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Abstract—Dynamic Information Flow Tracking (DIFT), also
called Dynamic Taint Analysis (DTA), is a technique for tracking
the information as it flows through a program’s execution.
Specifically, some inputs or data get tainted and then these taint
marks (tags) propagate usually at the instruction-level. While
DIFT has been a fundamental concept in computer and network
security for the past decade, it still faces open challenges that
impede its widespread application in practice; one of them being
the indirect flow propagation dilemma: should the tags involved
in an indirect flow, e.g., in a control or address dependency, be
propagated? Propagating all these tags, as is done for direct flows,
leads to overtainting (all taintable objects become tainted), while
not propagating them leads to undertainting (information flow
becomes incomplete). In this paper, we analytically model that
decisioning problem for indirect flows, by considering various
tradeoffs including undertainting versus overtainting, importance
of heterogeneous code semantics and context. Towards tackling
this problem, we design MITOS, a distributed-optimization
algorithm, that: decides about the propagation of indirect flows
by properly weighting all these tradeoffs, is of low-complexity, is
scalable, is able to flexibly adapt to different application scenarios
and security needs of large distributed systems. Additionally,
MITOS is applicable to most DIFT systems that consider an
arbitrary number of tag types, and introduces the key properties
of fairness and tag-balancing to the DIFT field. To demonstrate
MITOS’s applicability in practice, we implement and evaluate
MITOS on top of an open-source DIFT, and we shed light on
the open problem. We also perform a case-study scenario with
a real in-memory only attack and show that MITOS improves
simultaneously (i) system’s spatiotemporal overhead (up to 40%),
and (ii) system’s fingerprint on suspected bytes (up to 167%)
compared to traditional DIFT, even though these metrics usually
conflict.

I. INTRODUCTION

Dynamic Information Flow Tracking (DIFT), or Dynamic
Taint Analysis (DTA), systems operate by tainting various
inputs or data of interest with some metadata (called tags) and
keeping track of these tags during program or system execu-
tion. DIFT systems operate dynamically without requiring the
availability of the source code, which makes them appealing

MITOS, in Greek mythology, was a ball of thread, that Ariadne gave to
Theseus to help him escape the labyrinth of Minos kingdom. As MITOS
helped Theseus to reversely find his way back to labyrinth’s entrance by
minimizing his wandering, our framework minimizes the incoherent tag
propagations (e.g. of indirect flows), helping illuminating the information flow
from a certain output all the way back to the input.

for various types of applications, including enforcement of
security policies, forensics analysis, reverse engineering and
monitoring the flow of large distributed systems. Prior work
has attempted to leverage DIFT mainly for privacy and security
purposes. For example, some early DIFT works [1], [2],
[3], [4], [5] attempted to detect different types of malware
by following the information flow. Recently, DIFT has been
leveraged to address different privacy and security vulnerabil-
ities not only for modern computer operating systems (OSes),
commodity software and honeypot technologies [6], [7], [8]
but also for various IoT platforms [9], [10] and mobile
devices [11], [12].

Nevertheless, DIFT systems still face open challenges that
impede their widespread application in practice. One of these
challenges is the dilemma of indirect flow dependency prop-
agation. An indirect flow occurs when information dependent
on the program input determines from where and to where
information flows. For example, in the code < a = b + 1
>, there is a direct flow from b to a, and all DIFT systems
would propagate the tag of b to a. However, in the code
< a = 0; if (b == 1) {a = 1}; >, the value of a
is dependent on b, meaning that there is an indirect flow
from b to a. Not propagating tags in these cases can lead
to undertainting, where key important information flows are
missed. Propagating tags for all indirect flow dependencies
leads overtainting, where most of the taintable objects in
the system (e.g., bytes) become tainted with little useful
information being acquired.

While previous works have proposed some heuristics to
tackle the problem, they usually make unrealistic assumptions
to modern systems and have several limitations. For example,
Panorama [1] relies on a human to manually label which indi-
rect flows should be propagated. DTA++ [13] or DYTAN [14]
rely on offline analysis requiring multiple traces, which does
not scale well. RIFLE [15] and GLIFT [16] are based on
static analysis, and other works have prohibitive performance
overheads [7], [6]. While useful, these techniques can only
partially combat the problem.

Another, not well-studied, tradeoff in modern DIFT, is the
one between semantics and applicability. Most of the DIFT
systems ignore semantics, to be applicable to machine code
or to be scaled to whole live systems, including all processes



and the kernel. For example, it is difficult to properly keep
track of the flow of different semantics even after they get
inserted into the system, as they usually have heterogeneous
properties, different propagation speeds, and impact differently
the execution context. Further, ignoring them or adapting an
one-size-fits-all handling may improve the DIFT applicability,
but it usually misses important knowledge about the informa-
tion flow, putting a heavy toll on the DIFT performance and
detection efficiency for attacks [17].

In this paper, we propose MITOS, a framework that analyti-
cally tackles the open problem of: when an indirect flow should
be propagated in an efficient (e.g., scalable) manner. In other
words, MITOS theoretically addresses and tackles the open
problem of indirect flow propagation encountered in practical
DIFT systems, by unifying the two, usually conflicting, worlds
of theory and practice. To the best of our knowledge, this is
the first work in that direction, namely to analytically study
this practical problem that remains open since the past decade.
Specifically, our contributions are:
(1) We model the open problem of optimal decisioning for
indirect flow dependencies, by considering various tradeoffs
encountered in practical DIFT systems such as the under-
taining vs. overtainting, importance of heterogeneous code
semantics and context, and we show that the complete problem
is NP-hard.
(2) We relax the problem and by leveraging distributed op-
timization we propose an algorithm that converges to an
approximately optimal solution. Specifically, it decides about
the propagation of the indirect flows by weighting the above
tradeoffs, is of low-complexity, scalable, flexibly adapts to
different scenarios and security needs of large distributed
systems.
(3) To the best of our knowledge, we are the first to introduce
the fairness and tag balancing properties to the DIFT field,
which control the balancing among the propagations of dif-
ferent tags. It matches information-theoretic intuitions about
how tags should be propagated: e.g., flipping a coin that has a
50%−50% chance of heads-tails carries more information than
a coin that is biased in one direction [18]. Similarly, when tag
propagation becomes unbalanced towards one tag (e.g., due
to the considered semantics), every object is tagged and we
show that little information is gained.
(4) To assess MITOS potential in real DIFT systems, we
implemented and evaluated MITOS on top of FAROS, an
existing open-source DIFT system [7]. We investigated the
complex tradeoffs involved in the indirect flow dilemma and
we performed a case-study scenario with a real in-memory
attack and showed that MITOS improved simultaneously (i)
system’s time and memory overhead (up to 40%), and (ii) sys-
tem’s fingerprint on suspected bytes (up to 167%) compared
to standard DIFT, even though these metrics usually conflict.

The rest of the paper is organized as it follows. Section II
provides basic background on DIFT. Section III discusses
MITOS assumptions. Section IV details the analytical model
for the indirect flow propagation problem and the correspond-

ing solution. Section V discusses MITOS implementation and
evaluation on an existing DIFT system. Section VI summarizes
MITOS key findings, limitations, and future work. Section VII
presents related work. Section VIII concludes the paper.

II. DIFT - BACKGROUND

Dynamic Information Flow Tracking (DIFT), or Dynamic
Taint Analysis (DTA), a fundamental concept in computer and
network security, is a promising method to make systems
transparent and to enable a wide variety of applications,
such as enforcement of security policies, real-time forensics
analysis, and reverse engineering. The main idea is based to
tag certain inputs or data (tag insertion), and then, propagating
these tags as the program or system runs (tag propagation) with
the goal of illuminating the flow of information.

Tag insertion is usually straight-forward, as the bytes being
involved in certain system activities get tagged with some
metadata. For example, in MINOS [3], an early DIFT system,
all data coming from network were tagged with an extra bit
indicating if the byte was suspicious. There are two types of
tag propagation flows: direct and indirect.

Direct flow propagations (DFP) come from copy and com-
putation dependencies. In a copy dependency, a value is copied
from one location (e.g., from a byte, word of memory, CPU
register) to another. To track this information flow, DIFT
systems propagate the tag from the source to the destination.
In computation dependencies, tags must be combined, e.g.,
after the computation of a sum between two variables, the tag
of the result should contain both tags of variables.

Indirect flow propagations (IFP) occur when information
dependent on program input determines from where and to
where information flows. There are two types of indirect
flows: address and control dependencies, with several ex-
amples available in the literature [6], [4]. Figure 1 provides
an address dependency example in C that converts an array
of tainted input from one format to another using a lookup
table. There, as the string InputString is tainted, the string
OutputString should also be tainted, since they carry the
same information. To ensure that OutputString is properly
tainted we check the taintedness of the address used for the
load with LookupTable as its base, and propagate this
taint. This example appears in special handling of ASCII
control characters to ASN.1 encodings. Generally, indirect
flows are expected to be the rule rather than the excep-
tion in modern systems, occurring in operations such as in
compression/decompression, encryption/decryption, hashing,
switch statements, string manipulations. Indirect flows can
create blindspots for practical DIFT analysis or vulnerabilities
in security applications e.g., Trojans embedded in PDF docu-
ments or attacks that use encryption mechanisms are common,
but cannot be tracked without tracking indirect flows.

Propagating all indirect flows can lead to overtainting,
where most of the objects become tainted with little being be
learned about the information flow. Conversely, not propagat-
ing indirect flows can lead to undertainting, where important
knowledge about the information flow might be lost, which can
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char InputString = "This string is tainted";
char OutputString[128];
for (i = 0; i < strlen(InputString); i++)

OutputString[i] = lookuptable[InputString[i]];

Fig. 1. Address dependency example.

be crucial for security applications to detect attack or violation
of security policies. While many works have attempted to
tackle this dilemma, it still remains open, and constitutes
one of the major impedances to the widespread usage of
DIFT. The focus of this paper is twofold: (i) to model the
desired information-theoretic properties and needs of that
dilemma in DIFT as an optimization problem, and then
(ii) to analytically solve it using distributed optimization
techniques.

III. MITOS ASSUMPTIONS

Tag differentiation. First, MITOS assumes that the DIFT
will leverage an arbitrary number of tag types. For example,
it could include: network tags (representing bytes coming
from network), file tags (representing bytes coming from a
file), process tags (representing bytes coming from the address
space of a process), or system tags (for different systems whose
flows want to be monitored). Different tag types might come
from different (sub)systems. For the sake of presentation, we
denote the different tag types as: t1, t2, .... Tag differentiation
is a promising feature of modern DIFT systems since it
captures the information flow from different perspectives [7],
[8] and can efficiently visualize the information flow of large
distributed systems.

Note that, depending on the DIFT system and the security or
privacy application needs, MITOS is open to the consideration
of any type of code semantics as soon as they get captured
with different tags or tag combinations (e.g., different data
types or pointer tags [17]).

Provenance list. MITOS assumes that for each byte in
the main memory, register bank and Ethernet card memory,
a provenance list of tags accumulated during the system exe-
cution. MITOS also assumes that different tag types will have
different formats and sizes depending on the type of informa-
tion they represent; i.e., network, file, process, string, pointer
tags. The provenance list, through the set of tags it stores,
keeps all information flow history for the life cycle of a byte
in the system. For example, Fig. 2 illustrates the provenance
list for the byte representing memory address #7FFFFF8. This
byte came from a network source (IP=10.245.44.43), was read
as part of the address space of a process (PID 3543), was
written into a file (with file ID 14) and then was read as part
of an address space of another process (PID 2912).

Provenance list size. The provenance list size is finite,
denoted as Mprov . For example, Mprov = 10 means that each
byte can keep up to 10 different tags in its provenance list.

Shadow Memory. MITOS assumes that the provenance list
of tags for each byte will be stored in a shadow memory, whose
implementation depends on the DIFT system, e.g., hashmap
or duplicated memory.

Fig. 2. Provenance list for the byte in address #7FFFFF8.

TABLE I
NOTATION (INPUTS MARKED WITH *)

Notation Description
t, i tag ID
nt,i number of copies for the tag {t, i}
n 2-D optimization vector (control variable vector)
α * fairness degree in undertainting cost
β * steepness of the overtainting cost
τ * weight for the under/over- tainting tradeoff
ut * weight of tag type t while considering tag types
ot * weight of tag type t for the memory pollution

IV. MITOS: DECISIONING PROBLEM AND SOLUTION FOR
INDIRECT FLOW PROPAGATIONS

This section describes MITOS theoretical framework and
derived policies. MITOS’ goal is to address the indirect
flow propagation dilemma. Specifically, we first formulate an
optimization problem for that dilemma (Section IV-A), and we
then analytically tackle it through Alg.2 (Section IV-B).

A. Problem Formulation

We first (A) define the variables that are associated with the
indirect flow dilemma corresponding to our control variables.
Then, (B) we design a new cost function that attempts to
weight the different tradeoffs involved at the indirect flow
propagation. Finally, (C) we define our optimization problem.
Table I summarizes the notation used throughout the section;
the indicator (*) refers to the inputs in our model.

(A. Control Variables: n). When the DIFT system is
confronted with an indirect flow dependency, it needs to decide
whether it is worth propagating that particular tag to one
additional byte. For the sake of presentation, let us assume
that each particular tag has a unique ID {t, i}, where t ∈ T =
{t1, t2, ...} indicates the tag type, and i ∈ N+ = {1, 2, 3, ...}
represents an integer that differentiates tags of same type. We
now define as nt,i ∈ N = {0, 1, 2, ...} to be the number of
bytes whose provenance lists contain the tag with ID {t, i}.
Throughout this paper, we will often refer to nt,i as the number
of copies of the tag with ID {t, i}. For instance, if t1 is of
type network, we could have two different network tags each
associated with two network connections. Thus, nt1,1 would
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describe the number of copies of the tag t1, 1, while nt1,2 of
the tag t1, 2. The control vector n is:

n =

 nt1,1 nt1,2 nt1,3, ...
nt2,1 nt2,2 nt2,3, ...

... ... ...
. . .

 (1)

The number of dimensions of n changes dynamically as
the system runs, since new tags are born/deleted due to
the continuous creation/ termination of processes, network
connections, etc.

(B. Cost function: cα,β(n)). We now define our cost
function cα,β(n) that dynamically weights the cost of α-fair
undertainting and the cost of β-steep overtainting.

cα,β(n) =

cost of undertainting︷ ︸︸ ︷
cunderα (n) + τ︸︷︷︸

weight

·
cost of overtainting︷ ︸︸ ︷
coverβ (n) (2)

In the next two paragraphs (see B.1 and B.2) we elaborate
on the costs cunderα (n) and coverβ (n) and the meaning of α, β.
τ ∈ R+ is input and dynamically weights the tradeoff between
over- and under- tainting. When τ = 0 the cost of overtainting
disappears (0 · coverβ (n) = 0) and, thus, the undertainting cost
dominates, and all tags are propagated. As we increase τ the
emphasis moves towards the overtainting, which limits tag
propagation. This weighting parameter is often used in multi-
criterion optimization problems [19], [20], [21].

(B1. Cost function of undertainting: cunderα (n).) Now,
we model the undertainting cost function. We introduce the
fairness parameter α ∈ R+ that is input and balances the
number of propagations for different tags, and the parameter
ut ∈ R+ that weights the importance of different tag types.

cunderα (n) =
∑
t

ut
∑
i

(nt,i)
1−α

α− 1
. (3)

In the following, we discuss the properties of our considered
cost function. Figure 3(a) depicts this function for different
values of α. When α = 1, the above function is not defined
(as α−1→ 0) and log (nt,i)

−1 is used instead. Note that, the
proposed α-fair fairness function was inspired by the fairness
in resource allocation for wireless networks [22], [23], [19].

It is monotonically decreasing on ni,t. This means that the
more the copies of a tag, the lower the undertainting cost for
that tag. Thus, the slope of undertainting cost is continuously
decreasing, meaning that it has negative gradient.

As α → ∞ tag-balancing is achieved through max-min
fairness. As we increase α the slope becomes more and
more steep. As α → ∞ the slope maximizes and thus our
function attempts to maximize the propagation of tags with
fewer copies, i.e. max-min fairness. The latter maximizes the
entropy of the system from an information-theory perspective.
This fairness has interesting implications for DIFT systems.
For example, assume that a stack pointer is tainted by variable-
sized arrays on the stack, or the stack pointer being popped
or set from a register while the program counter happens to
be tagged. Then, everything on the stack becomes tainted and

starts overtainting all taintable objects in the system because
the stack is heavily accessed. Slowinska and Bos [17] provide
more examples with different semantics that might lead to
overtainting. In such scenarios, MITOS will adjust the tag
propagations to prevent deterioration of system entropy.

Tag-balancing alone may not be sufficient for a good
propagation decision. Different tag types carry heterogeneous
information (e.g., network, pointer, file) and potentially prop-
agate differently in the system. This calls for schemes that
are able to weight the propagation speed for different tag
types, based on e.g. the application, the system workload, or
the security policies implemented. Our cost function flexibly
overcomes this obstacle by using ut ∈ R+, which weights the
importance of different tag types and can boost or decelerate
their propagation respectively. We define u to be the vector
weighting the different tag types: u = [ut1;ut2; ...]. One could
even consider a tag confluence (when two or more tags come
together) to control the tag propagation of the involved tags
based on a certain run context.

(B2. Cost function of overtainting: cover(n)). If R is
the memory capacity of the system in bytes (e.g., main
memory, register bank, Ethernet card memory) and Mprov

is the maximum size of the provenance list, then the total
tag space in the provenance lists is NR = R · Mprov . For
example, if R = 4GB and for each byte we keep a list up to
10 elements, there are in total NR = 40 ∗ 109 provenance list
elements. We introduce the input parameter β that dictates the
slope, namely steepness, on the overtainting cost. Then,

coverβ (n) =

(∑
t ot
∑
i nt,i

NR

)β
(4)

In the following, we discuss the properties of our considered
cost function. Figure 3(b) depicts the function of Eq. (4).

It is monotonically increasing on ni,t, i.e. the larger the
number of tags in the system, the higher the cost. Thus,
its slope is continuously increasing with positive gradient.
Following the standard penalty functions, it should have at
least quadratic penalty on the memory pollution, thus we keep
β ≥ 2, ensuring also that it is twice differentiable [24]. As β
increases the cost of overtainting gets steeper.

Similarly to the undertainting cost, different tag types may
impact memory pollution differently. Our cost function flexibly
takes memory pollution into account by using o = [ot1; ot2; ...]
that weights the partial pollution of different tag types and
adapts their impact on the total pollution.

(C. Optimization Problem). Based on the defined control
variables and cost function we formulate our problem.

Problem 1. The problem formulation for the indirect flow (IF)
dilemma at hand is:

min .
n

∑
t ut
∑

i
(nt,i)

1−α

α−1 + τ ·
(∑

t
ot

∑
i
nt,i

R

)β
(5)

NR −
∑
t

∑
i

nt,i ≥ 0 (6)

R− nt,i ≥ 0, ∀t ∈ T, i ∈ N+ (7)
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Fig. 3. Considered cost functions for under/over tainting.

We now explain the physical meaning of our optimization
problem. Our control variable is the vector n that determines
the decision of propagating the tags coming from indirect
flows. Specifically, if a tag in such a scenario is worth
propagating (i.e., it improves the information flow), e.g. due
to the semantics or context priorities, we propagate it and
increase the corresponding value of n, otherwise we do not
(see A. Control Variables). This will become more clear in
the next subsection where we describe how n should be
best derived: n is updated, by leveraging the marginal costs
dictated by the considered cost function (see B. Cost Function)
and the considered linear constraints, every time our system
encounters an indirect flow leveraging distributed optimization
techniques. The marginal cost will take into consideration all
the tradeoffs discussed above. Constraint Eq.(6) states that the
total number of tag copies should not exceed the total tag space
in all lists. Constraint Eq.(7) ensures that each tag should not
have more copies than the total number of memory bytes (i.e.,
no byte is allowed to have more than one copy of a tag).

This problem has two main challenges at hand. First,
the control variables nt,i of the considered vector n takes
integer values, i.e. nt,i = 1, 2, 3, ..., since a tag can be
propagated to one or several bytes. Thus, this is a NP-hard
integer optimization problem, which is hard to solve optimally.
Second, the number of control variables nt,i can experience
sharp increases and decreases in very short intervals (e.g., a
video game reads data from files and downloads content from
Internet, thus generates hundreds of file and network tags in a
few milliseconds), thus continuously changing the dimensions
of n. This further complicates the problem since the system
dynamics change continuously as the system runs.

B. Solution: Distributed Optimization Algorithm and Policies

We now tackle Problem 1. We start by discussing how we
are going address the two major challenges discussed earlier:
the problem is NP hard and the number of dimensions of the
control variable change continuously.

Similarly to various works, we first propose to consider
the continuous relaxation of the problem to obtain a closed-
form real-valued solution [25], [26]. Specifically, we relax the
allowed values for nt,i ∈ N+ to nt,i ∈ R+. This relaxation
will allow us to tackle the relaxed problem fast with distributed
optimization techniques.

Lemma 1. The relaxation of nt,i ∈ N+ to nt,i ∈ R+ in
Problem 1 transforms it in a convex optimization problem.

Proof. The cost function is a sum of two convex functions
(both second derivatives are positive), and further it is convex
at the R+. The constraints are linear, and further convex. To
this end, the relaxed problem is convex [24].

This relaxed problem can be solved analytically using the
method of Lagrange multipliers and Karush Kuhn Tucker
(KKT) conditions [24], to derive the optimal vector n∗. 2

Note that, this solution might not scale well: (i) since new
tags are created, deleted and propagated very frequently as
the operating system runs posing a prohibitive overhead when
centralization (e.g., tag propagation updates) and system dy-
namics modifications (e.g., due to the change of the control
variable dimension) might need to happen too often, (ii) since
the global picture (system dynamics) of all subsystems is not
easily visible (accessible), especially in large distributed sys-
tems. In the following, we propose a distributed-optimization
solution that scales well to all these scenarios.

Solution roadmap: We start with Indirect Flow Propagation
(IFP) Scenario 1, where we assume that the destination’s list
has enough space in its provenance list to accommodate the
coming tags. Then, we generalize it to IFP Scenario 2 where
we investigate the problem when the space is limited, making
the problem more complex.

IFP Scenario 1: Single tag propagation with sufficient
space at the destination provenance list.

Assume an indirect flow scenario in a particular instruction
where (i) the source operand has only one tag for poten-
tial propagation. Also, (ii) the destination has (at least) one
available space in its provenance list, e.g., see Fig. 4. The
store word instruction in Fig. 4 copies data from a register
to memory. In our example, it attempts to store a word
from register t0 to the memory location corresponding to
7FFFFF0 + t3 = 7FFFFF0 + 8 = 7FFFFF8, given
that the value of t3 = 8. This is an address dependency, since
the value of t3 will dictate the memory address location that
the data of register t0 will be stored, and further the system
execution. Note that, there is a direct flow too from t0 to
7FFFFF8 that will be propagated following the basic DIFT
rules (see Section II) and is out of the scope of this paper.

Our objective is to answer the following question: should
the DIFT system propagate the red tag C? Alg. 1 shows our
proposed method towards answering this question. The main
idea is to take the indirect flow propagation decision based on
the first-order optimization criterion [24]. In the following two
paragraphs we elaborate on the two-steps of Alg. 1.
First, we derive the direction of the gradient towards the
dimension we are interested in. In our case, this dimension
refers to the control variable that is associated with the tag

2Note that in practice, one could round these values to the closest integer
to get an approximately optimal solution.
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Fig. 4. Address dependency (enough space in the destination’s list): the store
word sw instruction copies data from the register t0 to memory location
7FFFFF0 + t3 = 7FFFFF0 + 8 = 7FFFFF8.

Algorithm 1 IFP Scenario 1: Propagation of the tag with ID
{T, I} with sufficient space at the destination’ provenance list.

1: Step1: Derive the direction of the gradient towards nT,I .
2: ∆nT,I = ∂

∂nT,I
c(n) with Eq. (8).

3: Step2: Use the gradient-descent crit. for IFP decisioning.
4: If ∆(nT,I) ≤ 0 then propagate the tag {T, I}.
5: Else, block the tag {T, I}.

considered for indirect flow propagation. For the sake of
presentation, we assume that the type of the tag considered for
propagation (e.g., the red tag in Fig. 4) is T , with identification
number I , i.e. the involved control variable nT,I (we use
capital letters T, I to refer to a particular tag). The partial
derivative of the tag involved in an indirect flow with ID nT,I ,
namely ∆nT,I , that will determine its propagation is:

∆nT,I =
∂c(n)

∂nT,I
=

= −ut · (nT,I)−α + τ · β ·
(∑

t ot
∑
i nT,I

NR

)β−1

(8)
The variable ∆nT,I refers to the cost added by propagating

that tag with ID {T, I} to one more byte, and, therefore, can be
seen as the marginal cost of the indirect flow propagation. This
marginal cost depends on: (i) the submarginal cost (−α ·ut ≤
0) of undertainting that attempts to decrease it , and on (ii) the

submarginal cost (β ·
(∑

t ot
∑

i nT,I

NR

)β−1

≥ 0) of overtainting
that attempts to increase it. Note that, while the former quantity
differentiates for different tags (it can be derived with local
information, in practice), the latter quantity is the same for all
tags (it is actually the memory pollution, kept in a globally
available variable for all potential subsystems, in practice).
The sign of their sum, and, thus, the direction of the gradient,
follows the sign of the highest absolute value.
Second, considering the direction of the gradient, we attempt
to improve our considered cost function. Since our function
is convex and we attempt to minimize it, we need to follow
the opposite direction of the considered gradient [24]. More
precisely, if the partial derivative of Eq. (8) is negative, then
the first-order optimization criterion suggests to increase the
involved control variable by +1 and thus to propagate the
indirect flow. On the other hand, if the partial derivative is

positive such a decision would hurt our objective and thus the
DIFT system should not propagate the tag.

Lemma 2. [MITOS Decisioning Rule for the IFP problem]
Considering the direction of the gradient of the cost function,
the currently optimal rule for determining the propagation of
a tag involved in an indirect flow, is:

propagate it if: ∆nT,I ≤ 0, block it otherwise. (9)

IFP Scenario 2: Multiple tag propagations with insufficient
space at the destination provenance list.

We now generalize the above scenario. Assume an indirect
flow scenario where (i) the source operand has multiple tags
for potential propagation, and (ii) the destination operand does
not have enough space in its provenance list to accommodate
all the potential tags scheduled for propagation (see Fig. 5). In
this store word instruction we see again an address dependency
from the register t3 (source) to the same memory location
7FFFFF8 (destination). However, now the source has three
potential tags for propagation and the destination only two
available spaces in its provenance list. Our objective is to
answer the following question: which, at maximum two, tags
(out of the C, E, B) should the DIFT system propagate ? We
extend Algorithm 1 to Algorithm 2, to still use an adapted
prioritized first-order optimization criterion.

Fig. 5. Address dependency (limited space in the destination’s list): the store
word sw attempts to copy data from the register t0 to memory location
7FFFFF8.

Algorithm 2 IFP Scenario 2: Propagation of multiple tags
with limited space available in the destinations’ provenance
list, namely A available tags space.

1: Derive the partial derivatives (marginal costs) for all
involved tags in the current IFP using Eq. (8).

2: Sort the tags w.r.t. their partial derivatives increasingly:
{∆nT1,I1 ,∆nT2,I2 , . . . }, such that ∆nT1,I1 ≤ ∆nT2,I2 ≤
. . . .

3: Set j = 1. // tag being considered currently for propaga-
tion.

4: Set #props= 0. // number of successfully propagated tags.
5: while (#props ≤ A) and (∆(nTj ,Ij ) ≤ 0)
6: Propagate tag j.
7: #props++. // increase by 1 the propagated tags.
8: j++ //move for the next tag.
9: Recalculate ∆(nTj ,Ij ) of the tag j.

10: end.
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First, we derive all the partial derivatives of all tags involved
in the considered indirect flow at the source using Lemma 2.
(line 1, Alg. 2). Then, we sort the partial derivatives in
an increasing order, such that the first tag (j=1) has the
lowest marginal cost (line 2, Alg. 2).Then, we set (i) the
first tag to be considered for propagation to the one with
lowest marginal cost i.e. j=1, and (ii) the tags that have been
successfully propagated to 0, #props = 0 (line 3-4, Alg. 2).
The while loop that follows keeps propagating the tags while
the available space in the destination provenance list is not
exceeded (#props ≤ A) and while the marginal cost of the
current tag is negative (∆(nTj ,Ij ) ≤ 0). More precisely, if
the above two conditions hold true, we propagate the tag and
increase by +1 the counter of propagations (line 6-7, Alg. 2).
Then, we move the pointer to the next tag (line 8, Alg. 2) and
recalculate the partial derivative of the next tag since the cost
of overtainting might have changed (line 9, Alg. 2).

Since the tags are ranked according to their marginal cost,
and the propagation decision is based on them, during each
indirect flow the improvement in c(n) is maximal among all
feasible directions (a variable nt,i cannot change during an
indirect flow propagation, if the tag {T, I} is not present in the
list of the source); given the convexity of our cost function, this
method is shown to correspond to a distributed implementation
of a gradient decent algorithm [25], [24]. However, note that,
the rule proposed might make decisions that are optimal at a
given point in time, but that might push the system into a local
optimum from which it cannot get out easily later. Further, the
solutions of Alg. 1 and Alg. 2 do not necessarily correspond to
the global optimum points of Problem 1, as they are heuristic
solutions of the relaxed problems.

We now discuss various properties of our proposed rule in
Lemma 2 and of our generic Algorithm 2.

1) Our proposed rule derives the gradient of our cost
function by properly weighting all the involved tradeoffs
(e.g., undertainting versus overtainting, semantics prior-
ities) and system dynamics (e.g., memory pollution) and
then it best decides about the propagation of an indirect
flow.

2) Our rule for the IFP is of low-complexity. The time
complexity is O(1), since every time MITOS needs
to make an IFP decision it only needs to sum two
real numbers (see Eq. (8)). For the space complexity,
we need (i) O(NR) space for the submarginal cost of
undertainting (left part of Eq. (8)), as our policy is byte-
level attributable. Also, we only require (ii) O(1) space
for the overtainting cost, as we keep a single estimation
of the memory pollution (right part of Eq. (8)).

3) It is scalable. MITOS only needs to retrieve a local
value about how undertainted the tag is, for the IFP
decisioning (and use it along with a globally available
estimation of memory pollution, see e.g. Eq. 8). This
keeps MITOS scalable as its complexity doesn’t change
on the number of tags in the system.

4) It is flexible, since by changing the input parameters
one can flexibly weight the involved tradeoffs differently

and capture different performance degrees based on the
application scenarios and security needs. It is also α-
fair, since α captures different degrees of tag balancing.
In Section V we elaborate more on this.

MITOS can be generalized to capture different types of
flows, processes and objectives (we discuss such a scenario
in Section V-C). Due to space limitations and as the problem
formulation stay the same in all cases we skip the details.

Finally, bearing these in mind, MITOS is highly efficient
on large distributed systems that might need to often exchange
their local information about tag propagations e.g., to detect or
keep track of potential attacks that infect different subsystems,
by using our low-complexity, scalable and flexible rules.

V. APPLYING MITOS TO AN EXISTING DIFT

To evaluate MITOS applicability in practice we im-
plemented it in an existing, open-source DIFT system,
FAROS [27], [7]. We start by detailing our implementation
(Section V-A), and then we evaluate MITOS’ performance
under various tradeoffs encountered in different indirect flow
scenarios, such as undertainting vs. overtainting, tag type
importance, and different fairness degrees in tag balancing
(Section V-B). Finally, we evaluate MITOS in a study case,
where FAROS is detecting stealthy in-memory-only attacks
(Section V-C). We show how the application of MITOS for all
types of flows can not only improve FAROS’ spatiotemporal
performance, but also its detection accuracy, in terms of
recognizing the bytes that are part of an exploit. In the
following, if not explicitly mentioned, we assume α = 1.5,
β = 2, ut = ot = 1 ∀t ∈ T, τ = 1, and that all τ values are
normalized up to the power of 106. We varied the parameters
in our evaluations and reached similar conclusions.

A. Implementation Details

Figure 6 illustrates our architecture which consists of five
layers: (i) the host Ubuntu 14.04 machine, (ii) the QEMU
virtual machine (VM) with the PANDA plugin, (iii) the open-
source DIFT tool FAROS, (iv) MITOS implemented as a
FAROS extension for the IFP problem, (v) Windows 7 as
guest OS 3. PANDA is built upon the QEMU whole-system
emulator adding to it capabilities for instruction level analysis
including recording and replaying a system run. FAROS was
implemented as an PANDA plugin extension leveraging direct
flow propagations for malware analysis and we refer the
interested reader to [7] for details.

We now describe the implementation of MITOS along
with its interaction with PANDA and FAROS in Fig. 6.
PANDA provides access to all instructions emulated in a pre-
viously recorded run (steps (1)-(2)). Then, FAROS component
is_DFP filters and processes the instructions that involve a
direct flow propagation (DFP) (step (3)), and propagates all
the DFPs by inspecting and modifying the shadow memory

3FAROS was implemented for Windows 7. As discussed in Section VI, the
type of OS does not affect the nature of the indirect flow propagation problem
considered in this paper, thus the OS choice is not expected to (directly) impact
the insights offered by MITOS.
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at the host. Then, FAROS invokes MITOS, to propagate any
indirect flow propagations (IFPs). 4 We designed the module
is_IFP to filter and process the instructions that carry IFP,
i.e., address or control dependencies (step (4)). Next, the
instructions associated with IFP are subject to Alg. 2 (step
(5)). Specifically, MITOS inspects the shadow memory and
calculates the marginal costs ∆nT,I for all tags T, I appeared
in the source operand of the instruction, it sorts them and
decides if they worth being propagated (see Alg. 2). Finally,
MITOS updates the shadow memory of the propagated tags.

Fig. 6. MITOS implementation.

B. Sensitivity Analysis

Sensitivity analysis explores the impact of the inputs in a
mathematical model (e.g., MITOS inputs include τ, α, ut) to
the output (e.g., for MITOS we are interested in the indirect
flow decision impact, memory pollution, overhead etc). We
focus on three scenarios and investigate MITOS performance
on the tradeoffs involved in the indirect flow decisioning.

We ran an one-minute network-benchmark on Windows
using the PerformanceTest tool of Passmark [28], where the
guest acts as a client and downloaded several megabytes of
data from a remote server. We replayed this record multiple
times with MITOS on top of FAROS using different values
for our inputs (see Table I). Below, we focus on the impact of
our inputs on the tradeoffs involved on IFP decisioning.

Undertainting vs. overtainting. The parameter that weights
this tradeoff is τ ∈ R+, where the higher the τ the more
emphasis is put on the cost of overtainting. Fig. 7 shows how
the system reacts for three different values of τ . We replayed
the one-minute recordings three times, using different values
of τ = 1, 10−1, 10−2, keeping all other parameters fixed,
and waited until the system converges to a point at the end

4 MITOS can also track DFP: we investigate it in a study case in
Section V-C. There, (i) the functions is_DFP and DFP are removed from
FAROS, and (ii) both direct and indirect flows are forwarded to MITOS
and further to Alg. 2. To do so, we replace the function is_IFP with
is_DFP_or_IFP , i.e. MITOS now handles instructions related to both
direct and indirect flows.

of the replay (actually, the control vector n converges to a
value). Fig. 7(a) shows the marginal costs of under- and over-
tainting (y-axis) for different indirect flow propagations that
MITOS encountered as a function of time (x-axis) following
Eq. (8). For the sake of presentation, we have included the
effect of τ at the cost of overtainting. The undertainting costs
of different indirect flows varies; this cost is only dependent
on the current number of copies of the considered tag. The
overtainting cost is (mostly) monotonically increasing over
time since the memory pollution is (mostly) increasing on
time due to the new tag insertions/propagations. Figure 7(b)
shows the corresponding decisions for these indirect flows:
if the cost of undertainting dominates the tag is propagated
(and we plot +1 in the y-axis), otherwise the tag is blocked
(and we plot -1). Since we keep a relatively high value of τ ,
most of the tags are blocked. In Fig. 7(c), 7(d) we decrease τ ,
which further decreases the emphasis of overtainting and plot
the decisions of the indirect flows encountered. Indeed, more
tags get propagated over time due to τ decrease.

Message: The undertainting vs. overtainting tradeoff should
not be a challenge in the indirect flow dilemma and DIFT
efficiency. MITOS appropriately weights it with respect to τ
and best decides leveraging a simple propagation rule (see
Lemma 2).
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(a) time vs. marginal costs, τ = 1.
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Fig. 7. (a): [x-axis] time vs. [y-axis] marginal costs (see Eq. 8). (b)-(d): [x-
axis] time vs. [y-axis] IFP decisions (we plot +1 for the blocked and -1 for
the propagated IFP., see Alg. 2)

Fairness - Tag balancing. The higher the α, the more
fair MITOS is (see Eq. (3)). Specifically, as α → ∞ the
undertainting cost becomes steeper, i.e. it penalizes more
intensely the overpropagated tags. This attempts to maximize
the tags with fewer copies to improve tag balancing. Fig. 8
corresponds to six different MITOS’ runs for six different
values of α. We measure the fairness degree, or taint-balancing
efficiency, based on the mean square error difference between
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the number of copies of different tags. The sharp deviations
of the tags can be alleviated by adapting α, thus improving
tag balancing performance, and entropy, up to 2×. This is
important as traditional DIFT systems tend to overpropagate
tags in multiple scenarios, consequently hurting their overall
performance and wasting memory resources from the prove-
nance lists [7].

Message: MITOS input parameter α flexibly captures dif-
ferent fairness degrees, in terms of tag-balancing. We envision
this to have immense impact on modern DIFT systems, since
these systems experience situations where they tend to over-
propagate certain tags, especially in large distributed systems
that the global picture is not easily visible.
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Fig. 9. unetflow vs. propagated net-
flow tags.

Tag type importance. We now focus on the tradeoff arising
when tags of different tag types compete for propagation.
Modern DIFT systems might include different tag types with
different properties, importance, and propagation speeds [7].
As discussed, there are many reasons that warrant dynamic and
somewhat personalized strategies to determine the weight of
over vs under tainting based on tag type, through ut. In Fig. 9
we consider different values of unetflow (by keeping the remain-
der parameters fixed and equal to 1). For each value we plot
in blue (netflow line in the legend) the percentage of netflow
tags, encountered at the end of each replay, normalized by the
maximum value taken when unetflow = 100. Increasing unetflow
monotonically boosts the netflow tag propagation speed. The
boosting of certain tag type propagation speed impacts how
MITOS handles other tag types, because a speed boosting
means an increase in memory pollution (export table tags have
higher undertainting cost and further are mildly decelerated).

Message: MITOS introduces a flexible way to dynamically
fine-tune the propagation speed of different tag types through
ut, to accommodate the inherently heterogeneity of tag prior-
ities for a particular system.

Finally, we also ran CPU and file-system benchmarks, and
we noticed similar behaviors. We skip the results for those
benchmarks due to space limitations.

C. Case study: Flagging In-Memory-Only Attacks

We now apply MITOS in FAROS while it is flagging
stealthy in-memory attacks and show the substantial im-
provement MITOS brings in spatiotemporal performance and
detection efficiency. In particular, we study how much time

FAROS MITOS Improvement
Time (sec) 837 509 1.65×

Space (Mbytes) 2.21 1.99 1.11×
Detected bytes 543 1449 2.67 ×

TABLE II
TIME, SPACE COMPLEXITY, AND NUMBER OF BYTES THAT WERE

SUCCESSFULLY DETECTED IN AN IN-MEMORY ATTACK.

MITOS/FAROS needs to replay the attack compared to the
standard FAROS (time complexity), how much memory is
used (space complexity), and how many bytes can successfully
be detected as suspicious (detection efficiency) in each case.

In an in-memory-only attack, the attacker, usually through
a shell, injects a payload inside a legitimate process address
space. The hallmark of the in-memory-only attack is the fol-
lowing. The payload comes from the Internet and is associated
with netflow tag. Then, these bytes are written into the kernel
memory area where linking/loading operations occurs and are
also associated with the tag export-table. FAROS flags the
attack when these two tags (netflow and export-table) come
together on a byte.

We implemented the in-memory attacks using the Meter-
preter module from Metasploit in a way similar to that done
for FAROS [7]. We set up the attacker’s VM (Linux Kali) and
generated a shell code that ran in the victim’s VM (Windows
7). This opened a session for the attacker and we then perform
a remote reflective DLL injection targeting the victim process
calculator.exe. As explained earlier, we consider two systems
and attempt to compare their performance: (i) [FAROS] prop-
agating aggressively all direct flows and no indirect flows as
suggested in various DIFT systems including FAROS, and
(ii) [MITOS] propagating all flows (direct and indirect) at the
MITOS level. For (ii) we generalize MITOS to also consider
direct flows, as explained in Sections V-A.

The spatiotemporal complexity and the detection perfor-
mance of both systems is depicted in Table II. We ran six
Metasploit shells (reverse https, reverse https proxy, reverse tcp
rc4 dns, reverse tcp rc4, reverse tcp) and show the average per-
formance. While FAROS aggressively propagates all tags [7],
MITOS propagates only the tags that are important based
on our considered objective that measures the information-
flow (see Alg. 2). We note that MITOS achieves the following
improvements simultaneously (even though they usually come
in an antagonistic fashion): (i) it propagates fewer tags than
FAROS by further alleviating the space and time needed for
the tracking analysis 1.65× and 1.11× respectively, and (ii)
it can successfully detect 2.67× times more bytes that were
involved in the in-memory attack.

Message: MITOS opens new horizons of how information
flow can be measured and optimized in modern and large
systems where spatiotemporal complexity emerges as a key
performance bottleneck.

VI. DISCUSSION AND FUTURE WORK

MITOS consists of an analytical algorithm and set of
policies for the open problem of indirect flow propagation
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in modern DIFT systems. From a theoretical viewpoint, MI-
TOS is novel as it analytically models the tradeoffs between
undertainting and overtainting and between the importance
of heterogeneous code semantics and context, and designs
a solution algorithm using distributed optimization. It also
introduces fairness and tag-balancing: two key properties for
the success of modern DIFT, and investigates the impact
of different α-fair degrees on system performance. From a
systems viewpoint, MITOS is distributed, scalable, flexible, of
low complexity, applicable to large distributed systems. In our
extensive performance evaluation we demonstrated that it can
be easily applied to an existing software-based DIFT system,
and then shed some light on the various dimensions of the open
problem. Additionally, we performed a study case scenario
with an in-memory-only attack. There, we showed that MITOS
can improve simultaneously spatiotemporal complexity up to
40% and the detection efficiency up to 167%, compared to
traditional DIFT. Summing up, MITOS analytically studies and
addresses a problem of DIFT systems that has been open for
the last decade: the problem of whether indirect flows should
be propagated or not; a dilemma that impedes the application
of DIFT to practice. Then, we demonstrate our decisioning
framework under an existing DIFT system.

Scheduling management in the lists. In our evalation,
we followed FAROS assumptions [7] and assumed that the
provenance lists follow a First-In-First-Out (FIFO) queue: we
drop the head of the list if the list is full and an additional
tag attempts to enter. We defer to future work the design of a
proper tag scheduling and dropping decisioning using penalty
functions for indirect flows, as Matzakos et al. did for delay
tolerant networks [25].

MITOS in Hardware. To ensure implementation flexibility
for different hardware platforms, MITOS can be implemented
as a configurable component in a System on Chip (SoC).
Configuration parameters for the MITOS algorithm can be
saved in newly added model specific registers, allowing an
interface to a trusted OS module or platform loader to set
up the interfaces. Information flow during execution, tag
information can be stored in dictionary-like structures that
reside in a segmented portion of main memory. Segmentation
can be performed during platform initialization, such as the
Pre-EFI Initialization (PEI) portion of Unified Extensible
Firmware Interface (UEFI), much like the enclave page cache
is reserved for usage in Intel’s Software Guard Extensions.
Recently accessed information can be stored in a MITOS-
specialized series of caches to mask memory latency. We move
the computational process employed by MITOS to decide tag
propagation to specialized hardware. We extract data flow
information directly from the CPU as code executes. For out
of order cores, we look at the commit stage in the CPU, as to
capture the proper architectural state and not violate execution
model. The decision on whether to propagate tag information
is then performed by hardware. Because the segmented portion
of memory is limited in size, it may need to be swapped. We
can perform this action by relying on the OS to swap the
information for us, in which case it must be stored encrypted

and cryptographically signed, or through trusted service into
a trusted storage area.

Limitations. Note that, as our implementation was based on
FAROS and PANDA, we encountered several limitations in the
performance evaluation. For example, FAROS poses a large
overhead on the host machine: e.g., the memory required to
replay a record increases exponentially on the record duration,
prohibiting us to run scenarios longer of one minute. Also,
PANDA restricts the size of the record and further the system
activities that can be recorded simultaneously. The latter
prevented us from running complex evaluation scenarios, e.g.,
run multiple attacks of benchmark scenarios jointly. Finally,
note that FAROS runs on Windows 7, restricting our OS choice
for our case study analysis. While the OS itself does not affect
the nature of the open IFP problem and the insights offered by
MITOS, we plan to also apply MITOS in more modern OSes
in our future work.

VII. RELATED WORK

DIFT in the context of detecting attacks was co-introduced
by Costa et al. and Suh et al. [4], [29]. TaintBochs [30]
was another early application of taint analysis to analyze data
lifetime in a full system. Other early DIFT works include [3],
[2], [31] that explore policy tradeoffs for DIFT schemes and
higher-level systems issues, vulnerabilities in commodity soft-
ware and honeypot technologies. Malware analysis [1], [32],
network protocol analysis [33] and data flow tomography [7],
[34], full-system recovery after memory corruption attacks
and protecting kernel integrity against rootkits [35] are other
directions that DIFT is leveraged.

Most past work on DIFT focused on software implemen-
tation and did not satisfactory address indirect flows. The
earliest DIFT papers that identified the problems with address
and control dependencies include [4], [3]. For Minos, it is
claimed that (i) address dependencies are propagated for 8-
and 16-bit loads and stores, and blocked for 32-bit loads and
stores. More details and analysis of these issues followed [36],
[5], including a quantitative analysis of full-system pointer
tainting [17]. More recent DIFT systems that are designed for
flexibility [15], [1] enable address and/or control dependencies
to be tracked based on a user-provided policy, but provide
no satisfactory policy for doing so in practice. As discussed
earlier, Panorama [1], DTA++ [13], DYTAN [14],RIFLE [15],
and GLIFT [16] suffer from several limitations when it comes
to indirect flow propagation and overtainting. Panorama [1]
relies on a human to manually label which address and control
dependencies tags should be propagated. Address and control
dependencies arise from common program structures, such as
conditional statements, for loops, and arrays. DTA++ [13] or
DYTAN [14] rely on off-line analysis, which does not scale
to full systems. Systems designed with correctness as the
primary goal, such as RIFLE [15], and GLIFT [16], propagate
all tags all the time unless a compiler statically analyzes the
information flow. While there are attempts at implementing
DIFT in hardware [37], [38] they do not handle indirect flows
and taint analysis performance overheads.Other recent DIFT
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schemes include FAROS [7] and V-DIFT [6] that approximate
a quantitative information flow at the price of overhead, not
scaling to large systems. DDIFT [39] considers generic direct
and indirect tag propagation policies for IoT.

VIII. CONCLUSION

In this paper we analytically study the problem of indi-
rect flow propagation encountered in practical DIFT systems,
by unifying two, usually conflicting, worlds of theory and
practice. After modeling the open problem, we propose MI-
TOS, an iterative, scalable and distributed algorithm to tackle
it, implementable in large systems. We then evaluate it in
an existing software-based DIFT by shedding light on the
problem of indirect flow propagation, investigate the complex
tradeoffs involved, and we show the significant performance
improvement (e.g., 167% in our case scenario).
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