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1. Introduction

For a countable infinite group I' we denote by ¢°T" the Hilbert space of all square
summable complex functions on I'. Each element v € I' gives rise to a unitary operator
uy : 02T — 2T by group translation u(€)(A) = {(y~'A), where A € T and £ € ¢°T". The
bicommutant {u,|y € T'}” inside the algebra of all bounded linear operators B(¢2T), is
denoted by L(T") and it is called the group von Neumann algebra of T'. The algebra L(T)
is a IT; factor (has trivial center) precisely when all nontrivial conjugacy classes of T" are
infinite (icc), this being the case most interesting for study [44].

Ever since their introduction, the classification of these factors is a core direction
of research driven by the following fundamental question: What aspects of the group
T are remembered by L(I")? This emerged as an interesting yet intriguing theme since
these algebras tend to have little memory of the initial group. This is best illustrated by
Connes’ celebrated result asserting that all amenable icc groups give isomorphic factors,
[22]. Hence very different groups like the group of all finite permutations of the positive
integers, the lamplighter group, or the wreath product of the integers with itself give
rise to isomorphic factors. Consequently, the von Neumann algebraic structure has no
memory of the typical discrete algebraic group invariants like torsion, rank, or generators
and relations. In this case the only information the von Neumann algebra retains is the
amenability—an approximation property—of the group.

In the non-amenable case the situation is radically different and an unprecedented
progress has been achieved through the emergence of Popa’s deformation/rigidity the-
ory [58]. Using this completely new conceptual framework it was shown that vari-
ous properties of groups, such as their representation theory or their approximations,
can be completely recovered from their von Neumann algebras. As a result, for large
classes of group factors, many remarkable structural properties such as primeness,
(strong) solidity, classification of normalizers of algebras, etc could be successfully es-
tablished [54,55,37,56,59,48,49,9,10,50,61,25,32,38,28,15,64,66,17,18,33,62,30,63,34,35,4,
6,40,3,67,41,11,14,68,5,13,16,23,20]. For additional information we refer the reader to
the following survey papers [58,65,34,36].

One of the most impressive milestone in this study is loana-Popa-Vaes’ discovery of
the first examples of groups that can be completely recovered from their von Neumann
algebras (W*-superrigid” groups), [38]. See also the subsequent result [3] and the more
recent work [12]. These results pushed the classification problem of group factors to new
boundaries and exciting possibilities. In this direction an interesting and wide open theme
is to identify a comprehensive list of canonical constructions in group theory (direct sum,
free product, HNN-extension, wreath product, etc.) that are recoverable from their von
Neumann algebras.

2 I is W*-superrigid if whenever A is an arbitrary group so that L(T') = L(A) then it follows that A = T'.
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1.1. Statements of main results

Over a decade ago Ozawa and Popa discovered the first unique prime factorization
results for tensor product of II; factors, [47]. This work has had deep consequences to the
classification of II; factors and has generated significant subsequent developments. Some
of Ozawa-Popa’s results have been strengthened considerably in [16] which unveiled a
large class of product groups I'y x I's whose product structure is a feature completely
recognizable at the level of their von Neumann algebras L(I'y x I'y). Precisely, whenever
I'1,Ty are hyperbolic icc groups (e.g. non-abelian free groups) and A is an arbitrary
group such that L(I'y x I'y) = L(A) then A admits a nontrivial product decomposition
A = A; x Ay and there exists a scalar ¢ > 0 such that, up to unitary conjugacy, we
have L(T'y) = L(A;)! and L(T's) = L(As)'/*. The result still holds if one assumes, more
generally, that I'1, I’y are just icc biexact groups, [45].

Isono studied unique prime factorization aspects for infinite tensor product of factors
and several interesting results have emerged in [39], see also [26,27]. Motivated in part
by these results it is natural to investigate whether “product rigidity” properties, similar
with ones in [16], would hold in the context of infinite direct sums groups. Specifically,
if one considers I' = &, eI, with T',’s icc non-amenable groups, it would be interest-
ing to understand how much of the infinite direct sum structure of I' is retained by its
von Neumann algebra L(T'). Right away one may notice a sharp contrast point with
the aforementioned finite product situation. Since L(T') canonically decomposes as an
infinite tensor product L(T') = ®@,enL(Ty,) it follows that L(T') is a McDuff factor and
hence L(I') = L(I')®R, where R is the hyperfinite factor; consequently, we have that
L(®nenTn) = L((@nenIn) @ A), for any icc amenable group A. This observation shows
that, in the best case scenario, L(I') could remember the direct sum feature of the un-
derlying group only up to an amenable subgroup which typically lies in the tail of the
infinite tensor product. It is therefore natural to investigate under which circumstances
it is possible to completely reconstruct the infinite direct sum feature only up to this
obstruction. Building upon previous techniques from [38,33,16,23,20] and using the clas-
sification of normalizers from [63] we found infinitely many classes of I';,’s for which this
problem has a positive answer.

Theorem A. Let (I'y)nen an infinite collection of property (T), biexact, weakly amenable,
icc groups. Assume that A is an arbitrary group satisfying L(®nenI'yn) = L(A). Then A
admits an infinite direct sum decomposition A = (BpenAy) ® A, where A,, is ice, weakly
amenable, property (T) group for all m and A is a icc amenable group. Moreover, for
each k € N there exist scalars t1,to, ...,tk11 > 0 satisfying tita...tp+1 = 1 and a unitary
u € L(A) so that

uL(T,)"u* = L(A,) forallk>n>1; and
UL(@n2k+1Fn)tk+lu* - L((@n2k+1An) ©® A)
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The result applies to several concrete classes of groups a such as:

e uniform lattices T, in n, 1) with k, > 2 or any icc groups in their measure

1) th if lattices T, in Sp(kyp, 1) with k, > 2 y icc groups in thei
equivalence class; and

(2) Gromov’s random groups with density satisfying 37! < d < 271,

While the conclusion of the previous theorem shows a strong identification of the
von Neumann algebras of the group factors I',,’s, in general one cannot recover these
groups. To see this note that Voiculescu’s compression formula for free group factors gives
L(Fs) = L(F5) ® M2(C). This implies that L(®penF2) = @nenL(F2) = Q@pen(L(F5) ®
M5(C)) = (®nen(L(F5))@R = L((PnenlFs) @ A), for every icc amenable group A.

Theorem A can be successfully used to shed light towards rigidity aspects in the
C*-algebraic setting. Precisely, when it is combined with [7, Theorem 1.3] one gets the
following version of infinite product rigidity for reduced group C*-algebras.

Corollary B. Let (I'),)nen an infinite collection of property (T), biexzact, weakly amenable,
icc groups. Assume that A is an arbitrary group satisfying C:(®penI'n) = C:(A). Then
A admits an infinite direct sum decomposition N = @, enA,, where the A,’s are ice,
weakly amenable, property (T) groups.

When compared side by side, Theorem A and Corollary B highlight again the fun-
damental difference between C*-algebras and von Neumann algebras; the absence of the
infinite amenable direct summand of A in the conclusion of Corollary B exemplifies once
more the fact that the WOT closure is considerably larger than the uniform norm closure,
thus triggering significant loss of algebraic information in the von Neumann algebraic
setting.

Restricted wreath product groups manifest a remarkable rigid behavior in the von
Neumann algebraic setting. In fact a large portion of the groups/actions known to be
recoverable from their von Neumann algebras arise from constructions involving wreath
product groups or Bernoulli shifts [54,57,61,32,38,62,3]. A common feature of these ex-
amples is that the core or the wreath product groups involved are amenable and in
many cases even abelian. For example, with the exception of [12], all known examples of
W*-superrigid groups are of the form H !; T where H is finite [38,3,2]. However signif-
icantly fewer rigidity results are known in general for wreath product factors L(H iy T')
when H is nonamenable. In this direction we mention in passing loana’s strong rigidity
results which asserts that L(F,1A) # L(F,, ! B) whenever n,m > 2 and A, B are noniso-
morphic icc amenable groups, [31]. Theorem A can be successfully used to provide new
insight towards this problem as well. For instance, using it in combination with various
technical outgrowths of previous methods from [54,31,38,16,12] we obtain the following
wreath product rigidity result up to an amenable subgroup for group factors.
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Theorem C. Let H be icc, weakly amenable, biexact property (T) group. Let T' =T'1 x g,
where T'; are icc, biexact, property (T) group. Let HQT be the corresponding (plain) wreath
product. Let A be an arbitrary group and let 0 : L(HT) — L(A) be a *-isomorphism.
Then one can find non-amenable icc groups ¥, W, an icc amenable or trivial group A,
and an action ¥ ~* A such that we can decompose A as semidirect product A = (E(‘I’) @
A) Xpga U, where ¥ ~AB ) s the Bernoulli shift. In addition, there exist a group
isomorphism 0 : T' — W, a character n : I' — T, a *-isomorphism 6 : L(HD)) —
L™ @ A) and a unitary u € L(A) so that for all x € L(H™), v € T' we have

O(xuy) = n(y)ub(x)vsq)u”.

Here {uy |y € '} and {vx |\ € ¥} are the canonical group unitaries of L(T') and L(%¥),
respectively.

We notice the theorem still holds for slightly more general situations, e.g. generalized
wreath products with finite or even possible just amenable stabilizers (see Theorem 5.4).
However at this time we do not know the full extent of these cases as it seems to rely on
heavy constructions on group theory (see Remarks 5.5).

As before, Theorem C in combination with [7, Theorem 1.3] lead to the following
stronger version of wreath product rigidity in the context of reduced group C*-algebras.

Corollary D. Let H be icc, weakly amenable, biezact property (T) group. Let T =T xT'g,
where T'; are icc, biexact, property (T) group. Let H 1T be the corresponding wreath
product. Let A be an arbitrary group so that C:(HT') = C:(A). Then A = X1 T, where
Y is an icc, weakly amenable, property (T) group.

In connection with Theorem C it is natural to investigate whether similar statements
hold if one relaxes the biexactness assumption on H or the product assumption on T.
In this situation, building upon the previous techniques from [38,43] one can show the
following strong rigidity statement holds just for property (T) groups H and T.

Theorem E. Let H,T' be icc, torsion free groups. Also assume H has property (T) and
T admits an infinite, almost normal subgroup with relative property (T). Let T' ~ I be a
transitive action on a countable set satisfying the following conditions:

a) There is k € N such that for each J C I satisfying |J| > k we have |Stabp(J)| < oo;
b) The orbit Stabr(i) - j is infinite for all i # j.

Denote by G = H T the corresponding generalized wreath product. Let A be any torsion
free group and let 0 : L(G) — L(A) be a x-isomorphism. Then A admits a generalized
wreath product decomposition A = X 1y VU satisfying all the properties enumerated in
a) — ¢). In addition, there exist a group isomorphism § : T' — U, a charactern: T — T, a
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s-isomorphism 0 : L(H) — L(X) and a unitary u € L(A) such that for every x € L(H®))
and v € I' we have

O(zuy) = n(V)ubd® ()v5(5)u”.

Here {u,|y € T'} and {va|\ € ¥} are the canonical unitaries of L(T') and L(¥), respec-
tively.

The previous theorem applies to many natural families of generalized wreath groups
H; T, including: a) any icc torsion free prop (T) group H and any torsion free, hyperbolic,
property (T) group I' together with a maximal amenable subgroup ¥ < I' and the action
I' ~ I =T/Q is given by translation on right cosets I'/2; b) any action of the form
I' ~ T'/S by left translations, where instances of inclusions S < T' can be found in [60,
Examples 7.4].
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2. Preliminaries
2.1. Notations

Given a von Neumann algebra M we will denote by % (M) its unitary group and by
P (M) the set of all its nonzero projections. All algebras inclusions N C M are assumed
unital unless otherwise specified. For any von Neumann subalgebras P, Q C M we denote
by PV @ the von Neumann algebra they generate in M.

All von Neumann algebras M considered in this article will be tracial, i.e., endowed
with a unital, faithful, normal functional 7 : M — C satisfying 7(ay) = 7(yz) for all
x,y € M. This induces a norm on M by the formula ||z||s = 7(z*z)'/? for all z € M.
The || - [|2-completion of M will be denoted by L?(M).

For a countable group I' we denote by {u,|y € I'} € U(¢?T') its left regular represen-
tation given by u,(dy) = dyx, where 65 : I' — C is the Dirac mass at {\}. The weak
operator closure of the linear span of {u,|y € I'} in B(¢?T") is the so called group von
Neumann algebra and will be denoted by L(I"). L(T") is a II; factor precisely when I" has
infinite non-trivial conjugacy classes (icc).
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Given a group I" and a subset FF C I' we will be denoting by (F') the subgroup of T
generated by F. Given a group action I' ~ I on a countable set I, for any subset F C I
we denote Stab(F) ={ye€l'|g-i=14,Vie F} and Norm(F)={y el |y - F=F}.

Given a subgroup A < I" we will often consider the virtual centralizer of A in T, i.e.
vCr(A) = {y € T : |%*| < oo0}. Notice vCr(A) is a subgroup normalized by A. When
A = T, the virtual centralizer is denoted by vZ(I') := vCr(T') and called the virtual
center of I'; this is nothing else but the FC-radical of I'. Hence T is icc precisely when
vZ(T) =1.

2.2. Popa’s intertwining techniques

Over a decade ago, Popa introduced in [54, Theorem 2.1 and Corollary 2.3] a powerful
analytic criterion for identifying intertwiners between arbitrary subalgebras of tracial von
Neumann algebras. This is now termed Popa’s intertwining-by-bimodules technique.

Theorem 2.1. [5/] Let (M,7) be a separable tracial von Neumann algebra and let
P,Q C M be (not necessarily unital) von Neumann subalgebras. Then the following
are equivalent:

(1) There exist p € P(P),q € P(Q), an injective x-homomorphism 6 : pPp — qQq and
a partial isometry 0 # v € gMp such that (x)v = vz, for all x € pPp.

(2) For any group G C % (P) such that G” = P there is no sequence (uy), C G satisfying
|Eq(zuny)|la = 0, for all xz,y € M.

If one of the two equivalent conditions from Theorem 2.1 holds then we say that a
corner of P embeds into Q inside M, and write P <j; Q. If we moreover have that
Pp' < Q, for any projection 0 # p’ € P’ N1pM1p (equivalently, for any projection
0#p € Z(P'N1pMlp)), then we write P <3, Q.

2.3. Quasinormalizers of groups and algebras

Given groups €2 < I, the one-sided quasinormalizer semigroup QNél)(Q) C T is the
set of all v € T for which there is a finite set F' C T" so that Qy C FQ, [24, Section 5];
equivalently, v € QNISD(Q) iff [2: Q71N Q] < oo. Thus Qngl)(Q) coincides with the
one-sided commensurator of €2 in I'.

Similarly, the guasinormalizer (also called the commensurator) QNr(2) is the set of
all v € T" for which there exists a finite set F' C I such that Qy C FQ and vQ2 C QF
equivalently, v € QNr(Q) iff [Q : 7Qy 1N Q] < co and [y~ : YWy 1N Q] < 0.
From definitions one checks that QNr(2) < T is a subgroup satisfying Q C QNp(Q2) C
QN ().

The von Neumann algebraic counterparts of (one-sided) quasinormalizers have played
a major role in the recent classification results in this area [52-54,37]. Given an inclusion
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Q C M, the quasinormalizer QN (Q) is the x-algebra of all elements x € M such
that there exist x1,x2,...,2xy € M so that Qz C ), 2;Q and 2Q C ), Qx;, [52]. The
von Neumann algebra QN (Q)” is called the quasinormalizing algebra of Q inside M.
Similarly, the intertwiner space QN J(V})(Q) is the set of all x € M such that there exist
x1,Z2,..., T € M so that Qz C Y. 2;Q, [52,24]. The von Neumann algebra QN](V})(Q)”
is called the one-sided quasinormalizer algebra of Q inside M.

As usual Ny (Q) = {u € U(M) |uQu* = Q} denotes the normalizing group and
Ny (Q)” denotes the normalizing algebra of @ in M. Notice that Q@ C Ny (Q) C
QN (Q) C QNP (Q) € M.

The following computations of (one-sided) quasinormalizer algebras for inclusions of
group von Neumann algebras will be essential for our arguments.

Theorem 2.2 (Corollary 5.2 [2/]). If Q < T is an inclusion of groups, the following hold:

(1) QNyy(L(Q))" = L(H,), where Hy = QNp(2) = QN (Q) n QNI ()~
(2) QNy1y(L(Q)" = L(H), where Hy = (QN{Y(Q)) < T

Theorem 2.3 (Lemma 8.5 [5/]; Proposition 6.2 [24]). Let Q@ C M be an inclusion of
tracial von Neumann algebras. Then for any p € P(Q) we have

(1) QNprip(pQp)” = pQNNM (Q)"p, and
(2) QN3 (pQp)" = PQNSY (Q)"p.

2.4. Height of elements in group von Neumann algebras

Following [32, Section 4] and [38, Section 3] the height hr(x) of an element z € L(T') is
the absolute value of the largest Fourier coefficient, i.e., hr(z) = sup,cr [7(zu, )|, where
{u,|y € T'} are the canonical unitaries of M implemented by I'. For a subset S C L(I),
we denote by hr(S) = inf,ecg hr(z). In this section we prove two elementary lemmas on
height that will be used in the proof Theorem C.

Lemma 2.4. Assume that L(I') = M and consider the subsets ¥ C T and S C (M)y. If
there exist x,y € (M)1 such that hx(xSy) > 0 then one can find a finite subset F C T’
such that hpxp(S) > 0. In particular, we have hp(S) > 0 iff hp(uSu*) > 0 for some
u € U(M).

Proof. Using Kaplansky’s Theorem for every € > 0 there is a finite subset F. C A and
Ze,Ye € (M)1 supported on F; so that ||z — x||2, ||y — yell2 < €. Using these estimates
together with triangle inequality, for every s € S and v € 3 we have

[T (2syuy)| < de + [T (zesyeuy)|

< 4e + Z 1T (zeun—1)||7(yer,—1) | |7 (ursuyuy )| < de + |F-|? ue%l?a—i{ |7 (suy)l|-
)‘7MEFE c c



I. Chifan, B.T. Udrea / Journal of Functional Analysis 278 (2020) 108419 9

This implies that hx(zSy) < 4e + |F.|*hr.sr, (S) and hence hr nr, (S) > (hs(zSy) —
4¢)|F.|~2. Letting ¢ > 0 small enough we get the first part conclusion.

For the remaining part, the reverse implication follows from above. The direct impli-
cation follows from the reverse implication by replacing S with uSu* and v with v*. O

Lemma 2.5. Assume that L(I') = L(A) = M. Consider the comultiplication along A
i.e. the embedding A : M — MM given by A(vy) = vy ® vx, where {vy|A € A}
are the canonical group unitaries of M implemented by A. If S C (M), and there are
x,y € (M®M)y so that hrxr(xA(S)y) > 0 then ha(S) > 0.

Proof. Since hrxr(zA(S)y) > 0 then Lemma 2.4 implies that
her(A(S)) > 0. (2.1)

Fix s € S. Let s = >y, 7(svx-1)vx and note that A(s) = >, o T(svr-1)va®wvy. Using
these formulas and Cauchy-Schwarz inequality, for any 1,y € ', we have

@ T(A($) (g © ) < Y [ (svr) 1T (0at, )17 (0r15, )]
AEA

< ha(8) D Ir(oauy) 17 (0ats, )| < ha(s) g, 2], [l2 = Ba(s).
AEA

This further implies Arxr(A(S)) < ha(S) and using (2.1) we get the conclusion. O
2.5. Relative amenability

A tracial von Neumann algebra (M, 7) is called amenable if there exists a state ¢ :
B(L*(M)) — C such that ¢,y = 7 and ¢ is M-central (i.e. ¢(zT) = ¢(Tx) for all
x € M,T € B(L?*(M))), [22]. Making use of the basic construction for inclusions of
algebras [21,42] this concept was further generalized in [48] to subalgebras. Let (M, 1)
be a tracial von Neumann algebra, p € M be a projection, and P C pMp, Q@ C M be von
Neumann subalgebras. Following [48, Section 2.2] we say that P is amenable relative to
Q inside M if there exists a P-central state ¢ : p(M, eq)p — C such that ¢(x) = 7(z),
for all x € pMp. Here (M, eq) denotes the basic construction for the inclusion @ C M,
i.e. the commutant of the Q-right action on B(L?(M)) [42].

In this section we prove a relative amenability result for subalgebras that “cluster at
infinity” in an infinite tensor product of factors. The result will be essentially used to
derive our infinite product rigidity result for group factors. Our proof is an adaptation of
an argument due to Ioana. See also [39, Lemma 4.4] and [29, Proposition 4.2] for similar
results.

Proposition 2.6. Let M C (M, 7) be finite von Neumann algebras satisfying the following:
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(1) there are subalgebras B,C C M and C C C C M so that M = BVC and M = BVC.

(2) there are descending family B, C M of subalgebras and an ascending family C,, € M
of subalgebras such that U, C,, = C, N, B, = B and M = B; V C; for all j.

(3) there exist 0,0, € Aut(M) such that On B, = 1id|p, for alln, 0, — 0 pointwise.

Let p € B be a nonzero projection and let A C pMp be a von Neumann subalgebra
so that for each n € N there is u, € U(pMp) satisfying un,Aul, C B,. Consider the
M-M bimodule H = L?(M) given by the actions x - & -y = x£0(y) for all z,y € M and
¢ € L*(M). Then there exists a sequence of vectors (£,)n C L2(pMp) satisfying

lim||x &, — &, - x|l =0, forallz € A, and (2.2)

lim(x - &,, &) = 7(x), for all x € pMp. (2.3)

Proof. Since u,Au;, C B, and 0, = id|g, then for every x € A we have 0,,(u,zu;,) =
upzu. This implies that w0, (u,)0,(x) = zul0,(u,) and letting &, = w0, (u,) €
U(pMp) we conclude that for all z € A and n € N we have

Enbn(x) = 2. (2.4)

Since u, € U(pMp) and 6,5, = id|p, we have that ||&,[l3 = |[u}0n(un)|2 = ||p|l2 for
all n. Since |[un|loc < 1 then using (2.4) and 6,, — 6 pointwise one can check that for
every x € A we have

lim |2 &, — & - 2l = lim 26, — £,6(2)]|2 = lim € (6. (x) — 6())]|2

< 1171111 ||§nHooH0n(w) - 0(1:)”2 = 1171111 ||0n(93) - H(I)”2 =0.

Finally, since &, € U(pMp) we have (z - &,,Ep)y = T(E52E,) = T(26,68) = 7(z) for all
x € pMp. Altogether, the above relations give the desired conclusion. 0O

Proposition 2.7. Let M = Q;enM;®@B. Let A C M be a von Neumann algebra for
which there exist sequences (kn)n € N and (un)n C U(M) such that k, / oo and
upAu) C Q> MiQB for all n. Then A is amenable relative to B inside M.

Proof. Denote by ®;enM; = C and notice that M = C&B. Let C = CRC and M =
C®B and notice that M C M. For every n € N denote by C,, = ®§21_1MZ-, by D, =
®i>k, M; and by B, = D,®B and notice that U,C,, = C and N,B,, = B. Next let
0, € Aut(M) satisfying 0, (r ® y) =y ® z for all z,y € C,, and 6,, = id on D, @D, ®B.
Notice that 6,, — 6 pointwise, where 6 € Aut(M) satisfies 0(z®y) = y®z for all &,y € C
and # = id on B. One can check all the conditions in the statement of Proposition 2.6 are
satisfied. Thus if we consider the M-M bimodule # := L*(M) = L*(C)®L?*(C)®L*(B)
with the actions given by x - £ -y = x€0(y) for all ,y € M and £ € H there exists a
sequence of unit vectors (£,), € H such that
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lim||z & — &, -zllu =0, forallz € A
" 2.5
lim(z - &, &n)n = Iim(&, - @, & )u = 7(x), for all z € M. (25)

Let (M, e1gp) be the basic construction for I® B C M and let Tr be the semifinite trace
on (M, e1g5). Next we notice that, as M-M-bimodules, L2({(M, e1g ), Tr) is isomorphic
to H via the map (x @ y)e1gp(z2®1) = (z®y) - (1®1®1) - (2®1), for x,z € C and
y € B. Indeed it is clear this is M-M-bimodular and also for all z;,z; € C and y; € B
we have

((z1®@y1)ergn(z1 ® 1), (22 @ y2)ergn(22 ® 1))y =
=Tr((22 ® 1)*e195(2 @ y2)* (21 @ 11)e1ep(21 ® 1))
=Tr((2125 ® 1) E1gp (2571 @ y391)e108)
=T1c(z321)Tcen (2123 ® Y3y1)
=1c(v571)7c(2521)TB(Y551)
=((2191@y)(1®1®1)0(21 ®1), (2201 @ y2)(1©1® 1)0(22 ® 1))
=((r1@y1) - (10101)- (2101),(220y2) - (1@1®1) - (2@ 1))x.

This combined with (2.5) and [48, Theorem 2.1] show that A is amenable relative to B
inside M. O

3. Proof of Theorem A

This section is devoted to the proof of Theorem A. In essence this result is an infinite
analog of the “product rigidity” phenomenon for group factors found in [16]. In fact our
methods build upon the general strategy developed in [16] and still use in a crucial way
the ultrapower techniques from [33] as well as the intertwining/combinatorial aspects
developed in [47,38,16,23,20] and the classification of normalizers from [63]. Since our
exposition will focus primarily on the novel aspects of these techniques we recommend
the reader to consult the aforementioned works as some of these results will be heavily
used throughout the section.

To ease our exposition we first introduce the following notation:

Notation 3.1. Let {T';};cr be a collection of icc, weakly amenable, biexact groups and
denote by I' = @;¢;1';. For any subset S C I, we denote I's = ®;cs]';. Denote by
M = L(T'), let t > 0 be a scalar, and assume that M* = L(A) for an arbitrary group
A. Following [38], let A : M* — M'®@M? be the comultiplication along A, i.e. A(vy) =
Ux ® vy, where {vy}reca are the canonical unitaries generating L(A).

Proposition 3.2. Assume Notation 5.1. Then for every i € I there exists j € I such that
AL (iy)") <mr@me ML )"
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Proof. Throughout this proof we will identify I with N, the set of positive integers. Also,
since I';’s are weakly amenable and biexact we show next the following

Claim 3.3. For every i,j € I one of the following holds:

CL) A(L(F]\{i})t) ‘<Mt®Mt7Mt®L(FI\{j}>t, or

Proof of Claim 3.3. One has the following decomposition M'@M" = M*@L(I'p ;)'®
L(T';). Fix A C A(L(T;)) a diffuse amenable subalgebra. Using [63, Theorem 1.6], we
have either

C) A <Mt@M? Mt®L(F[\{j})t, or
d) Nyregare(A)” is amenable relative to M*®@L(I'p g53)".

Suppose d) holds. As A(L(Tpgi3)") € Napegare(A)”, then [63, Theorem 1.6] implies
either

e) A(L(FI\{i})t) =< Mt®L(F]\{j})t, or
£) NMuregare A(L(Tp53)")” is amenable relative to M'®@L(I'p g53)".

However, f) cannot hold. Indeed, since A(M*) € Nyregare (A(L(Tpgi3))")”, then [38,
Theorem 7.2(2)] would imply T'; is finite, a contradiction. Hence, for every diffuse
amenable subalgebra A C L(T';), either ¢) or e) must occur. Using [8, Corollary F.14],
we get the claim. O

Now assume by contradiction the conclusion does not hold. By Claim 3.3, for every
7 € I we have

A(L(I‘l)) <=Mt@M? Mt®L(P]\{j})t. (3.1)
Next we observe that Z(A(L(T;))' N M*®@M?) = C1. To see this, let z € Z(A(L(T;)) N
M'®@M?). Since A(L(Tp\(33)") € A(L(T;)) " M*®M?, one can check that z € A(M")'N
M'@M?*. However, since A is icc we have A(M") N M'®@M" = C1 and our claim follows.

Thus (3.1) further implies that A(L(T;)) <35, M'@L(In\(53)". Hence, applying
[23, Lemma 2.8 (2)], for every finite subset F' C I we have

A(L(T)) <aregnre M'@L(Tpr). (3.2)
Next we show that (3.2) implies the following

Claim 3.4. A(L(T;)) is amenable relative to M* @ 1.
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Proof of Claim 3.4. Let I, = {n,n+1,n+2,...}. Since A(L(T;))’ N M*@M" is a factor,
then using [47, Proposition 12], for every n € N there is ¢, > 0 and u,, € U(M'@M?) so
that

up A(L(T;))ul, € (M'QL(Ty, ).

Naturally, we have the following inclusions M'Q@L(T'r, )" ¢ M'®QL(Tr,)®L(T,—1) =
M'®L(Ty, ,). Thus, for every n € I, there is u,, € U(M'@M?") so that

un A(L(T))ul, € M'SL(Ty, ). (3.3)
Thus the claim follows from (3.3) and Proposition 2.7. O
Finally, Claim 3.4 and [38, Proposition 7.2] imply L(T';) amenable, a contradiction. 0O

Proposition 3.5. Assume Notation 3.1. Then for all i € I, there exists a nonamenable
subgroup A; < A with nonamenable centralizer Cx(A;) such that L(T p (;3)" <are L(A;).

Proof. This follows directly from Proposition 3.2 and [23, Theorem 4.1], (see also the
proof of [16, Theorem 3.3]). O

Theorem 3.6. Assume Notation 3.1. In addition, assume that T'; has property (T), for
all i € I. For each i € I there is a decomposition A = V; & ©;, a scalar t; > 0 and
u; € U(M) satisfying

w; L(T;) ") = L(P;) and u; L(Cp ) 5uf = L(©;). (3.4)

Proof. Fix i € I and write M* = L(I';)* = L(I'p\(;;)'®L(I";) = A®B. By Proposi-
tion 3.5, we have A <yt L(A;) for some non-amenable group A; < A with non-amenable
Ca(A;). By [13, Proposition 2.4], there exist nonzero projections a € A,q € L(A;), a
partial isometry v € M, a subalgebra D C qL(A;)g, and a *-isomorphism ¢ : aAa — D
such that

DV (D' NnqL(A;)q) C qL(A;)g has finite index, and (3.5)

o(x)v =vx Vz € ada. (3.6)

Notice that vv* € D' N gM'q and v*v € (ada) NaM'a = a ® B. Hence there is a

projection b € B satisfying v*v = a ® b. Picking u € U(M") so that v = u(a ® b) then
(3.6) gives

Dvv* = vaAav® = u(aAa @ b)u*. (3.7)

Passing to the relative commutants, we obtain vv*(D’' NgM'q)vv* = u(a ® bBb)u*. This
further implies that there exist s1,s9 > 0
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(D' NgM'q)z = u(a ® bBb)**u* = L(T;)*?, (3.8)
where z is the central support projection of vv* in D’ N ¢Mgq. Now notice
D' NgM'q D (qL(A:i)g)' NgM'q = (L(A;)' N M")g D L(Cr(Ay))g,

where L(Cx(A;)) has no amenable direct summand since Cy(A;) is a non-amenable
group. Moreover we also have D' N gM'q O D’ N qL(A;)q. Thus (L(A;)' N M*')z and
(D' N qL(A;)q)z are commuting subalgebras of (D’ N gM'q)z where (L(A;)' N M)z has
no amenable direct summand. Since I'; was assumed to be bi-exact, then using (3.8)
and [45, Theorem 1] it follows that (D’ NgL(A;)q)z is purely atomic. Thus, cutting by a
central projection ' € D' N ¢(A;)g and using (3.5) we may assume that D C gL(A;)q is
a finite index inclusion of algebras. Processing as in the second part of [16, Claim 4.4],
we may assume that D C gL(A;)q is a finite index of II; factors. Moreover, one can
check that if one replaces v by the partial isometry of the polar decomposition of r'v # 0
then all relations (3.6), (3.7) and (3.8) are still satisfied. In addition, we can assume
without any loss of generality that the support projection satisfies s(Epx,)(vv*) = q.
Thus, following the terminology introduced in [20, Definition 4.1] we actually have that
a corner of A is spatially commensurable to a corner of L(A;), i.e.

A =cem L(A,). (3.9)

Performing the downward basic construction [42, Lemma 3.1.8], there exist e €
P(qL(A;)q) and a II; subfactor R € D C ¢L(A;)g = (D,e) such that [D : R] =
[¢L(A;)q : D] and Re = eL(A;)e. Keeping with the same notation, by relation (3.6) the
restriction ¢~! : R — aAa is an injective *-homomorphism such that T = ¢~!(R) C aAa
is a finite Jones index subfactor and

¢ y)v* = v*y, for all y € R. (3.10)

Let ¢’ : Re — R be the x-isomorphism given by 6(xe) = x. Since e has full central support
in (D, e) one can see that ev # 0. Letting wg be a partial isometry so that w§|v*e| = v*e,
then Re = eL(A;)e together with (3.10) imply that § = ¢~ 0 6’ : eL(A;)e — aAa is an
injective x-homomorphism satisfying 6(eL(A;)e) = T and

0(y)wg = wgy, for all y € eL(A;)e. (3.11)

Notice that wiwg € (T" NaAa)®B and proceeding as in the proof of [47, Proposition 12]
one can further assume that wiwy € 2°(T"Nada)@B. Since [aAa : T] < oo then T"Nada
is finite dimensional and so is Z(T’ N aAa). Thus, replacing the partial isometry wq by
w := woTp, for some minimal projection ro € Z (T N aAa) satisfying row{|v*e| # 0, we
see that all relations above still hold including relation (3.11). Moreover, we can assume
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that w*w = 21 ® 23, for some nonzero projections z; € Z (T’ NaAa) and z; € B. Using
relation (3.11) we get

w*L(A)w = 0(eL(A)e)w w =Tz & 2o. (3.12)

Since T C aAa is finite index inclusion of IT; factors then by the local index formula [42]
it follows T'z1 C z1Az; is a finite index inclusion of II; factors as well. Also, we have

(w*L(A)w) N (21 @ 22)M" (21 ® 29) = ((Tz1) N 21 Az) @29 Bzo. (3.13)
Altogether, the previous relations imply that

T21®29Bzy C Tz V (T2 N21A21)R29Bz
= w*L(A)w VvV w*(L(A;) N MYw
= w* L(Aj)w V ((w*L(A)w) N (21 ® 22) M" (21 @ 22))
C 21 A21®29Bzs.

(3.14)

Since Tz; C z; Az if a finite index inclusion of II; factors then so is T2;®z9Bzy C
21A21®@29Bzy. Let f := ww* and note that f = re, for some projection r € L(A;) N M*.
Letting u € % (M") such that w* = uww* = uf, then relation (3.14) further implies
that

FL(A) V(L(A) M) f = L(A) [V f(L(A) " MY fC fMf (3.15)

is an inclusion of finite index IT; factors. In addition, (3.14) gives that dime (Z°(f(L(A;)V
(L(A) N MY)f)) < [21A21®22B29 : T21®22B2s) < 0o. Since the central support of e

in gL(A;)q equals ¢ then (3.15) implies that
q(L(A)gr vV r(L(A;) N MY))rq = qr(L(A;) V (L(A;) N MY)gr C grMtqr, (3.16)

is a finite index inclusion of II; factors. In particular, ¢L(A;)gr and r(L(A;)' N M*)rq are
commuting II; factors.

To this end we notice that since 0 # rowg|v*e| = w*[v*e| then 0 # w*|v*e|'/?.
Thus 0 # w*|v*elw = v*ew and since v, w are partial isometries we conclude that
0 # vv*eww™. However, since ww* = rowowg < s(Jv*e|) then ww* < e. Combining with
the above it follows that 0 # vv*ww* and hence zf = zww* # 0. Thus further implies
that

zr # 0. (3.17)
Next we show the following

Claim 3.7. r(L(A;) N M*')rq has property (T).
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Proof of Claim 3.7. Since D C ¢gL(A;)q is a finite index inclusion of II; factors then so
is Dr Vv r(L(A;) N MY)rq C qL(A;)gr vV r(L(A;) N M*)rq. Using (3.16) it follows that
Dr Vv r(L(A;) N M"Y)rq C rqM?rq is finite index as well. Hence DrV r(L(A;) N M")rq C
DrVr(D'NgM'q)r is also a finite index inclusion. Since D is a factor one can check that
EDT\/T(L(Ai)'ﬂMt)Tq(x) = E(L(Ai)/th)q(l‘), forall z € T(D/ﬂthq)T. This combined with
the above entail that r(L(A;)' N M")rq C r(D'NgM'q)r is finite index. By [51, Theorem
1.1.2 (ii)] 7(L(A;) N MY)rz C r(D'NgMtq)rz is finite index and since property (T) passes
to amplifications and finite index subalgebras, then (3.8) implies that r(L(A;) N M")rz
has property (T). As 7(L(A;) N M?%)rq is a factor we conclude that r(L(A;)' N M?*)rq has
property (T). O

Now consider Q := vCx(A;) = {A € A||M\| < oo}, the virtual centralizer of A;
in A. Using [16, Claim 4.7] we have [A : A;Q] < oo and hence A;2 < A is an icc
subgroup; in particular, vZ(A;Q) = 1. Consider vZ(Q) = {w € Q|[w®| < oo}, the
virtual center of Q. Since A; normalizes Q one can check that vZ(2) < vZ(A;Q). Since
the latter is trivial we get vZ(€2) = 1 and hence Q is icc. Let (On)nen be a countable

enumeration of all the orbits under conjugation by A;. Denote by Q; = (O, ..., Ok) < Q,
the subgroup generated by O,,, n = 1, k. Q;’s form an ascending sequence of subgroups
normalized by A; such that Q = U2, §y. Thus A;€ is an ascending sequence satisfying
A = U A Q. Since r(L(A;) N MY)rq € L(A;Q) has property (T) there is kg € N
such that

T‘(L(Ai)/ N Mt)Tq -<L(AiQ) L(AszO) (318)
Next we show the following
Claim 3.8. There exists k > ko such that qL(A;)qrV r(L(A;) N M")rq <pa0) L(AQ).

Proof of the Claim 3.8. Using Popa’s intertwining techniques, (3.18) implies the existence
of g, yr € L(A;Q), £ = 1,7 and ¢ > 0 satisfying

J
Z IEL (A, (Teuye) (2 = ¢, (3.19)
=1

for all w € U(r(L(A;) N M*)rq). Since A;Qy 7 A2 for every € > 0 there is k > ko so
that

i j
S I Eron (@) —xzella <& D I Eraon e) — yell <e. (3.20)
=1 (=1

Using (3.19) together with inequalities |[mznlla < ||m|lso|lz|l2]|7]lc for all m,n,z € M*
then for all uw € U(r(L(A;)" N M*)rq) we have
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o
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M-

1B a0 (Teuyn)]l2

{=1

-

| ELa, 00 (e — Era,on0) (@e))uye) |2

o~
I

1

i
+ D 1Briasen (Bre) (@o)u(ye — Bra,o,) (ve)ll2
=1

j
+ > IBL 20 (B (@) uBLa,,) (ve)l2
/=1

J
<e max (lyefloc + lleefloo) + ; [z elloclyelloo [ ELia00) () ]2

<2de + jd*|| Era, 00 ()2,

where d := maxi<¢<;{[|z¢/|o0 [|Ye]l 0 }- This shows there is k > ko so that || ELa,a,,)(u)ll2
> C;% for all u € U(r(L(A;)' N M*)rq). Letting ¢ = 5 then for all v € U(r(L(A;)" N
MY)rq) we have

c
HEL(Aq:Qk)(u)”Q > W > 0.
This implies for all @ € U(qL(A;)qr) and v € U(r(L(A;) N M')rq) we have
c
IELap) (au)ll2 = [[aBra,00) (W2 = [|ELaa (@)l2 > 2jd?’ (3.21)

As U(gL(A;)gr)U(r(L(A;) N MY)rq) generates qL(A;)gr V r(L(A;) N M)rq, (3.21) gives
the claim. O

Now, since q(L(A;)grVr(L(A;) N M)rq C rqL(A;)rq is a finite index inclusion, then
rqL(AQ)rq <pa,0) (L(A:iQ4) and hence L(A;Q) <ra,0) L(A:iQ). By [12, Lemma 2.2]
it follows that A;Q; < A;Q has finite index and by increasing k£ we can assume that
A Qe = A Q. Let A := Oy, (k) < A; and notice [A; : A'] < oco. Thus [A; 2 : AQ] < o0
and since A;Q is icc then A’Qy is also icc. In particular, we also have A’ N Qy, = 1. As
AN < A;Q is finite index the A’Q;, N Q < Q is also finite index. In particular, since
is icc it follows that A’Qy N is also icc. Letting A” := A’ N Q the above considerations
imply that A”Q, = A’Qx N Q. This forces A” to be either trivial or icc. However, since
by construction A” = vZ(A”) then A” = 1. Since A’ < A; finite index it follows that A;
is icc-by-finite and hence finite-by-icc.

This together with (3.9) and [20, Theorem 4.6] show there exists ¥ < Cx(A;) such
that [A: A;X] < oo and B =§7™ L(X). Also since A is icc then so are A; and 3. Finally,
using [20, Theorem 4.7] there is a decomposition A = ¥; & 0;, u; € U(M*') and ¢t > 0
such that w;A'u} = u;L(T'p ) 'uf = L(¥;) and w; BY'w} = u; L(T;)'u; = L(©;). O
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Now we are ready to derive the proof of first of our main results.

Proof of Theorem A. Using Theorem 3.6 there exist a product decomposition A =
A1 ®O1, vy €U(M), and t1 > 0 such that v1 L(I'1)" 0] = L(A1) and v1 L(Tay g13) "1 0] =
L(©1). Applying Theorem 3.6 again in the last relation for the group I'ny 13 there exist
a product decomposition ©; = Ay ®O4, vy € U(vlL(FN\{l})t/tlvT), and to > 0 such that
veL(T2)"205 = L(A2) and vaL(Ty q1,23)" (1*2)03 = L(©2). Proceeding inductively one
has ©,,_1 = A, ® ©,, a unitary v, € U(vn_lL(FN\m)t/(tlt"‘"'tnfl)v;ﬁfl) and t, > 0
such that v, L(T,)™v} = L(A,) and an(FN\ﬁ)t/(tltT”t")v; = L(©,). Altogether,
these relations show that ©,, > ©,,41 for all n and also A = &yA,, D A, where A =N,0,,.
In addition, for every k € N letting uy := v1v3 - - - v we see that

ur L(T;) uf = L(A;) for all 4 = 1, k and

t)(trta-ty), * (3.22)
up L(Cyy 7)1 g = L@k Mi © A).

Since L(Ty) is a II; factor the second relation in (3.22) show that for each k € N one
can find uy, € U(M) such that ujL(A)uy C L(FN\ﬁ)t/(tltT“t’C). Using Proposition 2.7
and the same argument as in the proof of Claim 3.4 if follows that A is icc amenable or
trivial as desired. O

Remarks 3.9. We conjecture that Theorem A still holds true without the property (T)
assumption on the T';’s. We point out that property (T) was used in the proof of
Theorem 3.6 only to derive relation (3.18); in other words the (increasing) sequence
of subgroups 2 becomes stationary. We believe this conclusion can still be achieved
without the property (T) assumption. However at this time we are unable to prove this.

Proof of Corollary B. First we argue that the group I' = ¢,I',, has trivial amenable
radical. So let B<I" be a normal amenable subgroup. Thus the von Neumann subalgebra
L(B) C L(I') = L(®nz:'k)®L(Ty) is regular and amenable. Applying [63, Theorem
1.4] it follows that L(B) < L(@,x,I'n). Since B is normal I' we further deduce from
[12, Lemma 2.2] that [B : By] < oo where By := BN (®pxel') < @pxil'n. Since
By, < T is normal it follows that B/Bj <1 T'/By, is a finite normal subgroup. As I'/ By, =
(Bnzrl'n/Br) ® Ty, if m, : T'/By, — T’y is the canonical projection map it follows that
7mx(B/By) < Ty is a finite normal subgroup. As Ty is icc we have m,(B/By) = 1 and
hence B/By < @nzkI'n/By; in particular, B = By, < @pI,. Since this holds for every
positive integer k then B < Ng(Pn21l'n) = 1, thus giving the desired claim.

[7, Theorem 1.3] implies that the reduced C*-algebra CX(I') has the unique trace
property. Letting ¢ : C:(T') — C(A) be a #-isomorphism of C*-algebras it follows that ¢
lifts to a *-isomorphism ¢ : L(I') — L(A) of von Neumann algebras. By Theorem A we
have that A = (@,A,,) ® A with A icc amenable or trivial; moreover, the corresponding
relations (1.1) also hold. Since C!(A) has the unique trace property then [7, Theorem
1.3] implies that A = 1 and the first part of the conclusion is proved. The remaining
part of the conclusion follows directly from relations (1.1). O
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4. Proof of Theorem E
To ease our exposition we first introduce the following notation:

Notation 4.1. Let Hy,I' be icc groups such that Hy has property (T) and I' admits an
infinite, almost normal subgroup I'g < I' with relative property (T). Let I' ~ I be an
action on a countable set I satisfying the following conditions:

a) For each i € T we have [ : Stabr(i)] = oo;
b) There is a k € N such that for each J C I with |J| > k we have |Stabr(J)| < occ.

Denote by G = Hy iy I the corresponding generalized wreath product. Denote by M =
L(G) and assume that M = L(A) for an arbitrary group A. Let A : M — M®M be
the commultiplication along A, i.e. A(vy) = v\ ® vy, where {vy}xreca are the canonical
unitaries generating L(A).

Proposition 4.2. Assume Notation 4.1. Then the following hold:

¢) AL(HG)) <3rear LHS)BLHS");
d) There exists u € UMM ) such that uA(L(T))u* C L(I' x T).

Proof. We denote Ag = L(Hy) and A = A(()I). Note that M = A x I', the action being
given by generalized Bernoulli shifts. Write M = L(A) and denote by A : M — MM
the associated comultiplication. Note that MM = (ARA) x (I x ).

The inclusion A(Ag) € M®M = M®(A x T) is rigid. Denote by P C M®M the
quasinormalizer of A(Ap). Note that A(A) C P. By applying [38, Theorem 4.2], we see
that one of the following has to hold:

(1) A(Ao) =mem M ®1;
(2) P <panm M®(A x Stabr(i)), for some i € I;
(3) v*Pv C M®L(T) for some partial isometry 0 # v € M@M with vv* € Z(P).

(1) is impossible since A is diffuse. Suppose (3) holds. Then by the remark above
we have that v*A(A)v € M®L(T"). There are two possibilities: either A(A) <6
M®L(Stabr(i)) for some i, or A(A) Ayan M®L(Stabr(i)), for all ¢ € I. In the first
case we again have two possibilities: either there exists a maximal finite subset G 3 4 such
that A(A) <ygn M®L(Stabr(G)), or there is no such subset. If the first sub-case holds
then [38, Lemma 4.1.3] gives that QNyz(A(A))” <pen M&L(Norm(G)). Since the
quasinormalizer of A(A) contains A(M), this implies A(M) <y M&L(Norm(G)).
As Stabp(G) is a finite index subgroup of Norm(G), it follows that A(M) <z
M®L(Stabr(G)), and hence A(M) <5y M®L(Stabr(i)) for some ¢, which implies
by [38, Lemma 7.2.2] that L(Stabr(i)) C M has finite index, which is a contradiction.
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If the second sub-case holds, by taking G with |G| > k we get that A(A) <yen M ® 1,
a contradiction. Next we argue that the second possibility also does not hold. So
suppose that A(A) Ay ey M®L(Stabp(i)), for all ¢ € I. This further implies that
V*A(A)v Ayen ML(Stabr(4)), for all ¢ € I and using [38, Lemma 4.1.1] it follows
that the quasinormalizer of v*A(A)v is still contained in M®L(T'). Since A is regular
in M, this further implies v*A(M)v C MQL(T), so A(M) < M®L(T"), which by [38,
Lemma 7.2.2] implies that L(T") has finite index in M, again a contradiction.

It follows that (2) must hold, hence P <j;5y M®(A x Stabr(i)), which further
implies A(A) <yan M®(A x Stabp(i)), for some ¢ € I. Again we have two pos-
sibilities: either there exists a finite maximal subset G C I such that A(A) <yen
M®(A x Stabr(G)), or it doesn’t. In the first sub-case we get, by [38, Lemma
4.1.3], that QNpyear(A(A))" <yman M®(A x Norm(G)) and again as above, that
A(M) <pen M®(A x Stabp(i)), for some ¢ € G, which by [38, Lemma 7.2.2] im-
plies that [M : A x Stabr(4)] is finite, a contradiction. In the second sub-case, by taking
a G with |G| > k, we obtain that A(A) <y gy M®A, which is what we wanted. The
maximal projection ¢ € A(A)' N M®&M such that A(A)g <35, M®A is non-zero and
belongs to the center of the normalizer of A(A) in M®M. This center is contained in
A(M)' N M&M = C1. It follows that ¢ = 1, hence A(A) <3,5,, M®A. By symmetry
we obtain that also A(A4) < A®M and finally that A(A) < A®A, showing
part c).

Next we prove part d). First notice from the assumptions that the inclusion
A(L(Ty)) € M&(A x T') is rigid. Denote by P the quasinormalizer of A(L(Tg)) in-
side M®M. Note that P contains A(L(T")). We apply again [38, Theorem 4.2] and we
see that one of the following has to hold:

M®M M®M

(2) P <panm M®(A % Stabp(i)), for some i € I;
(3) vPv* C MQL(T), for some v € U(MERM).

Note that (1) cannot be true because A(L(Tg)) is diffuse. Suppose (2) is true. This implies
in particular that A(L(T)) <pgn M®@(A x Stabr(i)). But since A(A) <3,z ,, A®A, by
[3, Lemma 2.3], we would get A(A xT') = A(M) <pan M®(A x Stabp(i)), which by
[38, Lemma 7.2.2] implies that A x Stabr(i) C M has finite index, a contradiction. So
(3) must be true, hence a fortiori vA(L(T))v* € MQL(T'). Repeating the argument for
the inclusion vA(L(T"))v* € MRL(T') = (AxT)®L(T), we obtain an unitary v € MM
such that uA(L(T))u* C L(I"QL(T), as desired. O

Proposition 4.3. Assume Notation 4.1. In addition assume that Hy, T' and A are torsion
free groups. Then the following hold:

AL(H")) <hrgn LH)ELH");
e) There exists w € UMRM) such that wA(T)w* C T(I x T).
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Proof. Since e) follows directly from Proposition 4.2 we will only argue for f). From
Proposition 4.2 there exists u € U(M®@M) such that uA(L(T"))u* C L(I' x T').

Denote by G = {ulA(uy)u* |y € T} C U(L(T x T')). Since G normalizes uA(A)u*,
which satisfies uA(A)u* <% A®A, the argument in Step 5 of the proof of [38, Theorem
5.1] implies that hpxr(G) > 0. We have that G = uA(L(T'))u* Ay L(Crxr (71, 72)),
for any (y1,72) € T x I — {e}. Indeed, suppose this is not true, and uA(L(T))u* <
L(Crxr((71,72))) = L(Cr(m))®L(Cr(v2)), with 72 # e. Again using the fact that
A(A) <ypanm ARA, we infer that A(M) = A(AxT) < M&(A x Cr(7y2)). [38, Lemma
7.2.2] then implies that A x Cr(72) has finite index in M, which is a contradiction, since
T is icc. Also, the representation {Ad(v)},eg on L2(L(I' x T')) © C1 is weakly mixing,
because it is in fact weakly mixing on L*(M®M) © C1. Indeed, let H C L2 (M&M)
be a finite dimensional {Ad(v)},eg invariant subspace. Then Hy = uwHu* is a finite
dimensional {AdA(u)},er-invariant subspace of L?(M®M). Denote by K the closed
linear span of HoA(M). Then K is a A(LT')—A(M) bi-module, which is finitely generated
as a right module. Since L(T") Ap L(Ca(s)), for any s € A — {e}, [38, Proposition 7.2.3]
implies that K C A(L?M), so in particular Ho C A(L?M). Hence A=Y (Ho) C L?M is a
finite dimensional {Ad(u-)}er-invariant subspace. As the inclusion I' < H(()I) x T is icc,
the representation {Ad(u,)}yer on L?(M)© C1 is weakly mixing, which further implies
that H = C1, as claimed. Now we apply [43, Theorem 4.1] to deduce that there exists
a unitary w € L(T' x T') such that wGw* C T(T' x T'). By replacing w with wu, we may
assume that wA(uy)w* € TT'xT) forallye. O

Theorem 4.4. (Theorem E) Let Hy,T' be icc torsion free groups such that Hy has property
(T) and T admits an infinite, almost normal subgroup Ty < T' with relative property (T).
Let T' ~ I be a transitive action on a countable set I satisfying the following conditions:

a) There is a k € N such that for each J C I satisfying |J| > k we have |Stabr(J)| < co;
b) For every i # j in I we have that |Stabr(i) - j| = oo.

Denote by G = Hy iy ' the corresponding generalized wreath product. Let A be any
torsion free group and let 6 : L(G) — L(A) be a x-isomorphism. Then A admits a wreath
product decomposition A = 3o VU satisfying the following properties: there exist a group
isomorphism p : I' = U, a character n : T’ — T, a x-isomorphism 0y : L(Hpy) — L(%p)
and a unitary v € L(A) such that for every x € L(Hél)) and v € I' we have

O(zu,) = 77(7)11*98_91 (7)vs(y) 0.

Here {u, |y € T} and {vy| A € U} are the canonical unitaries of L(T') and L(¥), respec-
tively.

Proof. Let A = L(H(()I)), and notice that (L(G)) = L(A) = M. Using Proposition 4.3
one can find w € U(MRM), group homomorphisms §; : ' — T, and a character w :
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I' = T such that wA(0(uy))w* = w(7)0(us, () @ O(us,(y)) for all v € T'. Then applying
verbatim Steps 4 and 5 in the proof of [38, Theorem 8.2] one can find an injective group
homomorphism p : I' — A and a character n: I' — T satisfying

O(uy) = n(7)Vp(y), forally €T (4.1)

Denote by ¥ = p(I"). In addition, these proofs also show there is a v € U(M) such that
w = (v* ® v*)A(v). Henceforth the canonical unitaries 8(u. ),y € I' will be replaced by
v0(uy)v* and A will be replaced by vAv*. Under these conventions we prove that

Claim 4.5. A(0(A)) C 0(A)RO(A).

Proof of Claim 4.5. By Proposition 4.2, A(A(A)) <* (A)®0(A). This means that for
every € > 0, there exists a finite subset e € S C 0(T") such that ||d — Psxs(d)||2 < €, for
all d € U(A(O(A))). Here we have denoted by Psyxs the orthogonal projection from
L?*(M®M) onto the closure of the linear span of ajus, ® asus,, where aj,ay € A
and sj,s2 € S. But since, according to Proposition 4.3, A(f(A)) is invariant to
Ad(A(0(uy))) = Ad(0(u,)®0(uy)) for all v € T', we see that ||d—P,s,~1xus,-1(d)]|2 < €,
for all d € U(A(O(A))) and p € O(T'). As T is icc we can find p € 6(I') such that
uSu=t NS = {e} (see for instance [19, Proposition 3.4]). By the triangle inequality this
further implies that

ld — Egayzo(a)(@)ll2 = [ld = Prusu-1ns)x (usp-1ns)(d)ll2 < 2e,
for all d € U(A(A(A))). As € is arbitrary, this implies A(0(A4)) C H(A)@0(A). O

From Claim 4.5 and [38, Lemma 7.1.2] it follows that §(A) = L(X), for some 3 < A.
Since the u,’s normalize A, it follows that ¥ > p(y) normalizes ¥, for all v. Consider
the action of ¥ — Aut(X) given by ¥ 5 A — Ad()\) € Aut(X) and observe that A splits
as a semidirect product A = ¥ x ¥, because L(A) = 0(A) x 6(T").

For the remaining part consider Ag = L(Hj) and denote by A} the copy of Ay in
position ¢ € I. Next we show that

Claim 4.6. A(9(AY)) C (AL RI(AL), for alli € 1.

Proof of Claim 4.6. Using (4.1) we note that A(A(AY)) is fixed by Ad(A(0(u,))) =
Ad(0(uy) @ O(uy)), for all v € Stabr(i). Due to the assumption that Stabr(i) - j is
infinite for all i # j, the representation Ad{0(u,) ® 0(uy)}yestabr(s) is Weakly mixing on
L2(M®M) & L?(0(AL)®0(A})), so it follows that A(B(AY)) C 0(AY)RO(A)). O

Hence from Claim 4.6 and [38, Lemma 7.1.2] for every i € I there exists a subgroup
¥; < A such that 0(A}) = L(X;). Since the action I' ~ I is transitive, it follows that
Y; =2 % for all i, and then that ¥ = @, Xo. Moreover, this entails that the action
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U — Aut(X) = Aut(; %) is induced by the generalized Bernoulli action of ¥ ~ I and
hence A = %47 I'. The rest of the statement follows from the previous observations. O

5. Proof of Theorem C

Theorem 5.1. Let Hy,T' be ice, property (T) group. Also assume that T' =Ty x I'y, where
T'; are nonamenable biexact groups for alli =1,2. Let ' ~ I be an action on a countable
set I satisfying the following conditions:

a) The stabilizer Stabr(i) is amenable for each i € I;
b) There is k € N such that for each J C I satisfying |J| > k we have |Stabr(J)| < oo.

Denote by G = Ho i1 I the corresponding generalized wreath product. Let A be an arbi-
trary group and let 0 : L(G) — L(A) be a x-isomorphism. Then A admits a semidirect
product decomposition A =X x @ satisfying the following properties: there exist a group
isomorphism § : T' = ®, a character ( : T' — T, a *-isomorphism 0y : L(H(()I)) — L(X)
and a unitary t € L(A) such that for every x € L(H(gl)) and v € I' we have

O(zuy) = C(7)tbo(z)vs(yt"

Here {ugy |y € T'} and {vy |\ € ®} are the canonical unitaries of L(I") and L(®), respec-
tively.

Proof. From assumptions we have that (L(G)) = L(A) = M. Denote by Ag = 6(L(Hy))
and A = §(L(H{). Also to simplify the writing, throughout the proof we will identify
I’ with 0(T), etc. Thus note that M = A x T, the action being given by generalized
Bernoulli shifts. Consider A : M — M®M the comultiplication along A. Note that
MM = (ARA) x (I' x I'). Proposition 4.2 implies that

(1) A(A) <350 A®A, and

(2) there is u € U(M®M) such that uA(L(T"))u* C L(T' x I).

Next we show the following

Claim 5.2. There exist a subgroup ® < A with QN/(\I)(Q) =&, d e P(L(P)) and u €
U(M) satisfying h = pdp* € L(T") and pdL(®)dp* = hL(T)h.

Proof of Claim 5.3. Let K := {I'xT';,T' xI'y,T'; x ', T’y x '} Since by [8, Lemma 15.3.3]
I' x T is biexact relatively to K and A(L(I'1)) and A(L(I')) are commuting nonamenable
factors then [8, Theorem 15.1.5] implies that there are ¥ € K and ¢ = 1,2 so that
uA(L(T;))u* <prxry L(¥). Since the flip automorphism of M&M acts identically on
A(L(T;)) we can assume without any loss of generality ¥ =T x I'; and ¢ = 1. Hence
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’LLA(L(Fl))’U,* =L(I'xT) L(F X Fl)

The using [23, Theorem 4.1] (see also [16, Theorem 3.3])) this further implies there exists
a subgroup ¥ < A with non-amenable centralizer Y := Ci(X) and L(T'1) < L(%).
Passing to the intertwining of the relative commutants we have that L(YT) C L(X)' N
M <y L(T1) N M = L(T'3). Thus there are projections e € L(Y), f € L(I'2), a partial
isometry v € M, and an injective unital *-homomorphism ¢ : eL(T)e — fL(I'2)f such
that

o(x)v = vz, for all z € eL(T)e. (5.1)

Denote by T := ¢(eL(T)e) and notice that ¢’ := vvo* € TN fMf and p := v*v €
eL(T)e' neMe = (L(Y) N M)e. Since T is a non-amenable factor then a) implies that
T 4 L(Stabr(z)) for all ¢ and using [54, Theorem 3.1] we have QN ¢(T)” C L(T'). In
particular, ¢’ € L(T') and by (5.1) there is u € U(M®M) such that ueL(Y)epu* C L(T).
Since L(T") is a factor, the same argument from the proof of part (2) of [37, Theorem
5.1] shows that one can perturb u to a new unitary such that we further have

uL()pu™ C L(T). (5.2)

Since T is non-amenable then uL(Y)pu* 4 L(Stabr(i)) for all ¢ and (5.2) combined with
[54, Theorem 3.1] and the quasinormalizer formula show that upL(QNx(Y))"pu* C
QNuprpu (uL(T)pu*)” C L(T). Since L(T") is a factor, the same argument as before
further implies that uL(QNx(T))z'u* C L(T), where 2’ is the central support of p in
L(QNA(Y)). Notice & < vCr(T) < QNA(Y) and hence uL(X)z'u* C L(T'). Letting
0 :=vCy (%), 0 := QNJ(\U(ZQ) and using the same arguments as before, we can further
find n € U(MRM) and a projection z € Z(L(0)) such that

nL(0)zn* C L(T). (5.3)

Since T,% < © are commuting non-amenable groups and I' is biexact relatively to
{I'1, T2}, [8, Theorem 15.1.5] implies that nL(¥X)zn* <rr) L(T'x), for some k = 1,2.
Again, without any loss of generality we can assume k = 1. Passing to the relative
commutants intertwining we get

L(Ty) = L(T')" N L(T) <p@y ML(Z)zn") NnznLT)nzn™ S nL(Q)zn".  (5.4)
Now let {Og}r be a countable enumeration of all the finite orbits under conjugation
by ¥ and notice that U O = Q. Consider Q := (Oq, ..., O) < A and note that Q; 7 Q.

Since L(T'5) has property (T) then (5.4) implies that

L(T2) <rry nL(Q)zn" for some k. (5.5)
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Next we continue by iterating the same argument from page 11. For convenience we
include all the details. By [13, Proposition 2.4], there exist nonzero projections a €
L(T3),q € L(), a partial isometry w € L(T"), a subalgebra D C nqL(Qy)gzn*, and a
k-isomorphism ¢ : aL(T's)a — D such that

DV (D' NngL(Q%)qzn*) C ngL()gzn*  has finite index, and (5.6)
Y(@)w =wzr Vz € aLls)a. (5.7)

Let r = ngzn* and notice that ww* € D' NrL()r and w*w € (aL(I'3)a) NaL(l)a =
L(T'1)®Ca. Hence there is a projection b € L(T'1) satisfying w*w = b ® a. Picking
c € U(L(T)) so that w = ¢(b ® a) then (5.7) gives

Dww* = wL(T2)w* = ¢(Cb® aL(I'y)a)c”. (5.8)

Passing to the relative commutants, we obtain ww*(D’ N rL(T)r)ww* = ¢(bL(T')b ®
Ca)c*. Hence there exist s1, s9 > 0 satisfying

(D' NrL(T)r)y = ¢(bL(T'1)b ® Ca)®?c* = L(T1)*, (5.9)
where y is the central support projection of ww* in D' NrL(T")r. Notice
D' NrL(T)r 2 (ngL(Qu)qzn™) NrLT)r = n(L(Q) N L(O))gzn"™ 2 nL(Cs(Q%))gzn".

From the definition of € it follows that [¥ : Cx(Q)] < oo. Since ¥ is non-
amenable it follows that Cx(€y) is also nonamenable and hence nL(Cx(€))gzn* has
no amenable direct summand. Moreover we also have D' NrL(I)r 2 D' NngL(Qu)gzn*.
In conclusion (nL(Cx(Q%))gzn™)y and (D' N ngL(Qk)qzn™)y are commuting subalge-
bras of (D' N rL(I")r)y where (nL(Cx(%))gzn*)y has no amenable direct summand.
Since I'; was assumed to be biexact, then using (5.9) and [45, Theorem 1] it fol-
lows that (D' N ngL(Q)qzn™)y is purely atomic. Thus, cutting by a central projection
r’" € D' NnqgL(Qk)gzn* and using (5.6) we may assume that D C ngL(2%)gzn* is a finite
index inclusion of algebras. Proceeding as in the second part of [16, Claim 4.4], we may
assume that D C nqL(Q)gzn* is a finite index inclusion of II; factors. Moreover, one
can check that if one replaces w by the partial isometry of the polar decomposition of
r’w # 0 then all relations (5.7), (5.8) and (5.9) are still satisfied.

Using relation (5.8), the quasinormalizer compression formula, and the fact that D C
ngL(Q)gzn* is a finite index inclusion of II; factors we can see that

c(b®a)L(T)(b® a)c” = QNepwa) M (b@a)e (¢(Cb @ (aL(Tz)a))c")”
= QNyw* Muww (Dww*)”
= ww*QN, (D) ww*
= ww* QNygzngzn- (gL () qzn™) " ww*
= ww*ngzQNra)(L())" gznuww*.
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Letting 2 = QNx(Q4), then the previous relation and formula [24, Corollary 5.2] imply
that ¢(b ® a)L(T") (b ® a)c* = ww*nL(E)n*ww*. Since QNg)(I‘) = I', this formula and
[24, Corollary 5.2] further imply that
ww*nL(E)n* ww* = ¢(b® a)L(T) (b ® a)c*
1 *
= QNc((b)®a)M(b®a)c* (c(b®a)L(T)(b®a)c")”

= QNl(Ul) (ww*nL(E)n* ww*)"”

w*nMn*ww*

(5.10)

= ww*nL(P)n* ww”,
where & = (QNI(\I) (2)). Hence in particular we have ww*nL(Z)n*ww* = ww*nL(P)n* ww*
and by [16, Proposition 2.6] it follows that [® : =] < oco. This entails that & =
QN/(\I)(E) = QN/(\I)(CD). Note the above relations imply that ww* € nL(Z)n* C nL(P)n*.
Consider d € P(L(®)) such that ww* = ndn™ and letting p := ¢*n and h := b ® a then
relation (5.10) gives the desired conclusion. 0O

Claim 5.3. There exists a unitary w € M such that wL(®)w* = L(T").

Proof of Claim 5.3. From Claim 5.2, there exists ® < A with ® = QN/(\l)(q)), d € P(L(D))
and p € U(M) satisfying h = pdp* € L(T') and

pdL(®)dy* = hL(T)h. (5.11)

As T has property (T), (5.11) implies that dL(®)d is a property (T) von Neumann
algebra. By [12, Lemma 2.13] it follows that ® is a property (T) group. Fix r €
P((uL(®)p*) N M) and note that uL(®)u*r is a property (T) von Neumann algebra.
Thus, using [31, Theorem 0.1] we have that either

(1) pL(®)p*r <pr L(T), or
(2) pL(®)p*r < L(HT) for some finite F C 1.

If (2) would hold then we would have that L(H'\F) = L(HF) N M <y (uL(®)p*r)’ N
rMr = ru(L(®) N M)p*r. On the other hand since QN/(\U(@) = ® we have u(L(®)' N
M)p* = Z(uL(®)u*). Altogether, these would show that H'\F is amenable and hence
H is amenable, a contradiction. So (1) must hold for every r € P((uL(®)u*) N M).
This entails that uL(®)p* <5, L(I') and using (5.11) and [12, Lemma 2.6] one can find
w € U(M) such that wL(®)w* = L(T"). O

Next consider the subgroup G = {uA(u,)u* | v € '} <U(L(T xT')). Since G normal-
izes uA(A)u*, which by (1) satisfies uA(A)u* <% A®RA, the argument in Step 5 in the
proof of [38, Theorem 5.1] implies that hrxr(G) > 0. Then using Lemmas 2.4-2.5 we fur-
ther have that ha(T") > 0. Using Lemma 2.4 we get hp(w*T'w) > 0 and by Claim 5.3 we
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further conclude that he(w*T'w) > 0. Thus by [38, Theorem 3.1] one can find ¢t € U(M),
a character ( : I' — T and a group isomorphism ¢ : I' — ® such that

tuyt™ = ((7)vs(y), forall y €T (5.12)

Letting Q := (t* @ t*)A(t) € U(M M) we then have QA(u,)Q* = ((v)(uy @ u,) for all
v € I'. Next, we replace the canonical unitaries w.,vy € I' by tu,t* and A by tAt*. Then
(2) combined with the argument from the proof of Claim 4.5 in Theorem 4.4 further
shows that A(A) C A®A. Hence using [38, Lemma 7.1.2] there exists a subgroup ¥ < A
such that A = L(X). Since the u,’s normalize A, it follows that vs(,y normalizes ¥, for
all . Moreover, since L(A) = A x T, then A admits a semidirect product decomposition

A = ¥ xd. Altogether the previous considerations give the conclusion of the theorem. O
Next we prove the following result that in particular generalizes Theorem C.

Theorem 5.4. Let H be icc, weakly amenable, biezact property (T) group. LetT' =T'y xg,
where T'; are ice, biexact, property (T) group. Assume that T' ~ I is an action on a
countable infinite set I that satisfies the following properties:

a) The stabilizer Stabr (i) is amenable for each i € I;
b) There is k € N such that for each J C I satisfying |J| > k we have |Stabr(J)| < oo.

Let G = H iy T be the corresponding generalized wreath product. Let A be an arbitrary
group and let 0 : L(G) — L(A) be a x-isomorphism. Then one can find non-amenable
icc groups Yo, V, an amenable icc group A, and an action ¥ ~* A such that we can
decompose A as semidirect product A = (Z(()I) ® A) Xgaa U, where ¥ AP E((JI) is the
generalized Bernoulli action. In addition, there exist a group isomorphism § : T’ — ¥, a
character ) : T' — T, a *-isomorphism 6y : L(H1)) — L(E(()I) ®A) and u € U(L(A)) so
that for every x € L(HD) and v € T we have

O(xuy) = n(y)ubo(x)vsu*.

Here {ugy |y € T'} and {vs | A € U} are the canonical unitaries of L(T") and L(V), respec-
tively.

Proof. Let G = H iy I satisfy the conditions stated in the Theorem 5.1. Let A be an
arbitrary group and assume that 6 : L(G) — L(A) is an #-isomorphism. Using Theo-
rem 5.1, after composing 6 with an inner automorphism of M one can find a semidirect
product decomposition of A =X xg ¥, a group isomorphism 6 : I' = ¥, and a character
7 : ' = T such that

0(uy) = n(v)vs(y) for all v € T (5.13)
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Moreover, we have 0(L(X)) = L(HW). Since H are icc, biexact, weakly amenable,
property (T) groups then Theorem A implies that one can decompose ¥ = ®;cr12; © A,
where A is trivial or amenable icc. In addition, for every finite subset F' C I there exist
u € U(L(A)) and scalars t; > 0 for ¢ € F such that

uL (X)) u* = 0(L(H;)) for all i € F, and
N (5.14)
uL(EBieI\FZZ- (&%) A)H"EF t ut = Q(L(HI\F))

Next we show that X; = Y, for all ¢ and there is an action ¥ ~® A such that
A= (20 @ A) xyga ¥, where U AL B is the generalized Bernoulli action induced
by I' ~ I. Fix i,j € I and v € T such that i = j. Let F' C I be a finite set such that
{i,j} C F. Using the first relation of (5.14) for ¢ and j in combination with (5.13) we
get

uL(35) % u* = O(L(Hj)) = 0(uy)uL(5;)" v 0(ul)
= U5(7)UU§(,Y)L(55(,Y)(Ei))tiv(;(y)u*vg(,y).

In particular this relation implies that L(X;) <ar L(Bscy)(X:)) and L(Bs() (2i)) <
L(X;). Since X, B5(+)(2;) are normal subgroups of A these intertwinings combined with
[12, Lemma 2.2] imply that X; is commensurable with 35,)(3;); in other words

[Zj : Zj N Bg(,ﬂ(El)] < oo and [65(7)<21) : Zj N 65(7) (ZZ)] < 0. (515)

Since B5(,)(i) < @ierX; © A using the second relation in (5.15) there exists a finite
subset j € J C I so that fB5,)(3;) < ¥/ @ A. Thus we have the following normal
subgroups ; N Bs(4)(Xi) < Bs)(Xi) < X7 @ A. Taking the quotient we get a finite
normal subgroup

Bs(4)(Z0)/S5 N Bsy (Z4) < (27 @ A) /25 N Bsy (Zi) = S5/Z5 N B (Zi) @ S5y @ A

Hence Bs(y)(X:)/%;5 N Bsy)(Xe) QuZ(5;/55 N Bsiy)(Li) © X3 © A). However, since
Yngy © A) is ice by (5.15) we have vZ(X;/3; N Bsy) (L) © By @A) = X;/8; N
Bs(y)(Xi). Altogether, these relations show that [se)(X:)/%; N By (X)) < X;/3; N
Bs()(X:) and hence B5(4)(X;) < ¥;. Similarly one can show that 35.,)(2;) > ¥; and
hence B5(4)(X;) = ¥;. This shows that ¥; = ¥, for all i. Moreover, there is an action
U ~ I which induces a generalized Bernoulli action ¥ % @;c;%;. Also since the ac-
tion of ¥ ~? ¥ leaves the subgroup @;¥; invariant then ¥ will also leave invariant
Cs(®1X;) = A. Hence there is an action ¥ ~* A such that A = (Z(()I) D A) Xppa U. The
remaining part of the statement follows directly from the above considerations. O

Proof of Corollary D. This follows proceeding in the same manner as in the proof of
Corollary B and using Theorem 5.4. O
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Remarks 5.5. When considering generalized Bernoulli actions it is clear the conditions
presented in the statements of Theorems 5.1, 5.4 are satisfied when all the stabilizers of
action I' ~ [ are finite.

On the other hand, if one wants to tackle the infinite amenable stabilizers situation,
producing examples seems far more challenging. In this direction we would like to present
a possible approach for this which was suggested to us by Professor Denis Osin during
the AIM workshop “Classification of group von Neumann algebras”. Consider ¥ an icc
finitely generated amenable group. By [1, Theorem 1.2] there exists an icc supragroup
Yo < I’y that has property (T) and is hyperbolic relatively to %g. Hence by [46] it follows
that T'g is biexact. Let I' = T'g xT'g and consider the diagonal subgroup ¥ = diag(Xy) < T.
Also let I' ~ I = T'/¥ be the action by left multiplication on the right cosets I'/X. Since
Yo < Iy is icc and almost malnormal it follows that the one-sided quasinormalizer
satisfies QNIEU(E) = Y. In turn this is equivalent with condition ¢) in Theorem 4.4.
Finally, one can check that condition b) in Theorems 5.1, 5.4 is equivalent with the
property that the group ¥ has finite height in T’ (or it is almost malnormal). This is
equivalent to the following property: there exists k& € N such that any subset F < X
with |F| > k has finite centralizer Cp,(F'). While finitely generated groups like this exist
in general (e.g. monster groups) it is unclear if one can construct amenable examples.

In any case a possible positive answer to this last group theoretic question would lead
to a class of generalized wreath products constructions with non-amenable core that are
recognizable from the von Neumann algebraic setting. Indeed, Proposition 4.2 together
with the argument from the proof of Claim 4.6 in Theorem 4.4 give the following

Corollary 5.6. Let Hy,T' be icc, property (T) groups. Also assume that T' = T’y x T',
where T'; are nonamenable biexact groups for all i = 1,2. Let T' ~ I be an action on a
countable set I satisfying the following conditions:

a) The stabilizer Stabr (i) is amenable for each i € I;
b) There is k € N such that for each J C I satisfying |J| > k we have |Stabr(J)| < oco.
¢) The orbit Stabr (i) - j is infinite for all i # j.

Denote by G = Hoy T the corresponding generalized wreath product. Let A be any torsion
free group and let 0 : L(G) — L(A) be a x-isomorphism. Then A admits a wreath product
decomposition A = Yoy ¥ satisfying all the properties enumerated in a)-c). In addition
there exist a group isomorphism p : I' — U, a character n : I' — T, a x-isomorphism
0o : L(Hy) — L(X0) and a unitary v € L(A) such that for every x € L(H(SI)) and vy el
we have

0(wuy) = n(7)v" 05" ()vs (0.

Here {u, |y € T'} and {vy |\ € U} are the canonical group unitaries of L(T") and L(T),
respectively.
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