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Abstract—This article presents a kriged compressive sensing
(KCS) approach to reconstruct acoustic fields using measurements
collected by underwater mobile sensing platforms. The KCS ap-
proach has two steps. First, initial estimates are obtained from a
krigingmethod by leveraging spatial statistical correlation proper-
ties of the acoustic fields. Second, selected initial estimates, treated
as virtual samples, are combinedwith themeasurements toperform
field reconstruction through compressive sensing. To differentiate
the fidelity between real measurements and virtual samples, we use
the kriging variance to determine weight coefficients for the virtual
samples estimated from kriging. Simulation results show that the
proposed KCS approach can improve the reconstruction perfor-
mance, in terms of the peak signal-to-noise ratio and structural
similaritymetrics. TheKCS performance has been validated based
on the acoustic intensitymeasurements collected by an autonomous
underwater vehicle in a lake. The KCS methods have also been
applied to process the ambient sound level measurements collected
by anunderwater glider in the SouthChinaSea.TheproposedKCS
method leads to better performance than either the compressive
sensing or the kriging method alone.

IndexTerms—Acoustic field reconstruction, compressive sensing
(CS), kriging interpolation, underwater mobile platforms.
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I. INTRODUCTION

MOBILE sensing platforms, including AUVs and under-
water gliders, can host hydrophones to collect acoustic

measurements [1]–[5]. The sampling patterns of these mobile
sensing platforms are formed by continuous trajectories that
spread over a sampling area. Due to the kinematic constraints,
these trajectories may not be evenly distributed over space. For
example, AUVs usually travel along continuous comb-shaped
paths in a sampling region [see Fig. 1(a)], whereas underwater
glidersmove along a sawtooth trajectory in the vertical plane [see
Fig. 1(b)]. Considering the complex nature of the acoustic fields,
the sampling performed by these mobile platforms is sparse in
the vast sampling domain. Here, we focus on developing com-
pressive sensing (CS) methods to reconstruct the acoustic fields
based on the sparse trajectory-based measurements collected by
underwater mobile platforms.
Geostatistical kriging [6] leverages spatial correlation struc-

tures to produce an interpolated mean field and the field of
spatial covariance [7]–[9]. When estimating a spatial field from
measurements, kriging achieves the least mean-square estimates
of the underlying spatial data field [10]. Kriging techniques
have been applied to construct spatial maps from data collected
by marine robots [11], [12]. However, the ordinary kriging or
other conventional approaches may cause the effect of over-
smearing in estimates [13]–[15]where spatial patterns areweak-
ened or removed. Spatial distributions of underwater acoustic
characteristics are anisotropic due to the complicated water
column property and dynamic boundary conditions [16], [17].
This article considers two types of acoustic fields, the field of
transmission loss (TL) from an acoustic source and the ambient
noise field. TL is a crucial parameter to acoustic systems in
an underwater environment [18], [19]. Mapping ambient noise
fields may support sonar operations and target detection [20],
[21]. Both types of spatial acoustic fields share certain common
anisotropy properties and spatial patterns that can be exploited
by CS techniques [22], [23].
If spatial patterns are coherent and consistent in the acoustic

fields, CS may work well with undersampled data [24]. The CS
principle asserts that any sparse signal can be perfectly recovered
from undersampled measurements if the sensing matrix satisfies
the restricted isometry property (RIP) [22]. It is known that the
RIP is usually satisfied if the measurements are taken at random
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Fig. 1. Underwater vehicle trajectories. (a) Comb-shaped path of an AUV in the horizontal plane at Lake Tuscaloosa, AL, USA, on November 5, 2017.
(b) Sawtooth trajectory of an underwater glider in the vertical plane in the South China Sea on August 28, 2018.

spatial locations [25]–[27]. However, due to the trajectory-based
sampling from the mobile sensing platforms, the measurement
locations are often not randomly distributed. Hence, the RIP
required for faithful reconstruction may not be satisfied.
To improve the performance of construction algorithms, we

here apply the concept of virtual samples to address the ex-
tremely low sampling rate from the vehicle trajectories. Virtual
samples are created from the current set of examples incorporat-
ing prior knowledge [28]. Many methods have been developed
to produce virtual samples to supplement the original measure-
ments in image processing and supervised learning [29]–[32].
Virtual samples have also been used to improve the performance
ofCS. InterpolatedCS (iCS)methods [33], [34] have been devel-
oped for magnetic resonance imaging and seismic imaging. The
iCSmethods produce interpolated samples based on Lagrangian
polynomials [34] or interslice correlations [33].
Wepropose a krigedCS (KCS)method to reconstruct acoustic

fields in the underwater environment. Our novel contributions
are described below. A two-stage interpolation strategy, first
kriging and then CS, has been proposed to reconstruct under-
water acoustic fields based on measurements obtained from ki-
netically constrained sampling trajectories. The kriging method
generates some virtual samples from physical measurements.
Then, the CS techniques are applied to generate enhanced re-
construction of the acoustic fields. During the reconstruction
using CS, the virtual samples are distinguished from the field
measurements by introducing different weights for the samples.
Theweights are selected to be functions of the spatial variance in
the data. Different from the iCS methods [33], [34], our method
generates virtual samples directly in the spatial domain using
kriging.
The kriging and CS combination offers multiple benefits.

First, by adding the virtual samples, we introduce the random-
ness to the sensingmatrix. This strategy improves the probability
that the sensing matrix satisfies the RIP. Second, the kriging
estimation variances are naturally used to compute weights of
the virtual samples. Third, with enough samples, the CS strategy
is able to exploit coherent structures in the acoustic fields. We
show that the KCS method leads to better reconstruction of

acoustic fields than kriging or CS alone for both the ambient
noise field and TL field from an active source. Two data sets are
used to validate the KCS algorithm. One contains the acoustic
data collected by an AUV in Lake Tuscaloosa in Alabama. The
other contains ocean ambient noise data collected by a Sea-Wing
underwater glider [35] during an experiment conducted in the
South China Sea.
In the literature, there exist some efforts to investigate effec-

tive strategies for underwater sensing and exploration under the
kinematic constraints. The related research issues were framed
as the so-called kinematically constrained sparse approxima-
tion [36], where both the kinematic trajectories and sampling
costs were considered. The focus was often to develop sensing
strategies under the various resource constraints [37]–[39], for
example, communication limits and energy costs associated
with the underwater platforms. The CS approach was often
assumed to be the method of sparse reconstruction. Unlike these
efforts, this article focuses on developing sparse reconstruction
algorithms based on kinematically constrained measurements.
Mapping of wireless radio frequency channels with mobile

platforms was investigated in the literature. In [40], a sparsity-
aware cooperative spectrum sensing method was proposed. The
kriged Kalman filtering (KKF) was developed to estimate chan-
nel gain maps, with the aid of channel modeling. Then, the
spectrum sensing task was accomplished by solving a sparse
regression problem. Our proposal algorithm is different from
the KKF algorithm, which is not a sparse strategy.
Our preliminary approach appeared as a conference paper

[41]. In this article, we give further theoretical analysis, enhance
the KCS method, and present a comprehensive validation of the
algorithm based on fieldmeasurements. Specifically, we analyze
the RIP for the proposedKCSmethod, compare different weight
definitions, and utilize a block-based CS algorithm to solve the
proposed Lagrangian problem. Experimental data are used to
validate the proposed algorithms.
The rest of this article is organized as follows. We review

relevant results of CS for image construction extended to acous-
tic field construction in Section II. In Section III, we propose
the KCS method and present its implementation details. We
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also provide the RIP analysis. In Section IV, we compare the
performance of the proposed KCS methods with other alterna-
tives based on a simulated TL spatial field sampled by a fleet of
underwater gliders. In Section V, we analyze experimental data,
including horizontal TL data collected by an AUV in a local
lake and ocean ambient noise data collected by a glider during
an experiment conducted in the South China Sea. In Section VI,
we present the conclusions.

II. REVIEW OF CS FOR IMAGE CONSTRUCTION

The CS principle asserts that certain signals can be recovered
from a small set of measurements where there are coherent pat-
terns [42]. However, the signal reconstruction problem is usually
an underdetermined inverse problem that needs to be solved by
imposing regularization constraints. We review relevant results
in image construction that can be extended to acoustic field
construction.

A. Sparsity

If an image is compressible, a proper basis or dictionary can
be utilized to extract the sparse information from the image. Sup-
pose that we want to recover anm× n spatially distributed field
F.WhenF is sparse in a certain transformdomain, a columnized
vector, f ∈ RN (N = m× n), in F, can be represented as

f = Ψx (1)

whereΨ is theN × S transformmatrix and coefficientsx ∈ RS

are aK-sparse signal with onlyK � N nonzero elements. Note
that S is the number of basis in Ψ and S ≥ N .
Many sparse transformsΨ are available, including the Fourier

transform, the wavelet transform (WT), and the contourlet trans-
form (CT). For natural images, discontinuity points are typically
located along smooth curves.WTs can isolate the discontinuities
at edge points by enforcing point singularities and isotropic
features [43], but are inadequate in recovering the smoothness
along the curves or contours. CTs proposed in [44] consist of a
double filter bank structure, including a Laplacian pyramid (LP)
that is used to capture point discontinuities and a directional
filter bank to link point discontinuity into linear structure. CTs
can be viewed as a superposition of a WT and a directional
transform. Compared with WTs, CTs provide a flexible number
of directions with each of the scales allowing to capture the
properties of curves or contours of images in its respective
direction.

B. Incoherent Sampling

Based on a sampling matrix Φ ∈ RM×N with M � N , the
columnized spatial field f can be directly sampled as follows:

y = Φf + ε = ΦΨx+ ε = Ax+ ε (2)

where y ∈ RM is a low-dimensional observation, ε ∈ RM de-
notes measurement noises, andA := ΦΨ is the sensing matrix.
The matrix A is also called the equivalent dictionary. It is
asserted that anyK-sparse x could be perfectly recovered from
y ifA satisfies the RIP [22]. TheK-restricted isometry constant

is the smallest 0 < δs < 1 such that for all n ≤ K

(1− δs)‖xn‖22 ≤ ‖Anxn‖22 ≤ (1 + δs)‖xn‖22 (3)

where ‖ · ‖2 stands for the L2 norm, An is a matrix formed
by n columns extracted from the equivalent dictionary A, and
xn are the sparse coefficients corresponding to the n columns.
The condition in (3) is equivalent to requiring that the Gram-
mian matrix G := ÃT

n Ãn has all of its eigenvalues in [1− δs,
1 + δs],where Ãn isAnwith all its columnsnormalized and ÃT

n

denotes the transpose of Ãn. In other words, the RIP ensures
that any subset of columns of A are nearly orthogonal. Since
the equivalent dictionary A has more columns than rows, i.e.,
M � S, the columns of A cannot be exactly orthogonal.
To ensure the RIP of order K with a high probability, the

number of measurementsM should not be too small. In [45] and
[46], it was proven that under certain conditions, for accurate
recovery of the K-sparse signal x, the minimum number of
measurements M should be O(K log(S/K)).

C. Solving the Inverse Problem

The inverse problem is formulated to solve for the signal f
under sparsity constraints. If the sensing matrix A satisfies the
RIP, we can recover f by finding theK-sparse coefficients of x
as a solution to the optimization problem

min ‖x̂‖1 subject to ‖W1/2(y −Ax̂)‖22 � ξ (4)

where x̂ is the vector of recovered coefficients, ‖ · ‖1 stands
for the L1 norm, constant ξ is a design parameter related to the
strength of noise ε, andmatrixW is a positive definite weighting
matrix that will be elaborated in Section III. A variety of algo-
rithms have been proposed to solve the optimization problem
(4), mainly including convex-programming approaches, greedy
algorithms, and iterative thresholding algorithms [47], [48]. For
the sake of complexity, the block-based CS (BCS) method [49]
is considered in this article. This method divides the entire
acoustic field into blocks and does the reconstruction for each
block successively or simultaneously. However, along with this
advantage, BCS methods also introduce blocking artifacts. To
removeblocking artifacts, a pointwise adaptiveWienerfilter [50]
is incorporated into the iterative recovery procedure. By incor-
porating aweightingmatrixW, we develop a variant of the BCS
algorithms as shown in Algorithm 1.
The solution of x to the problem in (4) also needs to satisfy

the sparsity requirement. Hard thresholding can be applied.
By setting an appropriate threshold τ (i) at each iteration, the
iterative estimate of x could be formulated by

x̂(i+1) =

{
ˆ̂x(i), for |ˆ̂x(i)| ≥ τ (i)

0, for |ˆ̂x(i)| < τ (i)
(5)

where ˆ̂x(i) represents the initial estimate, which is not necessar-
ily sparse, at the ith iteration.
The iterative algorithm uses the difference between the re-

constructed fields before and after the thresholding step, that is
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D(i+1) = ‖ˆ̂f (i+1) − ˆ̂
f (i)‖2, in the exit criterion. If the improve-

ment of D(i+1), defined as |D(i+1) −D(i)|, is smaller than a
preset threshold δ, the iterative process is terminated.

D. Performance Metrics

Two relevant evaluation metrics from compressive imaging
are adopted tomeasure the performance of spatial reconstruction
algorithms, the peak signal-to-noise ratio (PSNR) [51] and the
structural similarity (SSIM) [52] index.
1) PSNR: It estimates absolute errors of the reconstruction.

It is defined as the ratio between the maximum possible signal
power of the field and the power of corrupting noise that dis-
torts it. The PSNR is derived from the root-mean-square error
(RMSE) as follows:

PSNR = 20 log10

(
MAXI

RMSE(F,Frec)

)
(6)

where Frec ∈ Rm×n is the reconstructed 2-D spatial field,
MAXI is the maximum possible value of the field, and

RMSE =

√
1

m× n

∑m

i=1

∑n

j=1
[F(i, j)− Frec(i, j)]2.

(7)

2) SSIM Index: It is a perception-based model to measure
the similarity between two images. As proven to be consistent
with human eye perception, it is a combination of three com-
parison measurements between the original image F and the
reconstructed imageFrec, including luminance (l), contrast (c),

and structure (s)

SSIM = l(F,Frec)× c(F,Frec)× s(F,Frec). (8)

The individual comparison functions are

l(F,Frec) =
2(μF × μFrec

) + c1
μ2
F + μ2

Frec
+ c1

(9)

c(F,Frec) =
2(σF × σFrec

) + c2
σ2
F + σ2

Frec
+ c2

(10)

s(F,Frec) =
σF,Frec

+ c3
σF × σFrec

+ c3
(11)

where μF is the average of F, μFrec
is the average of Frec, σ2

F

is the variance of F, σ2
Frec

is the variance of Frec, σF,Frec
is

the covariance of F and Frec, and c3 = c2/2. In the equation,
c1 = (k1 L)

2 and c2 = (k2 L)
2 are two variables to stabilize the

division with L as the dynamic range of the pixel values.

E. Problem Setup

For the spatial sampling of acoustic fields, the sampling
patterns of the underwater vehicles are formed by continuous
trajectories. The samplingmatrixΦ is often not a randommatrix,
neither would the sensing matrix A. Therefore, some subsets
of columns of A may be linearly dependent. Furthermore, the
practical sampling rate cannot achieve a high level due to the
vast sampling domain. Hence, it is quite challenging to ensure
the RIP, which is a prerequisite to achieve a full construction of
the K-sparse vector x directly from the kinetically constrained
measurements. We show that this problem can be addressed by
our KCS method in Section III.

III. KRIGED COMPRESSIVE SENSING

To improve the probability that the sensing matrixA satisfies
the RIP, the primary strategy is to increase the number of
measurementsM and simultaneously to decrease the coherence
among different columns of A. The ideal solution is to make
the sensing matrix A close to a random matrix. The proposed
solution is to add virtual samples to the set of real measurements
to increase themeasurement sample size. The virtual samples are
randomly selected estimates that are generated from the kriging
interpolation.

A. Kriging

The kriging methods calculate an estimate at a point of
interest (POI) based on the statistical properties, e.g., mean
and covariance, of the spatially distributed data. The spatial
covariance is considered as a function of the relative distance
between data points. Let h(pi, pj) be the distance between any
two sampling locations pi and pj . For any particular distance
value d, we define � (d) to be the set of all i, j such that
h(pi, pj) = d. The semivariogram values are first calculated
from the measurements [53] as follows:

γ(d) =
1

2|� (d)|
∑

i,j∈� (d)

[y(pi)− y(pj)]
2 (12)
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where y(pi) and y(pj) are the measurements. The notation
|� (d)| refers to the number of paired data in the set � (d).
The semivariogram γ(·) is then interpolated for all distance
values based on a selected kernel, such as exponential kernels or
Gaussian kernels. The covariance functionCi,j := C(h(pi, pj))
is obtained as C(h(pi, pj)) = C(0)− γ(h(pi, pj)), in which
C(0) corresponds to the empirical autocorrelation calculated
from the real measurements.
We use the ordinary kriging method to generate virtual mea-

surements at POIs, based on the real measurements. Let p0 be
a POI that is randomly selected as a virtual sampling point. To
produce the interpolated value at p0, we first find the correlation
among p0 and any of the real sampling point pi. By introducing
the Lagrangian multiplier ν, the weights λi for interpolation are
obtained by the following equation:⎡

⎢⎢⎢⎢⎢⎣

1 C1,1 · C1,M

...
...

1 CM,1 · CM,M

0 1 · 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ν
λ1

...
λM

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

C1,0

...
CM,0

1

⎤
⎥⎥⎥⎥⎥⎦ .

The kriging estimate at p0 is calculated as

y(p0) =

M∑
i=1

λi × y(pi). (13)

The kriging variance for a virtual sample y(p0) is obtained as

σ2(p0) = C(0)−
M∑
i=1

λi × C(h(pi, p0))− ν. (14)

B. Solving CS Parameters

After obtaining the random virtual samples, we now have
two sets of measurements, the collection of real measurements
yreal and the collection of virtual measurements yvirtual. The
virtual sampling points are only selected at the points with
no real sampling values. The aggregated measurements can be
organized into a column vector as

y = [yT
real yT

virtual]
T . (15)

Suppose the number of virtual samples is Mv , then the number
of overall measurements is Mo = M +Mv . So, we can define
the overall sampling rate as the sum of the real sampling rate
and virtual sampling rate. The measurement equation follows
(2) while both the sensing matrix Φ and the measurement noise
ε are enlarged to include the virtual samples.

C. RIP for Enlarged Equivalent Dictionary

The RIP requires that any subset of columns of the enlarged
equivalent dictionary Ã is nearly orthogonal.Oneway to achieve
this is to make the Grammian matrixG = ÃT Ã as close to the
identity matrix IS as possible. The off-diagonal elements in the
Grammian matrix should be almost zero when the RIP is satis-
fied. If we express Ã ∈ RM×S(M � S) as Ã = [ã1, . . . , ãS ],

an off-diagonal element of the Grammian matrix is

gij = ãTi · ãj (i �= j, 1 ≤ i, j ≤ S). (16)

Here, we adopt the averaged mutual coherence defined in [54]
to measure the mean square error for the nonzero off-diagonal
elements

μA :=

∑
i�=j,1≤i,j≤S g2ij
S (S − 1)

. (17)

Since Ãhasmore columns than rows, i.e.,S � M , the rankof
matrix Ã cannot exceedM . Suppose rank(Ã) = Q, (Q ≤ M),
thenQ of S columns are the orthonormal basis. Without loss of
generality, we assume that the firstQ vectors of Ã correspond to
the orthonormal basis. We can calculate the number of nonzero
off-diagonal elements in the Grammian matrix G, i.e., the L0
norm, ‖ · ‖0 of nonzero off-diagonal elements. Considering two
cases, for i ∈ [1, Q]

‖{gij |i ∈ [1, Q], j ∈ [1, S], i �= j}‖0 = Q (S −Q)

and for i ∈ [Q+ 1, S]

‖{gij |i ∈ [Q+ 1, S], j ∈ [1, S], i �= j}‖0 = (S −Q) (S − 1).

Hence

‖{gij |i, j ∈ [1, S], i �= j}‖0 = Q (S −Q) + (S −Q) (S − 1)

= S2 − S −Q (Q− 1).

(18)

Since

∂‖{gij |i, j ∈ [1, S], i �= j}‖0
∂Q

= −2Q+ 1 < 0

the function in (18) is monotonically decreasing, when Q ≥ 1.
For the KCS strategy, since the added virtual samples are

randomly selected, the rank of matrix Ã increases from Q to
Q+Mv . According to (18), there are less nonzero off-diagonal
elements in theGrammianmatrixG than the casewith no virtual
measurements. Furthermore, the values of nonzero off-diagonal
elements in the Grammian matrix G do not increase because
random items have no coherence. Therefore, according to (17),
the mutual coherence measure is reduced by the addition of
virtual measurements, i.e.,

μA|KCS < μA|CS.
Therefore, the expanded sensing matrix A is more likely to be
orthogonal and to satisfy the RIP of orderK.

D. Weights of Virtual Measurements

In the KCS framework, we distinguish the fidelity between
real and virtual measurements by using the diagonal weighting
matrixW. The diagonal elements of W are specified as

ωi =

{
1, for i = 1, . . . ,M
ηi, for i = M + 1, . . . ,M +Mv.

(19)

Specifically, the weights corresponding to real samples are all
set to 1. The weights corresponding to virtual samples are set to
ηi ∈ [0, 1]. The weights reflect the fact that the virtual samples
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Fig. 2. Simulation environment. (a) Selected simulation site in the South China Sea near the Luzon Strait. An acoustic source, marked as “Source,” is deployed
at the center of this region with coordinates (20◦18′12.29′′ N, 119◦57′7.28′′ E). The source point is set as the origin for display and analysis. The vertical line in
the center inset shows the projection of the vertical plane selected for field reconstruction. (b) Sound speed distribution for the selected 2-D plane.

Fig. 3. Simulated TL field and sampling. (a) Simulated TL spatial field within the vertical plane in Fig. 2(b). The marked rectangular area is selected to conduct
further reconstruction. (b) TL measurements sampled by underwater gliders along sawtooth trajectories.

yvirtual have nonzero estimation errors. Virtual samples with
larger estimation errors are assigned with smaller weights.
Among all the kriging estimates, we can find the minimum

estimation variance σ2
min from (14). By referring to the weight

defined when considering the frequency domain sensitivity for
the visual entropy [55], [56] and applying the noisy measure-
ments in particle physics [42], one may choose the weights as

ηI,i = σ2
min/σ

2
i . (20)

In our previous work [41], we gave another choice of weights

ηII,i =

(
1− σi

σmax

)2

(21)

where σmax is the square root of the maximum kriging estima-
tion variance. Note that the two types of weights in (20) and (21)
are not equivalent in performance. As shown later, the choice of
weighting methods depends on applications. Both methods can
be tried and the one with better performance can be selected.

IV. SIMULATION STUDY

We carry out computer simulations based on the environ-
mental data in the South China Sea near the Luzon Strait,

shown in Fig. 2(a). The bathymetry in this region is obtained
from geospatial data from the NOAA website [57]. The sound
speed distribution in this region is calculated from the hydro-
logical data acquired from POM South China Sea 1/15◦ anal-
ysis provided by the South China Sea Institute of Oceanology,
Guangzhou, China [58]. The acoustic TL field at this site is
generated using the toolbox Bellhop 3D, which is published at
the Ocean Acoustics Library [59].
From the generated 3-D acoustic field, we extract a 2-D

vertical slice whose location is indicated by the vertical line in
Fig. 2(a). The sound speed distribution over this vertical plane
is shown in Fig. 2(b). Fig. 3(a) is the extracted 2-D TL spatial
field.
In the simulations, a fleet of underwater gliders is deployed

into a sampling area of Depth : 1 km × y: 25.55 km, as marked
by a rectangle in Fig. 3(a). Simulated acoustic intensity within
this area is the ground truth for acoustic field reconstruction.
We then simulate that multiple gliders navigate along saw-

tooth trajectories. Based on the simulated measurements col-
lected by the gliders, different reconstruction algorithms are used
to construct the acoustic field in the sampling region [marked
in a rectangular box in Fig. 3(a)]. Through comparison with the
ground truth, we evaluate the performance of the proposed KCS
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Fig. 4. Unweighted KCS reconstruction performance under different overall sampling rates. (a) PSNR and (b) SSIM index. The CS and kriging performances
are shown for comparison.

Fig. 5. Reconstruction performance of different weighted KCS algorithms under different overall sampling rates. (a) PSNR metric and (b) SSIM indexes. The
CS and kriging performances are shown for comparison.

algorithms. We use the exponential kernel for all the kriging
procedures in the simulations.

A. Performance of Unweighted KCS

Eight gliders are simulated. Each of them is equipped with
a hydrophone. The samples along glider trajectories are shown
in Fig. 3(b). By setting the spatial resolution to about Depth :
8 m × y: 50 m, the discretized dimension of the selected area
is 128× 512. After arranging the measurements into pixels, the
corresponding real sampling rate is 30.54%.
Based on the simulated trajectory-based measurements, we

compare the performance of three field reconstruction methods.
The first method is CS on the real samples only (labeled as CS in
Fig. 4). The second method is kriging-only (labeled as kriging
in Fig. 4). The third method is KCS, with all weights of samples
set to 1 (labeled as KCS in Fig. 4). We call this case unweighted
KCS, since it does not distinguish the real samples from the
virtual samples.
Each data point plotted in Fig. 4 represents the averaged

performance metric over multiple trials. For the KCS method,
we plot the metric values as the overall sampling rate increases.

In Fig. 4(a), we can observe that increasing the number of
virtual samples accounts for the initial improvement in the PSNR
metric. The added virtual samples lead to a decrease in the PSNR
metric when the overall sample rate is higher than 50% for this
case. In Fig. 4(b), the SSIM index value decreases asmore virtual
samples are introduced. This is because the kriging method has
the effect to smear the spatial pattern. We can also observe that
kriging alone performs well at low sampling rates when the
PSNR metric is used for evaluation. However, kriging alone
does not generate a comparable high SSIM index. This can be
explained by the smearing effect of kriging. For both metrics,
when the overall sampling rate is 100%, the performance of the
KCS algorithm is identical to that of the kriging alone. This
indicates that weighting the virtual samples may be necessary
to further improve the performance of KCS.

B. Comparison Among KCS With Different Types of Weights

Using the same simulated case in Fig. 3(b), we explore
the performances of weighted KCS algorithms with different
weighting functions under different virtual sampling rates, see
Fig. 5. The CS-only and kriging-only performance are also
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Fig. 6. Original field image and its reconstructions. (a) Original field image. Fields constructed from (b) the CS method, (c) the kriging method, (d) weighted
KCS with ηI , and (e) weighted KCS with ηII . The marked rectangular areas in (d) and (e) are enlarged.

shown for comparison. For the PSNRmetric, the performance of
weighted KCSwith ηII increases with the overall sampling rate.
The performance of weighted KCS with ηI increases first and
then decreases. This behavior is similar to that of the unweighted
KCS method. When the overall sampling rate reaches to 100%,
the PSNR value corresponding to weighted KCS with ηI de-
creases to 34.09 dB, whereas the PSNR value corresponding
to unweighted KCS decreases to 33.29 dB. Hence, we see that
performances of weighted KCS with both weighting functions
are improved. For the SSIM metric, weighted KCS with both
weighting functions lead to a decreasing trend in performance
when more virtual samples are introduced. However, the rates
of decline are significantly reduced due to weighting. The SSIM
curve for weighted KCS with ηII has the lowest rate of decline.

At the 100% overall sampling rate, the weighted KCS approach
outperforms kriging alone.
Fig. 6 plots the reconstructed images based on different

algorithms. Note that Fig. 6(a) shows the original field. Just
based on real samples, we generate a CS-reconstructed field in
Fig. 6(b) and kriging-estimated field in Fig. 6(c). The images in
Fig. 6(d) and (e) are reconstructed by the weighted KCS with
weights defined as ηI and ηII , respectively. For all the weighted
KCS algorithms, the overall sampling rate is set to 100%. The
performance metrics are given in Table I. For this case, the KCS
algorithm with the weight set to ηII performs the best.

The above-mentioned comparison is repeated for different
numbers of sampling gliders. We observe similar performance
trends that favor the weighted KCS method.
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TABLE I
PERFORMANCE METRICS OF RECONSTRUCTED FIELDS UNDER REAL SAMPLING

RATE 30.54% AND OVERALL SAMPLING RATE 100%

TABLE II
CONTOURLET COEFFICIENT COMPARISON AMONG DIFFERENT

RECONSTRUCTED IMAGES

C. Explanation of Results

The introduction of virtual samples that are initially obtained
by the kriging method tends to remove high-frequency spatial
variations and thus weakens spatial patterns. By adding virtual
samples, the KCS approach achieves improved reconstruction
over theCS because the samplingmatrix has a higher probability
to satisfy the RIP.
This explanation is justified by Table II, where the first row

lists the rate of nonzero coefficients of the contourlets x̂. The
second row lists the RMSE value of the coefficients compared
with the values of these coefficients computed based on the
ground truth shown in Fig. 6(a). The rate of nonzero coefficients
is defined as the number of nonzero coefficients ‖x̂‖0 divided
by the total number of image pixelsN . Although the rate corre-
sponding to the CS method is small, the estimated coefficients
are not consistent with the true coefficients. This causes a large
RMSE value as shown in Table II. This illustrates that the CS
method may miscalculate the coefficients.
Fig. 7 shows the reconstructed sparse coefficients of the CS

and the KCS methods compared with real coefficients in the
lowpass subband, i.e., (x̂− x)|LP . Noted in Table II, the rate
of nonzero coefficients for kriging-only is the largest, which
illustrates that kriging smears the spatial pattern. By adding
weighted virtual samples and combining kriging with CS, we
can achieve a small rate of nonzero coefficients, as well as a low
RMSE in the coefficients.

V. EXPERIMENTAL DATA AND ANALYSIS

In this section, we demonstrate the effectiveness of the
weighted KCS method in two field experiments. A Sea-Wing
underwater glider was deployed in the South China Sea to
measure the ambient noise level in the ocean. We constructed
the noise field in the vertical plane that encompasses the glider
trajectories. An EcoMapper AUV equipped with a hydrophone
was deployed in Lake Tuscaloosa, Alabama, USA, to measure
the horizontal field of acoustic TL. We constructed the TL field
in the horizontal plane.

Fig. 7. Reconstructed sparse coefficients compared to real coefficients in the
lowpass subband. The x-axis represents the coefficient number of the lowpass
subband. The y-axis stands for the normalized amplitude difference between CS
or KCS coefficients and the ground truth, respectively.

Different from simulations, the field experiments did not
provide the ground truth to evaluate reconstruction performance.
Hence, the SSIM metric cannot be used here. Instead, we
used the tenfold cross-validation method to perform the recon-
struction and then evaluated the performance based on data
points that were not used for reconstruction. The real sam-
ples Y were randomly partitioned into ten sets of equal-sized
subsamples {Y1, Y2, . . . , Y10}. At the ith(i = 1, . . . , 10) trial
of reconstruction, a single set of subsamples Yi was retained
as the validation data. The remaining nine subsample sets
{Y1, . . . , Yi−1, Yi+1, . . . , Y10} were used for field reconstruc-
tion. For evaluation, we calculated the RMSE of the recon-
structed image at the locations of validation data Locationval. To
show the comparison among different reconstruction methods,
we converted the RMSE value to the PSNR as follows:

PSNR|Locationval = 20 log10

(
MAXI

RMSE(f , frec)|Locationval

)
.

A. Reconstruction of Ambient Noise Field

Fig. 8(a) shows the ambient sound level sampled along the
glider trajectories in an experiment conducted in the SouthChina
Sea in August 2018. Although the glider has low self-noise, the
noise from the oil pump working near the sea surface or the
seafloor could severely contaminate the measurements. Hence,
we selected an area avoiding the shallow and deep areas to apply
the KCS for reconstruction.
The glider carried an onboard hydrophone. The sampling

frequency of the hydrophone (developed by Institute of Acous-
tics, Chinese Academy of Sciences, Beijing, China) was set to
8 kHz. During the data processing, we focused on the ambient
noises range between 200 Hz and 2 kHz. This frequency band
included the shipping and wind noises while excluding the
vehicle self-noise. After the bandpass filtering, the acoustic
intensity was calculated by averaging the acoustic power of the
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Fig. 8. Reconstruction by the weighted KCS with ηII . The real sampling rate was 11.66% and the overall sampling rate was 100%. (a) Ambient sound level
sampled along the glider trajectories. (b) Reconstructed spatial field.

Fig. 9. Reconstruction performance of different methods based on ambient
sound level measurements. Single points represent the results for the recon-
struction based only on real samples. The lines illustrate the PSNR values over
different overall sampling rates.

received signal over a fixed time interval of 2 s. Each calculated
acoustic intensity value was associated with a spatial location in
the glider’s trajectories.
The glider traveled at about 0.25 m/s in the still water.

The flow velocity was usually smaller than 1 m/s. The spatial
resolution should not be higher than 2.5 m. The dimension
of the reconstructed field was 128× 128. The sampling rate
was 11.66%. Fig. 8(b) shows the reconstructed image by the
proposed weighted KCS with ηII . The overall sampling rate
used was 100%.
Fig. 9 shows the calculated PSNR metric for different meth-

ods. The curves represent the performance of the KCS algo-
rithms for different overall sampling rates. Kriging and CS
performances were obtained based on real samples. We used
the exponential kernel for all the kriging procedures here. Due
to the low sampling rate (11.66%) along the kinematically
constrained tracks, the performance of the CS-only method was

worst, generating a PSNR of about 35 dB. The kriging method
generated a PSNR of 39.5 dB. Three KCS variants, unweighted,
weighted with ηI , and weighted with ηII , started with a similar
performancewith theCS-onlymethodwhen aminimumnumber
of virtual samples were added. When the overall sampling rate
increased, up to 60%, the PSNRs of all three variants increased,
although at different rates. When the overall sampling rate was
60%, unweighted KCS and KCS with ηI achieved their maxi-
mum PSNRs of 40.2 and 40.7 dB, respectively. In contrast, the
weighted KCS method with ηII showed a monotonic increase
in its PSNR as a function of the overall sampling rate. At the
overall sampling rate of 100%, it generated a PSNR of 41.1 dB,
which was highest among all the reconstruction outcomes.

B. Reconstruction of Horizontal TL Field

The acoustic TL experiment was conducted at Lake
Tuscaloosa, AL, USA, on November 5, 2017. Lake Tuscaloosa
is a large reservoir in Tuscaloosa. An acoustic transmission unit,
including a transmitter and an amplifier, was installed at a dock
near the riverbank. The source sound level was about 187 dB re
1 μ Pa at 1 m. Chirp signals at the carrier frequency of 85 kHz
with a bandwidth of 10 kHz were transmitted in a repeated
fashion. The duration of the chirp signal was 50 ms. The silence
interval between the chirp transmissions was 200 ms.
The receiving unit was an icListen digital hydrophone in-

stalled on the Ecomapper AUV. The sensitivity of the hy-
drophonewas about−180dB re 1V/μPa. Its frequency response
was flat from 10 Hz to 200 kHz. The sampling frequency of the
hydrophone was set to 512 kHz. The AUV navigated within the
experimental region at a depth of about 3 m.
The recorded acoustic data first passed a bandpass filter with a

center frequency of 85 kHz and a bandwidth of 10 kHz. Then, the
acoustic intensities were calculated from the filtered measure-
ments by integrating over a complete signal repetition period
of 250 ms. The TL values were obtained by subtracting the
sound intensity from the sound source level. Each calculated TL
value corresponded to a spatial location of the AUV. The spatial
resolution of the TL field was restricted by the acoustic intensity
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Fig. 10. Acoustic TL experiment conducted with an AUV at Lake Tuscaloosa. (a) AUV trajectories. The acoustic source and AUV parking location are marked
as “transmitter” and “P ,” respectively. A photo of the EcoMapper AUV is also included as an inset. (b) TL measurements within the marked rectangular area in
subplot (a).

Fig. 11. Acoustic TL field reconstruction. (a) Reconstruction performances of different methods. (b) Reconstructed image by the weighted KCS with ηI at the
overall sampling rate of 100%.

integration period and the speed of AUV.During the experiment,
the AUV speedwas set to 1m/s. Therefore, the spatial resolution
should not be higher than 0.25 m. The discretized dimension of
the reconstructed field was 256× 256. Fig. 10(b) shows the TL
spatial distribution measurements. The reconstructed field had
a spatial resolution of 0.98 m. The sampling rate was 10.79%.
The reconstruction results are presented in Fig. 11. Here, all

kriging procedures used the Gaussian kernel. Fig. 11(a) shows
the PSNR performance for different reconstruction methods.
The results were similar to those in Fig. 9, with larger gains
obtained from the KCS methods. The performance of the CS-
only method was worst, generating a PSNR of about 37 dB.
The kriging method generated a PSNR of 41.5 dB. Three KCS
variants, unweighted, weighted with ηI , and weighted with ηII ,
started with a similar performance with the CS-only method
when using a minimum number of virtual samples. When the
overall sampling rate was about 30%, unweighted KCS method
achieved its maximum PSNRs of 43.4 dB. Both weighted KCS
methods showed a monotonic increase in their PSNRs when the
overall sampling rate increased. At the overall sampling rate of
100%, the weighted KCSmethod with ηII generated a PSNR of
44.2 dB. With the full overall sampling rate, the weighted KCS
method with ηI generated a PSNR of 46.1 dB, highest among all
the reconstruction outcomes. Fig. 11(b) shows the reconstructed

acoustic TL field from the weighted KCS method with ηI at the
full overall sampling rate.

VI. CONCLUSION

This article proposed a KCS approach to reconstruct the spa-
tial distribution of underwater acoustic fields based on samples
collected along trajectories of underwater vehicles. The key idea
of the KCS approach was to introduce virtual samples as inputs
to the CS reconstruction. The addition of virtual samples led
to a higher probability that the RIP of the sampling matrix was
satisfied. Our simulations showed that some performance gains
were achieved by using virtual samples in the KCS approach.
Such gain was only achieved using a proper amount of virtual
samples. When there were too few or too many virtual samples,
the reconstruction performance degraded from its optimum. The
reason was that the virtual samples come with estimation errors.
The advantage of introduced randomness was canceled by the
estimation errors in the virtual samples.
To address this issue, we introduced weighting functions

to differentiate the virtual samples from the real samples. We
analyzed the performance of two weighting functions at differ-
ent overall sampling rates. Computer simulations demonstrated
their advantages over the unweighted KCS method. These two
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types of weighting functions had their strengths in different
applications and with different kriging kernels. Using the am-
bient noise measurements from the glider experiment in the
South China Sea, the weighted KCS method with ηII generated
about 2 dB performance gain over the kriging-only method,
in terms of the PSNR. In the comparison, both the KCS and
kriging-onlymethods used the exponential kriging kernel. Using
the acoustic TL measurements from the AUV experiment, the
weighted KCS method with ηI generated about 5 dB gain in
the PSNR over the kriging-only method. In this case, both
the KCS and kriging-only methods used the Gaussian kernel.
Both weighted KCS versions used an overall sampling rate of
100%. In comparison, the unweighted KCS version had smaller
PSNR gains over the kriging-only method, about 1–2 dB in both
cases, only when a proper amount of virtual samples were used.
In both experiments, the real sampling rate was about 11%.
The CS-only method did not generate satisfactory results. The
CS-only method was about 6 dB worse than the weighted KCS
method in the ambient noise reconstruction and about 9 dBworse
in the acoustic TL reconstruction, in terms of the PSNR.
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