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Abstract—Dynamic voltage and frequency scaling (DVFS) is
a well-known technique to reduce the power and/or energy
consumption of various applications. While most processors
provide chip-level DVFS, where the frequency and voltage of
the cores in a chip can only be changed all together; core-level
DVFS, where each core can be controlled independently, requires
core-level voltage regulators in hardware and only is supported
in production in Haswell generation among Intel processors. The
finer grained control that per-core DVFS provides can lead to
higher energy efficiency compared to chip-level DVFS especially
for the unsynchronized, unstructured parallel applications when
carefully applied.

Ability to do per-core DVFS opens up new doors for different
optimizations within runtime systems. We implement an intelli-
gent energy efficient runtime module which uses a fine-grained
function level per-core DVFS approach. Our module finds the
energy-optimal frequency for each phase/function/kernel of the
application over the first few iterations and applies the optimal
frequency for each function. We test our implementation on
Haswell processors and show that our algorithm enables 4%
to 35% energy reduction over chip-level DVFS with as much as
performance.

Index Terms—power, energy efficiency, DVFS, runtime systems

I. INTRODUCTION

As the scale of the High Performance Computing (HPC)
data centers keeps growing, power and energy efficient system
design has became an important challenge. Much of the past
research proposes Dynamic Voltage and Frequency Scaling
(DVFS) and Running Average Power Limit (RAPL) [22] based
solutions to optimize energy consumption [36], [31]. These
solutions have often been done at chip-level, i.e. changing the
whole chip’s frequency or capping the whole chip’s power,
not the individual core frequencies or core power. The reason
for that is the lack of core level voltage regulators in the
commercial processors. For the first time, Intel Haswell gen-
eration processors introduced the support for per-core DVFS
in production [20], [19]. Although this support has been
discontinued on later generations Sky Lake and Kaby Lake, it
is reported to return on Ice Lake generation [2]. The capability
of doing per-core DVFS brings the premise of higher energy
efficiency with finer-grained optimization.

Process variation is one of the major motivations for im-
plementing core-level voltage regulators. The decreasing size
of Complementary Metal-OxideSemiconductor (CMOS) tran-
sistors and lower voltage thresholds for energy efficient chip
design are two major causes of manufacturing-related process
variation [11]. This process variation causes differences in the
power and temperature of the cores [6]. Therefore, adjusting

the voltage at core-level can help getting the most performance
out of the chip.

Another motivation for core-level DVFS is applications that
execute code with different characteristics simultaneously on
different cores. While some HPC applications are regular or
structured with a uniform behavior, i.e. all cores or processes
within a chip execute similar type of work, some HPC appli-
cations are irregular or unstructured with dynamic behavior.
In such applications, at a given time cores within a processor
might do different types of work and execute different types
of functions. Moreover, each function/kernel/phase might have
a different optimal frequency level. (Note that energy optimal
frequency is not necessarily the fastest frequency, many exam-
ples of this are shown for HPC applications in the past [35],
[7]). For example, it has been shown that MiniFE application
have loops that are affected differently by the frequency
levels. [39]. Some applications for performance reasons have
dedicated I/O or communication threads that inherently have
different behavior than the rest of the application. Yet, many
commercial processors used in HPC systems do not have
support for per-core voltage and frequency scaling. With
chip-level DVFS, different kernels that happen simultaneously
cannot run at their energy-optimal frequency levels.

Previous work in our research group has demonstrated
utility of chip-level DVFS/RAPL based power optimization
under the control of adaptive runtime systems like CHARM++
[36], [5]. In this paper, we develop a runtime method to
realize the promise of core-level DVFS by doing fine-grained
energy optimization. We develop a new runtime based energy
optimization module in CHARM++ , that can learn the optimal
frequency for each task or function over time and show
how per-core DVFS enables finer-grained efficiency. Main
contributions of this paper are:

• We provide an analysis of per-core DVFS capabilities in
three different Intel and IBM processors (§ II).

• We identify use cases for per-core frequency and voltage
regulation that motivates the need for implementing per-
core voltage regulators in hardware (§ II).

• We implement a fine-grained runtime technique which
provides automated function-level energy efficiency using
the CHARM++ framework (§ III).

• We show that 4% to 35% better performance/reduction
in energy can be obtained compared to per-chip fre-
quency scaling using the micro-benchmarks we devel-
oped (§ IV-4).
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Fig. 1: Core level DVFS on Haswell architecture shows proportional/linear decrease in power when core frequencies are
dropped one by one. On the other hand, since Sandy Bridge do not have per core voltage regulators, all core frequencies needs
to be dropped together to for a reduction in power and temperature.

TABLE I: Platform hardware and software details

Processor Intel Intel IBM
Haswell Sandy Bridge POWER8

Model Xeon®E5 Xeon®E3 POWER8
-1620 v3 -1245 8335-GTA

Cores 4 10

OS - Linux Ubuntu v. 3.13.0 Red Hat Ent. 7.2

Turbo Speed 3.6 GHz 3.7 GHz 3.6 GHz

Max 3.5 GHz 3.3 GHz 3.5 GHz
Non-Turbo Speed
Min 1.2 GHz 1.6 GHz 2.0 GHz
Non-Turbo Speed
Per-Core Voltage Yes No Yes,
Regulators(FIVR) not in production

While there is prior research that shows the potential
benefits of per-core DVFS in simulation environments [34],
[24], including recently in graphics processors too [30]; to the
best of our knowledge, we are not aware of any other work
that does function level energy optimization through a runtime
using production-level per-core DVFS capabilities (See related
work in Section VI).

II. MOTIVATION

In this section, first an analysis of the per-core DVFS sup-
port in the Haswell architecture is provided. Later, application
use cases that can benefit from per-core DVFS are identified.

A. Per-Core Voltage and Frequency Scaling

For the first time among commercial Intel proces-
sors, Haswell generation introduced per-core voltage regula-
tors [20]. Per-core voltage regulation, also called FIVR [12],
give the premise of doing fine-grained power and energy
control. In this section, we first show why per-core voltage
regulators are important in doing core-level frequency scaling.
We use an older Sandy Bridge generation processor which
does not have FIVR to compare per-core DVFS behavior with
the Haswell generation. The details of the processors that we
use are given in Table I.
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Fig. 2: Core level frequency scaling on IBM POWER8 pro-
cessor.

Dynamic power of the CPU is proportional to the square of
the CPU voltage and to the CPU frequency:

Power = C × V 2 × f

where C is capacitance, V is voltage, and f is frequency.
Voltage is a dominant factor in processor power and hence

per-core frequency scaling without per-core voltage regulators
is not effective in terms of performance-per-watt. Because,
if the cores within the chip have different frequency levels,
without per-core voltage regulators, the voltage level of the
processor is determined by the highest frequency core.

Figure 1 compares per-core frequency scaling behavior of
two processors; one with per-core voltage regulators (Intel
Haswell) and one without (Intel Sandy Bridge). We use
cpufreq kernel module to control the frequency of the cores.
In this experiment, we first set the frequency of all cores to
the highest level and then decrease the frequency level to
minimum one core at a time. For Haswell processor, as we
decrease frequency of more number of cores to minimum the
chip power drops linearly. On the other hand, for the Sandy
Bridge processor, the chip power does not change until all
of the core frequencies are lowered together. The reason is
that Sandy Bridge processor do not quite obey the per-core



cpufreq commands and executes all of the cores at the
maximum level until all of the core-frequencies are reduced
together.

Another observation from Figure 1 is that dynamic power
of the Haswell chip constitutes 80% of the total chip power.
Although this percentage is less than the 94% ratio in the
Sandy Bridge generation, dynamic power is still a major
amount that can be optimized via DVFS, whereas static power
is not affected by the frequency of the cores.

Figure 2 shows the results of the same experiment (as Fig-
ure 1) on a 10 core IBM POWER8 processor. Despite having
per-core voltage regulators in hardware of this processor, per-
core DVFS is not supported in production use with cpufreq
module. Although, unlike Sandy Bridge, POWER8 obeys per-
core DVFS commands and changes the frequency core by
core. As a result, the chip power gradually decreases as shown
in the figure. However, it is still not a linear reduction as in the
case of Haswell – there is still a bigger drop when all of the
core-frequencies are changed all together. This shows per-core
frequency scaling without per-core voltage regulation lacks
effectiveness, i.e., it causes performance overhead without
reducing the energy much.

Fig. 3: Timeline of two processors running the OpenATOM
benchmarks. Each color represents a CHARM++ entry method.
Notice how different entry methods are executed on the two
processes at the same time range.

B. Application Use Cases

Per-core DVFS would be beneficial for multiple different
scenarios. We identify six categories of potential use cases
that can benefit from per-core DVFS.

1) Applications with Different Kernel Types: Applications
may have different kernels which have different optimal fre-
quencies. Commonly, if a kernel is compute intensive, higher
frequency levels lead to higher energy efficiency since the
execution time is lower. On the other hand, for memory inten-
sive kernel, higher frequency does not always lead to lower
execution time. Therefore, energy optimal frequency levels can
be lower. For example, MiniFE application has shown to have

two different kernels that have different characteristics [39].
Moreover, those kernels do not necessarily execute at the
same time. For example, OpenATOM is a quantum chemistry
application which has many overlapping kernels and phases.
Figure 3 shows the time profile graph of two processes mapped
to two different cores running the benchmark. As each color
represents a CHARM++ entry method, it can be seen that there
are many phases where each process is executing a different
type of function. Therefore, per-core DVFS can lead to higher
energy efficiency for this type of applications.

2) Applications with Dedicated I/O Threads: Dedicated
I/O threads are used in I/O intensive parallel applications
to improve the performance by offloading the I/O work to
dedicated threads. Many past works use this approach, in-
cluding I/O frameworks [23], [26], fast asynchronous check-
point/restart based fault tolerance mechanisms [16], machine-
learning applications [18], high performance in-memory
databases [10]. Energy-optimal frequency of the I/O threads
can be different than rest of the threads in the application and
controlling the frequency of the cores independently can lead
to higher efficiency.

3) Applications with Dedicated Communication Threads:
It has been shown that using dedicated communication threads
to drive the network communication helps improve the perfor-
mance of communication intensive applications especially at
scale. MPI Endpoints [37] and SMP mode of CHARM++ [29]
are two examples of this. MPI endpoints extension enables ef-
ficient multi-threaded communication by using dedicated cores
that drive independent network communication. Although los-
ing a core for communication might cause performance loss
in a computation dominant application, at large-scale when
the communication becomes the large fraction, having ded-
icated cores for communication improves performance [37].
CHARM++ implements a similar concept, called SMP mode.
In the SMP mode, a logical node is formed by a custom
number of threads and a dedicated communication thread to
handle the communication between nodes. Commonly each
physical node has one or more number of logical nodes.
Can we control the frequency of the communication threads
independently to have higher energy efficiency?

4) Applications Leaving Cores Idle: Parallel applications
may leave idle cores for various reasons including, for per-
formance reasons and for having specific core-count require-
ments. We will give three examples of this.

First, there are several applications that requires to be run
on specific core counts, i.e. such as power of two number of
cores, cubic number of cores. In such scenarios, some cores
have to be left idle depending on the processor core count. For
example, broadcast/reduction trees do not perform as well for
numbers of process counts that are not a power of two [25].
Graph500 benchmark [1] only supports graphs with power-of-
2 vertex counts and hence MPI version is required to be to
run on power-of-2 number of cores. Similarly, LULESH [28]
MPI version requires cubic number of ranks (hence cores) to
map the 3D spatial domain. Whereas many supercomputing
platforms has non-power-of-2 core counts per node such as



Summit supercomputer that has 42 cores per node [3].
Second, some applications, like NAMD [29], suffer from

OS interference. To remove the interference, all OS processes
and daemons are preferred to be bound to specific core, which
is then excluded, i.e., not used, by the application. While
some platforms provide this isolation feature as an optional
parameter to the job scheduler/launcher, other platforms like
Summit and Sierra enable this by default which leaves the
application 42 cores out of the total 44 cores in the node [3].

Third, some applications that have high memory bandwidth
requirements leave one or more cores idle in order to fit into
the node or increase performance. PDES [32] is an example
for the case where the application runs out of memory when
doing large scale simulations and required to leave one or more
cores per node idle.

Can we apply per-core DVFS, so that idle cores are run at
lowest frequency, to save energy?

III. RUNTIME GUIDED FREQUENCY REGULATION

In this section, we first give background information on the
runtime system that we use as a proof-of-concept for our work.
Then, we explain our runtime guided frequency regulation
approach.

A. CHARM++ Adaptive Runtime System
CHARM++ is a parallel programming framework used by

many large-scale applications including NAMD for molecular
dynamics, OpenATOM for quantum chemistry, ChaNGa for
cosmology, Episimdemics for epidemic simulations and many
others [4]. In CHARM++ , the application data is decomposed
into small task units (called chares) that communicate via
asynchronous function calls (called entry methods). The run-
time system (RTS) is responsible for placement and execution
of the task units.

Chares are C++ objects that represent the data and task
units in CHARM++ . These objects can migrate from processor
to processor by the runtime in order to create load balance.
They can communicate with other objects via asynchronous
function calls.

Entry Methods are asynchronous function calls on the
chares. Chares can be located in a local or a remote pro-
cessor, regardless of the location the runtime will deliver the
function call as a message to its destination chare. Besides
the application’s entry methods, runtime itself also contains
entry methods to do various tasks in the background such as
communication, I/O, load balancing, tracing etc.

CHARM++ RTS is responsible for the mapping of the ob-
jects to processors, sending the messages (entry method calls)
to their destination chares, and executing the entry methods.
CHARM++ programmer needs to write an interface file to
define the class types and the corresponding entry methods
so that the runtime system can generate the corresponding
structures. There is a natural division between the application
phases.

CHARM++ would be a great fit to make a proof-of-concept
implementation of our ideas for two main reasons. First, pro-
grammer writes entry methods naturally in a way that different

phases of the application are distinguished with different entry
methods. This enables runtime to distinguish different types of
work units automatically by simply controlling at each entry
method-level. Second, the runtime has a transparent control
over the full application from start to end. The approaches
restricted to annotated loops or kernels do not give control
over the whole application runtime which limits optimization
scope and capabilities.

B. Fine-Grained Frequency Regulation in Runtime

Our approach fine-grained frequency regulation approach
has three phases: 1) Statistics collection of power and perfor-
mance for different frequency levels, 2) Calculating the opti-
mal frequency based on the collected statistics, 3) Applying
the optimal frequency on function basis in core-level. Next,
we will explain each of the three steps in detail.

Our module can simply be enabled by building CHARM++
with --enable-energyOpt flag and linking the applica-
tion with -module energyOpt.

Sta$s$cs	
Collec$on	

• Collect	power	and	
performance:	
• For	each	entry	
method	in	every	
chare	instance	

• For	each	
frequency	level	

Op$mal	
Frequency	
Calcula$on	

• Mode	1:	Minimal	
energy	mode	

• Mode	2:	
Maximum	
performance	

Op$mal	
Frequency	
Applica$on	

• Execu@on	@me	
and	overhead	
threshold	

Fig. 4: Runtime control flow.
1) Statistics Collection: The first phase from the start of

the application is the statistics collection phase. First, the
runtime collects the power and performance characteristics of
each entry method in the application under different frequency
levels. The frequency levels are set by the runtime system as
the application moves forward.

The entry method statistics are collected and stored per
each instance of a chare element. Although every instance
of a chare element have the same functions, different data
size might cause different characteristics depending on the
instance. Therefore, it is more accurate to collect the statistics
per instance of chare elements. Particularly, the execution
time and the energy consumption of each entry methods are
collected under every supported frequency level.

There is, however, one obstacle in collecting power statistics
of the functions. Despite the support of per-core DVFS,
Haswell processors do not provide core-level power counters –
only chip level power information is available through model-
specific registers (MSRs). Therefore, a workaround is neces-
sary. To be able to calculate the correct power information
in core level, we execute the entry methods on the cores
exclusively via locks during the statistics collection phase
so that only one core is running at a time. An advantage
of this approach is that it can capture core-to-core power or
performance variations that might happen since profiling of the
kernels are done on the same cores that are going to execute
them after the profiling phase. A disadvantage of this approach



is that the measurements on single core may not represent the
performance and power when other cores are active.

First, the static power of the other three cores needs to be
subtracted from the total chip power. The static power of the
three cores can simply be calculated as three quarters of the
the idle power of the processor. Since there are four cores
in the processor we use, exclusive entry methods execution
causes a 4x slowdown in the application during this phase.
This is a limitation of the processor and if there were core-
level power counters, there would not be any need for a locking
mechanism. Since the statistics collection phase constitutes a
small fraction of the total application run, use of this exclusive
execution method is still viable despite its overhead.

Second, we need to make sure the measurements we collect
when kernels are running exclusively are correct when they run
together with other cores. Figure 5 shows that for compute
intensive benchmarks, like DGEMM, the optimal frequency
calculated using one core is consistent with the results when
other cores are active. However for memory intensive kernels,
as more cores are running the kernel, the energy optimal
frequency drops significantly since more cores are competing
for the same memory bandwidth. To show this, we use
MEMOPS kernel which consists of memory operations such
as allocating/deallocating memory and copying data. Figure 6
shows the optimal frequency of MEMOPS kernel with varying
allocated data sizes. From 128 MB to 1.5 GB data per process,
the trend is more or less consistent: as more processes are ac-
tive the optimal frequency drops. This shows that for memory
intensive applications, what other cores are running affects the
performance of the kernel, therefore exclusive measurements
on a single core cannot represent the general case. Therefore,
the count of memory operations (such as reads, writes, cache
misses) needs to be collected for each kernel in addition to the
execution time and the power consumption during the statistics
collection phase. A method to prevent this problem could be
using a power prediction model to predict the core-power
consumption [13], [17]. However, such model can be error
prone and it would increase the runtime algorithm complexity.
The best way to overcome these limitations is to provide
core-level power counters and perhaps this paper provides a
motivation for hardware vendors to enable that support.

2) Optimal Frequency Calculation: After the statistics
collection phase is done, optimal frequency is calculated for
each entry method in each chare instance. We implement two
options: the frequency that provides minimal energy (MinE)
and the lowest frequency without sacrificing performance
(MaxP). MaxP mode can also be used to find the lowest
frequency with performance sacrifice of no more than a
specified percentage (i.e, what is the lowest frequency that
an application can use with a maximum of x% overhead?).
We focus on evaluating MinE mode in this paper.

3) Optimal Frequency Application: After the optimal fre-
quency levels are determined, the next phase is to apply
the optimal frequency before the each method gets executed.
There are some important issues that needs to be considered
when applying DVFS (p-state change) on per function basis.
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Fig. 5: Optimal frequency of DGEMM kernel remains more
or less stable despite the number of active cores running the
kernel, wheres optimal frequency of the MEMOPS kernel
drops significantly as more cores are activated.
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Fig. 6: Optimal frequency of the MEMOPS kernel depends
more on the number of active cores than the data size.

There is a delay between sending p-state change request and
the processor switching its frequency, this delay is called
transition delay. This delay is important in making function
level transition decisions because if the function duration is
smaller than the delay, switching to a different level may not
be useful. We have observed this delay can be up to around 500
µs. This confirms the earlier reported results on the transition
delay [19]. Although the actual p-state transition may take
much shorter than 500 µs, the p-state transition requests are
not executed immediately, but in 500 µs periods in Haswell
processors unlike previous generations (including Haswell-
HE) [19]. Note that during the 500 µs, the processor is not
blocked at the function call, it simply runs at the old frequency.

Another important concern is the overhead of applying
DVFS frequently. We have measured the overhead to be
between 2 to 5 µs. The overhead is mainly caused by writing
the new frequency level to the appropriate system file (two
file writes for the two SMT threads). Although this is not
a significant overhead, our algorithm takes this effect into
account when making frequency scaling decisions and and
tries to minimize the overhead. If predicted function duration
based on the historical data is less than a certain threshold, the
runtime does not apply frequency change for that function.
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Fig. 7: Timeline of a core executing two kernels executing one after the other where the runtime applies optimal frequency
for each kernel.

Fig. 8: Timeline of the synthetic benchmark having two kernels
(represented by light blue and dark blue colors) randomly
overlapping. Each row represent a process/core and x axis
shows the time.

Figure 7 shows the timeline where two kernels (Kernel-1
and Kernel-2) are executing one after another in a core. Let’s
define:
F1: energy optimal frequency for Kernel-1,
F2: energy optimal Frequency for Kernel-2.

Applying the optimal frequency for Kernel-2 after the
execution of Kernel-1 would be beneficial only if the following
condition is satisfied:

Eloss + EF1 portion + EF2 portion < EF1

EF1: Energy consumption when whole Kernel-2 runs at F1
Eloss: Energy loss occurred during DVFS overhead
EF1 portion: Energy consumption when Kernel-2 runs at F1
during the transition latency phase
EF2 portion: Energy consumption when a portion of Kernel-2
runs at F2 after the transition is complete

Expanding the above formula in terms of power and execu-
tion time, we get:
Toverhead × PF1 + Tlatency × PF1 + TX × PF2 < T1 × PF1

EF1: Energy consumption when all portion of Kernel-2 runs
at F1
PF1: Power consumption when Kernel-2 runs at F1
PF2: Power consumption when Kernel-2 runs at F2
Toverhead: Constant, 5 microseconds
Tlatency: Constant, 500 microseconds
TX : Duration of the target kernel

Value of TX depends largely on F1 and F2. In Figure 9, we
show experimental results with a compute kernel where F2 is
2.3 GHz and F1 is labeled as transition frequency on the x-
axis. The first observation is that the further away the transition

latency is from 2.3 GHz, the more energy reduction is expected
to happen. Second observation is that the smaller the kernel
duration is, the less energy reduction happens because of
the transition latency and overhead as described earlier in
this section. Kernel duration label on each line in the plot
represents the duration when run on the highest frequency.
The duration of the kernel is adjusted simply by changing the
loop counter to set how many times the kernel is executed.

We form a look-up table similar to the data in the Figure 9
for each application during the runtime and use this informa-
tion in order to decide if frequency change for a particular
kernel can lead to energy reduction.
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Fig. 9: Plot shows how much energy can be reduced if a
kernel that has an energy optimal frequency of 2.3 GHz is
transitioned from different frequency levels. Different lines
represent different kernel durations.r

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our run-
time module, mainly comparing per-core DVFS with per-chip
DVFS using all of the application scenarios we mention in
Section II.

1) Applications with Different Kernel Types: To evaluate
this scenario, we implement a micro-benchmark, CompMem,
that has two different kernels that are randomly called one
after the other in every process. The goal of this benchmark is
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Fig. 10: Per-core: Uses energy optimal frequency for each kernel in core level. Per-chip-K1: Uses per-chip DVFS with optimal
frequency of kernel-1, Per-chip-K2: Uses per-chip DVFS with optimal frequency of kernel-2, Per-chip-AVG: Uses per-chip
DVFS with weighted average of optimal frequencies of kernel 1 and 2 of the corresponding benchmarks.

to have processes execute functions that have different charac-
teristics at a given time. One kernel (K1) is a memory intensive
kernel, MEMOPS, that consists of allocating memory, copying
data into allocated memory via memcpy, and deallocating the
memory. We use an array of size approximately 500MB per
process. The second kernel (K2) is a compute intensive one
(i.e., a DGEMM kernel with a matrix size that fits in cache).
Figure 8 illustrates the timeline of this benchmark.

We compare the execution time and energy measurements
of our fine-grained runtime based solution (labeled as Per-
core) with other chip level solutions (labeled as Per-chip-*) in
Figure 10. Per-core DVFS always gives the minimum energy
and minimum execution time. Per-chip-K1 and Per-chip-K2
optimizes only for kernel 1 and 2 respectively, therefore they
have high execution time overhead or high energy. Per-chip-
K1&2 uses the mid-point of Per-chip-K1 and Per-chip-K2,
therefore creates a balance between the high execution time
and the high energy of those methods, however it still is not
better than Per-core. Overall, Per-core provides 5%, higher
energy efficiency than Per-chip-K1, 35% higher than Per-chip-
K2 and 13% higher than Per-chip-K1&2.

We also evaluated the OpenAtom quantum chemistry bench-
mark. As we show the timeline of OpenAtom earlier in
Figure 3, this application has different kernels that execute
simultaneously on different cores. However our runtime mech-
anism did not lead to higher energy efficiency for OpenAtom
compared to per-chip DVFS methods. The reason is that the
duration of the kernels in OpenAtom were short and the
optimal frequency of different kernels were not very different
than each other. We discuss potential methods that can improve
the effectiveness of our method in these types of scenarios
further in the discussion Section (§V).

2) Applications with Dedicated I/O Threads: To eval-
uate this use case, we implement another micro-benchmark,
CompIO. CompIO benchmark has one dedicated thread per
processor doing IO operations such as file reads and writes
to the local disk. The other threads are running a compute
intensive kernel. As shown in Figure 10, our per-core DVFS
mechanism provides higher efficiency compared to per-chip
DVFS. Overall, Per-core provides 14%, higher energy effi-
ciency than Per-chip-K1, 8% higher than Per-chip-K2 and 10%
higher than Per-chip-K1&2.

3) Applications with Dedicated Communication Threads:
CompComm is the third micro-benchmark we use to demon-
strate the usage of dedication communication threads. Comp-
Comm benchmark has one dedicated thread in the processor
responsible for external communication (i.e., sending and
receiving messages to and from other processors). We use
CHARM++ SMP version to enable the usage of communi-
cation thread. As shown in Figure 10, our per-core DVFS
mechanism provides higher efficiency compared to per-chip
DVFS in this scenarios as well. Overall, Per-core provides
4%, higher energy efficiency than Per-chip-K1, 12% higher
than Per-chip-K2 and 13% higher than Per-chip-K1&2.

4) Applications Leaving Cores Idle: There might be
several reasons for applications to leave idle cores, for per-
formance reasons and for having specific core-count require-
ments. We focus on the former one.

For HPC applications with high memory bandwidth require-
ments we observe that in some cases running the application
with all cores on each node need not necessarily be the
best performing configuration. That is, utilizing only some
number of cores on each node for a multi-node application
can yield better performance. To motivate leaving cores idle
and possibly applying per-core DVFS on the idle cores, we
show performance improvements for CHARM++ Stencil3D
application for input size of 23GB and 18GB.

We made runs for Stencil3D for 30 time steps using 12 cores
(11 worker threads and 1 communication thread) on a single
node on Campus Cluster at UIUC. The node configuration is
Intel Xeon E5-2680 v3 with 2 sockets each with 12 cores at
2.5 GHz and 32GB DRAM. The application is profiled on a
subset of core counts to select the best performing core count
dynamically. We observe that the application performs best at
6-8 cores instead of using all available 11 cores. The results are
shown in Figure 11. Using less cores leads to lower execution
time, as well as 45% energy reduction. Can we get additional
benefits by lowering the frequency of the unused cores by
applying per-core DVFS?

Although this case may seem to be a good use case for per-
core DVFS, in fact, if the idle core power is already optimized
to be its lowest, there may not be additional room for energy
reduction by applying per-core DVFS. As we show earlier
in Figure 1, for Intel processors idle power is not effected
by the frequency. On the other hand for POWER8 processors,
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Fig. 11: Performance of Stencil3D on Campus Cluster with
23GB and 18GB dataset size with 1 and 2 iterations (to mimic
gauss-seidel).

frequency effects idle power as shown in Figure 2, i.e., around
5 W per core (about 3%) can be reduced in application
that leave cores idle if per-core DVFS is introduced. In the
Stencil3D example, since 5 cores out of 11 cores are idle,
per-core DVFS leads to additional 15% energy reduction.

V. DISCUSSION AND LIMITATIONS

We show clear benefits of using per-core DVFS using the
micro-benchmarks we developed. However, we encountered
several challenges when applying our method into production
HPC applications. We discuss these here.

First challenge is the short duration of the kernels. 500 µs
frequency transition latency and 5 µs overhead is quite high
and some kernels might be mostly over by the time core is
operating at their optimal frequency. If the transition latency
and overhead reduces in the future generation processors, it
would help our method to become more effective. Another
solution to overcome this challenge is to combine tasks with
the same optimal frequency altogether. A task queue look-up
strategy in the runtime can identify and execute such kernels
back-to-back to reduce the frequency transition overhead.
Since CHARM++ is an asynchronous programming model,
the tasks in the queue can be executed in any order. The
limitation we found in this approach is that the task queue
may not contain enough kernels to combine at a given time.
Another approach to address this can be using a machine
learning approach, as used in some related work [21], to
decide the optimal frequency allocation for each core in a
more comprehensive manner.

Second challenge is that there are no core-level power mea-
surements supported by the hardware. Therefore our optimal
frequency selection mechanism might be less accurate than it
can be. Support for core-level power measurements from the
hardware would be helpful for the assessment of core-level
DVFS.

Finally, our method does not support hyper-threading since
hyper-threads can share the same physical core, i.e. execute
instructions from different threads in the same core. If the
hyper-threads within the same physical core is executing
different application kernels or functions, there is no feasible

way to change their frequency for each of threads separately.

VI. RELATED WORK

Many of the past research uses chip-level DVFS to do
energy or power optimizations [38], [14], [15], [40]. Sarood
et. al. proposes a thermal aware load balancer [36], [31] which
uses chip-level DVFS tecnique to restrain the temperature
of the processors. Padoin et al. extends this approach and
proposes a load balancer which utilizes per-core DFVS [33].
However this work is not done in a hardware that supports per-
core DVFS, instead it simulates the environment of a per-core
DVFS by placing only one process on each chip.

Another chip-level adaptive frequency selection approach
has been proposed for GPU and CPU kernels [8]. This ap-
proach can select a kernel to run on GPU or CPU and at which
frequency level based on pareto optimality. One drawback of
this work is that it works at individual kernel level and assumes
all threads within the processor are executing the same kernel,
and does not do any optimization in between the kernels.
Our approach does optimization for whole application and
in a transparent way taking into account frequency switching
latency and overheads.

Lim et al. proposes using DVFS in communication phases of
MPI applications, such as MPI_Send, MPI_Recv etc., to
reduce the energy consumption [27]. Their approach, like ours,
is implemented within MPI and transparent to the application.
However, their approach is also inherently limited to commu-
nication phases within MPI. On the other hand, our scope is the
whole application and can optimize for all phases and kernels
of the application. Bhalachandra et al. uses a similar approach
for MPI; when there is slack before an MPI_Barrier, it
applies DVFS to balance the arrival time of the processes to the
barrier [9]. The same drawbacks of Lim et al.’s paper applies
to this one as well.

VII. CONCLUSION

This paper proposes a fine grained runtime approach to
fully optimize the energy efficiency of applications at function
level considering function to function variations within the
applications. We show how per-core DVFS support from the
hardware can lead to higher energy efficiency for various use
cases including benchmarks with different kernel characteris-
tics, communication threads, I/O threads and idle cores.

We also discuss the limitations we encountered while ap-
plying per-core DVFS to HPC applications. Lack of core-level
power measurement support from the hardware is one of the
major limitations. Another limitation is the relatively high
frequency transition latency which makes it harder to make
fine-grained optimization. Having core-level power counters
and lower transition latency would make our method more
practical and effective for HPC workloads. A future direction
of this work is to understand how local optimal frequency
selection decisions effects the global application performance
when there is work imbalance between the nodes and how to
combine our method with a frequency aware load balancer.
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Saving energy by exploiting residual imbalances on iterative applica-
tions. In High Performance Computing (HiPC), 2014 21st International
Conference on, pages 1–10. IEEE, 2014.

[34] K. K. Rangan, G.-Y. Wei, and D. Brooks. Thread motion: fine-
grained power management for multi-core systems. In ACM SIGARCH
Computer Architecture News, volume 37, pages 302–313. ACM, 2009.

[35] N. B. Rizvandi, J. Taheri, and A. Y. Zomaya. Some Observations on
Optimal Frequency Selection in DVFS-based Energy Consumption Min-
imization. Journal of Parallel and Distributed Computing, 71(8):1154–
1164, 2011.

[36] O. Sarood, P. Miller, E. Totoni, and L. V. Kale. ‘Cool’ Load Balancing
for High Performance Computing Data Centers. In IEEE Transactions
on Computer - SI (Energy Efficient Computing), September 2012.

[37] S. Sridharan, J. Dinan, and D. D. Kalamkar. Enabling efficient mul-
tithreaded mpi communication through a library-based implementation
of mpi endpoints. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
487–498. IEEE Press, 2014.

[38] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang. Towards energy
aware scheduling for precedence constrained parallel tasks in a cluster
with dvfs. In Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pages 368–377.
IEEE Computer Society, 2010.

[39] W. Wang and E. A. Leon. Evaluating dvfs and concurrency throttling
on ibms power8 architecture.



[40] C.-M. Wu, R.-S. Chang, and H.-Y. Chan. A green energy-efficient
scheduling algorithm using the dvfs technique for cloud datacenters.
Future Generation Computer Systems, 37:141–147, 2014.

APPENDIX

The code used in this paper is integrated into the CHARM++
repository at the bilge/energyOpt branch and can be
found in the following url:
https://charm.cs.illinois.edu/gerrit/gitweb?p=charm.git;a=
shortlog;h=refs/heads/bilge/energyopt.
The benchmarks used in the paper are
also located in the same branch under
examples/charm++/per_core_scaling_benchmarks
folder.


