
Journal of Combinatorial Optimization
https://doi.org/10.1007/s10878-020-00534-y

Isolation branching: a branch and bound algorithm for the
k-terminal cut problem

Mark Velednitsky1 · Dorit S. Hochbaum1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In the k-terminal cut problem, we are given a graph with edge weights and k
distinct vertices called “terminals.” The goal is to remove a minimum weight collec-
tion of edges from the graph such that there is no path between any pair of terminals.
The k-terminal cut problem is NP-hard. The k-terminal cut problem has
been extensively studied and a number of algorithms have been devised for it. Most
are approximation algorithms. There are also fixed-parameter tractable algorithms,
but none have been shown empirically practical. It is also possible to apply implicit
enumeration using any integer programming formulation of the problem and solve it
with a branch-and-bound algorithm. Here, we present a branch-and-bound algorithm
for the k-terminal cut problem which does not rely on an integer programming
formulation. Our algorithm employs “minimum isolating cuts” and, for this reason, we
call our branch-and-bound algorithm Isolation Branching. In an empirical experiment,
we compare the performance of Isolation Branching to that of a branch-and-bound
applied to the strongest known integer programming formulation of k-terminal
cut. The integer programming branch-and-bound procedure is implemented with
Gurobi, a commercial mixed-integer programming solver. We compare the perfor-
mance of the two approaches for real-world instances and simulated data. The results
on real data indicate that Isolation Branching, coded in Python, runs an order of mag-
nitude faster than Gurobi for problems of sizes of up to tens of thousands of vertices
and hundreds of thousands of edges. Our results on simulated data also indicate that
Isolation Branching scales more effectively. Though we primarily focus on creating a
practical tool for k-terminal cut, as a byproduct of our algorithm we prove that
the complexity of Isolation Branching is fixed-parameter tractable with respect to the
size of the optimal solution, thus providing an alternative, constructive, and somewhat
simpler, proof of this fact.
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1 Introduction

In the k-terminal cut problem, we are given an graph with edge weights and k
distinct vertices called “terminals.” The goal is to remove aminimumweight collection
of edges from the graph such that there is no path between any pair of terminals. The
k-terminal cut problem is NP-hard (Dahlhaus et al. 1994). In the literature, the
problem has also been referred to as the multiterminal cut problem or the
multiway cut or multicut problem with k terminals.

The k-terminal cut problem has a number of applications. Specific appli-
cation areas include distributing computational jobs in a parallel computing system
(Goldberg et al. 1989), partitioning elements of a circuit into sub-circuits that will be
put on different chips (Dahlhaus et al. 1994), scheduling tasks (Karypis and Kumar
1998), understanding transportation bottlenecks (Karypis and Kumar 1998), planning
the “divide” step in divide-and-conquer algorithms (Hochbaum 1996), and even par-
titioning Markov Random Fields for computer vision (Boykov et al. 1998). More
generally, graph cut problems, including k-terminal cut, have applications to
graph clustering (Fern and Brodley 2004). Minimizing the weight of edges between
clusters is equivalent to maximizing the weight within clusters. In a setting where the
weights measure similarity between vertices, the result is a graph clustering proce-
dure. Thus, k-terminal cut gives an explicit combinatorial objective function
for supervised graph clustering.

A number of algorithms have been devised for the k-terminal cut problem.
Most of the algorithms are approximation algorithms. There are also fixed-parameter
tractable algorithms that solve the problem optimally in time that is polynomial when
the value of the optimum is fixed, but none have been shown empirically practical.

The first approximation algorithm for k-terminal cut gave an approximation
ratio of 2.0 (Dahlhaus et al. 1994). Improved approximation algorithms are based
on the linear programming relaxation of the integer programming formulation of the
problem known in the literature as the geometric Integer Program (Călinescu et al.
1998). A sequence of improved approximation algorithms delivered an approximation
factor of 1.5 (Călinescu et al. 1998), followed by 1.3438 (Karger et al. 2004), followed
by 1.32388 (Buchbinder et al. 2013). The best-to-date approximation factor is 1.2965
(Sharma and Vondrák 2014).

It is possible to apply implicit enumeration using any integer programming formu-
lation of the problem and solve it with a branch-and-bound algorithm.We compare the
performance of our algorithm to a branch-and-bound procedure based on the geomet-
ric Integer Programming formulation. The geometric Integer Program is the Integer
Program that was proved to have the smallest integrality gap, assuming the Unique
Games Conjecture (Manokaran et al. 2008).

There are several fixed-parameter tractable optimization algorithms for
k-terminal cut. It was first proven in 2004 that k-terminal cut is fixed-
parameter tractable with respect to the value of the optimal solution (Marx 2004).
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That proof was not constructive. A constructive proof in the form of an algorithm was
given in Chen et al. (2009) with running time O(|OPT |4|OPT |n3), where |OPT | is
the weight of the optimal cut and n is the number of vertices in the graph. The algo-
rithm of Chen et al. (2009) is of theoretical value and has never been implemented. A
by-product of our algorithm is an alternative, constructive proof of the fixed-parameter
tractability of k-terminal cut.

The algorithm devised here applies concepts used in the closely related k-cut
problem. In the k-cut problem, there are no terminals. The goal in the k-cut
problem is to remove a minimum weight collection of edges such that the resulting
graph consists of k non-empty, disjoint connected components. The k-cut problem
was proved to be easier than k-terminal cut: in Goldschmidt and Hochbaum
(1994), the authors proved that k-cut is polynomial for fixed k, whereas Dahlhaus
et al. (1994) showed that k-terminal cut is NP-hard even for k = 3.

The polynomial-time algorithm for k-cut introduced in Goldschmidt and
Hochbaum (1994) relies on two building blocks which we will also use here: seed
sets and minimum isolating cuts. A seed set is a set of vertices in the graph which
we assume belong to the same component in an optimal solution. Given a set of seed
sets, a minimum isolating cut is the minimum-weight (s, t)-cut which separates one
seed set from the rest. For the k-cut problem, Goldschmidt and Hochbaum (1994)
shows that if the “correct” set of 2k vertices are chosen as seeds, then the source set
of the minimum isolating cut recovers one of the components in the optimal k-cut.
In their algorithm, all ∼ ( n

2k

)
possibilities are enumerated. Thus, the exponent of the

running time polynomial depends quadratically on k.
Minimum isolating cuts have also been used in the 2-approximation algorithm for

k-terminal cut presented in Dahlhaus et al. (1994). For each of the k terminals,
consider the minimum isolating cut which separates the chosen terminal from the rest
of the terminals. If we take the union of the edges which appear in all k of these
minimum isolating cuts, then the result is a feasible k-terminal cut. It is shown in
Dahlhaus et al. (1994) that the value of this solution is at most twice the value of the
optimal k-terminal cut. Minimum isolating cuts have also been used to solve special
instances of the k-terminal cut problem to optimality (Velednitsky 2019).

Our contributions in this paper are as follows:

1. We devise a branch-and-bound algorithm for the k-terminal cut problem,
which does not rely on an integer programming formulation, and is demonstrated
to be practical and scalable. Our algorithm employs minimum isolating cuts and,
for this reason, we call our branch-and-bound algorithm Isolation Branching.

2. We conduct an empirical study of optimization procedures for k-terminal
cut, in which the performance of Isolation Branching is compared to branch-
and-bound on the geometric Integer Programming formulation of k-terminal
cut. The Integer Programming branch-and-bound procedure is implemented with
Gurobi, a commercial mixed-integer programming solver. The performance is
evaluated for real-world instances and simulated data. The results on real data
indicate that Isolation Branching, coded in Python, runs an order of magnitude
faster than Gurobi on graphs with up to tens of thousands of vertices and hun-
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dreds of thousands of edges. The results on simulated data indicate that Isolation
Branching scales more effectively.

3. Though our primary motivation is developing a practical branch-and-bound algo-
rithm for the k-terminal cut problem, we also prove that the running time
of our algorithm is fixed-parameter tractable with respect to the size of the optimal
solution. Thus, a byproduct of our algorithm is an alternative, constructive, and
somewhat simpler proof of an already-known result: that the k-terminal cut
problem is fixed-parameter tractable.

2 Preliminaries

The input to the k-terminal cut problem is an undirected graph G = (V , E, w)

with vertex set V , edge set E , weights w, and k terminals s1, . . . , sk ∈ V . The graph
G is assumed to have positive integer edge weights wi j for {i, j} ∈ E . Throughout
our algorithm, we maintain k disjoint sets, each of which contains one terminal, which
we call the seed sets. The i th seed set, Si , is a subset of V which contains the terminal
si and none of the other s j ( j �= i).

A collection of k subsets of V is a k-terminal cut if and only if the k sets partition the
vertex set V : an edge is in the cut if and only if its endpoints are in two different sets.
Our algorithm initializes with the minimal seed sets, containing only the respective
terminals, Si = {si }, and adds vertices as seeds until the seed sets form a partition.
The tool used to add new vertices to the seed sets is the minimum isolating cut.

To introduceminimum isolating cuts, recall theminimum (s, t)-cut problem. Given
a directed graph

−→
G = (V , A) and terminals s and t , a minimum (s, t)-cut is a partition

of the set of vertices into a source set containing s and a sink set containing t such
that the total weight of arcs from the source set to the sink set is minimized. It may be
the case that there are several minimum cuts. In that case, a maximal source set is a
source set not contained in the source set of any other minimum cut.

Given a maximum flow f̂ in
−→
G , the minimum (s, t)-cut with maximal source set

can be identified in linear time. The residual graph with respect to f̂ is defined as
follows: if arc (i, j) ∈ A has capacity ci j , then the residual capacity from i to j is
ci j − fi j and the residual capacity from j to i is fi j . Every arc that has positive residual

capacity is a residual arc. The residual graph is
−→
Gr = (V , Ar ), where Ar is the set of

residual arcs. If we wanted to determine the minimum (s, t)-cut with minimal source
set, we would identify the set of vertices reachable from s in the residual graph (using
breadth-first search). These vertices would form the source set and the rest would form
the sink set. To determine theminimum (s, t)-cut withmaximal source set, we identify
the set of vertices from which t can be reached in the residual graph (by reversing the
arcs in the residual graph and using breadth-first search). These vertices form the sink
set and the rest form the source set of the desired minimum cut with maximal source
set.

For an undirected graph G, we may pose the minimum (s, t)-cut problem by trans-
forming G into a directed graph: replace each edge {i, j} with arcs (i, j) and ( j, i),
where the capacity of the new arcs equals the weight of the edge they replace.
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Definition 1 (Minimum Isolating Cut for Si ) Given a collection of seed sets
{S1, . . . , Sk}, a minimum isolating cut for Si is a minimum cut with maximal source
set which separates Si from all the vertices in ∪ j �=i S j . The notation I(Si ) denotes the
source set of this minimum isolating cut.

The problem of calculating a minimum isolating cut for Si can be reduced to
the problem of computing a minimum (s, t)-cut with maximal source set. This is
accomplished by contracting all of the vertices in Si into a single source vertex s
and contracting all the vertices ∪ j �=i S j into a single sink vertex t . Contracting Si
into s means replacing all the vertices in Si with a single vertex s. Edges with one
endpoint in Si and another endpoint outside Si are combined such that, for all u /∈ Si ,
w(s, u) = ∑

v∈Si w(v, u).
Next, we develop an understanding of how these seed sets relate to the optimal

k-terminal cut:

Definition 2 (Containment Property) A collection of seed sets (S1, . . . , Sk) is said
to have the containment property if there exists an optimal k-terminal cut
(S�

1, . . . , S
�
k ) such that Si ⊆ S�

i ∀i .
In Dahlhaus et al. (1994), prove the following lemma, which we have rephrased

here:

Lemma 1 (Isolation Lemma) Consider the collection of seed sets Si = {si }. For any
i ,

({s1}, . . . , {si−1}, I({si }), {si+1}, . . . , {sk})

has the containment property in G.

As an example, consider Fig. 1. The unique optimal k-terminal cut has weight 8
(cutting the four edges that form the central square) while the four minimum isolating
cuts for the terminals each haveweight 3. The source sets of the fourminimum isolating
cuts are subsets of the source sets of the optimal k-terminal cut. The isolation lemma
proves that this is always the case. In our analysis, we rely on a simple generalization:

Lemma 2 (Seed Set Isolation Lemma) Consider a collection of seed sets (S1, . . . , Sk)
with the containment property in G. Then

(S1, . . . , Si−1, I(Si ), Si+1, . . . , Sk)

has the containment property in G.

Proof Let (S∗
1 , S

∗
2 , . . . , S

∗
k ) be an optimal k-terminal cut in G, with Si ⊆ S∗

i
for each i , and let EOPT be the edges of that cut. Merge the vertices of each Si into
their respective si to create the new graph G ′ with terminals s′

i . By the containment
property, Si ⊆ S∗

i , so none of the edges in EOPT have both endpoints in the same Si ,
so all of the edges in EOPT still connect two distinct vertices in G ′. Thus, EOPT is still
an optimal solution in G ′ to the k-terminal cut problem.
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Fig. 1 Isolation lemma in a
small graph
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We apply the isolation Lemma (1) in G ′. The minimum isolating cut I(s′
i ) in G ′

adds the same vertices as I(Si ) in G. That is,

I(s′
i ) \ s′

i = I(Si ) \ Si .

From the isolation lemma, we have that (s′
1, . . . , I(s′

i ), . . . , s
′
k) has the containment

property in G ′.

I(s′
i ) \ s′

i ⊆ S∗
i \ Si

�⇒ I(Si ) \ Si ⊆ S∗
i \ Si

�⇒ I(Si ) ⊆ S∗
i .

We conclude that (S1, . . . , I(Si ), . . . , Sk) has the containment property in G. 
�

3 Branch and bound

In our algorithm for k-terminal cut, we assign vertices to seed sets until all
the vertices have been assigned. As long as the minimum isolating cuts provide non-
trivial information, we use them to add unassigned vertices to seed sets. Otherwise, we
“branch” by considering assigning a certain unassigned vertex to all possible seed sets.
Following the branches where we make the “correct” assignment (where the vertex
is assigned to the seed set to which it belongs in the optimal solution), we will reach
the optimal solution. In branches where we make the “wrong” assignment, we will
eventually arrive at a feasible solution that is not optimal. Using a bound we derive
for this purpose, based on the 2-approximation from Dahlhaus et al. (1994), we can
ignore many of these branches by proving that they will not lead to an optimal solution
before expanding them.
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Fig. 2 Branch and bound tree for k = 3

3.1 Branching

Throughout, T will denote the incumbent branch-and-bound tree. At each node of
the tree, d ∈ T , we will store a collection of pairwise disjoint seed sets Sd,i ⊂ V ,
i ∈ {1, . . . , k}. For convenience, we will use nodes when referring to the branch-and-
bound tree T and vertices when referring to V in the original graph G.

Wewill say that a vertex � ∈ V is unassigned in d ∈ T if it is not in any of the Sd,i . In
our branching step, we choose an unassigned vertex � in d and create k children of d in
T by assigning � to each of the Sd,i in turn and computing the new minimum isolating
cuts (with maximal source sets). If d does not have any unassigned vertices then it
provides uswith a feasible solution to thek-terminal cut instance.Algorithm1 is
the pseudo-code of the IsolationBranching algorithm. Figure 2 provides an illustration.

The following lemma shows that the containment property propagates down the
tree:

Lemma 3 (Inheritance) If d ∈ T has the containment property, then at least one child
of d has it.

Proof Assume node d has the containment property. For all i , Sd,i ⊆ S∗
i . Let � be the

unassigned vertex chosen for branching. Assume � ∈ S∗
j . Then Sd, j ∪ {�} ⊆ S∗

j , so
the collection of sets

(Sd,1, . . . , Sd, j ∪ {�}, . . . , Sd,k)

has the containment property. By the seed set isolation lemma (Lemma 2), the collec-
tion of sets

(Sd,1, . . . , I(Sd, j ∪ {�}), . . . , Sd,k)

also has the containment property. These are the seed sets for the j th child of d. 
�
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Algorithm 1 Isolation Branching
# initialization
T ← ∅.
add node 0 to T (root node).
d ← 0.
for i = 1 . . . k do

S0,i ← I({si }).
end for
# main loop
while node d has unassigned vertices do

vertex selection: choose vertex � unassigned in d (see Sect. 4.1).
D ← |T |.
for i = 1 . . . k do

add node D + i to T (child of node d).
SD+i,i ← I(Sd,i ∪ {�}).
for j �= i , SD+i, j ← Sd, j .

end for
node selection: choose node d unexplored in T (see Sect. 4.1).

end while
# output
Return cut (Sd,1, . . . , Sd,k ).

3.2 Bounding

We would prefer to only expand nodes which have a chance of leading to an optimal
solution. At each node d ∈ T , we will consider the values of the functions

A(d) = |V | −
k∑

i=1

|Sd,i |.

L(d) = 1

2

k∑

i=1

w(Sd,i , V \ Sd,i ).

In words, A(d) is the number of unassigned vertices at node d and L(d) serves as a
lower bound. To be more precise, L(d) is half the sum of the weights of the minimum
isolating cuts. If the collection of seed sets at d has the containment property, then
the sum of minimum isolating cuts is known to be a 2-approximation to the optimal
solution, so L(d) must be less than the value of the optimal cut. The following two
lemmas show that L(d) can be used to cull branches even when the collection of seed
sets does not have the containment property.

Lemma 4 If d ∈ T and A(d) = 0, then L(d) is the value of the feasiblek-terminal
cut at node d.

Proof Each edge in the feasible k-terminal cut is exactly double-counted inside
the sum L(d) since it appears in exactly two minimum isolating cuts. Multiplying by
one-half returns the weight of the feasible k-terminal cut. 
�
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Lemma 5 (Strict Monotonicity) If d2 ∈ T is a descendant of d1 ∈ T , then

L(d2) > L(d1).

Proof It is sufficient to prove the inequality when d2 is a child of d1. Recall that Sd1,i
is required to be a maximal source set for all i . Assume that from d1 to d2 we add
our unassigned vertex � to Sd1, j (and then take the minimum isolating cut). The size
of the new minimum isolating cut must strictly increase, otherwise it contradicts the
maximality of the previous source set. Formally,

w(Sd2, j , V \ Sd2, j ) > w(Sd1, j , V \ Sd1, j ).

For the rest (i �= j),

w(Sd2,i , V \ Sd2,i ) = w(Sd1,i , V \ Sd1,i ).

In total, the value of the sum L(d2) strictly increases from L(d1). 
�
Together, these two lemmas give us the desired restriction. If we know that the

weight of the optimal k-terminal cut is bounded above by B (for example,
from finding a feasible solution), then we need not expand nodes where L(d) ≥ B
since any nodes which descend from these nodes cannot be optimal.

3.3 Running time

The number of children of each tree node is k, because we consider adding the selected
unassigned vertex to each of the k possible terminals. Furthermore, the value of

L(d) = 1

2

∑

i

w(Sd,i , V \ Sd,i )

is at least |OPT |
2 at the root node (d = 0) and is strictly increasing with depth (Lemma

5). When the edge weights are integer, the increase must be at least 1
2 . L(d) is exactly

|OPT | at a node with an optimal solution. Thus, |OPT | is a bound on the depth of
the tree. If we sum over the number of possible nodes at depths 1, 2, . . . , |OPT |, we
see that the number of nodes considered is at most

1 + k + k2 + · · · + k|OPT | < 2k|OPT |.

Let T (n,m) be the complexity of evaluating a minimum s, t-cut on a graph with
n nodes and m edges. The complexity of our algorithm is thus O(2k|OPT |T (n,m)).
From this, we have fixed-parameter tractability.

Corollary 1 When we can bound |OPT | by a factor that does not depend on n (for
example, graphs with terminals of bounded weighted degree), then the algorithm
Isolation Branching runs in polynomial time.
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4 Empirical study

4.1 Isolation branching implementation

Our implementation is available online at https://github.com/marvel2010/k-terminal-
cut and works as a Python package (ktcut). It represents graphs using NetworkX
(Hagberg et al. 2008). We chose Python for ease of implementation and portability,
even though it is not the fastest language in terms of its practical running time (Stein
and Geyer-Schulz 2013).

There are two hyper-parameters which affect the performance of our branch-and-
bound algorithm: the vertex-selection strategy and the node-selection strategy.

Branching Vertex Selection At each tree node, how do we decide which unas-
signed graph vertex to branch on to create the children nodes?
Branching Node Selection After expanding a node in the tree, how do we decide
which node to expand next?

Branching Vertex: For choosing the branching vertex, we considered a few options.
The options included choosing a vertex randomly, choosing the vertex farthest from
an existing source set, or choosing the vertex of largest degree. Initial experiments
suggested that the last strategywas best (largest degree), so our results use that strategy.
The largest degree strategy makes some sense. If a vertex is forced to be in a particular
source set, then its neighbors must either join the source set or the edge between them
is cut. This means that, when a high-degree node is added to a source set, either the
source set grows significantly in the next minimum isolating cut or the weight of the
cut grows significantly. Either outcome is good, since it means that either the source
sets grow quickly or we create tree nodes that do not need to be expanded (large values
of L(d)). In our implementation, we contract source sets into a single terminal vertex
at each node in the branch-and-bound tree. This allows subsequent minimum cuts to
be evaluated on smaller graphs.

Branching Node: For the branching node, we chose the “least bound” strategy: that
is, we always chose the node with the smallest lower bound, L(d), with ties broken
by fewer unassigned vertices, A(d). We considered two other heuristics: choosing the
node with smallest A(d) and choosing the node with smallest L(d)+ A(d). We found
that the “least bound” heuristic performed best, in practice.

4.2 Comparison to integer programming formulation branch-and-bound

To compare our Isolating Branching algorithm to integer programming branch-
and-bound, we used Gurobi, a popular commercial software package for integer
programming. The formulation towhichwe applied integer programming branch-and-
bound is below. It is referred to in the literature as the geometric Integer Programming
formulation (Călinescu et al. 1998). Assuming the Unique Games Conjecture, it has
been proven that no other formulation can have a smaller integrality gap than this one
(Manokaran et al. 2008).
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The variable xti is a binary variable: it is 1 if vertex i is assigned to terminal t and
0 otherwise.

minimize
∑

{i, j}∈E

k∑

t=1

1

2
wi j z

t
i j

s.t. zti j ≥ xti − xtj ∀{i, j} ∈ E, 1 ≤ t ≤ k

zti j ≥ xtj − xti ∀{i, j} ∈ E, 1 ≤ t ≤ k

k∑

t=1

xti = 1 ∀i ∈ V

xti ∈ {0, 1} i ∈ V , 1 ≤ t ≤ k

zti j ∈ {0, 1} {i, j} ∈ E, 1 ≤ t ≤ k

xtt = 1 ∀1 ≤ t ≤ k

(IP)

Strictly speaking, the constraint zti j ∈ {0, 1} does not need to be specified, since it is
implied. However, we found that specifying it explicitly helped Gurobi solve instances
faster. We suspect this is because the zti j variables are good variables to branch on. All
of Gurobi’s hyper-parameters were set to their default values.

4.3 Hardware

The experiments were run in a single thread on a laptop with an Intel i7 − 3520M
processor and 16GB of RAM.

4.4 Data sets

Real Data Sets: The twenty-four real-world data sets we used for experimentation
were gathered from two sources. The first source was the DIMACS Implementation
Challenge. According to the website, “These real-world graphs are often used as
benchmarks in the graph clustering and community detection communities.” These
data sets are available online at https://www.cc.gatech.edu/dimacs10/. The second
source was KONECT, an online repository of popular graph datasets. These data sets
are available online at http://konect.uni-koblenz.de/.

In most of the data sets, the graphs are already connected. In the rest, we only con-
sidered the largest connected component, otherwise the k-terminal cut problem
decomposes into smaller problems on each component.

Simulated Data Sets: To systematically study the running time scaling of our Isola-
tion Branching algorithm, we used simulated graphs. It has been observed that many
real-world graphs, from social networks to computer networks to metabolic networks,
exhibit both a power-law degree distribution and high clustering (Holme and Kim
2002). The Power Clustermodel, introduced in Holme and Kim (2002), generates
random graphs which exhibit both of these properties. NetworkX includes a tool for
randomly generating graphs according to the Powerlaw Clustermodel with three
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Table 1 Real Data, 5 Terminals, Running Times

Alias Instance properties Integer pro-
gramming

Isolation
Branching

Improvement
ratio

Category #Vertices #Edges CPU seconds CPU seconds

pdzbase Metabolic 161 209 0.33 0.034 9.71

adjnoun Lexical 112 425 0.52 0.09 5.78

polbooks Misc 105 441 0.5 0.14 3.57

ChicagoRegional Infrastructure 823 822 1.38 0.185 7.46

netscience Coauthorship 379 914 1.14 0.192 5.94

euroroad Infrastructure 1039 1305 2.35 0.942 2.49

propro Metabolic 1458 1948 3.78 0.175 21.60

celegans_metabolic Metabolic 453 2025 2.54 0.089 28.54

jazz HumanSocial 198 2742 3.46 0.104 33.27

ego-facebook Social 2888 2981 8.98 0.344 26.10

email Communication 1133 5451 9.23 4.76 1.94

vidal Metabolic 2883 6007 9.88 0.585 16.89

powergrid Infrastructure 4941 6594 24.2 25.5 0.95

petster-friendships Social 1788 12476 19.7 0.711 27.71

as20000102 Computer 6474 12572 21.4 1.87 11.44

hep-th Coauthorship 5835 13815 17.7 0.686 25.80

petster-hamster Social 2000 16098 29 1.08 26.85

polblogs Hyperlink 1222 16714 20.5 0.611 33.55

arenas-pgp OnlineContact 10680 24316 45 2.24 20.09

as-22july06 Computer 22963 48436 74.3 5.78 12.85

as-caida20071105 Computer 26475 53381 76.2 5.45 13.98

astro-ph Coauthorship 14845 119652 160 5.22 30.65

reactome Metabolic 5973 145778 179 8.1 22.10

ca-AstroPh Coauthorship 17903 196972 240 6.81 35.24

The running time, in CPU seconds, of Isolation Branching versus Integer Programming with Gurobi in
instances with five terminals. Both algorithms were run to optimality on all instances. The instances are
sorted by the number of edges. The “improvement ratio” is the running time of Integer Programming divided
by the running time of Isolation Branching

parameters: the number of vertices, the number of random edges to add for each ver-
tex, and the probability of creating a triangle. In our scaling experiment, we vary the
first parameter (the number of vertices) while leaving the latter two fixed at 10 and
0.1, respectively.

Terminals: In the data sets, terminals are not specified. In order to find suggested
terminals, do the following: first, we perform spectral clustering on the graph to get an
approximate clustering (by performing k-means clustering on the spectral embedding
of the graph). Next, we choose the largest-degree vertex in each approximate cluster
and set those vertices to be our k terminals.
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Table 2 Real Data, 10 Terminals, Running Times

Alias Instance Properties Integer Pro-
gramming
CPU Seconds

Isolation
Branching
CPU Seconds

Improvement
Ratio

Category #Vertices #Edges

pdzbase Metabolic 161 209 0.66 0.07 9.43

adjnoun Lexical 112 425 0.99 1.32 0.75

polbooks Misc 105 441 1.01 15 0.07

ChicagoRegional Infrastructure 823 822 2.28 0.188 12.13

netscience Coauthorship 379 914 3.27 0.251 13.03

euroroad Infrastructure 1039 1305 4.43 7.59 0.58

propro Metabolic 1458 1948 5.64 0.182 30.99

celegans_metabolic Metabolic 453 2025 5.73 0.165 34.73

jazz HumanSocial 198 2742 6.61 1.05 6.30

ego-facebook Social 2888 2981 7.76 61.5 0.13

email Communication 1133 5451 15 208 0.07

vidal Metabolic 2883 6007 16.9 0.385 43.90

powergrid Infrastructure 4941 6594 440 392 1.12

petster-friendships Social 1788 12476 34.6 0.479 72.23

as20000102 Computer 6474 12572 41.3 1.98 20.86

hep-th Coauthorship 5835 13815 40.9 0.87 47.01

petster-hamster Social 2000 16098 38.4 0.522 73.56

polblogs Hyperlink 1222 16714 47 0.618 76.05

arenas-pgp OnlineContact 10680 24316 64.3 1.71 37.60

as-22july06 Computer 22963 48436 253 8.55 29.59

as-caida20071105 Computer 26475 53381 209 9.75 21.44

astro-ph Coauthorship 14845 119652 338 7.41 45.61

reactome Metabolic 5973 145778 552 6.98 79.08

ca-AstroPh Coauthorship 17903 196972 1120 7.2 155.56

The running time, in CPU seconds, of Isolation Branching versus Integer Programming with Gurobi in
instances with ten terminals. Both algorithms were run to optimality on all instances. The instances are
sorted by the number of edges. The “improvement ratio” is the running time of Integer Programming divided
by the running time of Isolation Branching

4.5 Results

Before presenting the main comparison, we break down the performance of Isolation
Branching. On the twenty-four real data sets, we report the number of minimum
isolating cuts calculated, as well as the value of the optimal objective. The analysis is
repeated in real graphs with five terminals (Appendix, Table 4) and with ten terminals
(Appendix, Table 5). The graphs andmethod for choosing the terminalswere described
in Sect. 4.4.

One property of the objective function of k-terminal cut is that it can occa-
sionally lead to solutions where most of the graph is assigned to one component of
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Table 3 Simulated Data, 5 Terminals, Running Times

Instance Properties #Vertices Integer programming Isolation Branching Improvement ratio

Avg CPU time Deviation Avg CPU time Deviation

1000 13 0.3 17 4.3 0.74

2000 50 15.0 56 12.3 0.90

3000 192 86.6 65 17.6 2.94

4000 198 75.4 102 24.7 1.94

5000 585 161.0 234 49.6 2.50

6000 756 168.9 171 41.7 4.42

7000 1791 396.2 345 64.5 5.19

8000 2999 1322.6 479 82.0 6.26

9000 6573 1625.3 466 80.3 14.11

The average and standard deviation running time of Isolation Branching versus Integer Programming,
measured in CPU seconds, on simulated data sets with five terminals, generated according to the Powerlaw
Cluster model with 10 new edges per vertex and probability 0.1 of creating a triangle. For each size
graph, 10 random instances were generated. Both algorithms were run to optimality on all instances. The
“improvement ratio” is the running time of Integer Programming divided by the running time of Isolation
Branching

Fig. 3 The average running time of our Isolation Branching versus gurobi integer programming on ten
random instances of k-terminal cut generated using the PowerlawCluster model

the partition. Since this is of interest, in addition to reporting the value of the optimal
solution we also report the fraction of the graph which is in the largest partition of the
optimal solution.

We find that the running time of Isolation Branching is correlated with the size of
the graph and the number of minimum isolating cuts performed. It does not appear to
be correlated with the properties of the optimal solution we considered.

Next, we compare Isolation Branching to Integer Programming with Gurobi. We
compare on the twenty-four real-world test graphs, first with five terminals (Table 1)
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and then with ten terminals (Table 2). Isolation Branching is faster than Integer
Programming on twenty-three of the twenty-four instances with five terminals and
nineteen of the twenty-four instances with ten terminals. Isolation Branching provides
a median speedup of 18× in instances with 5 terminals and a median speedup of 26×
in instances with 10 terminals.

To systematically investigate the scaling of Isolation Branching versus Integer Pro-
gramming, we consider random instances (as described in Sect. 4.4). Properties of the
optimal solution can be found in Table 6. Running time comparisons can be found in
Table 3 and Fig. 3. The running time is the average running time of each algorithm
across ten randomly generated k-terminal cut instances. The error bars in the
figure reflect the standard deviation of running time across those instances.

As in the real data sets, Isolation Branching scales better than Integer Programming
to large instances. In instances with 30, 000 edges, Isolation Branching provides a
factor of 3× speedup over Gurobi. In instances with 90, 000 edges, the speedup is a
factor of 14×. We believe that this behavior is largely explained by the slow growth in
the number of minimum isolating cuts performed by Isolating Branching. In instances
with ∼ 30, 000 edges, Isolation Branching performs 70 minimum isolating cuts on
average. In instances with ∼ 90, 000 edges, Isolation Branching performs only 130
minimum isolating cuts on average.

5 Conclusions

In this paper, we introduce Isolation Branching, a new branch-and-bound algorithm
devised for solving the k-terminal cut problem. In the empirical study, we
demonstrate that Isolation Branching offers improvements of an order of magnitude
over solving the Integer Program with Gurobi, especially on large graphs. Using sim-
ulated data, we demonstrate that the Isolation Branching algorithm scales better from
small to large instances.Our code is available online at https://github.com/marvel2010/
k-terminal-cut.

An advantage of our algorithm is that it uses only minimum (s, t)-cuts, avoiding
the use of linear programming. As a byproduct of our analysis of the running time of
Isolation Branching, we offer an alternative proof that k-terminal cut is fixed-
parameter tractable with respect to the size of the optimal solution.

Acknowledgements Funding was provided by the National Physical Science Consortium.

Appendix

ATables

See appendix Tables 4, 5 and 6.
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Table 6 Simulated Data, 5 Terminals, Properties of Isolation Branching

Instance properties #Vertices Isolation branching

Avg CPU time Deviation Avg #Isolating cuts

1000 17 4.3 67

2000 56 12.3 99

3000 65 17.6 69

4000 102 24.7 81

5000 234 49.6 138

6000 171 41.7 81

7000 345 64.5 135

8000 479 82.0 126

9000 466 80.3 131

Properties of Isolation Branching on simulated data sets with five terminals, generated according to the
Powerlaw Cluster model, with 10 new edges per vertex and probability 0.1 of creating a triangle
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