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ABSTRACT

There are few measurements of the vapor growth of small ice crystals at
temperatures below -30°C. Presented here are mass-growth measurements
of heterogeneously and homogeneously frozen ice particles grown within an
electrodynamic levitation diffusion chamber at temperatures between -44 and
-30°C and supersaturations (s;) between 3 and 29%. These growth data are
analyzed with two methods devised to estimate the deposition coefficient (cr)
without the direct use of s;. Measurements of s; are typically uncertain, which
has called past estimates of ¢ into question. We find that the deposition coef-
ficient ranges from 0.002 to unity and is scattered with temperature, as shown
in prior measurements. The data collectively also show a relationship between
a and s;, with o rising (falling) with increasing s; for homogeneously (hetero-
geneously) frozen ice. Analysis of the normalized mass growth rates reveals
that heterogeneously-frozen crystals grow near the maximum rate at low s;,
but show increasingly inhibited (low o) growth at high s;. Additionally, 7 of
the 17 homogeneously frozen crystals cannot be modeled with faceted growth
theory or constant . These cases require the growth mode to transition from
efficient to inefficient in time, leading to a large decline in . Such transitions

may be, in part, responsible for the inconsistency in prior measurements of «.
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1. Introduction

Quantifying the vapor growth rate of ice crystals is challenging because it is governed by two
connected processes: gas-phase diffusion and surface attachment kinetics (Markov 2003). During
mass growth, water vapor molecules diffuse through the surrounding gas to reach the crystal. In
the classical model of faceted growth, water molecules must then adsorb onto the crystal, though
some molecules may be reflected from the surface. The fraction of molecules that adsorb onto
the surface is often called a “sticking” efficiency (B;) and is thought to be near unity (Nelson
2001). Adsorbed molecules (ad-molecules) then migrate across the surface until they encounter
an attachment site, which is provided by ledges in the crystal surface produced by dislocations in
the crystal lattice or by the nucleation of two-dimensional islands on the surface. Growth ledges
may also be enhanced by stacking faults, where the growth layers interchange between the cubic
and hexagonal forms. Ad-molecules that reach an attachment site can be incorporated into the
crystal lattice, otherwise they will desorb from the surface. Additionally, the potential presence of
quasi-liquid layers further complicates the incorporation of ad-molecules (Neshyba et al. 2016).
Since most of the surface processes that govern the mass and axis growth of ice crystals have not
been measured in detail, the overall influence of surface processes on growth are often represented
by deposition coefficients (o) for each face. The deposition coefficient is defined as the ratio of
the number of molecules incorporated to the total impinging on the crystal surface, and it can be
interpreted as a growth efficiency. When o is near unity, the incorporation of molecules is highly
efficient, and growth is limited by gas-phase diffusion (diffusion limited growth). Small values of
o (<~ 0.001) correspond to inefficient molecular incorporation, such that the particle growth is
limited by attachment kinetics (kinetics limited growth). Most particles have growth rates between

these two extrema (diffusion-kinetics limited growth).
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Determining the influences of attachment kinetics on ice crystal growth rates has generally fol-
lowed two different approaches. One approach focuses on the growth rates of crystals with fully-
formed facets. Faceted growth theory is well-established (see Beckmann and Lacmann 1982; Sei
and Gonda 1989; Nelson and Knight 1998; Libbrecht 2003) and there is substantial evidence that
facets grow primarily by two mechanisms: spiral dislocations and ledge nucleation (Nelson and
Knight 1998). These mechanisms produce variable deposition coefficients that depend on the
supersaturation immediately above the crystal surface (surface supersaturation, sy, r). Spiral dis-
locations are permanent ledge sources producing generally efficient growth (Burton et al. 1951),
with the deposition coefficient increasing steadily to unity as the sy, s increases (Fig. 1). In con-
trast, ledge nucleation has a strong supersaturation dependence (Fig. 1) because sy, must exceed
a characteristic supersaturation, s, SO that ledges will form on the surface (Nelson and Knight
1998). While classical theoretical expressions for dislocation (Burton et al. 1951) and ledge nu-
cleation (Frank 1974) growth exist, most of the surface parameters required in those theories are
unknown or cannot presently be measured. However, a convenient parameterization was formu-

lated by Nelson and Baker (1996),

S M Se M
o= < surf) tanh( char) : (1)
Schar Ssurf

where the surface growth mechanism is described by the parameter M that ranges from 1 to 30

(Fig. 1). A value of M = 1 represents spiral dislocation growth, whereas M > 10 represents ledge
nucleation. Additionally, different faces of a crystal may have different growth mechanisms, and
thus different deposition coefficients. For example, a columnar crystal may have outcropping
dislocations on the basal facets and ledge nucleation on the prism facets (Wood et al. 2001).

The use of faceted growth theory requires knowledge of the growth mechanism and sz, and

though both have been measured in the laboratory those measurements are sparse and generally
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confined to temperatures above -40°C. Nelson and Knight (1998) determined that, at 7 > -20°C,
Schar Tanges between 0.15% and 2.5%, and that the variation of s, with temperature on the basal
and prism facets is consistent with the primary habits. Harrington et al. (2019) have shown that
these s.pq values, in combination with ledge nucleation mediated growth, can predict the primary
habits of ice at liquid saturation. Measurements of 5., for temperatures between -40 and -20°C,
provided by Bacon et al. (2003), Libbrecht (2003) and Libbrecht and Rickerby (2013), suggest
that s.j,, increases as temperature declines, with s, ~ 4% at -20°C, S¢par ~ 7% at -30°C, and
Schar ~ 15% at -40°C, which is consistent with theory. There are no precise measurements of s.j,,
for T < -40°C, though Harrington et al. (2019) have provided estimates derived from prior data.
The second approach for determining the deposition coefficient focuses on the growth of small
crystals (radii ~ 10 um), typically those grown immediately following nucleation. Attachment
kinetics have the most pronounced influence on smaller ice particles, but only as long as the
deposition coefficient is constant (see Fig. 14, Harrison et al. 2016a). Unfortunately, when this
assumption is used to extract values of o from the mass growth of small crystals, the results are
seemingly inconsistent. For example, Magee (2006) grew individual ice particles in a vertical
flow levitation cell at constant temperature and pressure, but with varying supersaturation and
found a values of about 0.006. In contrast, Skrotzki et al. (2013) used the Aerosol Interactions
and Dynamics in the Atmosphere chamber to grow populations of small crystals and determined
that o for the population was about 0.7. The levitation diffusion chamber studies of Harrison
et al. (2016a) found « values ranging from about 0.005 to 0.1. Other measurements (Choularton
and Latham 1977; Haynes et al. 1992; Brown et al. 1996; Pratte et al. 2006; Earle et al. 2010;
Kong et al. 2014) do not narrow the range on . Differences in measurement techniques and
uncertainties in the ice supersaturation likely contribute to the variability in the extracted values

of o, however it is also unlikely that even small crystals can be treated with a single, unique value
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of &, an approximation that is only valid for a very narrow range of conditions (pg. 160-161 of
Strickland-Constable 1968; Nelson 2005). It is more likely that the physical properties of the ice
particle surfaces varied among experiments, and during the growth of each individual crystal.

Ice crystals can transition from one growth mechanism to another over time. For example, an ice
particle’s dominant growth mechanism depends upon the ambient ice supersaturation (s;, hereafter
“supersaturation”) and the particle size. Immediately after a crystal forms by nucleation it is likely
that numerous dislocations exist in the crystal lattice, and these dominate the growth as long as s;
remains low (Burton et al. 1951; Nelson 2001; Harrington et al. 2019). However, ledge nucleation
must take over as the dominant growth mechanism at higher supersaturations and as crystal facets
become larger, otherwise it would not be possible to produce thin plates and columns (Frank 1982;
Nelson and Knight 1998; Harrington et al. 2019).

Growth transitions also occur immediately following ice nucleation. The measurements of
Gonda and Yamazaki (1978) show such a process as frozen droplets transition first to droxtals and
finally to hexagonal prisms. The droxtal morphology consists of the low-index basal and prism
facets of hexagonal ice, which grow slowly, and higher-index pyramidal facets that grow rapidly
(examples in Figs. 1 and 2 from Nelson and Swanson 2019). Gonda and Yamazaki (1984) showed
that the pyramidal regions grew rapidly until they disappeared, leaving only the slowly-growing
basal and prism facets, and a hexagonal single crystal. The transition took only 2 - 4 minutes to be
completed at -15°C and low supersaturation (2%).

Similarly, droplets frozen at temperatures below -20°C are often polycrystalline and develop
facets over time (c.f. Bacon et al. 2003). The interface between crystalographically dissimilar
facets in polycrystalline ice (grain boundary), is a known source of dislocations (Furukawa and
Kobayashi 1978) and can cause increased growth rates (Pedersen et al. 2011). Therefore, when

a polycrystal is small, the growth may be dominated by dislocations and be relatively efficient.



120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

However, as facets grow away from the grain boundaries, such as the arms of an emerging bullet
rosette, the central portions of the crystal may be effectively starved of water vapor (Westbrook
et al. 2008). Growth would then be dominated by the exposed facets. This transition apparently
occurs more slowly than that of the single crystals discussed above; the results of Bacon et al.
(2003) indicate that it may take tens of minutes before rosette arms fully emerge. The key point is
that we should expect to find transitions in crystal growth mechanisms as facets emerge following
ice nucleation in laboratory experiments that focus on newly formed ice crystals. We will refer to
such variations in the dominant growth mechanism as “kinetics transitions”.

In this article we provide estimates of the growth rates for heterogeneously and homogeneously
nucleated crystals grown from the vapor in the Button Electrode Levitation (BEL) diffusion cham-
ber (Harrison et al. 2016a). We develop new analysis methods that allow for the determination
of a without the uncertainty inherent in the measured ambient supersaturation, which potentially
biased prior estimates of ¢. The results indicate that the variability in the deposition coefficient
may be due to variations in the growth mechanism of individual particles. Moreover, the analysis
provides evidence that the growth rate depends on the nucleation mechanism, and that homoge-
neously frozen ice exhibits evidence of kinetics transitions. In the following sections, we briefly
describe our experimental procedure, review our growth model and analysis methods, and discuss

the main results.

2. Diffusion Chamber and Ice Growth Experiments

The BEL chamber is described in detail in Harrison et al. (2016a), and therefore only a brief
description of the chamber and its operating principles is provided here. The BEL chamber is
a thermal gradient diffusion chamber, making it advantageous for growth experiments because it

combines the stable thermal and supersaturated environment of a classic diffusion chamber with
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electrodynamic particle levitation. The growth chamber is a cylinder defined by the adjacent
surfaces of two parallel copper plates, separated by 1.27 cm, and a Plexiglas® ring, with an inner
diameter of 10.2 cm, that composes the outer wall. The cylinder aspect ratio of 8:1 is large enough
to avoid the possibility of wall effects (Elliott 1971). The temperature of each plate is controlled
independently, and held constant, by circulating cryogen through Plexiglas® housings on each
plate. The BEL chamber operates at ambient atmospheric pressure (~ 970 hPa), which we use in
our data analysis.

A charged water droplet, composed of high-pressure liquid chromatography (HPLC) water from
J.T.Baker® is launched into the chamber. The bottom copper plate is given a direct current volt-
age that produces a vertically positive electric field such that the resulting electrostatic force on
the particle counteracts gravity. This voltage is adjustable and is used to track changes to the lev-
itating particle’s mass. The top plate is a grounded electrode. Four button electrodes on the top
plate receive alternating current voltages and act as a quadrupole, producing a saddle point that
centers and stabilizes the levitating particle. Furthermore, the saddle point has a net zero vertical
force, such that it does not influence the voltage required to levitate the particle. Additionally, the
amount of charge on the particle is an order of magnitude smaller than what is required to pro-
duce electrically enhanced growth, and such growth is therefore unlikely (Davis 2010). A 5-mW,
632.8-nm helium-neon laser is used to illuminate the particle, providing both particle position and
scattering diffraction patterns. The particle initial radius is determined (to typically within 1 um)
by matching the measured diffraction patterns with Mie theory while the particle is still liquid, as
in our prior work (Xue et al. 2005; Harrison et al. 2016a). A Python”™ program developed by our
group maintains the particle vertical location by adjusting the bottom plate voltage. We use the
recorded bottom-plate voltage and the initial particle size to determine the particle mass, since the

ratio of the voltage to its initial value is equivalent to the mass, m, normalized to the initial mass,
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mg. We use the mass ratio, m, = m/my, in our analysis because it is a directly measured quantity
with little uncertainty. The mass ratio has an estimated maximum relative error of 5%, which we
use in our analysis below.

Supersaturation in the chamber is produced by diffusive transport of water vapor from the up-
per, warmer plate to the lower, colder plate. Filter paper soaked in HPLC water is attached to
both plates to serve as the vapor source, though there are holes in the filter paper on the top plate
for the electrodes and the launcher opening. A recent experiment at low supersaturation suggests
that these holes have little impact on the supersaturation at the particle location (see Appendix).
Moreover, the experiment provides evidence that the supersaturation is near the value determined
from standard, flat-plate diffusion chamber theory (e.g., Elliott 1971), which is used here. Super-
saturation uncertainty is from the plate temperatures (£ 0.2°C) and chamber depth (+ 0.1 mm)

typically resulting in a relative uncertainty of about 10%.

3. Analysis Methods

a. Vapor Growth Model

Interpretation of laboratory data requires a flexible model of vapor growth that includes the in-
fluences of attachment kinetics. While hexagonal and cylindrical models of crystal growth exist
(Nelson and Baker 1996; Wood et al. 2001), a simplified approach is better suited here, given the
unknown geometry of the growing crystals. We use the Diffusion Surface Kinetics Ice Crystal
Evolution (DiSKICE) model (Zhang and Harrington 2014), which approximates ice as a spheroid
with two dimensions a and c¢. The DiSKICE model is valid for faceted growth, it compares well
to hexagonal model solutions (Zhang and Harrington 2014), and has been successful in the inter-

pretation of laboratory growth data (Harrison et al. 2016a; Harrington et al. 2019). DiSKICE uses
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capacitance theory to model the far-field gas-phase diffusion to the particle,

dm 1 pegls {1 !
SN ARC(e,a)sipog | — + P (S _q )| 2
a " <c’a)Sp"{Dv+KTT R.T @)

=D

J/

where C(c,a) is the capacitance that depends on the a and ¢ semi-axis lengths, D, is the vapor
diffusivity in air, K7 is the thermal conductivity of air, R, is the vapor gas constant, [ is the
enthalpy of sublimation, p,, is the ice equilibrium vapor density, and D is a growth factor that
combines the vapor and thermal diffusivity (hereafter “vapor-thermal diffusivity”) following the
form in Lamb and Verlinde (2011). In DiSKICE, the vapor diffusivity (D,) is replaced with a
kinetically-modified vapor diffusivity (Dy;,) that includes the deposition coefficients for the two

primary axes (a and c) of the crystal (o, and o),

D — 2 y D, N 1 " D,
kin = 3 ( DC , C ) 3 ( 4D,C | C ) ’
ovyac | Cy agvyar | Ca

3)

Here, v, is the mean speed of a vapor molecule and C, is the capacitance evaluated a distance A
(the vapor mean free path) away from the crystal surface. Once Dy;, replaces D in Eq. 2, the vapor-
thermal diffusivity (D) becomes an “effective” diffusivity (D.sr = D(0ot,K7,C)) that depends on
attachment kinetics. Eq. 3 combines vapor diffusion in air with attachment kinetics that depend
on size and supersaturation through o (Eq. 1). Attachment kinetics therefore reduce the mass
growth of a crystal since Dy;, is generally less than D,, however as o approaches unity DiSKICE
approaches the capacitance solution, or diffusion-limited growth.

The particles grown in our diffusion chamber are relatively small (typical maximum radius of
30 - 40 um), and are likely isometric. Therefore our analysis will assume spherical growth, so that
a=c=rand o, = o, = o©. However, we examine the theoretical limits of this assumption through

calculations of non-isometric growth, which is treated in DiSKICE with a theory to distribute mass

10
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along the crystal axes based on Nelson and Baker (1996),

de o

— = =T. 4
da o, @)

This equation is valid for faceted growth and assumes that ledge growth begins at crystal edges
(Nelson and Baker 1996). Its use with Egs. 1 and 2 produces relatively accurate evolution of single

crystalline ice (Harrington et al. 2019).

b. Scaled Growth Rate Analysis

Prior studies of the growth of small ice crystals have often directly analyzed the timeseries
of the particle mass, and mass derivative (e.g., Magee et al. 2006). This approach, however,
requires knowledge of the supersaturation which is challenging to measure accurately in most
laboratory devices. Uncertainty in the supersaturation has led to questions regarding the accuracy
of deposition coefficient estimates made from measured growth rates (Magee et al. 2006; Skrotzki
et al. 2013; Harrison et al. 2016a). It is therefore advantageous to develop an analysis procedure
that does not directly depend on s;. The analysis method developed below uses the time-averaged
growth rate, which can be determined directly from the data, as a proxy for the supersaturation.
The ice particle growth rate is scaled by the time-averaged value effectively removing the direct s;
dependence from the analysis. This analysis, or a modified version, may be useful for any single
ice particle growth experiment where s; is constant.

We begin by assuming that our small particles are spherical (C = r) and average over the entire

growth timeseries (Eq. 2) such that

m= 47L'I”Deffsl'. (5)
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Since s; is independent of time, we can use Eq. 5 to replace s; in Eq 2, which gives the mass growth

rate in terms of its time-average,

Derf—  rDepr— — D,
= 2 = e, where DR:—Zr o7

— 6
I”Deff rDp Yor ©)

is the radius-weighted average effective diffusivity. We next normalize Eq. 6 by the mean mass

growth rate (1), and rewrite it in terms of the mass ratio, m,,

. 1/3
my l’l’lr/ Deff (7)
Ry
r my DR

which applies to spherical, diffusion-kinetics growth.
An advantage of Eq. 7 is that the diffusion and kinetics limits can be determined directly from
the data. In diffusion-limited growth, where @ — 1, Dy;,, approaches D,, D,y is constant, and the

capacitance model (Eq. 2) is recovered, leading to

r m;/3
r 1/3
my

Conversely, when growth is kinetics-limited (@ — 0) gas-phase diffusion no longer limits the
growth rates. In this case, D, ¢ approaches orr (Harrington et al. 2009, their Eq. 15) and the mass

growth rate becomes proportional to r2:

2/3
2 mr/

= )

m, r
m, 2 23
my r mr/

Instead of using Eqgs. 7-9 in our analysis, we have found it more convenient to use a scaled mass

growth rate (Gy), which is defined using the kinetics limit as a basis,

YR
GSE:rm,/ .

my

(10)
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Finally, we take the natural logarithm of G;, and following the same procedure for Eqgs. 7 and 8

gives

m2/> 1 Deyy e e
InGy =1In = + 3 Inm, +1In D (diffusion-kinetics limited growth)

R

-

mz/ 3] 1

InGs =1n | — + = Inm, (diffusion-limited growth)

i3] 3 (11)

_mr -
2 T

InG, = 3 Inm, (kinetics-limited growth).

All of the terms in Eq. 11 can be determined directly from the data, with the exception of the
effective diffusivity terms. The effective diffusivity depends weakly on temperature and strongly
on the deposition coefficient and size. The DiSKICE model can be used to determine D,ss/Dg
and, therefore, o through best fits to the scaled mass growth rate. This procedure is advantageous
because it does not require the supersaturation, which is not directly measured, and it uses the
mass ratio, which we directly measure with low uncertainty.

Theoretical calculations of Gy using DiSKICE illustrate the advantages and limitations of this
approach. Figure 2 shows an example calculation for a spherical ice particle growing from an
initial radius of 10 um at a temperature of -40°C and s; =10%, conditions similar to our experi-
ments. Note that /n(G;) curves for the diffusion and kinetics limits intersect once, and produce a
bounding region for diffusion-kinetics growth. Ice particles undergoing diffusion-kinetics limited
growth were simulated either with a constant o (Fig. 2a) or using ledge nucleation (M = 10) with
a given sqpq (Fig. 2b). In either case, when o is large (o > 0.1) or s, 1s small (which produces
larger ), the scaled growth rate is near the diffusion limit. Particles growing with lower o or
higher s, follow curves that are between the diffusion and kinetics limit, but the curves intersect

at the same location.
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The scaled growth rate analysis is limited in that it is strictly valid for spherical (isometric) par-
ticles. Our measured crystals remain small, but some non-isometric growth may occur. It would
then be useful to know whether non-isometric growth at the diffusion limit (high &) could be
falsely identified as diffusion-kinetics limited growth (low o), in particular. DiSKICE simulations
indicate that false identification is unlikely since diffusion-limited columns and plates (aspect ra-
tios between 0.1 and 10) have scaled mass growth rates that do not deviate far from the diffusion
limit calculated for spherical crystals (Fig. 2a). Additionally, non-isometric crystals growing by
ledge nucleation (s, between 5 and 10%), with low «, have scaled growth rates that fall within
the kinetics and diffusion limits determined for spherical growth (Fig. 2b). However, it is possible
for moderate kinetics influence on non-isometric growth to be misidentified as diffusion limited
(i.e., Schar < 10%). That is, the scaled growth rate analysis for non-isometric particles can pro-
duce false-positive results of diffusion-limited growth, even though the crystals grew with kinetics
limitations. Together, these results indicate that deviations from the diffusion limit provide an esti-
mate of the overall kinetics limitations of growing particles, even if the particles are non-spherical.

However, this method alone does not conclusively identify diffusion-limited growth.

c. Power-law Analysis

A second analysis method that is independent of the supersaturation originates from expressing
the mass growth rate of an ice crystal in a power-law form with respect to size or mass. Often,
dm/dt o< m" /3, where P = 1 for diffusion-limited growth (Eq. 8) and P = 2 for kinetics-limited
growth (Eq. 9) (see also Swanson et al. 1999). This form is possible because the effective diffu-
sivity, D¢y in Eq. 2 has a size-dependent power law as shown by the solid curves in Fig. 3. We

can therefore write the effective diffusivity as
Doy = Dom}!”, (12)
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where Dy is the effective diffusivity at the initial particle size (m, = 1). For faceted growth, the
exponent n takes a value between 0O (diffusion limited) and 1 (kinetics limited). Rewriting Eq. 2
in terms of the mass ratio, substituting in Eq. 12 for D, and normalizing by the initial growth rate

(), shows that for diffusion-kinetics limited growth

—=m, . (13)

We isolate the power exponent, 1 + n, by taking the natural logarithm of both sides of Eq. 13 and

rearranging such that

3— ™ —14+n="P (14)

The power exponent, P, is independent of the supersaturation and is only weakly dependent on the
initial particle radius. Moreover, note that the left-hand side of Eq. 14 can be computed directly
from the mass data without the use of a growth model. In our analysis, we use riig with a short
time-average to remove high frequency noise (see §4a).

Theoretical calculations with the DiSKICE model reveal the advantages and limits of the power-
law approach (Fig. 4). Like the scaling analysis, P values for isometric growth are confined
between the diffusion and kinetics limits, with larger deposition coefficients and smaller char-
acteristic supersaturations resulting in values of P nearer the diffusion limit. Diffusion-limited
non-isometric growth produces values of P that do not deviate far from the diffusion limit for
spherical growth, indicating that this method, like the scaled growth rate, will not falsely identify
diffusion-limited, non-spherical growth as kinetically-limited. These calculations also suggest that
values of P 2 1.1 indicate growth is limited, in part, by attachment kinetics, regardless of parti-
cle shape. The power-law analysis provides a robust estimate of attachment kinetics influence on

growth, like the scaled growth rate analysis. Unlike that method, however, the shape of the curve

15
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differs for isometric and non-isometric growth, which can produce P < 1 during early stages of

non-isometric growth.

4. Results

Mass ratio timeseries taken from ice crystals grown in the BEL chamber are analyzed in this sec-
tion. Ice crystals were nucleated both homogeneously (Pokrifka et al. 2018) and heterogeneously
using the bionucleant Snomax® (Harrison et al. 2016b) in the experiments. The timeseries of the
ice crystals nucleated heterogeneously were presented in a prior work (Harrison et al. 2016a) and
will be used in the analysis here. In Table 1, we give the temperatures and supersaturations under
which the particles grew, and their initial radii (generally ro < 15um). We do not include the final
particle sizes, but they rarely grow beyond a radius of 60 um. Figure 5 shows a representative
sample of the data, including two experiments that produced very long periods of growth, though
the particles usually grew for less than 1500 seconds. The data were originally recorded at 10 - 30
Hz, thus we plot the data at a much lower frequency to avoid cluttering the figure, but do include
enough points such that the trend is obvious. Though the growth timeseries for heterogeneously
and homogeneously nucleated ice appear to be similar (compare Fig. 5 to Fig. 4 from Harrison

et al. (2016a)), analysis of the growth rates reveals important differences.

a. Refining Raw Data

Since our analysis methods require the mass ratio derivatives, the particle timeseries must be
smoothed to remove noise and low-frequency features caused by the software controlling particle
levitation. We use a low pass filter with a sliding window that is operated forward and backward.
Filtering both forward and backward avoids the phase shift that occurs from forward-only filtering.

A different window width is used in each case, such that noise is sufficiently removed and and the

16
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derivatives can be computed. However, a window’s-width of data are always lost at the beginning
and end of the timeseries, and some low frequency oscillations are only partially removed by the
filter. Because lower frequency features are challenging to remove, we also analyze the data by
first fitting them with cubic polynomials following Magee (2006). Doing so effectively removes
the low-frequency features but retains the overall growth trend. We find that both of these methods
of data smoothing produce timeseries and derivatives in close agreement with the raw data (Fig. 6).
Note that the derivatives of the lowpass-filtered and cubic-fit data both follow the same trend as
the smoothed growth rate determined from the raw data, and all three fall within the uncertainty
range determined from the uncertainty on m,. The smoothing process shown in Fig. 6 is similarly
accurate for all of the other datasets. Because low-frequency features are removed by the cubic

fits to the data, they are used in the analysis below, unless otherwise stated.

b. Scaled Growth Rate Results

Applying the scaled growth analysis from §3b to the heterogeneously frozen drops indicates that
each individual timeseries can be modeled by faceted growth theory (Egs. 1 - 3). For example, the
crystal in Fig. 7 has a scaled growth rate that lies within the diffusion- and kinetics-limit boundaries
(Fig. 7a), and has a curve shape similar to faceted growth theory (Fig. 2). As in Harrison et al.
(2016a), we fit the data with DiSKICE assuming a constant &. This is justifiable if the particles
grow by a single growth mechanism (M = constant in Eq. 1) and they remain small (r ~ 10 -
30 um). DiSKICE model fits to both the lowpass-filtered data and the cubic-fit data accurately
simulate the particles’ scaled and actual growth rates (Fig. 7b). The case shown in Fig. 7 is clearly
limited by attachment kinetics, and the model fits to the data indicate that & = 0.008 £ 0.002,
with the uncertainty determined by using the uncertainty in the mass ratio growth rates. This o

is similar to the o¢ = 0.009 £ 0.003 determined by Harrison et al. (2016a) using fits to the mass

17



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

ratio timeseries. All of the heterogeneously frozen droplets have scaled growth rates similar to
that shown in Fig. 7, with varying degrees of kinetic limitation.

Originally, Harrison et al. (2016a) determined that all of their particles grew with deposition
coefficients less than 0.1, but the scaled growth rate analysis indicates that the low s; cases grew
with somewhat higher &, sometimes near unity. Since the scaled growth rate analysis uses the
measured mean-mass growth rate instead of the unmeasured supersaturation used by Harrison
et al. (2016a), these new results are arguably more reliable. Consequently these results suggest
that the supersaturation determined from the two-dimensional chamber model of Harrison et al.
(2016a) may be too high when s; is low. The chamber model is most sensitive to the uncertainty in
the ice coverage on the top plate in low s; conditions, understandably leading to the largest errors
occurring at the lowest s;. The low s; experiments from Harrison et al. (2016a) are, therefore,
modified the most by the scaled analysis, though the general variability of o with temperature
(green points in Fig. 8) is similar to that shown in Fig. 13 of Harrison et al. (2016a). The scaled
growth analysis shows that the heterogeneously frozen particles demonstrate both growth that is
diffusion-limited or diffusion-kinetics limited, as o ranges between 0.008 and unity.

Ten of the seventeen experiments with homogeneously frozen droplets grow similarly to the
heterogeneous freezing cases. Some data show growth at the diffusion limit (Fig. 9), and others
demonstrate the influence of attachment kinetics (Fig. 10). In all of these cases, there is good
agreement between the DiSKICE model fits to the scaled growth rate and mass ratio growth rate,
as determined from both the lowpass-filtered and the cubic-fit data. These results indicate that the
classical model of faceted growth fits the general growth features of the data.

There are, however, seven of the seventeen cases where the homogeneously frozen ice growth
data cannot be modeled using current theory. These cases have scaled growth rates that reside

outside of the region between the diffusion and kinetics limits (Fig. 11a), and they have nearly
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constant mass growth rates (Fig. 11b). It is worth noting that similar growth rates have been
observed by Gonda and Yamazaki (1984) (their Fig. 3) and Nelson and Swanson (2019) (their Fig.
5) for crystals with emerging facets, where the growth rates initially rise, but asymptote in time. If
our crystals grew similarly, it is then not surprising that fitting the growth rates assuming faceted
growth using DiSKICE initially underestimates, then overestimates, the growth rates (Fig. 11,
black curve). Recall that the mass growth rate is proportional to the ice particle size and the
effective diffusivity (Eq. 2), both of which increase in time for faceted growth. Thus, a constant
mass growth rate in a static environment is only achievable by decreasing the effective diffusivity
with size, which only occurs if the deposition coefficient falls as the particle size increases. This is
consistent with what can occur during a kinetics transition, when fast growing regions disappear,
or become shadowed, leaving only slow growing regions, and causing a substantial decline in the
deposition coefficient.

Other processes that can produce unusual growth rates include changing aspect ratios, the loss
or gain of charge on the particle, and gas contamination. Changes in aspect ratio generally lead
to increases in growth rate with size, not decreases. Charge loss or gain has never been detected
in prior studies with the BEL chamber. For instance, equilibrated solution droplets were levitated
for long periods without changes in size or location. The uptake of foreign gases potentially could
inhibit growth, but this effect would most likely diminish, not amplify, as the particle grew. An
amplification in the effect would be required to produce a roughly constant growth rate. Though
these processes seem unlikely to cause the observed growth rates, there could be other processes
occurring of which we are unaware.

At this time, no model exists for the growth of a particle that undergoes a transition from one

mode of growth to another. However, the process can be roughly approximated by allowing M
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(the exponent on « in Eq. 1) to change as the particle increases in size:

3
r—ro}4

rf—ro

M:1+9[ : (15)

where ry and ry are the initial and final particle radii, respectively. This model allows particles
to begin with efficient growth (spiral dislocations, M = 1) and transition to less-efficient growth
(ledge nucleation, M = 10) over time. As a result, @ will decline substantially along with the
effective diffusivity (dashed curves in Fig. 3). The exponent of 3/4 was chosen to produce a
nearly constant mass growth rate, as shown by our measurements. Using this model to fit the data
requires the supersaturation-dependent & (Eq. 1) and, therefore, 5., 1s determined from the fitting
procedure. We emphasize that Eq. 15 is not a physical model of faceting transitions, but instead
is a qualitative model that mimics the data and has plausible behavior consistent with a kinetics
transition. For example, a spherical crystal may in reality begin with rough growth (M ~ 0) then
transition to dislocation growth (M = 1). Consequently, the s.,, determined with this method
should be viewed with caution, since the fitting uses a number of empirical parameters and a
hypothetical model (Eq. 15).

Including Eq. 15 in the DiSKICE model allows us to simulate nearly constant mass growth rates,
and fit the growth data shown in Fig. 11. The resulting fits to the scaled growth rates follow the
data and reside outside of the diffusion- and kinetics-limit boundaries. The model suggests that
this is caused by a deposition coefficient that decreases by about an order of magnitude during
growth (Fig. 11, a decreases from 0.025 to 0.0016). Since o varies greatly during growth for
these cases, we show the range of o variability in the error bars. The remaining six experiments,
which are all similar to that shown in Fig. 11, were also well fit by this model (Eq. 15).

The deposition coefficients derived from the homogeneously frozen droplets that can be fit with

faceted growth theory (Egs. 1 - 3) range from 0.004 to unity, which is similar to the heteroge-
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neously frozen particles, but the experiments that require a kinetics transition (Eq. 15) cause o to
fall below 0.002 by the end of particle growth (Figs. 8 and 11). Furthermore, the rapid decline
in o skews the mass-ratio weighted mean o towards the minimum value. All of the & values that
we have determined are scattered with temperature (Fig. 8a) as has been shown in prior studies
(Skrotzki et al. 2013), but they show some supersaturation dependence (Fig. 8b). The deposition
coefficients derived from the heterogeneously frozen drops decrease with increasing s;, which is
counter to the supersaturation-dependence expected for faceted growth theory (Fig. 1). However,
« values determined from the homogeneous freezing cases increase with s;. The potential cause

for these differences will be discussed in §5.

c. Power-law Results

Qualitatively, the power-law analysis produces similar results to the scaled growth rate analysis,
which is noteworthy since the two methods are independent: The scaled growth rate analysis
makes no assumption about the functional dependence of D, sy, whereas the power-law analysis
does. All of the heterogeneously frozen drops from Harrison et al. (2016a) and some of our
homogeneously frozen drops have P exponents within the range expected for faceted ice growth,
as shown for a representative sample in Fig. 12. The curves, which are derived from the data using
Eq. 14, are remarkably similar to the theoretical calculations (Fig. 4). Some of these data have
P values that begin with values less than 1, but exceed 1 by the end of growth (green curve in
Fig. 12), which may indicate that the particle became non-isometric (see Fig. 4, grey shade). The
remaining homogeneous freezing cases have P < 1 for their entire growth period, similar to the
purple curves in Fig. 12, which the faceted growth model cannot reproduce.

For P < 1, it must be the case that n < 0 in Eq. 14, which indicates that the effective diffusivity

decreases with particle size (see Eq. 12) as would be expected in a kinetics transition. Indeed,
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DiSKICE simulations that include a kinetics transition (Eq. 15) all show a decreasing effective
diffusivity with increasing mass (Fig. 3), indicating that the model can reproduce values of P < 1.
All seven of the homogeneously-frozen crystals that appear to be undergoing kinetics transitions
have P < 1.

We should expect P to be correlated with « if crystals undergo classical faceted growth. Indeed,
the P-values determined from the data are strongly correlated to the o values derived from the
model fits for crystals nucleated heterogeneously, and for homogeneously nucleated crystals that
appear to follow faceted growth (Fig. 13). The clear organization of the data is in sharp contrast to
the scattered oo — T relationship often shown in works on the deposition coefficient (e.g., Skrotzki
et al. 2013, and our Fig. 8a). The decline in P with increasing o makes physical sense for faceted
growth; since P = 1 and o = 1 both pertain to diffusion-limited growth, while P =2 and o« — 0
represent kinetics-limited growth. The dependence of P on « is also remarkably consistent with
the general shape of the curve derived from Egs. 1 - 3 for faceted growth (Fig. 13, black curve).
This suggests that the model for o is consistent with these growth data. However, the data that
indicate the occurrence of kinetics transitions show a different trend, where P seems to increase
with o, but such a relationship is poorly constrained due to the large temporal variability in both

P and « (as indicated by the error bars).

5. Discussion

Our results indicate that the method of nucleation may be critical for the early stages of ice
vapor-growth. Each timeseries for heterogeneously frozen ice could be represented by the faceted
growth model, but the homogeneously frozen ice requires a kinetics transition model in 7 out of 17
cases. If the HPLC was somehow contaminated with nuclei in the other 10 cases, causing them to

have frozen heterogeneously, then the data would show a distinct divide in the behavior of growth
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from homogeneously versus heterogeneously frozen drops. While contamination is possible, it
seems unlikely given past experiments with this chamber. In past studies, we never succeeded in
freezing HPLC water droplets at temperatures above -36°C, and this is the main reason Harrison
et al. (2016a) used Snomax® in their studies.

Despite only a few cases requiring a kinetics transition model, it is likely that all of the measured
particles undergo a kinetics transition, since they begin as rough spheres upon which facets emerge.
The transitions may simply occur on different timescales. The data that we can simulate with
faceted growth may have involved kinetics transitions, but only briefly at the beginning of growth.
For instance, it is possible that the heterogeneous ice particles measured by Harrison et al. (2016a)
grew into single-crystals, which can transition from a sphere to a hexagonal prism within a couple
minutes (Gonda and Yamazaki 1984, Fig. 1). If this occurred, the transition may not be clearly
evident in our analysis. In contrast, some of the homogeneously frozen droplets could have formed
polycrystals, which is very common at low temperatures. The growth of facets away from the grain
boundaries can take tens of minutes (Bacon et al. 2003, Fig. 8) and, if this occurs, it would be more
apparent in our growth data. It is important to note that this assumes that polycrystaline ice would
begin with rapid growth. Though intersecting facets can produce rapid growth (Pedersen et al.
2011), it is unknown whether this happens during the emergence of facets (Strickland-Constable
1968, pg. 161). Regardless, the kinetics transition for a single-crystal may be more challenging to
detect, given the shorter transition period, than for a polycrystal. Additionally, the particle’s initial
size may influence the timescale on which a kinetics transition occurs. For example, one would
expect the emergence of facets to require more time over a larger surface area sphere. Indeed, our
three largest homogeneously frozen particles (rgp = 16 - 27 um) all require a kinetics transition
model, and most of the remaining homogeneously frozen particles were a few microns larger in

initial radius than the heterogeneously frozen particles (compare in Table 1). Unfortunately, we
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cannot measure the shape of the small particles, and future work should endeavor to image particle
shapes during growth. However, the evidence of kinetics transitions that we have found may help
to reconcile the disagreement among prior measurements of the deposition coefficient (e.g., Magee
et al. 2006; Skrotzki et al. 2013; Harrison et al. 2016a). Kinetics transitions occurring shortly
after freezing would lead to different deposition coefficients being determined depending on if the
measurements were made before (high ), after (low ), or during (variable ¢¢) the transitions.
Another distinction between the two datasets is how they correlate with supersaturation. The
deposition coefficients determined from homogeneously-frozen ice rise with the supersaturation,
which is as expected from theory (Fig. 1), while the opposite is true for heterogeneous freezing
(Fig. 8b). The latter behavior is more clearly shown in the growth rate (Fig. 14), dm/dt, when it
is normalized by 47rD. This normalization reduces the temperature and size dependences, and
leaves only the supersaturation and kinetics dependences. To ensure the growth rates normalized
by 47nrD are robust, we average them over l-micron size ranges (r = 15 - 16 um in Fig. 14),
which makes them independent of the original smoothing method (not shown). Additionally, this
normalized growth rate can be compared to theoretical calculations of the maximum diffusion-
limited rate, and the faceted growth rate assuming either dislocation or ledge nucleation growth.
The heterogeneously frozen particles have increasing normalized growth rates with supersaturation
(Fig. 14), though the values are generally below the maximum rate and have a different slope than
diffusion limited theory (Fig. 14, red line). The normalized growth rates at low-s; may be described
by dislocation growth (high ), and are near the maximum rate, but the higher-s; data fall roughly
into the ledge nucleation growth (low ) region. The behavior of declining ¢ and normalized
growth rates with s; is inconsistent with faceted growth that assumes a single growth mechanism,
but it is broadly consistent with prior studies (Nelson and Knight 1998; Harrington et al. 2019).

Those studies show that crystals at low s; appear to grow by dislocations, as originally introduced
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by Burton et al. (1951). Conversely, at high s; (when s; > s.44,), ledges should nucleate readily,
and growth can become instead dominated by ledge nucleation (Nelson and Knight 1998). It is
also possible that self-perpetuating stacking faults may influence the growth, as Ming et al. (1988)
show this growth mode to produce a minimum growth rate at mid-range values of s;. Unlike
heterogeneous freezing, homogeneously frozen particles show a more complex supersaturation
dependence of the normalized growth rate. The crystals that can be modeled with faceted growth
(Fig 14, purple circles) show a general increase in the normalized growth rate with s;, similar to the
trend in « (Fig. 8). The crystals that require a kinetics transition show no consistent dependence
on s; (Fig. 14, black triangles).

Figure 14 also demonstrates that the normalized growth rates for heterogeneously frozen
droplets increase with particle radius as the radius range increases from 10 - 11 um to 15 - 16
um to 19 - 20 um, which is not possible with diffusion-limited growth under constant super-
saturation (Eq. 2). However, this size-dependence is consistent with attachment kinetics, since
(1/r)dm/dt = r (Eq. 9) under diffusion-kinetics limited growth. On the other hand, there is no
correlation between the normalized growth rates and size for the homogeneously frozen droplets.
Though, some crystals grew near the maximum rate, where a size dependence would be difficult
to discern.

We can estimate s, for some of our data, particularly when « is small (< 0.05) and attachment
kinetics dominate the growth. This is accomplished by fitting the growth rates with s, assuming
either a ledge growth model (M = 10) or a kinetics transition from dislocation to ledge growth
(M — 10). While our values cover a wide range of 1.63 - 34.0% (Fig. 15), the general trend
suggests that s, increases commensurately with supercooling, a result that is consistent with all
past studies (Nelson and Knight 1998; Harrington et al. 2019). Interestingly, the data that can be

fit using the ledge growth model tend to cluster at higher values of s, than the data that require
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kinetics transitions. This is not surprising, since a kinetics transition begins with a reduced kinetic
resistance to growth. As with the analysis of kinetics transitions (Eq. 15), these results depend on
the supersaturation, and thus have more substantial uncertainties in comparison to the scaled mass
growth rate results, and should therefore be treated with caution.

Future studies are required to gain insight into the impacts of ice nucleation and kinetics transi-
tions on the early growth of ice. Most notably, images of growing particles would be useful, even
if they are only available at the end of the growth when particles are large. Such images could pro-
vide evidence of the type of transition that occured. Furthermore, growth experiments conducted
at lower pressures would be useful: The gas phase resistance for water vapor transport is reduced
at low pressure, thus increasing the diffusivity and the particle’s sensitivity to the surface kinet-
ics. Under lower pressure, the effects of a kinetics transition should be easier to detect. Finally,
ice growth experiments using a variety of ice nucleating particles or solutions could determine if

detectable kinetics transitions are truly unique to homogeneously frozen crystals.

6. Summary

Theoretical models of ice crystal growth from the vapor are largely unconstrained at tempera-
tures below -20°C, due to a lack of sufficient laboratory data. Thus, we measured the mass ratios
of homogeneously frozen crystals grown within the Button Electrode Levitation (BEL) diffusion
chamber (Harrison et al. 2016a) at temperatures between -44 and -36°C. These data, and the het-
erogeneously frozen ice growth data from Harrison et al. (2016a), were analyzed with two new
methods that are independent of the ambient supersaturation, a quantity that is challenging to mea-
sure in laboratory devices. The first analysis method uses the time-average of the mass growth rate
instead of the supersaturation. Scaling the growth rate by its mean isolates the effects of the sur-

face attachment kinetics. Fitting the scaled growth rate with the Diffusion Surface Kinetics Ice
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Crystal Evolution (DiSKICE) model (Zhang and Harrington 2014) then estimates the deposition
coefficient, o. The second analysis method utilizes the power law dependence in size of the mass
growth rate; the power-law exponent can be calculated directly from the data, providing another
estimate of the attachment kinetic influences on growth.

We found that the deposition coefficient ranges between 0.002 and unity, with indications of a
supersaturation dependence and no dependence on temperature (Fig. 8). Additionally, we found
that the method of ice nucleation influenced the growth. Individual timeseries data from the het-
erogeneously frozen drops and some of the homogeneously frozen drops could be modeled by
faceted growth theory. Modeling the remaining homogeneously frozen drops required a “kinetics
transition”, in which the growth mechanism changed from efficient (dislocations) to inefficient
(ledge nucleation). Prior measurements (e.g., Gonda and Yamazaki 1984; Bacon et al. 2003) show
that frozen droplets transform into faceted crystals over time, such that fast-growing regions are
replaced with slow-growing facets, which provides the basis for our modeled kinetics transition.
Such a process causes a rapid decline in &, rendering the use of a single deposition coefficient
value meaningless. All frozen droplets probably experience a kinetics transition as facets emerge,
which could in part be responsible for the discrepancy in prior measurements of «.

Analysis of mass growth rates normalized by 47rD, where r is a 1-um radius range and D is the
effective diffusivity showed that the heterogeneously frozen crystals often had normalized growth
rates that increased with both size and supersaturation, but were well below the theoretical max-
imum, which is consistent with kinetics-limited growth. On the other hand, the homogeneously
frozen crystals demonstrated no size dependence, and the normalized growth rates of those that
could be fit with a faceted growth model were often near the theoretical maximum. The homoge-
neously frozen crystals that required a kinetics transition did not have a consistent supersaturation

trend in the normalized growth rate.
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Our results suggest that the early growth of ice is significantly impacted by the ice nucleation
mechanism, which appears to affect the attachment kinetics. Furthermore, crystals that appear to
undergo a kinetics transition have constant growth rates for extended periods of time. Kinetics

transitions could influence cloud processes that occur near ice nucleation zones in cold clouds.

APPENDIX

Determination of the supersaturation in laboratory devices requires either a direct measurement,
or a model that is calibrated with indirect measurements. We determine s; in the BEL chamber
using a calibrated, two-dimensional diffusion chamber model that assumes that the electrodes and
launcher opening areas are not covered with ice (uncovered areas). In Harrison et al. (2016a), this
model was calibrated by direct measurements of s; using equilibrated levitated sulfuric acid solu-
tion droplets following our prior work (i.e., Xue et al. 2005). In that experiment, s; was determined
to be 28.6 £ 1.8%, which is about 12% lower than the value determined from flat-plate diffusion
chamber theory (32.6 + 2%, Harrison et al. 2016a, their Fig. 2b). The model was then calibrated
by adjusting the uncovered areas until a best fit with the measurements were produced. However,
a recent experiment indicates that this calibration is too aggressive: The calibrated model predicts
that the chamber should be sub-saturated when the difference in temperatures between the plates
is relatively small. This sub-saturation remains, though it is slightly smaller, even if a third dimen-
sion (horizontal y-dimension) is included in the chamber model (not shown). However, as shown
below, no such sub-saturation is observed with growth measurements under these conditions.
Figure 16 shows a timeseries of the supersaturation estimated from an experiment conducted
with a very small temperature difference (~ 1°C) between the plates. This experiment was con-
ducted with a homogeneously frozen HPLC water droplet that grew slowly for nearly 3 hours.

The particle remained small and so was likely isometric. Moreover, because the crystal was ac-
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tively growing at very low s; the deposition coefficient must be relatively high, which is consistent
with growth theory (see the Introduction). We therefore estimated s; by assuming rough growth
(a = 1), which should produce a low estimate of s;. (The supersaturation would be larger if
o < 1.) The supersaturation determined from the measured growth rate varies from about 0.2 to
0.8%. For these conditions, the chamber model suggests sub-saturated conditions (around -0.3%),
which clearly contradicts the growth measurements. We have also included the s; calculated with
flat-plate diffusion theory along with the range in that solution produced by including a 4+ 0.2°C
uncertainty on the plate temperature measurements. Note that the s; estimated from the growth
data falls well within the range of the flat-plate solution. This result provides strong evidence that
the chamber supersaturation is larger than that determined by the chamber model, and is close to
the value determined from flat plate diffusion theory. While this result may seem counter-intuitive,
it is physically plausible: Gas phase diffusion should cause the opening for the droplet launcher
to become nearly saturated with water vapor, and the electrodes may gain an ice coating during
experiments.

It is important to note that the upper plate temperature drifted slowly with time in this experiment
due a build up of ice in the cryogen housing. However, the temperature changed by less than
0.9°C over nearly 3 hours. This very slow drift in the temperature produced no transients in the
vapor field, since calculations of the supersaturation with the time-dependent diffusion equation
are indistinguishable from the steady-state solution (not shown).

To calibrate the chamber model with the experimental result, we reduced the uncovered areas
to reproduce the minimum observed s; of 0.21 £ 0.01%. This reduction in area is based on the
above argument that the launch opening likely fills in with vapor and that the electrodes may gain
a thin layer of frost. When we take into account the uncertainty in the temperature measurement

(a maximum plate temperature difference of 1.4°C), we must reduce the uncovered area by 60%
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of the physical area, at minimum, to reproduce the measured s;. However, reducing the uncovered
areas by 60% produces supersaturations that are not much different from the values determined
from flat-plate diffusion theory (0.13% vs. 0.21%). Therefore, it appears that the BEL chamber
may be approximated as a flat-plate diffusion chamber.

Be aware that this result is not inconsistent with the result of Harrison et al. (2016a). Simulations
with the chamber model show that the supersaturation at the particle growth location is not very
sensitive to the uncovered areas at the high-s; used in their case (about 28%). High supersaturations
are produced by relatively large plate temperature differences, which tend to drive very rapid
diffusion rates. We suspect that this is the reason for the lack of sensitivity to the uncovered area
at high s;. Hence, it would not be easily possible to detect the effects of the uncovered areas on
s; in the experiments of Harrison et al. (2016a). Moreover, as Harrison et al. (2016a) pointed
out, using solution drops to calibrate the chamber is potentially problematic in that the ice surface
becomes contaminated. Solution contamination on the bottom plate demonstrably lowers s;, and
could account for the somewhat lower s; measurements of Harrison et al. (2016a) compared to the

flat-plate diffusion theory solution.

Acknowledgments. The authors thank the three anonymous reviewers for their insightful
comments that improved this manuscript. The authors are grateful for support from the National
Science Foundation under Grant #AGS-1824243. Also, the authors benefited from useful conver-
sations with Dr. Dennis Lamb. Data for heterogeneously frozen droplet experiments are available
at http://www.datacommons.psu.edu/commonswizard/MetadataDisplay.aspx ?Dataset=6184,
and data for homogeneously frozen droplet experiments are available at

http://www.datacommons.psu.edu/commonswizard/MetadataDisplay.aspx?Dataset=6185.

30



647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

References

Bacon, N., M. Baker, and B. Swanson, 2003: Initial stages in the morphological evolution of
vapour-grown ice crystals: A laboratory investigation. Quart. J. Roy. Meteor. Soc., 129, 1903—

1927.

Beckmann, W., and R. Lacmann, 1982: Interface kinetics of the growth and evaporation of ice
single crystals from the vapour phase: Ii. measurements in a pure water vapour environment.

Journal of Crystal Growth, 58 (2), 433 —442.

Brown, D., S. George, C. Huang, E. Wong, K. Rider, R. Smith, and B. Kay, 1996: H,0O con-
densation coefficient and the refractive index for vapor-deposited ice from molecular beam and

optical interference measurements. J. Phys. Chem., 100, 4988-4995.

Burton, W. K., N. Cabrera, and F. C. Frank, 1951: The growth of crystals and the equilibrium
structure of their surfaces. Philosophical Transactions of the Royal Society of London. Series A,

Mathematical and Physical Sciences, 243 (866), 299-358.

Choularton, T., and J. Latham, 1977: Measurements of the deposition coefficient for ice, and its

application to cirrus seeding. Quart. J. Roy. Meteor. Soc., 103, 307-318.

Davis, E., 2010: A button electrode levitation chamber for the study of ice crystal growth under at-
mospheric conditions. M.S. thesis, Meteorology, The Pennsylvania State University, University

Park PA, 16801, USA.

Earle, M., T. Kuhn, A. Khalizov, and J. Sloan, 2010: Volume nucleation rates for homogeneous
freezing in supercooled water microdroplets: results from a combined experimental and model-

ing appraoch. Atmos. Chem. Phys., 10, 7945-7961.

Elliott, W. J., 1971: Dimensions of thermal diffusion chambers. J. Atmos. Sci., 28, 810-811.

31



669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

Frank, F. C., 1974: Nucleation-controlled growth on a one-dimensional growth of finite length.

Journal of Crystal Growth, 22 (3), 233-236, cited By :170.

Frank, F. C., 1982: Snow crystals. Contemporary Physics, 23 (1), 3-22, doi:10.1080/

00107518208231565.

Furukawa, Y., and T. Kobayashi, 1978: On the growth mechanism of polycrystalline snow crystals

with a specific grain boundary. J. Cryst. Growth, 45, 57-65.

Gonda, T., and T. Yamazaki, 1978: Morphology of ice droxtals grown from supercooled water

droplets. J. Cryst. Growth, 45, 66—69.

Gonda, T., and T. Yamazaki, 1984: Initial growth forms of snow crystals growing from frozen

cloud droplets. J. Meteorol. Soc. Japan, 62, 190-192.

Harrington, J. Y., R. Carver, and D. Lamb, 2009: Parameterization of surface kinetic effects for
bulk microphysical models: Influences on simulated cirrus dynamics and structure. J. Geophys.

Res., 114, D06 212.

Harrington, J. Y., A. Moyle, L. E. Hanson, and H. Morrison, 2019: On calculating deposition co-
efficients and aspect-ratio evolution in approximate models of ice crystal vapor growth. Journal

of the Atmospheric Sciences, 76 (6), 1609—1625, doi:10.1175/JAS-D-18-0319.1.

Harrison, A., A. Moyle, M. Hanson, and J. Harrington, 2016a: Levitation diffusion chamber
measurements of the mass growth of small ice crystals from vapor. J. Atmos. Sci., 73, 2743—

2758.

Harrison, A., A. Moyle, and J. Harrington, 2016b: Electrodynamic levitation diffusion chamber
measurements of the mass growth of heterogeneously-nucleated ice crystals grown from the

vapor. Penn State Data Commons, doi:10.26208/dd1w-wal7.

32



691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

M

Haynes, D., N. Tro, and S. George, 1992: Condensation and evaporation of H,O on ice surfaces.

J. Phys. Chem., 96, 8502-85009.

Kong, X., E. Thomson, P. Papagiannakopoulos, S. Johansson, and J. Petterson, 2014: Water ac-
commodation on ice and organic surfaces: Insights from environmental molecular beam exper-

iments. J. Phys. Chem., 118, 13 378-13 386.

Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press,

New York, 584 pp.

Libbrecht, K., 2003: Growth rates of the principal facets of ice between -10°C and -40°C. J.

Crystal Growth, 247, 530-540.

Libbrecht, K., and M. Rickerby, 2013: Measurements of surface attachment kineticsf or faceted

ice crystal growth. J. Cryst. Growth, 377, 1-8.

Magee, N., 2006: A Laboratory Investigation of Vapor-Grown Ice Crystals at Low Atmospheric

Temperatures. Ph.D. thesis, The Pennsylvania State University, 234pp.

Magee, N., A. Moyle, and D. Lamb, 2006: Experimental determination of the deposition coeffi-

cient of small cirrus-like crystals near -50 °C. Geophys. Res. Let., L17813.

Markov, 1., 2003: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth

and Epitaxy. World Scientific Pub Co Inc.

Ming, N.-B., K. Tsukamoto, I. Sunagawa, and A. Chernov, 1988: Stacking faults as self-

perpetuating step sources. Journal of Crystal Growth, 91, 11-19.

Nelson, J., 2001: Growth mechanisms to explain the primary and secondary habits pf snow crys-

tals. Philos. Mag. A., 81, 2337-2373.

33



712

713

714

715

716

77

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

Nelson, J., 2005: Interactive comment on “‘supersaturation dehydration, and dentrification in arctic

cirrus” by b. kacher. Atmos. Chem. Phys. Discuss., 5, S257-S260.

Nelson, J., and M. Baker, 1996: New theoretical framework for studies of vapor growth and

sublimation of small ice crystals in the atmosphere. J. Geophys. Res., 101, 7033-7047.

Nelson, J., and C. Knight, 1998: Snow crystal habit changes explained by layer nucleation. J.

Atmos. Sci., 55, 1452-1465.

Nelson, J., and B. Swanson, 2019: Air pockets and secondary habits in ice from lateral-
type growth. Atmospheric Chemistry and Physics Discussions, 2019, 1-51, doi:10.5194/

acp-2019-280.

Neshyba, S., J. Adams, K. Reed, P. M. Rowe, and 1. Gladich, 2016: A quasi-liquid mediated
continuum model of faceted ice dynamics. Journal of Geophysical Research: Atmospheres,

121 (23), 14,035-14,055, doi:10.1002/2016JD025458.

Pedersen, C., A. Mihranyan, and M. Stromme, 2011: Surface transition on ice induced by the

formation of a grain boundary. PLoS ONE, 6, €24 373.

Pokrifka, G., A. Moyle, and J. Harrington, 2018: Electrodynamic levitation diffusion chamber
measurements of the mass growth of homogeneously-nucleated ice crystals grown from the

vapor. Penn State Data Commons, doi:10.26208/z7bf-nq20.

Pratte, P, H. van den Bergh, and M. Rossi, 2006: The kinetics of H,O vapor condensation and

evaporation on different types of ice in the range of 130-210k. J. Phys. Chem., 110, 3042-3058.

Sei, T., and T. Gonda, 1989: The growth mechanism and the habit change of ice crystals growing

from the vapor phase. J. Cryst. Growth, 94, 697-707.

34



733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

Skrotzki, J., and Coauthors, 2013: The accommodation coefficient of water molecules on ice -

cirrus cloud studies at the AIDA simulation chamber. Atmos. Chem. Phys., 13, 4451-4466.

Strickland-Constable, R. F., 1968: Kinetics and mechanism of crystallization from the fluid phase

and of the condensation and evaporation of liquids. Academic Press, London;New York;, 356

Pp-

Swanson, B. D., N. Bacon, E. J. Davis, and M. B. Baker, 1999: Electrodynamic trapping and

manipulation of ice crystals. Quart. J. Roy. Meteor. Soc., 125, 1039-1058.

Westbrook, C. D., R. J. Hogan, and A. J. Illingworth, 2008: The capacitance of pristine ice crystals

and aggregate snowflakes. J. Atmos. Sci., 65, 206-219.

Wood, S., M. Baker, and D. Calhoun, 2001: New model for the vapor growth of hexagonal ice

crystals in the atmosphere. J. Geophys. Res., 106, 4845-4870.

Xue, H., A. M. Moyle, N. Magee, J. Harrington, and D. Lamb, 2005: Experimental studies of
droplet evaporation kinetics: Validation of models for binary and ternary aqueous solutions. J.

Atmos. Sci., 62, 4310-4326.

Zhang, C., and J. Harrington, 2014: Including surface kinetic effects in simple models of ice vapor

diffusion. J. Atmos. Sci., 71, 372-390.

35



n  LIST OF TABLES

70 Table 1.  Experimental conditions, temperature (7') and supersaturation (s;), and initial

751 particle radii (rp). Column (a) applies to homogeneous freezing experiments,
752 and column (b) show data from heterogeneous freezing experiments from Har-
753 rison et al. (2016a).

36



754 TABLE 1. Experimental conditions, temperature (7') and supersaturation (s;), and initial particle radii (rp).

75 Column (a) applies to homogeneous freezing experiments, and column (b) show data from heterogeneous freez-

756 1ng experiments from Harrison et al. (2016a).

(a) Q) si (%) ro (m) (b) T(°C) si (%) ro (pm)
-435+0.1 172+15 10.55+0.16 -357+0.1  28.6+2.1 89+0.7
-435+0.1 174+£15 992+0.38 -357+0.1  28.6%2.1 82+0.5
-4344+0.1 129+13 21.554+0.35 -3574+0.1  28.6+2.1 92+0.5
-434+0.1 171+14  865+0.39 -357+0.1  28.6+2.1 103 £0.5
-424+£0.1 17.7+15 10.824+0.42 -33.8+0.1  17.0£ 1.1 9.86 £0.25
-4224+0.1 181+15 15.05+043 -33.8+0.1 17.0+ 1.1 89+0.2
-42.1+0.1 188+1.5 10.60+0.20 -33.0+0.1 10.0£1.1 8.7+0.3
-402+0.1 135+13 925+0.32 -33.0+0.1 100+ 1.1 58+04
-384 £ 0.1 37+£04 2643 £ 1.4 -33.0+£0.1  10.0£ 1.1 7.6£03
-37.8 £ 0.1 7.5+£07 11.65+ 1.2 -326£0.1  11.0£09 1044 +0.15
-374+0.1 11.0£1.1 7.59 £0.85 -326+0.1  11.0+0.9 11.7£0.2
-374+0.1 11.0£1.1 9.86 £0.88 -32.0+0.1 75+£07 9.6+0.3
-374 £ 0.1 75+£0.7 11.34 £ 1.0 -31.7 £ 0.1 75+£0.7 63+04
-37.0+£0.1 140+ 14 10.0 £0.70 -31.7 £ 0.1 7.5£0.7 12.0 £ 0.1
-36.7+0.1 141+14 784+0.74 -31.5+0.1 50£06 10.69 £0.17
-36.6 0.1 18.7%1.5 132£15 -30.9 £ 0.1 40+£05 82+04
-36.6 £0.1 142+14 945+0.76 -30.9 £ 0.1 40+£05 7.7+0.3
-36.3 £ 0.1 4.6 £04 16.83 £0.76

37



757

758

759

760

761

762

763

764

765

766

767

768

769

770

!

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

LIST OF FIGURES

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Deposition coefficient as a function of the ratio of surface supersaturation to characteris-
tic supersaturation with various growth modes (M). M of 1 (dotted) applies to dislocation
growth, M = 3 (dot-dashed) represents stacking fault growth, and M between 10 (solid) and
30 (dashed) may be used for 2D nucleation. e

DiSKICE model output of the natural logarithm of the scaled mass growth rate as a function
of the mass ratio with either constant & (a) or s, (b). Results for both spheres (curves)
and non-isometric particles (shading) are plotted. Solid blue curves represent the diffusion
limit to growth (o = 1), and brown curves are the kinetics limit (¢ — 0). (a) The diffusion
limit of columnar growth with deposition coefficient ratio, I', between 1.5 and 3.5 is in blue
shading. (b) Non-isometric growth with the characteristic supersaturation on the major axis
ranging between 5 and 10% is shaded in pink for columns and grey for plates.

DiSKICE model output of the normalized diffusivity as a function of the mass ratio at var-
ious supersaturations (1, 5, 10, and 20%). The solid curves correspond to faceted growth,
where a growth mechanism parameter M = 10 was used. The dashed curves varied M ac-
cording to Eq. 15 to simulate a kinetics transition.

DiSKICE model simulations of the power-law analysis (a) with constant & (labeled, red) or
ledge nucleation (M = 10) with a given s, (labeled, green). The deposition coefficients
for each characteristic supersaturation are also plotted (b). Results for non-isometric parti-
cles are plotted in shaded regions for the diffusion limit (blue) and variable & (grey). The
remaining conditions for these simulations are the same as in Fig. 2. e

Representative mass ratio growth timeseries for homogeneously frozen ice particles. Purple
points are raw data with an uncertainty of 5%. The data are smoothed with a lowpass filter
(solid teal) and a cubic fit (dashed red), the latter uncertainty range of 5% (purple shading)
isalsoshown. . . . . . . . . o 0L L0 L

(a) Mass ratio growth timeseries of a heterogeneously frozen ice particle. Points and curves
follow the same scheme as in Fig. 5. (b) Time derivative of the data in (a) where the points
are replaced by a 200-point running average (solid purple) and the uncertainty range (purple
shading). Derivatives of the lowpass-filtered and cubic-fit data are given as the teal and
red-dashed curves, respectively. .

An example of the scaled mass growth rate analysis with diffusion-kinetics limited particle
growth from heterogeneous freezing data shown in Fig. 6. (a) The natural logarithm of the
scaled mass growth rate as a function of the mass ratio. The lowpass-filtered data (purple
points) were used to calculate the diffusion (blue) and kinetics (brown) limits. Purple shad-
ing is the uncertainty range given by the cubic fit to the data. DiSKICE simulations of the
lowpass-filtered (solid teal) and cubic-fit (dashed red) data are shown. (b) Growth rates of
the data and model fits shown in (a).

The deposition coefficient as a function of (a) temperature and (b) supersaturation. Green
points are heterogeneous freezing data from Harrison et al. (2016a), and purple points are
our homogeneous freezing data. Dotted black error bars indicate the range over which o
varies for kinetics transitions with the point located at the mass-ratio weighted mean. The
dashed curves are regression fits to data with the same color.

An example of the scaled mass growth rate analysis with diffusion limited particle growth
from homogeneous freezing data. (a) The natural logarithm of the scaled mass growth rate as
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Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

a function of the mass ratio. The lowpass-filtered data (purple points) were used to calculate
the diffusion (blue) and kinetics (brown) limits. Purple shading is the uncertainty range
given by the cubic fit to the data. DiSKICE simulations of the lowpass-filtered (solid teal)
and cubic-fit (dashed red) data are shown. (b) Growth rates of the data and model fits shown
in (a).

An example of the scaled mass growth rate analysis with diffusion-kinetics limited parti-
cle growth from homogeneous freezing data. (a) The natural logarithm of the scaled mass
growth rate as a function of the mass ratio. The lowpass-filtered data (purple points) were
used to calculate the diffusion (blue) and kinetics (brown) limits. Purple shading is the
uncertainty range given by the cubic fit to the data. DiSKICE simulations of the lowpass-
filtered (solid teal) and cubic-fit (dashed red) data are shown. (b) Growth rates of the data
and model fits shown in (a). .

An example of the scaled mass growth rate analysis with kinetics transitioning particle
growth from homogeneous freezing data. (a) The natural logarithm of the scaled mass
growth rate as a function of the mass ratio. The lowpass-filtered data (purple points) were
used to calculate the diffusion (blue) and kinetics (brown) limits. Purple shading is the un-
certainty range given by the cubic fit to the data. DiSKICE simulations using Eq. 15 of
the lowpass-filtered (solid teal) and cubic-fit (dashed red) data are shown. The range of «
determined from the fit is indicated on the figure. (b) Growth rates of the data and model fits
shown in (a). A DiSKICE fit to the mass ratio timeseries assuming ledge nucleation is given
by the black curve.

Power-law exponents as a function of mass ratio as calculated from data. The dashed blue
curve is a heterogeneously frozen case using the lowpass-filtered data, and the solid curves
are from homogeneously frozen cases with the cubic-fit data. Shaded regions between
the dotted lines are calculated from the DiSKICE model fits to the mass ratio uncertain-
ties. Shown here are examples of diffusion-kinetics-limited growth (blue), diffusion-limited
growth (red), possible columnar growth (green), and growth with a kinetics transition (pur-

ple).

Power-law exponents as a function of the DiSKICE model-fit deposition coefficient. Points
are from the average P, with the error bars indicating the maxima and minima throughout
growth. Values using heterogeneously (red) and homogeneously frozen ice that follows
faceted growth (blue) assume a constant . Data indicative of kinetics transitions (purple)
include the ranges over which ¢ varies (dashed black uncertainty) with the points at the
mass ratio weighted average values. Plotted over the data are the results of a ledge growth
simulation (solid black) with s, = 10%. The diffusion and kinetics limits are indicated by
the grey lines.

Effective growth velocity averaged over the period of growth where the particle radius is
between 15 and 16 um versus supersaturation. Points are from heterogeneous (green) and
homogeneous (purple) freezing data, with black triangles representing particles with kinet-
ics transitions. Green curves are regression fits to the heterogeneous freezing data over the
size ranges of 10 - 11 um (dashed), 15 - 16 um (solid), and 19 - 20 um (dot-dot-dashed).
Theoretical ranges for spherical growth with dislocation and ledge nucleation (s, between
5 and 20%) are shaded in blue. The maximum growth rate of a sphere, according to capaci-
tance theory is in red.

Characteristic supersaturation versus supercooling (Harrington et al. 2019, based on their

Fig. 1). We have added results with influential attachment kinetics (a < 0.05) for heteroge-
neous freezing (red diamonds) and homogeneous freezing with normal faceted growth (blue

39

49

. 50

51

52

53

54



848

849

850

851

852

853

854

855

Fig. 16.

diamonds) and with kinetics transitions (purple diamonds). Filled black points are from
prior faceted growth measurements and empty black circles are estimates from mass growth
rates Harrington et al. (2019).

Supersaturation with a small chamber plate temperature difference (~ 1°C). The steady-state
flat plate diffusion chamber theory solution is in green, with 4= 0.2°C error on the measured
plate temperatures. The supersaturation estimated from a growing ice particle, assuming
that it had a deposition coefficient near unity is in purple. The purple curve assumes that the
particle is spherical, with = 0.15 um error on the initial radius.
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F1G. 8. The deposition coefficient as a function of (a) temperature and (b) supersaturation. Green points are
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FI1G. 9. An example of the scaled mass growth rate analysis with diffusion limited particle growth from

homogeneous freezing data. (a) The natural logarithm of the scaled mass growth rate as a function of the mass

ratio. The lowpass-filtered data (purple points) were used to calculate the diffusion (blue) and kinetics (brown)

limits. Purple shading is the uncertainty range given by the cubic fit to the data. DiSKICE simulations of the

lowpass-filtered (solid teal) and cubic-fit (dashed red) data are shown. (b) Growth rates of the data and model

fits shown in (a).
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FIG. 10. An example of the scaled mass growth rate analysis with diffusion-kinetics limited particle growth
from homogeneous freezing data. (a) The natural logarithm of the scaled mass growth rate as a function of the
mass ratio. The lowpass-filtered data (purple points) were used to calculate the diffusion (blue) and kinetics

(brown) limits. Purple shading is the uncertainty range given by the cubic fit to the data. DiSKICE simulations

of the lowpass-filtered (solid teal) and cubic-fit (dashed red) data

model fits shown in (a).
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homogeneous freezing data. (a) The natural logarithm of the scaled mass growth rate as a function of the mass
ratio. The lowpass-filtered data (purple points) were used to calculate the diffusion (blue) and kinetics (brown)
limits. Purple shading is the uncertainty range given by the cubic fit to the data. DiSKICE simulations using
Eq. 15 of the lowpass-filtered (solid teal) and cubic-fit (dashed red) data are shown. The range of ¢ determined
from the fit is indicated on the figure. (b) Growth rates of the data and model fits shown in (a). A DiSKICE fit

to the mass ratio timeseries assuming ledge nucleation is given by the black curve.
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F1G. 12. Power-law exponents as a function of mass ratio as calculated from data. The dashed blue curve
is a heterogeneously frozen case using the lowpass-filtered data, and the solid curves are from homogeneously
frozen cases with the cubic-fit data. Shaded regions between the dotted lines are calculated from the DiSKICE
model fits to the mass ratio uncertainties. Shown here are examples of diffusion-kinetics-limited growth (blue),

diffusion-limited growth (red), possible columnar growth (green), and growth with a kinetics transition (purple).

52



914

915

916

917

918

919

N
n

B T T 7T T T T TTT7 T T T TTTT]
DZ — kinetics limit ]
4+ 2 - —]
S - black, DiSKICE faceted -
CC) - /QVOWth model blue, homogeneous -
S50 L2 — 3
o n % red, heterogeneous |
< _ i
) — diffusion limit -
. 1 -
03) ~ purple, homogeneous _3
o) | (kinetics transiton) INEE I 1 =
& osF —~— T Mg | B

o~ | | I * ............. ]

O_ Lo T Lo o v L1 1 11l

0.001 0.01 0.1 1

deposition coefficient, a

FI1G. 13. Power-law exponents as a function of the DiSKICE model-fit deposition coefficient. Points are
from the average P, with the error bars indicating the maxima and minima throughout growth. Values using
heterogeneously (red) and homogeneously frozen ice that follows faceted growth (blue) assume a constant c.
Data indicative of kinetics transitions (purple) include the ranges over which o varies (dashed black uncertainty)
with the points at the mass ratio weighted average values. Plotted over the data are the results of a ledge growth

simulation (solid black) with s., = 10%. The diffusion and kinetics limits are indicated by the grey lines.

53



920

921

922

923

924

925

0.25IIIIIIIIIlIIIIlIIIIlII

T=-42to-31°C
| r=15to 16 um
0.2 _
ledge nucleation |
s, =5t020% .

char

0.15—

dislocations

0.1 —

1/(4nrD) X dm/dt

r=19to 20 umT|

r=15to 16 um
0.05 —

r=10to 11 um

OIIII|IIII|IIII|IIII|IIII|IIII|
0 5 10 15 20 25 30

supersaturation, s, (%)

F1G. 14. Effective growth velocity averaged over the period of growth where the particle radius is between 15
and 16 pum versus supersaturation. Points are from heterogeneous (green) and homogeneous (purple) freezing
data, with black triangles representing particles with kinetics transitions. Green curves are regression fits to the
heterogeneous freezing data over the size ranges of 10 - 11 um (dashed), 15 - 16 um (solid), and 19 - 20 um
(dot-dot-dashed). Theoretical ranges for spherical growth with dislocation and ledge nucleation (s, between

5 and 20%) are shaded in blue. The maximum growth rate of a sphere, according to capacitance theory is in red.
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F1G. 15. Characteristic supersaturation versus supercooling (Harrington et al. 2019, based on their Fig. 1). We
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