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1. Introduction

For a countable infinite group Γ we denote by �2Γ the Hilbert space of all square 
summable complex functions on Γ. Each element γ ∈ Γ gives rise to a unitary operator 
uγ : �2Γ → �2Γ by group translation uγ(ξ)(λ) = ξ(γ−1λ), where λ ∈ Γ and ξ ∈ �2Γ. The 
bicommutant {uγ |γ ∈ Γ}′′ inside the algebra of all bounded linear operators B(�2Γ), is 
denoted by L(Γ) and it is called the group von Neumann algebra of Γ. The algebra L(Γ)
is a II1 factor (has trivial center) precisely when all nontrivial conjugacy classes of Γ are 
infinite (icc), this being the case most interesting for study [44].

Ever since their introduction, the classification of these factors is a core direction 
of research driven by the following fundamental question: What aspects of the group 
Γ are remembered by L(Γ)? This emerged as an interesting yet intriguing theme since 
these algebras tend to have little memory of the initial group. This is best illustrated by 
Connes’ celebrated result asserting that all amenable icc groups give isomorphic factors, 
[22]. Hence very different groups like the group of all finite permutations of the positive 
integers, the lamplighter group, or the wreath product of the integers with itself give 
rise to isomorphic factors. Consequently, the von Neumann algebraic structure has no 
memory of the typical discrete algebraic group invariants like torsion, rank, or generators 
and relations. In this case the only information the von Neumann algebra retains is the 
amenability—an approximation property—of the group.

In the non-amenable case the situation is radically different and an unprecedented 
progress has been achieved through the emergence of Popa’s deformation/rigidity the-
ory [58]. Using this completely new conceptual framework it was shown that vari-
ous properties of groups, such as their representation theory or their approximations, 
can be completely recovered from their von Neumann algebras. As a result, for large 
classes of group factors, many remarkable structural properties such as primeness, 
(strong) solidity, classification of normalizers of algebras, etc could be successfully es-
tablished [54,55,37,56,59,48,49,9,10,50,61,25,32,38,28,15,64,66,17,18,33,62,30,63,34,35,4,
6,40,3,67,41,11,14,68,5,13,16,23,20]. For additional information we refer the reader to 
the following survey papers [58,65,34,36].

One of the most impressive milestone in this study is Ioana-Popa-Vaes’ discovery of 
the first examples of groups that can be completely recovered from their von Neumann 
algebras (W ∗-superrigid2 groups), [38]. See also the subsequent result [3] and the more 
recent work [12]. These results pushed the classification problem of group factors to new 
boundaries and exciting possibilities. In this direction an interesting and wide open theme 
is to identify a comprehensive list of canonical constructions in group theory (direct sum, 
free product, HNN-extension, wreath product, etc.) that are recoverable from their von 
Neumann algebras.

2 Γ is W ∗-superrigid if whenever Λ is an arbitrary group so that L(Γ) = L(Λ) then it follows that Λ = Γ.
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1.1. Statements of main results

Over a decade ago Ozawa and Popa discovered the first unique prime factorization 
results for tensor product of II1 factors, [47]. This work has had deep consequences to the 
classification of II1 factors and has generated significant subsequent developments. Some 
of Ozawa-Popa’s results have been strengthened considerably in [16] which unveiled a 
large class of product groups Γ1 × Γ2 whose product structure is a feature completely 
recognizable at the level of their von Neumann algebras L(Γ1 × Γ2). Precisely, whenever 
Γ1, Γ2 are hyperbolic icc groups (e.g. non-abelian free groups) and Λ is an arbitrary
group such that L(Γ1 × Γ2) = L(Λ) then Λ admits a nontrivial product decomposition 
Λ = Λ1 × Λ2 and there exists a scalar t > 0 such that, up to unitary conjugacy, we 
have L(Γ1) = L(Λ1)t and L(Γ2) = L(Λ2)1/t. The result still holds if one assumes, more 
generally, that Γ1, Γ2 are just icc biexact groups, [45].

Isono studied unique prime factorization aspects for infinite tensor product of factors 
and several interesting results have emerged in [39], see also [26,27]. Motivated in part 
by these results it is natural to investigate whether “product rigidity” properties, similar 
with ones in [16], would hold in the context of infinite direct sums groups. Specifically, 
if one considers Γ = ⊕n∈�Γn with Γn’s icc non-amenable groups, it would be interest-
ing to understand how much of the infinite direct sum structure of Γ is retained by its 
von Neumann algebra L(Γ). Right away one may notice a sharp contrast point with 
the aforementioned finite product situation. Since L(Γ) canonically decomposes as an 
infinite tensor product L(Γ) = ⊗̄n∈�L(Γn) it follows that L(Γ) is a McDuff factor and 
hence L(Γ) = L(Γ)⊗̄R, where R is the hyperfinite factor; consequently, we have that 
L(⊕n∈�Γn) = L((⊕n∈�Γn) ⊕ A), for any icc amenable group A. This observation shows 
that, in the best case scenario, L(Γ) could remember the direct sum feature of the un-
derlying group only up to an amenable subgroup which typically lies in the tail of the 
infinite tensor product. It is therefore natural to investigate under which circumstances 
it is possible to completely reconstruct the infinite direct sum feature only up to this 
obstruction. Building upon previous techniques from [38,33,16,23,20] and using the clas-
sification of normalizers from [63] we found infinitely many classes of Γn’s for which this 
problem has a positive answer.

Theorem A. Let (Γn)n∈� an infinite collection of property (T), biexact, weakly amenable, 
icc groups. Assume that Λ is an arbitrary group satisfying L(⊕n∈�Γn) = L(Λ). Then Λ
admits an infinite direct sum decomposition Λ = (⊕n∈�Λn) ⊕ A, where Λn is icc, weakly 
amenable, property (T) group for all n and A is a icc amenable group. Moreover, for 
each k ∈ � there exist scalars t1, t2, ..., tk+1 > 0 satisfying t1t2...tk+1 = 1 and a unitary 
u ∈ L(Λ) so that

uL(Γn)tnu∗ = L(Λn) for all k ≥ n ≥ 1; and

uL(⊕n≥k+1Γn)tk+1u∗ = L((⊕n≥k+1Λn) ⊕ A).
(1.1)
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The result applies to several concrete classes of groups a such as:

(1) the uniform lattices Γn in Sp(kn, 1) with kn ≥ 2 or any icc groups in their measure 
equivalence class; and

(2) Gromov’s random groups with density satisfying 3−1 < d < 2−1.

While the conclusion of the previous theorem shows a strong identification of the 
von Neumann algebras of the group factors Γn’s, in general one cannot recover these 
groups. To see this note that Voiculescu’s compression formula for free group factors gives 
L(�2) = L(�5) ⊗ M2(�). This implies that L(⊕n∈��2) = ⊗̄n∈�L(�2) = ⊗̄n∈�(L(�5) ⊗
M2(�)) = (⊗̄n∈�(L(�5))⊗̄R = L((⊕n∈��5) ⊕ A), for every icc amenable group A.

Theorem A can be successfully used to shed light towards rigidity aspects in the 
C∗-algebraic setting. Precisely, when it is combined with [7, Theorem 1.3] one gets the 
following version of infinite product rigidity for reduced group C∗-algebras.

Corollary B. Let (Γn)n∈� an infinite collection of property (T), biexact, weakly amenable, 
icc groups. Assume that Λ is an arbitrary group satisfying �∗

r(⊕n∈�Γn) = �∗
r(Λ). Then 

Λ admits an infinite direct sum decomposition Λ = ⊕n∈�Λn, where the Λn’s are icc, 
weakly amenable, property (T) groups.

When compared side by side, Theorem A and Corollary B highlight again the fun-
damental difference between �∗-algebras and von Neumann algebras; the absence of the 
infinite amenable direct summand of Λ in the conclusion of Corollary B exemplifies once 
more the fact that the WOT closure is considerably larger than the uniform norm closure, 
thus triggering significant loss of algebraic information in the von Neumann algebraic 
setting.

Restricted wreath product groups manifest a remarkable rigid behavior in the von 
Neumann algebraic setting. In fact a large portion of the groups/actions known to be 
recoverable from their von Neumann algebras arise from constructions involving wreath 
product groups or Bernoulli shifts [54,57,61,32,38,62,3]. A common feature of these ex-
amples is that the core or the wreath product groups involved are amenable and in 
many cases even abelian. For example, with the exception of [12], all known examples of 
W ∗-superrigid groups are of the form H �I Γ where H is finite [38,3,2]. However signif-
icantly fewer rigidity results are known in general for wreath product factors L(H �I Γ)
when H is nonamenable. In this direction we mention in passing Ioana’s strong rigidity 
results which asserts that L(�n �A) �= L(�m �B) whenever n, m ≥ 2 and A, B are noniso-
morphic icc amenable groups, [31]. Theorem A can be successfully used to provide new 
insight towards this problem as well. For instance, using it in combination with various 
technical outgrowths of previous methods from [54,31,38,16,12] we obtain the following 
wreath product rigidity result up to an amenable subgroup for group factors.
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Theorem C. Let H be icc, weakly amenable, biexact property (T) group. Let Γ = Γ1 ×Γ2, 
where Γi are icc, biexact, property (T) group. Let H �Γ be the corresponding (plain) wreath 
product. Let Λ be an arbitrary group and let θ : L(H � Γ) → L(Λ) be a ∗-isomorphism. 
Then one can find non-amenable icc groups Σ, Ψ, an icc amenable or trivial group A, 
and an action Ψ �α A such that we can decompose Λ as semidirect product Λ = (Σ(Ψ) ⊕
A) �β⊕α Ψ, where Ψ �β Σ(Ψ) is the Bernoulli shift. In addition, there exist a group 
isomorphism δ : Γ → Ψ, a character η : Γ → �, a ∗-isomorphism θ : L(H(Γ)) →
L(Σ(Ψ) ⊕ A) and a unitary u ∈ L(Λ) so that for all x ∈ L(H(Γ)), γ ∈ Γ we have

θ(xuγ) = η(γ)uθ(x)vδ(γ)u
∗.

Here {uγ | γ ∈ Γ} and {vλ | λ ∈ Ψ} are the canonical group unitaries of L(Γ) and L(Ψ), 
respectively.

We notice the theorem still holds for slightly more general situations, e.g. generalized 
wreath products with finite or even possible just amenable stabilizers (see Theorem 5.4). 
However at this time we do not know the full extent of these cases as it seems to rely on 
heavy constructions on group theory (see Remarks 5.5).

As before, Theorem C in combination with [7, Theorem 1.3] lead to the following 
stronger version of wreath product rigidity in the context of reduced group �∗-algebras.

Corollary D. Let H be icc, weakly amenable, biexact property (T) group. Let Γ = Γ1 ×Γ2, 
where Γi are icc, biexact, property (T) group. Let H � Γ be the corresponding wreath 
product. Let Λ be an arbitrary group so that �∗

r(H � Γ) = �∗
r(Λ). Then Λ = Σ � Γ, where 

Σ is an icc, weakly amenable, property (T) group.

In connection with Theorem C it is natural to investigate whether similar statements 
hold if one relaxes the biexactness assumption on H or the product assumption on Γ. 
In this situation, building upon the previous techniques from [38,43] one can show the 
following strong rigidity statement holds just for property (T) groups H and Γ.

Theorem E. Let H, Γ be icc, torsion free groups. Also assume H has property (T) and 
Γ admits an infinite, almost normal subgroup with relative property (T). Let Γ � I be a 
transitive action on a countable set satisfying the following conditions:

a) There is k ∈ � such that for each J ⊆ I satisfying |J | ≥ k we have |StabΓ(J)| < ∞;
b) The orbit StabΓ(i) · j is infinite for all i �= j.

Denote by G = H �I Γ the corresponding generalized wreath product. Let Λ be any torsion 
free group and let θ : L(G) → L(Λ) be a ∗-isomorphism. Then Λ admits a generalized 
wreath product decomposition Λ = Σ �I Ψ satisfying all the properties enumerated in 
a) − c). In addition, there exist a group isomorphism δ : Γ → Ψ, a character η : Γ → �, a 
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∗-isomorphism θ : L(H) → L(Σ) and a unitary u ∈ L(Λ) such that for every x ∈ L(H(I))
and γ ∈ Γ we have

θ(xuγ) = η(γ)uθ⊗I (x)vδ(γ)u
∗.

Here {uγ |γ ∈ Γ} and {vλ|λ ∈ Ψ} are the canonical unitaries of L(Γ) and L(Ψ), respec-
tively.

The previous theorem applies to many natural families of generalized wreath groups 
H �IΓ, including: a) any icc torsion free prop (T) group H and any torsion free, hyperbolic, 
property (T) group Γ together with a maximal amenable subgroup Σ < Γ and the action 
Γ � I = Γ/Ω is given by translation on right cosets Γ/Ω; b) any action of the form 
Γ � Γ/S by left translations, where instances of inclusions S < Γ can be found in [60, 
Examples 7.4].
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2. Preliminaries

2.1. Notations

Given a von Neumann algebra M we will denote by U (M) its unitary group and by 
P(M) the set of all its nonzero projections. All algebras inclusions N ⊆ M are assumed 
unital unless otherwise specified. For any von Neumann subalgebras P, Q ⊆ M we denote 
by P ∨ Q the von Neumann algebra they generate in M .

All von Neumann algebras M considered in this article will be tracial, i.e., endowed 
with a unital, faithful, normal functional τ : M → � satisfying τ(xy) = τ(yx) for all 
x, y ∈ M . This induces a norm on M by the formula ‖x‖2 = τ(x∗x)1/2 for all x ∈ M . 
The ‖ · ‖2-completion of M will be denoted by L2(M).

For a countable group Γ we denote by {uγ |γ ∈ Γ} ∈ U(�2Γ) its left regular represen-
tation given by uγ(δλ) = δγλ, where δλ : Γ → � is the Dirac mass at {λ}. The weak 
operator closure of the linear span of {uγ |γ ∈ Γ} in B(�2Γ) is the so called group von 
Neumann algebra and will be denoted by L(Γ). L(Γ) is a II1 factor precisely when Γ has 
infinite non-trivial conjugacy classes (icc).
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Given a group Γ and a subset F ⊆ Γ we will be denoting by 〈F 〉 the subgroup of Γ
generated by F . Given a group action Γ � I on a countable set I, for any subset F ⊂ I

we denote Stab(F) = {γ ∈ Γ | g · i = i, ∀i ∈ F} and Norm(F) = {γ ∈ Γ | γ · F = F}.
Given a subgroup Λ � Γ we will often consider the virtual centralizer of Λ in Γ, i.e. 

vCΓ(Λ) = {γ ∈ Γ : |γΛ| < ∞}. Notice vCΓ(Λ) is a subgroup normalized by Λ. When 
Λ = Γ, the virtual centralizer is denoted by vZ(Γ) := vCΓ(Γ) and called the virtual 
center of Γ; this is nothing else but the FC-radical of Γ. Hence Γ is icc precisely when 
vZ(Γ) = 1.

2.2. Popa’s intertwining techniques

Over a decade ago, Popa introduced in [54, Theorem 2.1 and Corollary 2.3] a powerful 
analytic criterion for identifying intertwiners between arbitrary subalgebras of tracial von 
Neumann algebras. This is now termed Popa’s intertwining-by-bimodules technique.

Theorem 2.1. [54] Let (M, τ) be a separable tracial von Neumann algebra and let 
P, Q ⊆ M be (not necessarily unital) von Neumann subalgebras. Then the following 
are equivalent:

(1) There exist p ∈ P(P ), q ∈ P(Q), an injective ∗-homomorphism θ : pPp → qQq and 
a partial isometry 0 �= v ∈ qMp such that θ(x)v = vx, for all x ∈ pPp.

(2) For any group G ⊂ U (P ) such that G′′ = P there is no sequence (un)n ⊂ G satisfying 
‖EQ(xuny)‖2 → 0, for all x, y ∈ M .

If one of the two equivalent conditions from Theorem 2.1 holds then we say that a 
corner of P embeds into Q inside M , and write P ≺M Q. If we moreover have that 
Pp′ ≺M Q, for any projection 0 �= p′ ∈ P ′ ∩ 1P M1P (equivalently, for any projection 
0 �= p′ ∈ Z(P ′ ∩ 1P M1P )), then we write P ≺s

M Q.

2.3. Quasinormalizers of groups and algebras

Given groups Ω � Γ, the one-sided quasinormalizer semigroup QN
(1)
Γ (Ω) ⊆ Γ is the 

set of all γ ∈ Γ for which there is a finite set F ⊆ Γ so that Ωγ ⊆ FΩ, [24, Section 5]; 
equivalently, γ ∈ QN

(1)
Γ (Ω) iff [Ω : γΩγ−1 ∩ Ω] < ∞. Thus QN

(1)
Γ (Ω) coincides with the 

one-sided commensurator of Ω in Γ.
Similarly, the quasinormalizer (also called the commensurator) QNΓ(Ω) is the set of 

all γ ∈ Γ for which there exists a finite set F ⊆ Γ such that Ωγ ⊆ FΩ and γΩ ⊆ ΩF ; 
equivalently, γ ∈ QNΓ(Ω) iff [Ω : γΩγ−1 ∩ Ω] < ∞ and [γΩγ−1 : γΩγ−1 ∩ Ω] < ∞. 
From definitions one checks that QNΓ(Ω) � Γ is a subgroup satisfying Ω ⊆ QNΓ(Ω) ⊆
QN

(1)
Γ (Ω).

The von Neumann algebraic counterparts of (one-sided) quasinormalizers have played 
a major role in the recent classification results in this area [52–54,37]. Given an inclusion 
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Q ⊆ M , the quasinormalizer QNM (Q) is the ∗-algebra of all elements x ∈ M such 
that there exist x1, x2, ..., xk ∈ M so that Qx ⊆

∑
i xiQ and xQ ⊆

∑
i Qxi, [52]. The 

von Neumann algebra QNM (Q)′′ is called the quasinormalizing algebra of Q inside M . 
Similarly, the intertwiner space QN

(1)
M (Q) is the set of all x ∈ M such that there exist 

x1, x2, ..., xk ∈ M so that Qx ⊆
∑

i xiQ, [52,24]. The von Neumann algebra QN
(1)
M (Q)′′

is called the one-sided quasinormalizer algebra of Q inside M .
As usual NM (Q) = {u ∈ U(M) | uQu∗ = Q} denotes the normalizing group and 

NM (Q)′′ denotes the normalizing algebra of Q in M . Notice that Q ⊆ NM (Q) ⊆
QNM (Q) ⊆ QN

(1)
M (Q) ⊆ M .

The following computations of (one-sided) quasinormalizer algebras for inclusions of 
group von Neumann algebras will be essential for our arguments.

Theorem 2.2 (Corollary 5.2 [24]). If Ω � Γ is an inclusion of groups, the following hold:

(1) QNL(Γ)(L(Ω))′′ = L(H1), where H1 = QNΓ(Ω) = QN
(1)
Γ (Ω) ∩ QN

(1)
Γ (Ω)−1;

(2) QN
(1)
L(Γ)(L(Ω))′′ = L(H2), where H2 = 〈QN

(1)
Γ (Ω)〉 � Γ.

Theorem 2.3 (Lemma 3.5 [54]; Proposition 6.2 [24]). Let Q ⊆ M be an inclusion of 
tracial von Neumann algebras. Then for any p ∈ P(Q) we have

(1) QNpMp(pQp)′′ = pQNM (Q)′′p, and
(2) QN

(1)
pMp(pQp)′′ = pQN

(1)
M (Q)′′p.

2.4. Height of elements in group von Neumann algebras

Following [32, Section 4] and [38, Section 3] the height hΓ(x) of an element x ∈ L(Γ) is 
the absolute value of the largest Fourier coefficient, i.e., hΓ(x) = supγ∈Γ |τ(xuγ)|, where 
{uγ |γ ∈ Γ} are the canonical unitaries of M implemented by Γ. For a subset S ⊆ L(Γ), 
we denote by hΓ(S) = infx∈S hΓ(x). In this section we prove two elementary lemmas on 
height that will be used in the proof Theorem C.

Lemma 2.4. Assume that L(Γ) = M and consider the subsets Σ ⊆ Γ and S ⊆ (M)1. If 
there exist x, y ∈ (M)1 such that hΣ(xSy) > 0 then one can find a finite subset F ⊂ Γ
such that hF ΣF (S) > 0. In particular, we have hΓ(S) > 0 iff hΓ(uSu∗) > 0 for some 
u ∈ U(M).

Proof. Using Kaplansky’s Theorem for every ε > 0 there is a finite subset Fε ⊂ Λ and 
xε, yε ∈ (M)1 supported on Fε so that ‖x − xε‖2, ‖y − yε‖2 ≤ ε. Using these estimates 
together with triangle inequality, for every s ∈ S and γ ∈ Σ we have

|τ(xsyuγ)| ≤ 4ε + |τ(xεsyεuγ)|
≤ 4ε +

∑
|τ(xεuλ−1)||τ(yεuμ−1)||τ(uλsuμuγ)| ≤ 4ε + |Fε|2 max

ν∈FεγFε

|τ(suν)|.

λ,μ∈Fε
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This implies that hΣ(xSy) ≤ 4ε + |Fε|2hFεΣFε
(S) and hence hFεΣFε

(S) ≥ (hΣ(xSy) −
4ε)|Fε|−2. Letting ε > 0 small enough we get the first part conclusion.

For the remaining part, the reverse implication follows from above. The direct impli-
cation follows from the reverse implication by replacing S with uSu∗ and u with u∗. �
Lemma 2.5. Assume that L(Γ) = L(Λ) = M . Consider the comultiplication along Λ
i.e. the embedding Δ : M → M⊗̄M given by Δ(vλ) = vλ ⊗ vλ, where {vλ | λ ∈ Λ}
are the canonical group unitaries of M implemented by Λ. If S ⊆ (M)1 and there are 
x, y ∈ (M⊗̄M)1 so that hΓ×Γ(xΔ(S)y) > 0 then hΛ(S) > 0.

Proof. Since hΓ×Γ(xΔ(S)y) > 0 then Lemma 2.4 implies that

hΓ×Γ(Δ(S)) > 0. (2.1)

Fix s ∈ S. Let s =
∑

λ∈Λ τ(svλ−1)vλ and note that Δ(s) =
∑

λ∈Λ τ(svλ−1)vλ ⊗vλ. Using 
these formulas and Cauchy-Schwarz inequality, for any γ1, γ2 ∈ Γ, we have

|τ ⊗ τ(Δ(s)(uγ1 ⊗ uγ2))| ≤
∑

λ∈Λ

|τ(svλ−1)||τ(vλuγ1)||τ(vλuγ2)|

≤ hΛ(s)
∑

λ∈Λ

|τ(vλuγ1)||τ(vλuγ2)| ≤ hΛ(s)‖uγ1‖2‖uγ2‖2 = hΛ(s).

This further implies hΓ×Γ(Δ(S)) ≤ hΛ(S) and using (2.1) we get the conclusion. �
2.5. Relative amenability

A tracial von Neumann algebra (M, τ) is called amenable if there exists a state φ :
B(L2(M)) → � such that φ|M = τ and φ is M -central (i.e. φ(xT ) = φ(Tx) for all 
x ∈ M, T ∈ B(L2(M))), [22]. Making use of the basic construction for inclusions of 
algebras [21,42] this concept was further generalized in [48] to subalgebras. Let (M, τ)
be a tracial von Neumann algebra, p ∈ M be a projection, and P ⊆ pMp, Q ⊆ M be von 
Neumann subalgebras. Following [48, Section 2.2] we say that P is amenable relative to 
Q inside M if there exists a P -central state φ : p〈M, eQ〉p → � such that φ(x) = τ(x), 
for all x ∈ pMp. Here 〈M, eQ〉 denotes the basic construction for the inclusion Q ⊆ M , 
i.e. the commutant of the Q-right action on B(L2(M)) [42].

In this section we prove a relative amenability result for subalgebras that “cluster at 
infinity” in an infinite tensor product of factors. The result will be essentially used to 
derive our infinite product rigidity result for group factors. Our proof is an adaptation of 
an argument due to Ioana. See also [39, Lemma 4.4] and [29, Proposition 4.2] for similar 
results.

Proposition 2.6. Let M ⊆ (M̃, τ) be finite von Neumann algebras satisfying the following:
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(1) there are subalgebras B, C ⊆ M and C ⊆ C̃ ⊆ M̃ so that M = B∨C and M̃ = B∨C̃.
(2) there are descending family Bn ⊆ M of subalgebras and an ascending family Cn ⊆ M

of subalgebras such that ∪nCn = C, ∩nBn = B and M = Bj ∨ Cj for all j.
(3) there exist θ, θn ∈ Aut(M̃) such that θn|Bn

= id|Bn
for all n, θn → θ pointwise.

Let p ∈ B be a nonzero projection and let A ⊆ pMp be a von Neumann subalgebra 
so that for each n ∈ � there is un ∈ U(pMp) satisfying unAu∗

n ⊆ Bn. Consider the 
M -M bimodule H = L2(M̃) given by the actions x · ξ · y = xξθ(y) for all x, y ∈ M and 
ξ ∈ L2(M̃). Then there exists a sequence of vectors (ξn)n ⊂ L2(pM̃p) satisfying

lim
n

‖x · ξn − ξn · x‖H = 0, for all x ∈ A, and (2.2)

lim
n

〈x · ξn, ξn〉H = τ(x), for all x ∈ pMp. (2.3)

Proof. Since unAu∗
n ⊆ Bn and θn|Bn

= id|Bn
then for every x ∈ A we have θn(unxu∗

n) =
unxu∗

n. This implies that u∗
nθn(un)θn(x) = xu∗

nθn(un) and letting ξn = u∗
nθn(un) ∈

U(pM̃p) we conclude that for all x ∈ A and n ∈ � we have

ξnθn(x) = xξn. (2.4)

Since un ∈ U(pMp) and θn|Bn
= id|Bn

we have that ‖ξn‖H = ‖u∗
nθn(un)‖2 = ‖p‖2 for 

all n. Since ‖un‖∞ ≤ 1 then using (2.4) and θn → θ pointwise one can check that for 
every x ∈ A we have

lim
n

‖x · ξn − ξn · x‖H = lim
n

‖xξn − ξnθ(x)‖2 = lim
n

‖ξn(θn(x) − θ(x))‖2

≤ lim
n

‖ξn‖∞‖θn(x) − θ(x)‖2 = lim
n

‖θn(x) − θ(x)‖2 = 0.

Finally, since ξn ∈ U(pM̃p) we have 〈x · ξn, ξn〉H = τ(ξ∗
nxξn) = τ(xξnξ∗

n) = τ(x) for all 
x ∈ pMp. Altogether, the above relations give the desired conclusion. �
Proposition 2.7. Let M = ⊗̄i∈�Mi⊗̄B. Let A ⊆ M be a von Neumann algebra for 
which there exist sequences (kn)n ⊆ � and (un)n ⊂ U(M) such that kn ↗ ∞ and 
unAu∗

n ⊆ ⊗̄i≥kn
Mi⊗̄B for all n. Then A is amenable relative to B inside M .

Proof. Denote by ⊗̄i∈�Mi = C and notice that M = C⊗̄B. Let C̃ = C⊗̄C and M̃ =
C̃⊗̄B and notice that M ⊂ M̃ . For every n ∈ � denote by Cn = ⊗̄kn−1

i=1 Mi, by Dn =
⊗̄i≥kn

Mi and by Bn = Dn⊗̄B and notice that ∪nCn = C and ∩nBn = B. Next let 
θn ∈ Aut(M̃) satisfying θn(x ⊗ y) = y ⊗ x for all x, y ∈ Cn and θn = id on Dn⊗̄Dn⊗̄B. 
Notice that θn → θ pointwise, where θ ∈ Aut(M̃) satisfies θ(x ⊗y) = y⊗x for all x, y ∈ C

and θ = id on B. One can check all the conditions in the statement of Proposition 2.6 are 
satisfied. Thus if we consider the M -M bimodule H := L2(M̃) = L2(C)⊗̄L2(C)⊗̄L2(B)
with the actions given by x · ξ · y = xξθ(y) for all x, y ∈ M and ξ ∈ H there exists a
sequence of unit vectors (ξn)n ∈ H such that
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lim
n

‖x · ξn − ξn · x‖H = 0, for all x ∈ A

lim
n

〈x · ξn, ξn〉H = lim
n

〈ξn · x, ξn〉H = τ(x), for all x ∈ M.
(2.5)

Let 〈M, e1⊗B〉 be the basic construction for 1⊗̄B ⊂ M and let Tr be the semifinite trace 
on 〈M, e1⊗B〉. Next we notice that, as M -M -bimodules, L2(〈M, e1⊗B〉, Tr) is isomorphic 
to H via the map (x ⊗ y)e1⊗B(z ⊗ 1) → (x ⊗ y) · (1 ⊗ 1 ⊗ 1) · (z ⊗ 1), for x, z ∈ C and 
y ∈ B. Indeed it is clear this is M -M -bimodular and also for all xi, zi ∈ C and yi ∈ B

we have

〈(x1 ⊗ y1)e1⊗B(z1 ⊗ 1), (x2 ⊗ y2)e1⊗B(z2 ⊗ 1)〉T r =

= Tr((z2 ⊗ 1)∗e1⊗B(x2 ⊗ y2)∗(x1 ⊗ y1)e1⊗B(z1 ⊗ 1))

= Tr((z1z∗
2 ⊗ 1)E1⊗B(x∗

2x1 ⊗ y∗
2y1)e1⊗B)

=τC(x∗
2x1)τC⊗B(z1z∗

2 ⊗ y∗
2y1)

=τC(x∗
2x1)τC(z∗

2z1)τB(y∗
2y1)

=〈(x1 ⊗ 1 ⊗ y1)(1 ⊗ 1 ⊗ 1)θ(z1 ⊗ 1), (x2 ⊗ 1 ⊗ y2)(1 ⊗ 1 ⊗ 1)θ(z2 ⊗ 1))〉H

=〈(x1 ⊗ y1) · (1 ⊗ 1 ⊗ 1) · (z1 ⊗ 1), (x2 ⊗ y2) · (1 ⊗ 1 ⊗ 1) · (z2 ⊗ 1)〉H.

This combined with (2.5) and [48, Theorem 2.1] show that A is amenable relative to B
inside M . �
3. Proof of Theorem A

This section is devoted to the proof of Theorem A. In essence this result is an infinite 
analog of the “product rigidity” phenomenon for group factors found in [16]. In fact our 
methods build upon the general strategy developed in [16] and still use in a crucial way 
the ultrapower techniques from [33] as well as the intertwining/combinatorial aspects 
developed in [47,38,16,23,20] and the classification of normalizers from [63]. Since our 
exposition will focus primarily on the novel aspects of these techniques we recommend 
the reader to consult the aforementioned works as some of these results will be heavily 
used throughout the section.

To ease our exposition we first introduce the following notation:

Notation 3.1. Let {Γi}i∈I be a collection of icc, weakly amenable, biexact groups and 
denote by Γ = ⊕i∈IΓi. For any subset S ⊆ I, we denote ΓS = ⊕i∈SΓi. Denote by 
M = L(Γ), let t > 0 be a scalar, and assume that M t = L(Λ) for an arbitrary group 
Λ. Following [38], let Δ : M t → M t⊗̄M t be the comultiplication along Λ, i.e. Δ(vλ) =
vλ ⊗ vλ, where {vλ}λ∈Λ are the canonical unitaries generating L(Λ).

Proposition 3.2. Assume Notation 3.1. Then for every i ∈ I there exists j ∈ I such that 
Δ(L(ΓI\{i})t) ≺Mt⊗̄Mt M t⊗̄L(ΓI\{j})t.
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Proof. Throughout this proof we will identify I with �, the set of positive integers. Also, 
since Γi’s are weakly amenable and biexact we show next the following

Claim 3.3. For every i, j ∈ I one of the following holds:

a) Δ(L(ΓI\{i})t) ≺Mt⊗̄Mt M t⊗̄L(ΓI\{j})t, or
b) Δ(L(Γi)) ≺Mt⊗̄Mt M t⊗̄L(ΓI\{j})t.

Proof of Claim 3.3. One has the following decomposition M t⊗̄M t = M t⊗̄L(ΓI\{j})t⊗̄
L(Γj). Fix A ⊂ Δ(L(Γi)) a diffuse amenable subalgebra. Using [63, Theorem 1.6], we 
have either

c) A ≺Mt⊗̄Mt M t⊗̄L(ΓI\{j})t, or
d) NMt⊗̄Mt(A)′′ is amenable relative to M t⊗̄L(ΓI\{j})t.

Suppose d) holds. As Δ(L(ΓI\{i})t) ⊆ NMt⊗̄Mt(A)′′, then [63, Theorem 1.6] implies 
either

e) Δ(L(ΓI\{i})t) ≺ M t⊗̄L(ΓI\{j})t, or
f) NMt⊗̄MtΔ(L(ΓI\{i})t)′′ is amenable relative to M t⊗̄L(ΓI\{j})t.

However, f) cannot hold. Indeed, since Δ(M t) ⊆ NMt⊗̄Mt(Δ(L(ΓI\{i}))t)′′, then [38, 
Theorem 7.2(2)] would imply Γi is finite, a contradiction. Hence, for every diffuse 
amenable subalgebra A ⊂ L(Γi), either c) or e) must occur. Using [8, Corollary F.14], 
we get the claim. �

Now assume by contradiction the conclusion does not hold. By Claim 3.3, for every 
j ∈ I we have

Δ(L(Γi)) ≺Mt⊗̄Mt M t⊗̄L(ΓI\{j})t. (3.1)

Next we observe that Z(Δ(L(Γi))′ ∩ M t⊗̄M t) = �1. To see this, let z ∈ Z(Δ(L(Γi))′ ∩
M t⊗̄M t). Since Δ(L(ΓI\{i})t) ⊂ Δ(L(Γi))′ ∩ M t⊗̄M t, one can check that z ∈ Δ(M t)′ ∩
M t⊗̄M t. However, since Λ is icc we have Δ(M t)′ ∩ M t⊗̄M t = �1 and our claim follows.

Thus (3.1) further implies that Δ(L(Γi)) ≺s
Mt⊗̄Mt M t⊗̄L(ΓI\{j})t. Hence, applying 

[23, Lemma 2.8 (2)], for every finite subset F ⊂ I we have

Δ(L(Γi)) ≺Mt⊗̄Mt M t⊗̄L(ΓI\F )t. (3.2)

Next we show that (3.2) implies the following

Claim 3.4. Δ(L(Γi)) is amenable relative to M t ⊗ 1.
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Proof of Claim 3.4. Let In = {n, n + 1, n + 2, ...}. Since Δ(L(Γi))′ ∩ M t⊗̄M t is a factor, 
then using [47, Proposition 12], for every n ∈ � there is tn > 0 and un ∈ U(M t⊗̄M t) so 
that

unΔ(L(Γi))u∗
n ⊂ (M t⊗̄L(ΓIn

)t)tn .

Naturally, we have the following inclusions M t⊗̄L(ΓIn
)ttn ⊂ M t⊗̄L(ΓIn

)⊗̄L(Γn−1) =
M t⊗̄L(ΓIn−1). Thus, for every n ∈ I, there is un ∈ U(M t⊗̄M t) so that

unΔ(L(Γi))u∗
n ⊂ M t⊗̄L(ΓIn−1). (3.3)

Thus the claim follows from (3.3) and Proposition 2.7. �
Finally, Claim 3.4 and [38, Proposition 7.2] imply L(Γi) amenable, a contradiction. �

Proposition 3.5. Assume Notation 3.1. Then for all i ∈ I, there exists a nonamenable 
subgroup Λi � Λ with nonamenable centralizer CΛ(Λi) such that L(ΓI\{i})t ≺Mt L(Λi).

Proof. This follows directly from Proposition 3.2 and [23, Theorem 4.1], (see also the 
proof of [16, Theorem 3.3]). �
Theorem 3.6. Assume Notation 3.1. In addition, assume that Γi has property (T), for 
all i ∈ I. For each i ∈ I there is a decomposition Λ = Ψi ⊕ Θi, a scalar ti > 0 and 
ui ∈ U(M) satisfying

uiL(Γi)tiu∗
i = L(Ψi) and uiL(ΓI\{i})t/tiu∗

i = L(Θi). (3.4)

Proof. Fix i ∈ I and write M t = L(ΓI)t = L(ΓI\{i})t⊗̄L(Γi) = A⊗̄B. By Proposi-
tion 3.5, we have A ≺Mt L(Λi) for some non-amenable group Λi � Λ with non-amenable 
CΛ(Λi). By [13, Proposition 2.4], there exist nonzero projections a ∈ A, q ∈ L(Λi), a 
partial isometry v ∈ M t, a subalgebra D ⊆ qL(Λi)q, and a ∗-isomorphism φ : aAa → D

such that

D ∨ (D′ ∩ qL(Λi)q) ⊆ qL(Λi)q has finite index, and (3.5)

φ(x)v = vx ∀ x ∈ aAa. (3.6)

Notice that vv∗ ∈ D′ ∩ qM tq and v∗v ∈ (aAa)′ ∩ aM ta = a ⊗ B. Hence there is a 
projection b ∈ B satisfying v∗v = a ⊗ b. Picking u ∈ U(M t) so that v = u(a ⊗ b) then 
(3.6) gives

Dvv∗ = vaAav∗ = u(aAa ⊗ b)u∗. (3.7)

Passing to the relative commutants, we obtain vv∗(D′ ∩ qM tq)vv∗ = u(a ⊗ bBb)u∗. This 
further implies that there exist s1, s2 > 0
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(D′ ∩ qM tq)z = u(a ⊗ bBb)s1u∗ = L(Γi)s2 , (3.8)

where z is the central support projection of vv∗ in D′ ∩ qMq. Now notice

D′ ∩ qM tq ⊇ (qL(Λi)q)′ ∩ qM tq = (L(Λi)′ ∩ M t)q ⊇ L(CΛ(Λi))q,

where L(CΛ(Λi)) has no amenable direct summand since CΛ(Λi) is a non-amenable 
group. Moreover we also have D′ ∩ qM tq ⊇ D′ ∩ qL(Λi)q. Thus (L(Λi)′ ∩ M t)z and 
(D′ ∩ qL(Λi)q)z are commuting subalgebras of (D′ ∩ qM tq)z where (L(Λi)′ ∩ M t)z has 
no amenable direct summand. Since Γi was assumed to be bi-exact, then using (3.8)
and [45, Theorem 1] it follows that (D′ ∩ qL(Λi)q)z is purely atomic. Thus, cutting by a 
central projection r′ ∈ D′ ∩ q(Λi)q and using (3.5) we may assume that D ⊆ qL(Λi)q is 
a finite index inclusion of algebras. Processing as in the second part of [16, Claim 4.4], 
we may assume that D ⊆ qL(Λi)q is a finite index of II1 factors. Moreover, one can 
check that if one replaces v by the partial isometry of the polar decomposition of r′v �= 0
then all relations (3.6), (3.7) and (3.8) are still satisfied. In addition, we can assume 
without any loss of generality that the support projection satisfies s(EL(Λi)(vv∗) = q. 
Thus, following the terminology introduced in [20, Definition 4.1] we actually have that 
a corner of A is spatially commensurable to a corner of L(Λi), i.e.

A ∼=com
Mt L(Λi). (3.9)

Performing the downward basic construction [42, Lemma 3.1.8], there exist e ∈
P(qL(Λi)q) and a II1 subfactor R ⊆ D ⊆ qL(Λi)q = 〈D, e〉 such that [D : R] =
[qL(Λi)q : D] and Re = eL(Λi)e. Keeping with the same notation, by relation (3.6) the 
restriction φ−1 : R → aAa is an injective ∗-homomorphism such that T = φ−1(R) ⊆ aAa

is a finite Jones index subfactor and

φ−1(y)v∗ = v∗y, for all y ∈ R. (3.10)

Let θ′ : Re → R be the ∗-isomorphism given by θ(xe) = x. Since e has full central support 
in 〈D, e〉 one can see that ev �= 0. Letting w0 be a partial isometry so that w∗

0 |v∗e| = v∗e, 
then Re = eL(Λi)e together with (3.10) imply that θ = φ−1 ◦ θ′ : eL(Λi)e → aAa is an 
injective ∗-homomorphism satisfying θ(eL(Λi)e) = T and

θ(y)w∗
0 = w∗

0y, for all y ∈ eL(Λi)e. (3.11)

Notice that w∗
0w0 ∈ (T ′ ∩aAa)⊗̄B and proceeding as in the proof of [47, Proposition 12]

one can further assume that w∗
0w0 ∈ Z (T ′∩aAa)⊗̄B. Since [aAa : T ] < ∞ then T ′∩aAa

is finite dimensional and so is Z (T ′ ∩ aAa). Thus, replacing the partial isometry w0 by 
w := w0r0, for some minimal projection r0 ∈ Z (T ′ ∩ aAa) satisfying r0w∗

0 |v∗e| �= 0, we 
see that all relations above still hold including relation (3.11). Moreover, we can assume 
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that w∗w = z1 ⊗ z2, for some nonzero projections z1 ∈ Z (T ′ ∩ aAa) and z2 ∈ B. Using 
relation (3.11) we get

w∗L(Λi)w = θ(eL(Λi)e)w∗w = Tz1 ⊗ z2. (3.12)

Since T ⊆ aAa is finite index inclusion of II1 factors then by the local index formula [42]
it follows Tz1 ⊆ z1Az1 is a finite index inclusion of II1 factors as well. Also, we have

(w∗L(Λi)w)′ ∩ (z1 ⊗ z2)M t(z1 ⊗ z2) = ((Tz1)′ ∩ z1Az1)⊗̄z2Bz2. (3.13)

Altogether, the previous relations imply that

Tz1⊗̄z2Bz2 ⊆ Tz1 ∨ (Tz′
1 ∩ z1Az1)⊗̄z2Bz2

= w∗L(Λi)w ∨ w∗(L(Λi)′ ∩ M t)w

= w∗L(Λi)w ∨
(
(w∗L(Λi)w)′ ∩ (z1 ⊗ z2)M t(z1 ⊗ z2)

)

⊆ z1Az1⊗̄z2Bz2.

(3.14)

Since Tz1 ⊆ z1Az1 if a finite index inclusion of II1 factors then so is Tz1⊗̄z2Bz2 ⊆
z1Az1⊗̄z2Bz2. Let f := ww∗ and note that f = re, for some projection r ∈ L(Λi)′ ∩ M t. 
Letting u ∈ U (M t) such that w∗ = uww∗ = uf , then relation (3.14) further implies 
that

f(L(Λi) ∨ (L(Λi)′ ∩ M t))f = L(Λi)f ∨ f(L(Λi)′ ∩ M t)f ⊆ fM tf (3.15)

is an inclusion of finite index II1 factors. In addition, (3.14) gives that dim�(Z (f(L(Λi) ∨
(L(Λi)′ ∩ M t))f)) ≤ [z1Az1⊗̄z2Bz2 : Tz1⊗̄z2Bz2] < ∞. Since the central support of e
in qL(Λi)q equals q then (3.15) implies that

q(L(Λi)qr ∨ r(L(Λi)′ ∩ M t))rq = qr(L(Λi) ∨ (L(Λi)′ ∩ M t))qr ⊆ qrM tqr, (3.16)

is a finite index inclusion of II1 factors. In particular, qL(Λi)qr and r(L(Λi)′ ∩M t)rq are 
commuting II1 factors.

To this end we notice that since 0 �= r0w∗
0 |v∗e| = w∗|v∗e| then 0 �= w∗|v∗e|1/2. 

Thus 0 �= w∗|v∗e|w = v∗ew and since v, w are partial isometries we conclude that 
0 �= vv∗eww∗. However, since ww∗ = r0w0w∗

0 ≤ s(|v∗e|) then ww∗ ≤ e. Combining with 
the above it follows that 0 �= vv∗ww∗ and hence zf = zww∗ �= 0. Thus further implies 
that

zr �= 0. (3.17)

Next we show the following

Claim 3.7. r(L(Λi)′ ∩ M t)rq has property (T).
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Proof of Claim 3.7. Since D ⊆ qL(Λi)q is a finite index inclusion of II1 factors then so 
is Dr ∨ r(L(Λi)′ ∩ M t)rq ⊆ qL(Λi)qr ∨ r(L(Λi)′ ∩ M t)rq. Using (3.16) it follows that 
Dr ∨ r(L(Λi)′ ∩ M t)rq ⊆ rqM trq is finite index as well. Hence Dr ∨ r(L(Λi)′ ∩ M t)rq ⊆
Dr ∨r(D′ ∩qM tq)r is also a finite index inclusion. Since D is a factor one can check that 
EDr∨r(L(Λi)′∩Mt)rq(x) = E(L(Λi)′∩Mt)q(x), for all x ∈ r(D′∩qM tq)r. This combined with 
the above entail that r(L(Λi)′ ∩ M t)rq ⊆ r(D′ ∩ qM tq)r is finite index. By [51, Theorem 
1.1.2 (ii)] r(L(Λi)′∩M t)rz ⊆ r(D′∩qM tq)rz is finite index and since property (T) passes 
to amplifications and finite index subalgebras, then (3.8) implies that r(L(Λi)′ ∩ M t)rz

has property (T). As r(L(Λi)′ ∩M t)rq is a factor we conclude that r(L(Λi)′ ∩M t)rq has 
property (T). �

Now consider Ω := vCΛ(Λi) = {λ ∈ Λ | |λΛi | < ∞}, the virtual centralizer of Λi

in Λ. Using [16, Claim 4.7] we have [Λ : ΛiΩ] < ∞ and hence ΛiΩ � Λ is an icc 
subgroup; in particular, vZ(ΛiΩ) = 1. Consider vZ(Ω) = {ω ∈ Ω | |ωΩ| < ∞}, the 
virtual center of Ω. Since Λi normalizes Ω one can check that vZ(Ω) � vZ(ΛiΩ). Since 
the latter is trivial we get vZ(Ω) = 1 and hence Ω is icc. Let (On)n∈� be a countable 
enumeration of all the orbits under conjugation by Λi. Denote by Ωk = 〈O1, ..., Ok〉 � Ω, 
the subgroup generated by On, n = 1, k. Ωk’s form an ascending sequence of subgroups 
normalized by Λi such that Ω = ∪∞

k=1Ωk. Thus ΛiΩk is an ascending sequence satisfying 
ΛiΩ = ∪∞

k=1ΛiΩk. Since r(L(Λi)′ ∩ M t)rq ⊂ L(ΛiΩ) has property (T) there is k0 ∈ �

such that

r(L(Λi)′ ∩ M t)rq ≺L(ΛiΩ) L(ΛiΩk0). (3.18)

Next we show the following

Claim 3.8. There exists k ≥ k0 such that qL(Λi)qr ∨ r(L(Λi)′ ∩ M t)rq ≺L(ΛiΩ) L(ΛiΩk).

Proof of the Claim 3.8. Using Popa’s intertwining techniques, (3.18) implies the existence 
of x	, y	 ∈ L(ΛiΩ), � = 1, j and c > 0 satisfying

j∑

	=1

‖EL(ΛiΩk0 )(x	uy	)‖2 ≥ c, (3.19)

for all u ∈ U(r(L(Λi)′ ∩ M t)rq). Since ΛiΩk ↗ ΛiΩ for every ε > 0 there is k ≥ k0 so 
that

j∑

	=1

‖EL(ΛiΩk)(x	) − x	‖2 < ε,

j∑

	=1

‖EL(ΛiΩk)(y	) − y	‖ < ε. (3.20)

Using (3.19) together with inequalities ‖mzn‖2 ≤ ‖m‖∞‖z‖2‖n‖∞ for all m, n, z ∈ M t

then for all u ∈ U(r(L(Λi)′ ∩ M t)rq) we have
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c ≤
j∑

	=1

‖EL(ΛiΩk)(x	uyl)‖2

≤
j∑

	=1

‖EL(ΛiΩk)((x	 − EL(ΛiΩk)(x	))uy	)‖2

+
j∑

	=1

‖EL(ΛiΩk)(EL(ΛiΩk)(x	)u(y	 − EL(ΛiΩk)(y	))‖2

+
j∑

	=1

‖EL(ΛiΩk)(EL(ΛiΩk)(x	))uEL(ΛiΩk)(y	)‖2

≤ε max
1≤	≤j

(‖y	‖∞ + ‖x	‖∞) +
j∑

	=1

‖x	‖∞‖y	‖∞‖EL(ΛiΩk)(u)‖2

≤2dε + jd2‖EL(ΛiΩk)(u)‖2,

where d := max1≤	≤j{‖x	‖∞, ‖y	‖∞}. This shows there is k ≥ k0 so that ‖EL(ΛiΩk0 )(u)‖2
≥ c−2εd

jd2 for all u ∈ U(r(L(Λi)′ ∩ M t)rq). Letting ε = c
4d then for all u ∈ U(r(L(Λi)′ ∩

M t)rq) we have

‖EL(ΛiΩk)(u)‖2 ≥ c

2jd2 > 0.

This implies for all a ∈ U(qL(Λi)qr) and u ∈ U(r(L(Λi)′ ∩ M t)rq) we have

‖EL(ΛiΩk)(au)‖2 = ‖aEL(ΛiΩk)(u)‖2 = ‖EL(ΛiΩk)(u)‖2 ≥ c

2jd2 . (3.21)

As U(qL(Λi)qr)U(r(L(Λi)′ ∩ M t)rq) generates qL(Λi)qr ∨ r(L(Λi)′ ∩ M)rq, (3.21) gives 
the claim. �

Now, since q(L(Λi)qr ∨r(L(Λi)′ ∩M)rq ⊆ rqL(ΛiΩ)rq is a finite index inclusion, then 
rqL(ΛiΩ)rq ≺L(ΛiΩ) (L(ΛiΩk) and hence L(ΛiΩ) ≺L(ΛiΩ) L(ΛiΩk). By [12, Lemma 2.2]
it follows that ΛiΩk � ΛiΩ has finite index and by increasing k we can assume that 
ΛiΩk = ΛiΩ. Let Λ′ := CΛi

(Ωk) � Λi and notice [Λi : Λ′] < ∞. Thus [ΛiΩ : Λ′Ωk] < ∞
and since ΛiΩ is icc then Λ′Ωk is also icc. In particular, we also have Λ′ ∩ Ωk = 1. As 
Λ′Ωk � ΛiΩ is finite index the Λ′Ωk ∩ Ω � Ω is also finite index. In particular, since Ω
is icc it follows that Λ′Ωk ∩ Ω is also icc. Letting Λ′′ := Λ′ ∩ Ω the above considerations 
imply that Λ′′Ωk = Λ′Ωk ∩ Ω. This forces Λ′′ to be either trivial or icc. However, since 
by construction Λ′′ = vZ(Λ′′) then Λ′′ = 1. Since Λ′ � Λi finite index it follows that Λi

is icc-by-finite and hence finite-by-icc.
This together with (3.9) and [20, Theorem 4.6] show there exists Σ � CΛ(Λi) such 

that [Λ : ΛiΣ] < ∞ and B ∼=com
M L(Σ). Also since Λ is icc then so are Λi and Σ. Finally, 

using [20, Theorem 4.7] there is a decomposition Λ = Ψi ⊕ Θi, ui ∈ U(M t) and t > 0
such that uiA

tu∗
i = uiL(ΓI\{i})tu∗

i = L(Ψi) and uiB
1/tu∗

i = uiL(Γi)tu∗
i = L(Θi). �
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Now we are ready to derive the proof of first of our main results.

Proof of Theorem A. Using Theorem 3.6 there exist a product decomposition Λ =
Λ1 ⊕Θ1, v1 ∈ U(M), and t1 > 0 such that v1L(Γ1)t1v∗

1 = L(Λ1) and v1L(Γ�\{1})t/t1v∗
1 =

L(Θ1). Applying Theorem 3.6 again in the last relation for the group Γ�\{1} there exist 
a product decomposition Θ1 = Λ2 ⊕Θ2, v2 ∈ U(v1L(Γ�\{1})t/t1v∗

1), and t2 > 0 such that 
v2L(Γ2)t2v∗

2 = L(Λ2) and v2L(Γ�\{1,2})t/(t1t2)v∗
2 = L(Θ2). Proceeding inductively one 

has Θn−1 = Λn ⊕ Θn, a unitary vn ∈ U(vn−1L(Γ�\1,n−1)t/(t1t2···tn−1)v∗
n−1) and tn > 0

such that vnL(Γn)tnv∗
n = L(Λn) and vnL(Γ�\1,n)t/(t1t2···tn)v∗

n = L(Θn). Altogether, 
these relations show that Θn � Θn+1 for all n and also Λ = ⊕�Λn ⊕A, where A = ∩nΘn. 
In addition, for every k ∈ � letting uk := v1v2 · · · vk we see that

ukL(Γi)tiu∗
k = L(Λi) for all i = 1, k and

ukL(Γ�\1,k)t/(t1t2···tk)u∗
k = L(⊕i≥k+1Λi ⊕ A).

(3.22)

Since L(Γk) is a II1 factor the second relation in (3.22) show that for each k ∈ � one 
can find uk ∈ U(M) such that u∗

kL(A)uk ⊆ L(Γ�\1,k)t/(t1t2···tk). Using Proposition 2.7
and the same argument as in the proof of Claim 3.4 if follows that A is icc amenable or 
trivial as desired. �
Remarks 3.9. We conjecture that Theorem A still holds true without the property (T) 
assumption on the Γi’s. We point out that property (T) was used in the proof of 
Theorem 3.6 only to derive relation (3.18); in other words the (increasing) sequence 
of subgroups Ωk becomes stationary. We believe this conclusion can still be achieved 
without the property (T) assumption. However at this time we are unable to prove this.

Proof of Corollary B. First we argue that the group Γ = ⊕nΓn has trivial amenable 
radical. So let B�Γ be a normal amenable subgroup. Thus the von Neumann subalgebra 
L(B) ⊆ L(Γ) = L(⊕n �=kΓk)⊗̄L(Γk) is regular and amenable. Applying [63, Theorem 
1.4] it follows that L(B) ≺ L(⊕n �=kΓn). Since B is normal Γ we further deduce from 
[12, Lemma 2.2] that [B : Bk] < ∞ where Bk := B ∩ (⊕n �=kΓn) < ⊕n �=kΓn. Since 
Bk � Γ is normal it follows that B/Bk � Γ/Bk is a finite normal subgroup. As Γ/Bk =
(⊕n �=kΓn/Bk) ⊕ Γk, if πk : Γ/Bk → Γk is the canonical projection map it follows that 
πk(B/Bk) � Γk is a finite normal subgroup. As Γk is icc we have πk(B/Bk) = 1 and 
hence B/Bk < ⊕n �=kΓn/Bk; in particular, B = Bk < ⊕n �=kΓn. Since this holds for every 
positive integer k then B < ∩k(⊕n �=kΓn) = 1, thus giving the desired claim.

[7, Theorem 1.3] implies that the reduced C∗-algebra �∗
r(Γ) has the unique trace 

property. Letting φ : �∗
r(Γ) → �∗

r(Λ) be a ∗-isomorphism of C∗-algebras it follows that φ
lifts to a ∗-isomorphism φ : L(Γ) → L(Λ) of von Neumann algebras. By Theorem A we 
have that Λ = (⊕nΛn) ⊕ A with A icc amenable or trivial; moreover, the corresponding 
relations (1.1) also hold. Since �∗

r(Λ) has the unique trace property then [7, Theorem 
1.3] implies that A = 1 and the first part of the conclusion is proved. The remaining 
part of the conclusion follows directly from relations (1.1). �
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4. Proof of Theorem E

To ease our exposition we first introduce the following notation:

Notation 4.1. Let H0, Γ be icc groups such that H0 has property (T) and Γ admits an 
infinite, almost normal subgroup Γ0 � Γ with relative property (T). Let Γ � I be an 
action on a countable set I satisfying the following conditions:

a) For each i ∈ I we have [Γ : StabΓ(i)] = ∞;
b) There is a k ∈ � such that for each J ⊆ I with |J | ≥ k we have |StabΓ(J)| < ∞.

Denote by G = H0 �I Γ the corresponding generalized wreath product. Denote by M =
L(G) and assume that M = L(Λ) for an arbitrary group Λ. Let Δ : M → M⊗̄M be 
the commultiplication along Λ, i.e. Δ(vλ) = vλ ⊗ vλ, where {vλ}λ∈Λ are the canonical 
unitaries generating L(Λ).

Proposition 4.2. Assume Notation 4.1. Then the following hold:

c) Δ(L(H(I)
0 )) ≺s

M⊗M L(H(I)
0 )⊗̄L(H(I)

0 );
d) There exists u ∈ U(M⊗̄M) such that uΔ(L(Γ))u∗ ⊆ L(Γ × Γ).

Proof. We denote A0 = L(H0) and A = A
(I)
0 . Note that M = A � Γ, the action being 

given by generalized Bernoulli shifts. Write M = L(Λ) and denote by Δ : M → M⊗̄M

the associated comultiplication. Note that M⊗̄M = (A⊗̄A) � (Γ × Γ).
The inclusion Δ(A0) ⊂ M⊗̄M = M⊗̄(A � Γ) is rigid. Denote by P ⊂ M⊗̄M the 

quasinormalizer of Δ(A0). Note that Δ(A) ⊂ P . By applying [38, Theorem 4.2], we see 
that one of the following has to hold:

(1) Δ(A0) ≺M⊗̄M M ⊗ 1;
(2) P ≺M⊗̄M M⊗̄(A � StabΓ(i)), for some i ∈ I;
(3) v∗Pv ⊂ M⊗̄L(Γ) for some partial isometry 0 �= v ∈ M⊗̄M with vv∗ ∈ Z(P ).

(1) is impossible since A0 is diffuse. Suppose (3) holds. Then by the remark above 
we have that v∗Δ(A)v ⊂ M⊗̄L(Γ). There are two possibilities: either Δ(A) ≺M⊗̄M

M⊗̄L(StabΓ(i)) for some i, or Δ(A) ⊀M⊗̄M M⊗̄L(StabΓ(i)), for all i ∈ I. In the first 
case we again have two possibilities: either there exists a maximal finite subset G � i such 
that Δ(A) ≺M⊗̄M M⊗̄L(StabΓ(G)), or there is no such subset. If the first sub-case holds 
then [38, Lemma 4.1.3] gives that QNM⊗̄M (Δ(A))′′ ≺M⊗̄M M⊗̄L(Norm(G)). Since the 
quasinormalizer of Δ(A) contains Δ(M), this implies Δ(M) ≺M⊗̄M M⊗̄L(Norm(G)). 
As StabΓ(G) is a finite index subgroup of Norm(G), it follows that Δ(M) ≺M⊗̄M

M⊗̄L(StabΓ(G)), and hence Δ(M) ≺M⊗̄M M⊗̄L(StabΓ(i)) for some i, which implies 
by [38, Lemma 7.2.2] that L(StabΓ(i)) ⊂ M has finite index, which is a contradiction. 
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If the second sub-case holds, by taking G with |G| ≥ k we get that Δ(A) ≺M⊗̄M M ⊗ 1, 
a contradiction. Next we argue that the second possibility also does not hold. So 
suppose that Δ(A) ⊀M⊗̄M M⊗̄L(StabΓ(i)), for all i ∈ I. This further implies that 
v∗Δ(A)v ⊀M⊗̄M M⊗̄L(StabΓ(i)), for all i ∈ I and using [38, Lemma 4.1.1] it follows 
that the quasinormalizer of v∗Δ(A)v is still contained in M⊗̄L(Γ). Since A is regular 
in M , this further implies v∗Δ(M)v ⊂ M⊗̄L(Γ), so Δ(M) ≺ M⊗̄L(Γ), which by [38, 
Lemma 7.2.2] implies that L(Γ) has finite index in M , again a contradiction.

It follows that (2) must hold, hence P ≺M⊗̄M M⊗̄(A � StabΓ(i)), which further 
implies Δ(A) ≺M⊗̄M M⊗̄(A � StabΓ(i)), for some i ∈ I. Again we have two pos-
sibilities: either there exists a finite maximal subset G ⊂ I such that Δ(A) ≺M⊗̄M

M⊗̄(A � StabΓ(G)), or it doesn’t. In the first sub-case we get, by [38, Lemma 
4.1.3], that QNM⊗̄M (Δ(A))′′ ≺M⊗̄M M⊗̄(A � Norm(G)) and again as above, that 
Δ(M) ≺M⊗̄M M⊗̄(A � StabΓ(i)), for some i ∈ G, which by [38, Lemma 7.2.2] im-
plies that [M : A � StabΓ(i)] is finite, a contradiction. In the second sub-case, by taking 
a G with |G| ≥ k, we obtain that Δ(A) ≺M⊗̄M M⊗̄A, which is what we wanted. The 
maximal projection q ∈ Δ(A)′ ∩ M⊗̄M such that Δ(A)q ≺s

M⊗̄M
M⊗̄A is non-zero and 

belongs to the center of the normalizer of Δ(A) in M⊗̄M . This center is contained in 
Δ(M)′ ∩ M⊗̄M = �1. It follows that q = 1, hence Δ(A) ≺s

M⊗̄M
M⊗̄A. By symmetry 

we obtain that also Δ(A) ≺s
M⊗̄M

A⊗̄M and finally that Δ(A) ≺s
M⊗̄M

A⊗̄A, showing 
part c).

Next we prove part d). First notice from the assumptions that the inclusion 
Δ(L(Γ0)) ⊂ M⊗̄(A � Γ) is rigid. Denote by P the quasinormalizer of Δ(L(Γ0)) in-
side M⊗̄M . Note that P contains Δ(L(Γ)). We apply again [38, Theorem 4.2] and we 
see that one of the following has to hold:

(1) Δ(L(Γ0)) ≺M⊗̄M M⊗̄1;
(2) P ≺M⊗̄M M⊗̄(A � StabΓ(i)), for some i ∈ I;
(3) vPv∗ ⊂ M⊗̄L(Γ), for some v ∈ U(M⊗̄M).

Note that (1) cannot be true because Δ(L(Γ0)) is diffuse. Suppose (2) is true. This implies 
in particular that Δ(L(Γ)) ≺M⊗̄M M⊗̄(A �StabΓ(i)). But since Δ(A) ≺s

M⊗̄M
A⊗̄A, by 

[3, Lemma 2.3], we would get Δ(A � Γ) = Δ(M) ≺M⊗̄M M⊗̄(A � StabΓ(i)), which by 
[38, Lemma 7.2.2] implies that A � StabΓ(i) ⊂ M has finite index, a contradiction. So 
(3) must be true, hence a fortiori vΔ(L(Γ))v∗ ⊂ M⊗̄L(Γ). Repeating the argument for 
the inclusion vΔ(L(Γ))v∗ ⊂ M⊗̄L(Γ) = (A �Γ)⊗̄L(Γ), we obtain an unitary u ∈ M⊗̄M

such that uΔ(L(Γ))u∗ ⊂ L(Γ)⊗̄L(Γ), as desired. �
Proposition 4.3. Assume Notation 4.1. In addition assume that H0, Γ and Λ are torsion 
free groups. Then the following hold:

Δ(L(H(I)
0 )) ≺s

M⊗M L(H(I)
0 )⊗̄L(H(I)

0 );
e) There exists w ∈ U(M⊗̄M) such that wΔ(Γ)w∗ ⊆ �(Γ × Γ).
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Proof. Since e) follows directly from Proposition 4.2 we will only argue for f). From 
Proposition 4.2 there exists u ∈ U(M⊗̄M) such that uΔ(L(Γ))u∗ ⊆ L(Γ × Γ).

Denote by G = {uΔ(uγ)u∗ | γ ∈ Γ} ⊂ U(L(Γ × Γ)). Since G normalizes uΔ(A)u∗, 
which satisfies uΔ(A)u∗ ≺s A⊗̄A, the argument in Step 5 of the proof of [38, Theorem 
5.1] implies that hΓ×Γ(G) > 0. We have that G′′ = uΔ(L(Γ))u∗ ⊀M⊗̄M L(CΓ×Γ(γ1, γ2)), 
for any (γ1, γ2) ∈ Γ × Γ − {e}. Indeed, suppose this is not true, and uΔ(L(Γ))u∗ ≺
L(CΓ×Γ((γ1, γ2))) = L(CΓ(γ1))⊗̄L(CΓ(γ2)), with γ2 �= e. Again using the fact that 
Δ(A) ≺M⊗̄M A⊗̄A, we infer that Δ(M) = Δ(A � Γ) ≺ M⊗̄(A � CΓ(γ2)). [38, Lemma 
7.2.2] then implies that A �CΓ(γ2) has finite index in M , which is a contradiction, since 
Γ is icc. Also, the representation {Ad(v)}v∈G on L2(L(Γ × Γ)) � �1 is weakly mixing, 
because it is in fact weakly mixing on L2(M⊗̄M) � �1. Indeed, let H ⊂ L2(M⊗̄M)
be a finite dimensional {Ad(v)}v∈G invariant subspace. Then H0 = uHu∗ is a finite 
dimensional {AdΔ(uγ)}γ∈Γ-invariant subspace of L2(M⊗̄M). Denote by K the closed 
linear span of H0Δ(M). Then K is a Δ(LΓ) −Δ(M) bi-module, which is finitely generated 
as a right module. Since L(Γ) ⊀M L(CΛ(s)), for any s ∈ Λ − {e}, [38, Proposition 7.2.3]
implies that K ⊂ Δ(L2M), so in particular H0 ⊂ Δ(L2M). Hence Δ−1(H0) ⊂ L2M is a 
finite dimensional {Ad(uγ)}γ∈Γ-invariant subspace. As the inclusion Γ � H

(I)
0 �Γ is icc, 

the representation {Ad(uγ)}γ∈Γ on L2(M) � �1 is weakly mixing, which further implies 
that H = �1, as claimed. Now we apply [43, Theorem 4.1] to deduce that there exists 
a unitary w ∈ L(Γ × Γ) such that wGw∗ ⊂ �(Γ × Γ). By replacing w with wu, we may 
assume that wΔ(uγ)w∗ ∈ �(Γ × Γ) for all γ ∈ Γ. �
Theorem 4.4. (Theorem E) Let H0, Γ be icc torsion free groups such that H0 has property 
(T) and Γ admits an infinite, almost normal subgroup Γ0 � Γ with relative property (T). 
Let Γ � I be a transitive action on a countable set I satisfying the following conditions:

a) There is a k ∈ � such that for each J ⊆ I satisfying |J | ≥ k we have |StabΓ(J)| < ∞;
b) For every i �= j in I we have that |StabΓ(i) · j| = ∞.

Denote by G = H0 �I Γ the corresponding generalized wreath product. Let Λ be any 
torsion free group and let θ : L(G) → L(Λ) be a ∗-isomorphism. Then Λ admits a wreath 
product decomposition Λ = Σ0 �I Ψ satisfying the following properties: there exist a group 
isomorphism ρ : Γ → Ψ, a character η : Γ → �, a ∗-isomorphism θ0 : L(H0) → L(Σ0)
and a unitary v ∈ L(Λ) such that for every x ∈ L(H(I)

0 ) and γ ∈ Γ we have

θ(xuγ) = η(γ)v∗θ⊗̄I
0 (x)vδ(γ)v.

Here {uγ | γ ∈ Γ} and {vλ | λ ∈ Ψ} are the canonical unitaries of L(Γ) and L(Ψ), respec-
tively.

Proof. Let A = L(H(I)
0 ), and notice that θ(L(G)) = L(Λ) = M . Using Proposition 4.3

one can find w ∈ U(M⊗̄M), group homomorphisms δi : Γ → Γ, and a character ω :
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Γ → � such that wΔ(θ(uγ))w∗ = ω(γ)θ(uδ1(γ)) ⊗ θ(uδ2(γ)) for all γ ∈ Γ. Then applying
verbatim Steps 4 and 5 in the proof of [38, Theorem 8.2] one can find an injective group 
homomorphism ρ : Γ → Λ and a character η : Γ → � satisfying

θ(uγ) = η(γ)vρ(γ), for all γ ∈ Γ. (4.1)

Denote by Ψ = ρ(Γ). In addition, these proofs also show there is a v ∈ U(M) such that 
w = (v∗ ⊗ v∗)Δ(v). Henceforth the canonical unitaries θ(uγ), γ ∈ Γ will be replaced by 
vθ(uγ)v∗ and A will be replaced by vAv∗. Under these conventions we prove that

Claim 4.5. Δ(θ(A)) ⊂ θ(A)⊗̄θ(A).

Proof of Claim 4.5. By Proposition 4.2, Δ(θ(A)) ≺s θ(A)⊗̄θ(A). This means that for 
every ε > 0, there exists a finite subset e ∈ S ⊂ θ(Γ) such that ‖d − PS×S(d)‖2 ≤ ε, for 
all d ∈ U(Δ(θ(A))). Here we have denoted by PS×S the orthogonal projection from 
L2(M⊗̄M) onto the closure of the linear span of a1us1 ⊗ a2us2 , where a1, a2 ∈ A

and s1, s2 ∈ S. But since, according to Proposition 4.3, Δ(θ(A)) is invariant to 
Ad(Δ(θ(uγ))) = Ad(θ(uγ) ⊗θ(uγ)) for all γ ∈ Γ, we see that ‖d −PμSμ−1×μSμ−1(d)‖2 ≤ ε, 
for all d ∈ U(Δ(θ(A))) and μ ∈ θ(Γ). As Γ is icc we can find μ ∈ θ(Γ) such that 
μSμ−1 ∩ S = {e} (see for instance [19, Proposition 3.4]). By the triangle inequality this 
further implies that

‖d − Eθ(A)⊗̄θ(A)(d)‖2 = ‖d − P(μSμ−1∩S)×(μSμ−1∩S)(d)‖2 ≤ 2ε,

for all d ∈ U(Δ(θ(A))). As ε is arbitrary, this implies Δ(θ(A)) ⊂ θ(A)⊗̄θ(A). �
From Claim 4.5 and [38, Lemma 7.1.2] it follows that θ(A) = L(Σ), for some Σ < Λ. 

Since the uγ ’s normalize A, it follows that Ψ � ρ(γ) normalizes Σ, for all γ. Consider 
the action of Ψ → Aut(Σ) given by Ψ � λ → Ad(λ) ∈ Aut(Σ) and observe that Λ splits 
as a semidirect product Λ = Σ � Ψ, because L(Λ) = θ(A) � θ(Γ).

For the remaining part consider A0 = L(H0) and denote by Ai
0 the copy of A0 in 

position i ∈ I. Next we show that

Claim 4.6. Δ(θ(Ai
0)) ⊂ θ(Ai

0)⊗̄θ(Ai
0), for all i ∈ I.

Proof of Claim 4.6. Using (4.1) we note that Δ(θ(Ai
0)) is fixed by Ad(Δ(θ(uγ))) =

Ad(θ(uγ) ⊗ θ(uγ)), for all γ ∈ StabΓ(i). Due to the assumption that StabΓ(i) · j is 
infinite for all i �= j, the representation Ad{θ(uγ) ⊗ θ(uγ)}γ∈StabΓ(i) is weakly mixing on 
L2(M⊗̄M) � L2(θ(Ai

0)⊗̄θ(Ai
0)), so it follows that Δ(θ(Ai

0)) ⊂ θ(Ai
0)⊗̄θ(Ai

0). �
Hence from Claim 4.6 and [38, Lemma 7.1.2] for every i ∈ I there exists a subgroup 

Σi < Λ such that θ(Ai
0) = L(Σi). Since the action Γ � I is transitive, it follows that 

Σi
∼= Σ0 for all i, and then that Σ =

⊕
I Σ0. Moreover, this entails that the action 
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Ψ → Aut(Σ) = Aut(
⊕

I Σi) is induced by the generalized Bernoulli action of Ψ � I and 
hence Λ = Σ0 �I Γ. The rest of the statement follows from the previous observations. �
5. Proof of Theorem C

Theorem 5.1. Let H0, Γ be icc, property (T) group. Also assume that Γ = Γ1 × Γ2, where 
Γi are nonamenable biexact groups for all i = 1, 2. Let Γ � I be an action on a countable 
set I satisfying the following conditions:

a) The stabilizer StabΓ(i) is amenable for each i ∈ I;
b) There is k ∈ � such that for each J ⊆ I satisfying |J | ≥ k we have |StabΓ(J)| < ∞.

Denote by G = H0 �I Γ the corresponding generalized wreath product. Let Λ be an arbi-
trary group and let θ : L(G) → L(Λ) be a ∗-isomorphism. Then Λ admits a semidirect 
product decomposition Λ = Σ � Φ satisfying the following properties: there exist a group 
isomorphism δ : Γ → Φ, a character ζ : Γ → �, a ∗-isomorphism θ0 : L(H(I)

0 ) → L(Σ)
and a unitary t ∈ L(Λ) such that for every x ∈ L(H(I)

0 ) and γ ∈ Γ we have

θ(xuγ) = ζ(γ)tθ0(x)vδ(γ)t
∗.

Here {ug | γ ∈ Γ} and {vλ | λ ∈ Φ} are the canonical unitaries of L(Γ) and L(Φ), respec-
tively.

Proof. From assumptions we have that θ(L(G)) = L(Λ) = M . Denote by A0 = θ(L(H0))
and A = θ(L(HI

0 ). Also to simplify the writing, throughout the proof we will identify 
Γ with θ(Γ), etc. Thus note that M = A � Γ, the action being given by generalized 
Bernoulli shifts. Consider Δ : M → M⊗̄M the comultiplication along Λ. Note that 
M⊗̄M = (A⊗̄A) � (Γ × Γ). Proposition 4.2 implies that

(1) Δ(A) ≺s
M⊗̄M

A⊗̄A, and
(2) there is u ∈ U(M⊗̄M) such that uΔ(L(Γ))u∗ ⊆ L(Γ × Γ).

Next we show the following

Claim 5.2. There exist a subgroup Φ < Λ with QN
(1)
Λ (Φ) = Φ, d ∈ P(L(Φ)) and μ ∈

U(M) satisfying h = μdμ∗ ∈ L(Γ) and μdL(Φ)dμ∗ = hL(Γ)h.

Proof of Claim 5.3. Let K := {Γ ×Γ1, Γ ×Γ2, Γ1 ×Γ, Γ2 ×Γ}. Since by [8, Lemma 15.3.3]
Γ ×Γ is biexact relatively to K and Δ(L(Γ1)) and Δ(L(Γ2)) are commuting nonamenable 
factors then [8, Theorem 15.1.5] implies that there are Ψ ∈ K and i = 1, 2 so that 
uΔ(L(Γi))u∗ ≺L(Γ×Γ) L(Ψ). Since the flip automorphism of M⊗̄M acts identically on 
Δ(L(Γi)) we can assume without any loss of generality Ψ = Γ × Γ1 and i = 1. Hence
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uΔ(L(Γ1))u∗ ≺L(Γ×Γ) L(Γ × Γ1).

The using [23, Theorem 4.1] (see also [16, Theorem 3.3])) this further implies there exists 
a subgroup Σ < Λ with non-amenable centralizer Υ := CΛ(Σ) and L(Γ1) ≺M L(Σ). 
Passing to the intertwining of the relative commutants we have that L(Υ) ⊆ L(Σ)′ ∩
M ≺M L(Γ1)′ ∩ M = L(Γ2). Thus there are projections e ∈ L(Υ), f ∈ L(Γ2), a partial 
isometry v ∈ M , and an injective unital ∗-homomorphism φ : eL(Υ)e → fL(Γ2)f such 
that

φ(x)v = vx, for all x ∈ eL(Υ)e. (5.1)

Denote by T := φ(eL(Υ)e) and notice that q′ := vv∗ ∈ T ′ ∩ fMf and p := v∗v ∈
eL(Υ)e′ ∩ eMe = (L(Υ)′ ∩ M)e. Since T is a non-amenable factor then a) implies that 
T ⊀ L(StabΓ(i)) for all i and using [54, Theorem 3.1] we have QNfMf (T )′′ ⊆ L(Γ). In 
particular, q′ ∈ L(Γ) and by (5.1) there is u ∈ U(M⊗̄M) such that ueL(Υ)epu∗ ⊆ L(Γ). 
Since L(Γ) is a factor, the same argument from the proof of part (2) of [37, Theorem 
5.1] shows that one can perturb u to a new unitary such that we further have

uL(Υ)pu∗ ⊆ L(Γ). (5.2)

Since Υ is non-amenable then uL(Υ)pu∗ ⊀ L(StabΓ(i)) for all i and (5.2) combined with 
[54, Theorem 3.1] and the quasinormalizer formula show that upL(QNΛ(Υ))′′pu∗ ⊆
QNupMpu∗(uL(Υ)pu∗)′′ ⊆ L(Γ). Since L(Γ) is a factor, the same argument as before 
further implies that uL(QNΛ(Υ))z′u∗ ⊆ L(Γ), where z′ is the central support of p in 
L(QNΛ(Υ)). Notice Σ � vCΛ(Υ) < QNΛ(Υ) and hence uL(Σ)z′u∗ ⊆ L(Γ). Letting 
Ω := vCΛ(Σ), Θ := QN

(1)
Λ (ΣΩ) and using the same arguments as before, we can further 

find η ∈ U(M⊗̄M) and a projection z ∈ Z(L(Θ)) such that

ηL(Θ)zη∗ ⊆ L(Γ). (5.3)

Since Υ, Σ < Θ are commuting non-amenable groups and Γ is biexact relatively to 
{Γ1, Γ2}, [8, Theorem 15.1.5] implies that ηL(Σ)zη∗ ≺L(Γ) L(Γk), for some k = 1, 2. 
Again, without any loss of generality we can assume k = 1. Passing to the relative 
commutants intertwining we get

L(Γ2) = L(Γ1)′ ∩ L(Γ) ≺L(Γ) (ηL(Σ)zη∗)′ ∩ ηzη∗L(Γ)ηzη∗ ⊆ ηL(Ω)zη∗. (5.4)

Now let {Ok}k be a countable enumeration of all the finite orbits under conjugation 
by Σ and notice that ∪kOk = Ω. Consider Ωk := 〈O1, ..., Ok〉 � Λ and note that Ωk ↗ Ω. 
Since L(Γ2) has property (T) then (5.4) implies that

L(Γ2) ≺L(Γ) ηL(Ωk)zη∗ for some k. (5.5)
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Next we continue by iterating the same argument from page 11. For convenience we 
include all the details. By [13, Proposition 2.4], there exist nonzero projections a ∈
L(Γ2), q ∈ L(Ωk), a partial isometry w ∈ L(Γ), a subalgebra D ⊆ ηqL(Ωk)qzη∗, and a 
∗-isomorphism ψ : aL(Γ2)a → D such that

D ∨ (D′ ∩ ηqL(Ωk)qzη∗) ⊆ ηqL(Ωk)qzη∗ has finite index, and (5.6)

ψ(x)w = wx ∀ x ∈ aL(Γ2)a. (5.7)

Let r = ηqzη∗ and notice that ww∗ ∈ D′ ∩ rL(Γ)r and w∗w ∈ (aL(Γ2)a)′ ∩ aL(Γ)a =
L(Γ1)⊗̄�a. Hence there is a projection b ∈ L(Γ1) satisfying w∗w = b ⊗ a. Picking 
c ∈ U(L(Γ)) so that w = c(b ⊗ a) then (5.7) gives

Dww∗ = wL(Γ2)w∗ = c(�b ⊗ aL(Γ2)a)c∗. (5.8)

Passing to the relative commutants, we obtain ww∗(D′ ∩ rL(Γ)r)ww∗ = c(bL(Γ1)b ⊗
�a)c∗. Hence there exist s1, s2 > 0 satisfying

(D′ ∩ rL(Γ)r)y = c(bL(Γ1)b ⊗ �a)s2c∗ ∼= L(Γ1)s1 , (5.9)

where y is the central support projection of ww∗ in D′ ∩ rL(Γ)r. Notice

D′ ∩ rL(Γ)r ⊇ (ηqL(Ωk)qzη∗)′ ∩ rL(Γ)r = η(L(Ωk)′ ∩ L(Θ))qzη∗ ⊇ ηL(CΣ(Ωk))qzη∗.

From the definition of Ωk it follows that [Σ : CΣ(Ωk)] < ∞. Since Σ is non-
amenable it follows that CΣ(Ωk) is also nonamenable and hence ηL(CΣ(Ωk))qzη∗ has 
no amenable direct summand. Moreover we also have D′ ∩ rL(Γ)r ⊇ D′ ∩ ηqL(Ωk)qzη∗. 
In conclusion (ηL(CΣ(Ωk))qzη∗)y and (D′ ∩ ηqL(Ωk)qzη∗)y are commuting subalge-
bras of (D′ ∩ rL(Γ)r)y where (ηL(CΣ(Ωk))qzη∗)y has no amenable direct summand. 
Since Γi was assumed to be biexact, then using (5.9) and [45, Theorem 1] it fol-
lows that (D′ ∩ ηqL(Ωk)qzη∗)y is purely atomic. Thus, cutting by a central projection 
r′ ∈ D′ ∩ ηqL(Ωk)qzη∗ and using (5.6) we may assume that D ⊆ ηqL(Ωk)qzη∗ is a finite 
index inclusion of algebras. Proceeding as in the second part of [16, Claim 4.4], we may 
assume that D ⊆ ηqL(Ωk)qzη∗ is a finite index inclusion of II1 factors. Moreover, one 
can check that if one replaces w by the partial isometry of the polar decomposition of 
r′w �= 0 then all relations (5.7), (5.8) and (5.9) are still satisfied.

Using relation (5.8), the quasinormalizer compression formula, and the fact that D ⊆
ηqL(Ωk)qzη∗ is a finite index inclusion of II1 factors we can see that

c(b ⊗ a)L(Γ)(b ⊗ a)c∗ = QNc(b⊗a)M(b⊗a)c∗(c(�b ⊗ (aL(Γ2)a))c∗)′′

= QNww∗Mww∗(Dww∗)′′

= ww∗QNrMr(D)′′ww∗

= ww∗QNηqzMqzη∗(ηqL(Ωk)qzη∗)′′ww∗

= ww∗ηqzQN (L(Ω ))′′qzηww∗.
L(Λ) k
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Letting Ξ = QNΛ(Ωk), then the previous relation and formula [24, Corollary 5.2] imply 
that c(b ⊗ a)L(Γ)(b ⊗ a)c∗ = ww∗ηL(Ξ)η∗ww∗. Since QN

(1)
G (Γ) = Γ, this formula and 

[24, Corollary 5.2] further imply that

ww∗ηL(Ξ)η∗ww∗ = c(b ⊗ a)L(Γ)(b ⊗ a)c∗

= QN
(1)
c(b⊗a)M(b⊗a)c∗(c(b ⊗ a)L(Γ)(b ⊗ a)c∗)′′

= QN
(1)
ww∗ηMη∗ww∗(ww∗ηL(Ξ)η∗ww∗)′′

= ww∗ηL(Φ)η∗ww∗,

(5.10)

where Φ =〈QN
(1)
Λ (Ξ)〉. Hence in particular we have ww∗ηL(Ξ)η∗ww∗ = ww∗ηL(Φ)η∗ww∗

and by [16, Proposition 2.6] it follows that [Φ : Ξ] < ∞. This entails that Φ =
QN

(1)
Λ (Ξ) = QN

(1)
Λ (Φ). Note the above relations imply that ww∗ ∈ ηL(Ξ)η∗ ⊆ ηL(Φ)η∗. 

Consider d ∈ P(L(Φ)) such that ww∗ = ηdη∗ and letting μ := c∗η and h := b ⊗ a then 
relation (5.10) gives the desired conclusion. �
Claim 5.3. There exists a unitary w ∈ M such that wL(Φ)w∗ = L(Γ).

Proof of Claim 5.3. From Claim 5.2, there exists Φ � Λ with Φ = QN
(1)
Λ (Φ), d ∈ P(L(Φ))

and μ ∈ U(M) satisfying h = μdμ∗ ∈ L(Γ) and

μdL(Φ)dμ∗ = hL(Γ)h. (5.11)

As Γ has property (T), (5.11) implies that dL(Φ)d is a property (T) von Neumann 
algebra. By [12, Lemma 2.13] it follows that Φ is a property (T) group. Fix r ∈
P((μL(Φ)μ∗)′ ∩ M) and note that μL(Φ)μ∗r is a property (T) von Neumann algebra. 
Thus, using [31, Theorem 0.1] we have that either

(1) μL(Φ)μ∗r ≺M L(Γ), or
(2) μL(Φ)μ∗r ≺M L(HF ) for some finite F ⊂ I.

If (2) would hold then we would have that L(HI\F ) = L(HF )′ ∩ M ≺M (μL(Φ)μ∗r)′ ∩
rMr = rμ(L(Φ)′ ∩ M)μ∗r. On the other hand since QN

(1)
Λ (Φ) = Φ we have μ(L(Φ)′ ∩

M)μ∗ = Z(μL(Φ)μ∗). Altogether, these would show that HI\F is amenable and hence 
H is amenable, a contradiction. So (1) must hold for every r ∈ P((μL(Φ)μ∗)′ ∩ M). 
This entails that μL(Φ)μ∗ ≺s

M L(Γ) and using (5.11) and [12, Lemma 2.6] one can find 
w ∈ U(M) such that wL(Φ)w∗ = L(Γ). �

Next consider the subgroup G = {uΔ(uγ)u∗ | γ ∈ Γ} � U(L(Γ × Γ)). Since G normal-
izes uΔ(A)u∗, which by (1) satisfies uΔ(A)u∗ ≺s A⊗̄A, the argument in Step 5 in the 
proof of [38, Theorem 5.1] implies that hΓ×Γ(G) > 0. Then using Lemmas 2.4-2.5 we fur-
ther have that hΛ(Γ) > 0. Using Lemma 2.4 we get hΛ(w∗Γw) > 0 and by Claim 5.3 we 
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further conclude that hΦ(w∗Γw) > 0. Thus by [38, Theorem 3.1] one can find t ∈ U(M), 
a character ζ : Γ → � and a group isomorphism δ : Γ → Φ such that

tuγt∗ = ζ(γ)vδ(γ), for all γ ∈ Γ. (5.12)

Letting Ω := (t∗ ⊗ t∗)Δ(t) ∈ U(M⊗̄M) we then have ΩΔ(uγ)Ω∗ = ζ(γ)(uγ ⊗ uγ) for all 
γ ∈ Γ. Next, we replace the canonical unitaries uγ , γ ∈ Γ by tuγt∗ and A by tAt∗. Then 
(2) combined with the argument from the proof of Claim 4.5 in Theorem 4.4 further 
shows that Δ(A) ⊂ A⊗̄A. Hence using [38, Lemma 7.1.2] there exists a subgroup Σ < Λ
such that A = L(Σ). Since the uγ ’s normalize A, it follows that vδ(γ) normalizes Σ, for 
all γ. Moreover, since L(Λ) = A �Γ, then Λ admits a semidirect product decomposition 
Λ = Σ �Φ. Altogether the previous considerations give the conclusion of the theorem. �

Next we prove the following result that in particular generalizes Theorem C.

Theorem 5.4. Let H be icc, weakly amenable, biexact property (T) group. Let Γ = Γ1×Γ2, 
where Γi are icc, biexact, property (T) group. Assume that Γ � I is an action on a 
countable infinite set I that satisfies the following properties:

a) The stabilizer StabΓ(i) is amenable for each i ∈ I;
b) There is k ∈ � such that for each J ⊆ I satisfying |J | ≥ k we have |StabΓ(J)| < ∞.

Let G = H �I Γ be the corresponding generalized wreath product. Let Λ be an arbitrary 
group and let θ : L(G) → L(Λ) be a ∗-isomorphism. Then one can find non-amenable 
icc groups Σ0, Ψ, an amenable icc group A, and an action Ψ �α A such that we can 
decompose Λ as semidirect product Λ = (Σ(I)

0 ⊕ A) �β⊕α Ψ, where Ψ �β Σ(I)
0 is the 

generalized Bernoulli action. In addition, there exist a group isomorphism δ : Γ → Ψ, a 
character η : Γ → �, a ∗-isomorphism θ0 : L(H(I)) → L(Σ(I)

0 ⊕ A) and u ∈ U(L(Λ)) so 
that for every x ∈ L(H(I)) and γ ∈ Γ we have

θ(xuγ) = η(γ)uθ0(x)vδ(γ)u
∗.

Here {ug | γ ∈ Γ} and {vλ | λ ∈ Ψ} are the canonical unitaries of L(Γ) and L(Ψ), respec-
tively.

Proof. Let G = H �I Γ satisfy the conditions stated in the Theorem 5.1. Let Λ be an 
arbitrary group and assume that θ : L(G) → L(Λ) is an ∗-isomorphism. Using Theo-
rem 5.1, after composing θ with an inner automorphism of M one can find a semidirect 
product decomposition of Λ = Σ �β Ψ, a group isomorphism δ : Γ → Ψ, and a character 
η : Γ → � such that

θ(uγ) = η(γ)vδ(γ) for all γ ∈ Γ. (5.13)
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Moreover, we have θ(L(Σ)) = L(H(I)). Since H are icc, biexact, weakly amenable, 
property (T) groups then Theorem A implies that one can decompose Σ = ⊕i∈IΣi ⊕ A, 
where A is trivial or amenable icc. In addition, for every finite subset F ⊂ I there exist 
u ∈ U(L(Λ)) and scalars ti > 0 for i ∈ F such that

uL(Σi)tiu∗ = θ(L(Hi)) for all i ∈ F, and

uL(⊕i∈I\F Σi ⊕ A)
∏

i∈F t−1
i u∗ = θ(L(HI\F )).

(5.14)

Next we show that Σi
∼= Σ0 for all i and there is an action Ψ �α A such that 

Λ = (Σ(I) ⊕ A) �b⊕α Ψ, where Ψ �b Σ(I) is the generalized Bernoulli action induced 
by Γ � I. Fix i, j ∈ I and γ ∈ Γ such that γi = j. Let F ⊂ I be a finite set such that 
{i, j} ⊆ F . Using the first relation of (5.14) for i and j in combination with (5.13) we 
get

uL(Σj)tj u∗ = θ(L(Hj)) = θ(uγ)uL(Σi)tiu∗θ(u∗
γ)

= vδ(γ)uv∗
δ(γ)L(βδ(γ)(Σi))tivδ(γ)u

∗v∗
δ(γ).

In particular this relation implies that L(Σj) ≺M L(βδ(γ)(Σi)) and L(βδ(γ)(Σi)) ≺M

L(Σj). Since Σj , βδ(γ)(Σi) are normal subgroups of Λ these intertwinings combined with 
[12, Lemma 2.2] imply that Σj is commensurable with βδ(γ)(Σi); in other words

[Σj : Σj ∩ βδ(γ)(Σi)] < ∞ and [βδ(γ)(Σi) : Σj ∩ βδ(γ)(Σi)] < ∞. (5.15)

Since βδ(γ)(Σi) � ⊕i∈IΣi ⊕ A using the second relation in (5.15) there exists a finite 
subset j ∈ J ⊂ I so that βδ(γ)(Σi) � ΣJ ⊕ A. Thus we have the following normal 
subgroups Σj ∩ βδ(γ)(Σi) � βδ(γ)(Σi) � ΣJ ⊕ A. Taking the quotient we get a finite 
normal subgroup

βδ(γ)(Σi)/Σj ∩ βδ(γ)(Σi) � (ΣJ ⊕ A)/Σj ∩ βδ(γ)(Σi) = Σj/Σj ∩ βδ(γ)(Σi) ⊕ ΣJ\{j} ⊕ A.

Hence βδ(γ)(Σi)/Σj ∩ βδ(γ)(Σi) � vZ(Σj/Σj ∩ βδ(γ)(Σi) ⊕ ΣJ\{j} ⊕ A). However, since 
ΣJ\{j} ⊕ A) is icc by (5.15) we have vZ(Σj/Σj ∩ βδ(γ)(Σi) ⊕ ΣJ\{j} ⊕ A) = Σj/Σj ∩
βδ(γ)(Σi). Altogether, these relations show that βδ(γ)(Σi)/Σj ∩ βδ(γ)(Σi) � Σj/Σj ∩
βδ(γ)(Σi) and hence βδ(γ)(Σi) � Σj . Similarly one can show that βδ(γ)(Σi) � Σj and 
hence βδ(γ)(Σi) = Σj . This shows that Σi

∼= Σ0 for all i. Moreover, there is an action 
Ψ � I which induces a generalized Bernoulli action Ψ �b ⊕i∈IΣi. Also since the ac-
tion of Ψ �β Σ leaves the subgroup ⊕IΣi invariant then Ψ will also leave invariant 
CΣ(⊕IΣi) = A. Hence there is an action Ψ �α A such that Λ = (Σ(I)

0 ⊕ A) �b⊕α Ψ. The 
remaining part of the statement follows directly from the above considerations. �
Proof of Corollary D. This follows proceeding in the same manner as in the proof of 
Corollary B and using Theorem 5.4. �
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Remarks 5.5. When considering generalized Bernoulli actions it is clear the conditions 
presented in the statements of Theorems 5.1, 5.4 are satisfied when all the stabilizers of 
action Γ � I are finite.

On the other hand, if one wants to tackle the infinite amenable stabilizers situation, 
producing examples seems far more challenging. In this direction we would like to present 
a possible approach for this which was suggested to us by Professor Denis Osin during 
the AIM workshop “Classification of group von Neumann algebras”. Consider Σ0 an icc 
finitely generated amenable group. By [1, Theorem 1.2] there exists an icc supragroup 
Σ0 < Γ0 that has property (T) and is hyperbolic relatively to Σ0. Hence by [46] it follows 
that Γ0 is biexact. Let Γ = Γ0×Γ0 and consider the diagonal subgroup Σ = diag(Σ0) < Γ. 
Also let Γ � I = Γ/Σ be the action by left multiplication on the right cosets Γ/Σ. Since 
Σ0 < Γ0 is icc and almost malnormal it follows that the one-sided quasinormalizer 
satisfies QN

(1)
Γ (Σ) = Σ. In turn this is equivalent with condition c) in Theorem 4.4. 

Finally, one can check that condition b) in Theorems 5.1, 5.4 is equivalent with the 
property that the group Σ has finite height in Γ (or it is almost malnormal). This is 
equivalent to the following property: there exists k ∈ � such that any subset F < Σ0
with |F | ≥ k has finite centralizer CΓ0(F ). While finitely generated groups like this exist 
in general (e.g. monster groups) it is unclear if one can construct amenable examples.

In any case a possible positive answer to this last group theoretic question would lead 
to a class of generalized wreath products constructions with non-amenable core that are 
recognizable from the von Neumann algebraic setting. Indeed, Proposition 4.2 together 
with the argument from the proof of Claim 4.6 in Theorem 4.4 give the following

Corollary 5.6. Let H0, Γ be icc, property (T) groups. Also assume that Γ = Γ1 × Γ2, 
where Γi are nonamenable biexact groups for all i = 1, 2. Let Γ � I be an action on a 
countable set I satisfying the following conditions:

a) The stabilizer StabΓ(i) is amenable for each i ∈ I;
b) There is k ∈ � such that for each J ⊆ I satisfying |J | ≥ k we have |StabΓ(J)| < ∞.
c) The orbit StabΓ(i) · j is infinite for all i �= j.

Denote by G = H0 �I Γ the corresponding generalized wreath product. Let Λ be any torsion 
free group and let θ : L(G) → L(Λ) be a ∗-isomorphism. Then Λ admits a wreath product 
decomposition Λ = Σ0 �I Ψ satisfying all the properties enumerated in a)-c). In addition 
there exist a group isomorphism ρ : Γ → Ψ, a character η : Γ → �, a ∗-isomorphism 
θ0 : L(H0) → L(Σ0) and a unitary v ∈ L(Λ) such that for every x ∈ L(H(I)

0 ) and γ ∈ Γ
we have

θ(xuγ) = η(γ)v∗θ⊗̄I
0 (x)vδ(γ)v.

Here {uγ | γ ∈ Γ} and {vλ | λ ∈ Ψ} are the canonical group unitaries of L(Γ) and L(Ψ), 
respectively.
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