,k,`) be the minimum possible number of colors in a coloring
of Kn with this restriction. As a first example, note that in f(n,3,3) we
consider edge colorings of Kn, where every triangle contains three distinct
colors. In this case no vertex can be adjacent to two edges with the same
color, which immediately implies f(n,3,3)≥n−1.

Mathematics Subject Classification (2010): 05C35, 05C55
∗ Supported by NSF grant DMS-1710305

http://dx.doi.org/10.1007/s00493-018-3890-2


706 COSMIN POHOATA, ADAM SHEFFER

As another example, for any k≥4 we have

(1) f

(
n, k,

(
k

2

)
− bk/2c+ 2

)
= Θ

(
n2
)
.

Indeed, in this case every color can occur at most bk/2c − 1 times, since
otherwise we will have an induced subgraph with k vertices and at most(
k
2

)
−bk/2c+1 colors. Since each color repeats a constant number of times,

there are Θ
(
n2
)

distinct colors.
One motivation for studying the above problem is that it can be seen

as a variant of Ramsey’s theorem (for example, see [13, Chapter 27]). For
fixed positive integers c,k, and `, Ramsey’s theorem studies the maximum
n satisfying that there exists an edge coloring of Kn with c colors, where
every k of the vertices span at least ` = 2 distinct colors. In the current
problem, we allow ` to be larger than two, fix the value of n, and look for
the minimum c satisfying the above.

A few first results for the problem were obtained by Erdős, Elekes, and
Füredi [5, Section 9]. Erdős and Gyárfás [9] started studying the problem
more systematically. Considering a restriction slightly weaker than in (1),
they derived the bound

(2) f

(
n, k,

(
k

2

)
− bk/2c+ 1

)
= Ω

(
n4/3

)
.

That is, the boundary between a trivial problem and a long-standing open
problem passes between `≥

(
k
2

)
−bk/2c+2 and `≤

(
k
2

)
−bk/2c+1. Using a

probabilistic construction, Erdős and Gyárfás [9] derived the bound

(3) f (n, k, `) = O

(
n

k−2

(k2)−`+1

)
.

Sárközy and Selkow [14] proved that for every k ≥ 6 there exists ε > 0
such that

f

(
n, k,

(
k

2

)
− k + dlog ke+ 1

)
= Ω

(
n1+ε

)
.

Erdős and Gyárfás also proved that f (n,k,k) is always polynomial in n.
Conlon, Fox, Lee, and Sudakov [3] showed that this is tight by proving that
f (n,k,k−1) is subpolynomial in n for every k≥4. Axenovich, Füredi, and
Mubayi [1] studied a bipartite variant of the problem. These are just some of
main results in the study of the problem, and far from being an exhaustive
list.

The following theorem is the main result of the current work.
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Theorem 1.1. For any integers k>m≥2,

f

(
n, k,

(
k

2

)
−m ·

⌊
k

m+ 1

⌋
+m+ 1

)
= Ω

(
n1+

1
m

)
.

For example, by applying Theorem 1.1 with m=2 we get

f

(
n, k,

(
k

2

)
− 2 ·

⌊
k

3

⌋
+ 3

)
= Ω

(
n3/2

)
.

In (2), Erdős and Gyárfás derived a bound of Ω(n4/3) colors when ` is one
unit away from the trivial case. Theorem 1.1 implies this bound already
when `≥

(
k
2

)
−3 · bk/4c+4.

The bound of Theorem 1.1 is asymptotically tight up to subpolynomial
factors for every m ≥ 2, except possibly for small values of k. Indeed, for
every ε>0 the bound of (3) implies

f

(
n, k,

(
k

2

)
−m ·

⌊
k

m+ 1

⌋
+m+ 1

)
= O

(
n1+

1
m
+ε
)
,

for every sufficiently large k.

Distinct distances with local properties. The Erdős distinct distances prob-
lem is a main problem in Discrete Geometry. This problem asks for the
minimum number of distinct distances spanned by a set of n points in R2.
That is, denoting the distance between two points p,q∈R2 as |pq|, the prob-
lem asks for min|P|=n |{|pq| : p,q∈P}|. Note that n equally spaced points on
a line span n−1 distinct distances. Erdős [8] observed that a

√
n×
√
n sec-

tion of the integer lattice Z2 spans Θ(n/
√

logn) distinct distances. Proving
that every point set determines at least some number of distinct distances
turned out to be a deep and challenging problem.

The above problem is just one out of a large family of distinct distances
problems, including higher-dimensional variants, structural problems, and
many other types of problems (for example, see [15]). The main problems
in this family were proposed by Erdős and have been studied for decades.
After over 60 years and many works on distinct distances problems, Guth
and Katz [12] almost settled the original question by proving that every set
of n points in R2 spans Ω(n/ logn) distinct distances. Surprisingly, so far
this major discovery was not followed by significant progress in the other
main distinct distances problems.

Let φ(n,k, l) denote the minimum number of distinct distances that are
determined by a planar n point set P with the property that any k points of
P determine at least l distinct distances. That is, by having a local property
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of every small subset of points, we wish to obtain a global property of the
entire point set.

For example, the value of φ(n,3,3) is the minimum number of dis-
tinct distances that are determined by a set of n points that do not span
any isosceles triangles (including degenerate triangles with three collinear
vertices). Since no isosceles triangles are allowed, every point determines
n − 1 distinct distances with the other points of the set, and we thus
have φ(n,3,3) = Ω(n). Erdős [4] observed the following upper bound for
φ(n,3,3). Behrend [2] proved that there exists a set A of positive inte-
gers a1 < a2 < · · · < an such that no three elements of A determine
an arithmetic progression and an < n2O(

√
logn). Therefore, the point set

P1 = {(a1,0),(a2,0), . . . ,(an,0)} does not span any isosceles triangles. Since

P1 ⊂ P2 = {(1,0),(2,0), . . . ,(an,0)} and D(P2) < n2O(
√
logn), we have

φ(n,3,3)<n2O(
√
logn).

Recently, Fox, Pach, and Suk [10] showed that for any ε>0

φ

(
n, k,

(
k

2

)
− k + 6

)
= Ω

(
n8/7−ε

)
.

The proof of this result is based on the geometry of the problem, and thus
does not extend to the more general variant of f(n,k,`).

Upper bounds for f(n,k,`) do not immediately apply to φ(n,k,`). For
example, the bounds of Conlon, Fox, Lee, and Sudakov [3] are false for the
distances case (these bounds are subpolynomial in n while every n points
in R2 span Ω(n/ logn) distinct distances). On the other hand, any lower
bound for f(n,k,`) remains valid for φ(n,k,`). In particular, the following
is an immediate corollary of Theorem 1.1.

Corollary 1.2. For any integers k>m≥2,

φ

(
n, k,

(
k

2

)
−m ·

⌊
k

m+ 1

⌋
+m+ 1

)
= Ω

(
n1+

1
m

)
.

To prove this corollary one can build a complete graph where every point
is a vertex, and every distance corresponds to a distinct edge color.

Corollary 1.2 leads to a better bound than the one of Fox, Pach, and Suk
[10] when `≥

(
k
2

)
−7 · bk/8c+8.

While there are many problems in which the conjectured number of dis-
tinct distances is Ω(n2−ε), we are very far from deriving this bound for any
of those. For example, see [15]. As far as we know, the above is the first case
where a bound stronger than Ω(n4/3) is obtained for a non-trivial distinct
distances problem.
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Difference sets with local properties. Zeev Dvir recently suggested studying
the following Additive Combinatorics variant of the local properties problem.
Given a finite A⊂R, the difference set of A is

A−A = {a− a′ : a, a′ ∈ A}.

For positive integers n,k,`, we consider sets A⊂R of size n such that ev-
ery subset A′⊂A of size k satisfies |A′−A′|≥`. Let g(n,k,`) be the minimum
size of A−A among all sets A that satisfy the above restriction. For simplic-
ity we will ignore non-positive differences. For example, when considering
sets with no 3-term arithmetic progression we will write g(n,3,3) instead
of g(n,3,7) (we ignore 0 and three negative differences). This notation does
not change the problem, and is somewhat more intuitive.

While this seems like an interesting natural Additive Combinatorics prob-
lem, we only managed to find one minor and brief mention of it. It is stated
in [9, Section 9] that Erdős and Sós proved g(n,4,5)≥

(
n
2

)
−n+2, although it

seems that this was never published. The following is a corollary of Theorem
1.1.

Corollary 1.3. For any integers k>m≥2,

g

(
n, k,

(
k

2

)
−m ·

⌊
k

m+ 1

⌋
+m+ 1

)
= Ω

(
n1+

1
m

)
.

To prove this corollary one can build a complete graph where every el-
ement of A is a vertex, and every difference corresponds to a distinct edge
color.

We now present an example illustrating that g(n,k,`) and φ(n,k,`) may
be very different problems. Currently, nothing is known about φ(n,4,5) be-
yond the trivial bounds φ(n,4,5) = Ω(n) and φ(n,4,5) = O(n2) — this is
considered to be a difficult open problem. On the other hand, it can be eas-
ily shown that g(n,4,5)=Θ(n2). Indeed, consider a set A of n real numbers
and with every A′ ⊂ A of size four satisfying |A′ −A′| ≥ 5. Assume that
there exist four distinct reals a1,a2,a3,a4 ∈ A such that a1− a2 = a3− a4.
This implies that a1−a3 =a2−a4, and thus these four points span at most
four differences. The above contradiction implies that no difference repeats
more than twice (it is still possible that a1−a2=a3−a1). We conclude that
|A−A|=Θ(n2).

It would be interesting to further study this problem of difference sets
with local properties. For example, what are non-trivial upper bounds for
g(n,k,`)? What happens when ` is much smaller than

(
k
2

)
?
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Our proof technique. To prove Theorem 1.1, we define a new abstract vari-
ant of the concept of additive energy, which is a main tool in Additive
Combinatorics. Given a finite A⊂R, the sum set of A is

A+A = {a+ a′ : a, a′ ∈ A}.

A uniformly chosen set A of a fixed finite size is expected to sat-
isfy |A + A| = Θ(|A|2). On the other hand, there are sets that satisfy
|A+A| = Θ(|A|), such as arithmetic progressions. We say that such sets
have an “additive structure” that leads to a small sum set. The polynomial
Freiman–Ruzsa conjecture is a main open problem in Additive Combina-
torics, asking to characterize the sets that have a small sum set.

One main tool for studying the additive structure of a finite A⊂R is the
additive energy of A:

E(A) =
∣∣{(a, b, c, d) ∈ A4 : a+ b = c+ d

}∣∣ .
While the size of the sum set of A is at least linear in |A| and at most
quadratic in |A|, the additive energy of A is at least quadratic in |A| and at
most cubic in |A|.

A small sum set implies a large additive energy. In particular, a simple

use of the Cauchy-Schwarz inequality implies E(A)≥ |A|4
|A+A| . In the other di-

rection, the Balog–Szemerédi–Gowers theorem implies that if E(A) is large,
then there exists a large subset A′⊂A such that A′+A′ is small. For more
information, see for example the book “Additive Combinatorics” by Tao and
Vu [16].

To prove Theorem 1.1, we define the following abstract graph variant of
additive energy. Given a graph G=(V,E) with colored edges, we denote by
c(u,v) the color of the edge (u,v)∈E. We define the color energy of G as1

E(G) =
∣∣{(v1, u1, v2, u2) ∈ V 4 : c(v1, u1) = c(v2, u2)

}∣∣ .
That is, instead of the number of quadruples that satisfy an additive relation,
we ask for the number of quadruples that satisfy a color relation.

There exist energy variants for Cayley graphs that are based on the
corresponding group action (for example, see Gowers [11]). However, as far
as we know, this is the first use of such a non-algebraic energy variant.

Acknowledgements. We are indebted to the anonymous referees, who
made many helpful suggestions for improving a previous draft of this work.
We would like to thank Zeev Dvir for suggesting the Additive Combinatorics
variant of the problem, and to Robert Krueger for some helpful discussions.

1 We use E(G) rather than E(G) since the latter is a standard notation for the set of
edges of G.
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2. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We begin by recalling the statement
of this theorem.

Theorem 1.1. For any integers k>m≥2,

f

(
n, k,

(
k

2

)
−m ·

⌊
k

m+ 1

⌋
+m+ 1

)
= Ω

(
n1+

1
m

)
.

To prove the theorem, we will rely on the following simple counting lemma
(see [7] and [13, Lemma 2.3]).

Lemma 2.1. Let A be a set of n elements and let d≥2 be an integer. Let
A1, . . . ,Ak be subsets of A, each of size at least m. If k ≥ 2dnd/md, then

there exist 1≤j1<.. .<jd≤k such that |Aj1 ∩ . . .∩Ajd |≥ md

2nd−1 .

Proof of Theorem 1.1. To prove the theorem we will prove that for any
integers a,b≥2

(4) f

(
n, a(b+ 1),

(
a(b+ 1)

2

)
− ba+ b+ 1

)
= Ω

(
n1+

1
b

)
.

When k is divisible by m+ 1, we obtain the statement of the theorem by
setting b=m and a=k/(m+1). When k is not divisible by m+1, we write

a=bk/(m+1)c, and rewrite (4) as f
(
n,k,

(
k
2

)
−ba+b+1

)
=Ω

(
n1+

1
b

)
. The

rest of the proof is the same in both cases. However, when reading the proof
for the first time we recommend assuming that k is divisible by m+1.

Let G = (V,E) be a copy of Kn with colored edges, such that every

induced Ka(b+1) contains at least
(
a(b+1)

2

)
−ba+b+1 distinct colors. We denote

the set of colors as C = {c1, c2, . . .}, and the color of an edge (v,u) ∈ E as
c(v,u). Our goal is to prove that |C|=Ω

(
n1+1/b

)
, and we begin by studying

some configurations that cannot occur in G.

Forbidden configurations. We first show that no vertex can be adjacent to
many edges of the same color. Assume for contradiction that there exists a
vertex v∈V and color c∈C, such that at least ba−b+1 vertices u∈V satisfy
c(v,u)=c. Let V ′⊂V consist of v, of ba−b+1 vertices satisfying c(v,u)=c,
and of b+ a− 2 additional vertices. Then V ′ is a set of a(b+ 1) vertices,

and the induced subgraph on V ′ contains at most
(
a(b+1)

2

)
− ba+ b distinct

colors, contradicting the assumption on G. This contradiction implies that
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for every v∈V and c∈C, at most ba−b of the edges incident to v have color
c. This in turn implies that every color appears at most b(a−1)n/2 times.

We next show that there cannot be a vertices that are adjacent to the
same b “popular” colors. Let Vc⊂V be the set of endpoints of edges of color
c. For an integer j, let Cj be the set of colors that appear at least 2j times.
For j with 2j≥a, assume for contradiction that there exist c1, . . . , cb∈Cj that
satisfy |Vc1∩·· ·∩Vcb |≥a. Let V ′={v1,v2, . . . ,va} be a set of a vertices from
Vc1 ∩·· ·∩Vcb . That is, for every vertex v∈V ′ and every color c∈{c1, . . . , cb}
there exists u∈V satisfying c(v,u)=c. An example is depicted in Figure 1.

v1 v2 v3 v4

Figure 1. The three colors are represented as solid, dashed, and dotted edges. Every
vertex of V ′={v1,v2,v3,v4} is incident to an edge of every color

We construct a subset V ′′ ⊂ V as follows: For every v ∈ V ′ and color
c ∈ Cj , if there exist vertices u ∈ V \V ′ such that c(v,u) = c, then we add
one such vertex to V ′′. If a vertex u∈V \V ′ was added more than once to
V ′′, we consider V ′′ as containing a single copy of u (that is, V ′′ is not a
multiset). Note that if for v∈V ′ and c∈Cj there is no u∈V \V ′ satisfying
c(v,u) = c, then there exists u ∈ V ′ satisfying c(v,u) = c. For 1≤ i≤ b, let
ri denote the number of vertices of V ′ that are not connected to any vertex
of V \V ′ with an edge of color ci. For every 1≤ i≤ b, at least ri/2 edges in
the induced subgraph of V ′ have color ci. Thus, V ∗=V ′∪V ′′ is a set of at
most (b+1)a−

∑b
i=1 ri vertices of V and at least a−ri/2 edges with color ci.

For 1≤ i≤ b, we add bri/2c additional edges of color ci by adding at most
ri vertices of V to V ∗. This is always possible since ci is in Cj and 2j ≥ a.
Since the resulting set V ∗ contradicts the assumption about G, no distinct
c1, . . . , cb∈Cj satisfy |Vc1 ∩·· ·∩Vcb |≥a.

Popular colors. Let kj = |Cj |. We now derive two upper bounds for kj .

Fix an integer j satisfying 2j ≥ b(2ab+1nb−1)1/b and let c ∈ Cj . Since a
single vertex is incident to at most ba− b edges with color c, we get that

|Vc| ≥ 2j+1

ba−b ≥
2j

ba . Since no b sets Vc have a large intersection, we use the
contrapositive of Lemma 2.1 to obtain that the number of sets is not large.

By the lower bound for 2j , every b sets Vc intersect in less than a≤ 2jb

2abbbnb−1

vertices. Since the size of each such set is at least m= 2j

ba , the contrapositive
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of the lemma implies that the number of sets is

(5) kj <
2bnb

mb
=

2bnb

(2j/ba)b
=

2nbbb+1ab

2jb
.

When 2j<b(2ab+1nb−1)1/b we will rely on the straightforward bound

(6) kj < n2/2j .

An energy argument. Let mc be the number of edges with color c. In the
beginning of the forbidden configurations part above, we proved that mc≤
b(a−1)n for every c∈C. Since every edge contributes to exactly one mc, we
have

∑
c∈Cmc=

(
n
2

)
.

Recall that the color energy of G is defined as

E(G) =
∣∣{(v1, u1, v2, u2) ∈ V 4 : c(v1, u1) = c(v2, u2)

}∣∣ .
In other words, E(G) is the number of pairs of edges with the same
color. Since the graph is undirected, when computing E(G) we consider
(v1,u1,v2,u2) and (u1,v1,v2,u2) as the same quadruple. On the other hand,
we count (v1,u1,v2,u2) and (v2,u2,v1,u1) as two separate quadruples. We
can also think of E(G) as the square of the `2-norm of the color frequencies,
since

E(G) =
∑
c∈C

m2
c .

By the Cauchy-Schwarz inequality, we have

E(G) =
∑
c∈C

m2
c ≥

(∑
c∈C mc

)2
|C|

=

(
n
2

)2
|C|

= Ω

(
n4

|C|

)
.

Let t= blogb(2ab+1nb−1)1/bc. By dyadic pigeonholing together with (5)
and (6), we obtain

E(G) =
∑
c∈C

m2
c =

log(ban)∑
j=0

∑
c∈C

2j≤mc<2j+1

m2
c <

log(ban)∑
j=0

kj
(
2j+1

)2

=

t∑
j=0

kj2
2j+2 +

log(ban)∑
j=t+1

kj2
2j+2

=

t∑
j=0

n2

2j
· 22j+2 +

log(ban)∑
j=t+1

2nbbb+1ab

2jb
· 22j+2

= O
(
n3−1/b

)
+O

(
n3−2/b log n

)
= O

(
n3−1/b

)
.
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The logn in the last line exists only when b=2, but it does not affect the
final bound in any case. Combining the two above bounds on E(G) yields
|C|=Ω(n1+1/b), as required.

Remark. One way to improve the proof of Theorem 1.1 might be to derive
an upper bound on kj stronger than the straightforward bound of (6) when

2j≈n(b−1)/b.
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[7] P. Erdős: On extremal problems of graphs and generalized graphs, Israel J. Math.
2 (1964), 183–190.
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