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ABSTRACT

There are few measurements of the vapor growth of small ice crystals at

temperatures below -30◦C. Presented here are mass-growth measurements

of heterogeneously and homogeneously frozen ice particles grown within an

electrodynamic levitation diffusion chamber at temperatures between -44 and

-30◦C and supersaturations (si) between 3 and 29%. These growth data are

analyzed with two methods devised to estimate the deposition coefficient (α)

without the direct use of si. Measurements of si are typically uncertain, which

has called past estimates of α into question. We find that the deposition coef-

ficient ranges from 0.002 to unity and is scattered with temperature, as shown

in prior measurements. The data collectively also show a relationship between

α and si, with α rising (falling) with increasing si for homogeneously (hetero-

geneously) frozen ice. Analysis of the normalized mass growth rates reveals

that heterogeneously-frozen crystals grow near the maximum rate at low si,

but show increasingly inhibited (low α) growth at high si. Additionally, 7 of

the 17 homogeneously frozen crystals cannot be modeled with faceted growth

theory or constant α . These cases require the growth mode to transition from

efficient to inefficient in time, leading to a large decline in α . Such transitions

may be, in part, responsible for the inconsistency in prior measurements of α .
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1. Introduction27

Quantifying the vapor growth rate of ice crystals is challenging because it is governed by two28

connected processes: gas-phase diffusion and surface attachment kinetics (Markov 2003). During29

mass growth, water vapor molecules diffuse through the surrounding gas to reach the crystal. In30

the classical model of faceted growth, water molecules must then adsorb onto the crystal, though31

some molecules may be reflected from the surface. The fraction of molecules that adsorb onto32

the surface is often called a “sticking” efficiency (βs) and is thought to be near unity (Nelson33

2001). Adsorbed molecules (ad-molecules) then migrate across the surface until they encounter34

an attachment site, which is provided by ledges in the crystal surface produced by dislocations in35

the crystal lattice or by the nucleation of two-dimensional islands on the surface. Growth ledges36

may also be enhanced by stacking faults, where the growth layers interchange between the cubic37

and hexagonal forms. Ad-molecules that reach an attachment site can be incorporated into the38

crystal lattice, otherwise they will desorb from the surface. Additionally, the potential presence of39

quasi-liquid layers further complicates the incorporation of ad-molecules (Neshyba et al. 2016).40

Since most of the surface processes that govern the mass and axis growth of ice crystals have not41

been measured in detail, the overall influence of surface processes on growth are often represented42

by deposition coefficients (α) for each face. The deposition coefficient is defined as the ratio of43

the number of molecules incorporated to the total impinging on the crystal surface, and it can be44

interpreted as a growth efficiency. When α is near unity, the incorporation of molecules is highly45

efficient, and growth is limited by gas-phase diffusion (diffusion limited growth). Small values of46

α (<∼ 0.001) correspond to inefficient molecular incorporation, such that the particle growth is47

limited by attachment kinetics (kinetics limited growth). Most particles have growth rates between48

these two extrema (diffusion-kinetics limited growth).49
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Determining the influences of attachment kinetics on ice crystal growth rates has generally fol-50

lowed two different approaches. One approach focuses on the growth rates of crystals with fully-51

formed facets. Faceted growth theory is well-established (see Beckmann and Lacmann 1982; Sei52

and Gonda 1989; Nelson and Knight 1998; Libbrecht 2003) and there is substantial evidence that53

facets grow primarily by two mechanisms: spiral dislocations and ledge nucleation (Nelson and54

Knight 1998). These mechanisms produce variable deposition coefficients that depend on the55

supersaturation immediately above the crystal surface (surface supersaturation, ssur f ). Spiral dis-56

locations are permanent ledge sources producing generally efficient growth (Burton et al. 1951),57

with the deposition coefficient increasing steadily to unity as the ssur f increases (Fig. 1). In con-58

trast, ledge nucleation has a strong supersaturation dependence (Fig. 1) because ssur f must exceed59

a characteristic supersaturation, schar, so that ledges will form on the surface (Nelson and Knight60

1998). While classical theoretical expressions for dislocation (Burton et al. 1951) and ledge nu-61

cleation (Frank 1974) growth exist, most of the surface parameters required in those theories are62

unknown or cannot presently be measured. However, a convenient parameterization was formu-63

lated by Nelson and Baker (1996),64

α =

(
ssur f

schar

)M

tanh
(

schar

ssur f

)M

, (1)

where the surface growth mechanism is described by the parameter M that ranges from 1 to 3065

(Fig. 1). A value of M = 1 represents spiral dislocation growth, whereas M ≥ 10 represents ledge66

nucleation. Additionally, different faces of a crystal may have different growth mechanisms, and67

thus different deposition coefficients. For example, a columnar crystal may have outcropping68

dislocations on the basal facets and ledge nucleation on the prism facets (Wood et al. 2001).69

The use of faceted growth theory requires knowledge of the growth mechanism and schar, and70

though both have been measured in the laboratory those measurements are sparse and generally71
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confined to temperatures above -40◦C. Nelson and Knight (1998) determined that, at T > -20◦C,72

schar ranges between 0.15% and 2.5%, and that the variation of schar with temperature on the basal73

and prism facets is consistent with the primary habits. Harrington et al. (2019) have shown that74

these schar values, in combination with ledge nucleation mediated growth, can predict the primary75

habits of ice at liquid saturation. Measurements of schar for temperatures between -40 and -20◦C,76

provided by Bacon et al. (2003), Libbrecht (2003) and Libbrecht and Rickerby (2013), suggest77

that schar increases as temperature declines, with schar ∼ 4% at -20◦C, schar ∼ 7% at -30◦C, and78

schar ∼ 15% at -40◦C, which is consistent with theory. There are no precise measurements of schar79

for T < -40◦C, though Harrington et al. (2019) have provided estimates derived from prior data.80

The second approach for determining the deposition coefficient focuses on the growth of small81

crystals (radii ∼ 10 µm), typically those grown immediately following nucleation. Attachment82

kinetics have the most pronounced influence on smaller ice particles, but only as long as the83

deposition coefficient is constant (see Fig. 14, Harrison et al. 2016a). Unfortunately, when this84

assumption is used to extract values of α from the mass growth of small crystals, the results are85

seemingly inconsistent. For example, Magee (2006) grew individual ice particles in a vertical86

flow levitation cell at constant temperature and pressure, but with varying supersaturation and87

found α values of about 0.006. In contrast, Skrotzki et al. (2013) used the Aerosol Interactions88

and Dynamics in the Atmosphere chamber to grow populations of small crystals and determined89

that α for the population was about 0.7. The levitation diffusion chamber studies of Harrison90

et al. (2016a) found α values ranging from about 0.005 to 0.1. Other measurements (Choularton91

and Latham 1977; Haynes et al. 1992; Brown et al. 1996; Pratte et al. 2006; Earle et al. 2010;92

Kong et al. 2014) do not narrow the range on α . Differences in measurement techniques and93

uncertainties in the ice supersaturation likely contribute to the variability in the extracted values94

of α , however it is also unlikely that even small crystals can be treated with a single, unique value95
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of α , an approximation that is only valid for a very narrow range of conditions (pg. 160-161 of96

Strickland-Constable 1968; Nelson 2005). It is more likely that the physical properties of the ice97

particle surfaces varied among experiments, and during the growth of each individual crystal.98

Ice crystals can transition from one growth mechanism to another over time. For example, an ice99

particle’s dominant growth mechanism depends upon the ambient ice supersaturation (si, hereafter100

“supersaturation”) and the particle size. Immediately after a crystal forms by nucleation it is likely101

that numerous dislocations exist in the crystal lattice, and these dominate the growth as long as si102

remains low (Burton et al. 1951; Nelson 2001; Harrington et al. 2019). However, ledge nucleation103

must take over as the dominant growth mechanism at higher supersaturations and as crystal facets104

become larger, otherwise it would not be possible to produce thin plates and columns (Frank 1982;105

Nelson and Knight 1998; Harrington et al. 2019).106

Growth transitions also occur immediately following ice nucleation. The measurements of107

Gonda and Yamazaki (1978) show such a process as frozen droplets transition first to droxtals and108

finally to hexagonal prisms. The droxtal morphology consists of the low-index basal and prism109

facets of hexagonal ice, which grow slowly, and higher-index pyramidal facets that grow rapidly110

(examples in Figs. 1 and 2 from Nelson and Swanson 2019). Gonda and Yamazaki (1984) showed111

that the pyramidal regions grew rapidly until they disappeared, leaving only the slowly-growing112

basal and prism facets, and a hexagonal single crystal. The transition took only 2 - 4 minutes to be113

completed at -15◦C and low supersaturation (2%).114

Similarly, droplets frozen at temperatures below -20◦C are often polycrystalline and develop115

facets over time (c.f. Bacon et al. 2003). The interface between crystalographically dissimilar116

facets in polycrystalline ice (grain boundary), is a known source of dislocations (Furukawa and117

Kobayashi 1978) and can cause increased growth rates (Pedersen et al. 2011). Therefore, when118

a polycrystal is small, the growth may be dominated by dislocations and be relatively efficient.119
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However, as facets grow away from the grain boundaries, such as the arms of an emerging bullet120

rosette, the central portions of the crystal may be effectively starved of water vapor (Westbrook121

et al. 2008). Growth would then be dominated by the exposed facets. This transition apparently122

occurs more slowly than that of the single crystals discussed above; the results of Bacon et al.123

(2003) indicate that it may take tens of minutes before rosette arms fully emerge. The key point is124

that we should expect to find transitions in crystal growth mechanisms as facets emerge following125

ice nucleation in laboratory experiments that focus on newly formed ice crystals. We will refer to126

such variations in the dominant growth mechanism as “kinetics transitions”.127

In this article we provide estimates of the growth rates for heterogeneously and homogeneously128

nucleated crystals grown from the vapor in the Button Electrode Levitation (BEL) diffusion cham-129

ber (Harrison et al. 2016a). We develop new analysis methods that allow for the determination130

of α without the uncertainty inherent in the measured ambient supersaturation, which potentially131

biased prior estimates of α . The results indicate that the variability in the deposition coefficient132

may be due to variations in the growth mechanism of individual particles. Moreover, the analysis133

provides evidence that the growth rate depends on the nucleation mechanism, and that homoge-134

neously frozen ice exhibits evidence of kinetics transitions. In the following sections, we briefly135

describe our experimental procedure, review our growth model and analysis methods, and discuss136

the main results.137

2. Diffusion Chamber and Ice Growth Experiments138

The BEL chamber is described in detail in Harrison et al. (2016a), and therefore only a brief139

description of the chamber and its operating principles is provided here. The BEL chamber is140

a thermal gradient diffusion chamber, making it advantageous for growth experiments because it141

combines the stable thermal and supersaturated environment of a classic diffusion chamber with142

7



electrodynamic particle levitation. The growth chamber is a cylinder defined by the adjacent143

surfaces of two parallel copper plates, separated by 1.27 cm, and a Plexiglas R© ring, with an inner144

diameter of 10.2 cm, that composes the outer wall. The cylinder aspect ratio of 8:1 is large enough145

to avoid the possibility of wall effects (Elliott 1971). The temperature of each plate is controlled146

independently, and held constant, by circulating cryogen through Plexiglas R© housings on each147

plate. The BEL chamber operates at ambient atmospheric pressure (∼ 970 hPa), which we use in148

our data analysis.149

A charged water droplet, composed of high-pressure liquid chromatography (HPLC) water from150

J.T.Baker R© is launched into the chamber. The bottom copper plate is given a direct current volt-151

age that produces a vertically positive electric field such that the resulting electrostatic force on152

the particle counteracts gravity. This voltage is adjustable and is used to track changes to the lev-153

itating particle’s mass. The top plate is a grounded electrode. Four button electrodes on the top154

plate receive alternating current voltages and act as a quadrupole, producing a saddle point that155

centers and stabilizes the levitating particle. Furthermore, the saddle point has a net zero vertical156

force, such that it does not influence the voltage required to levitate the particle. Additionally, the157

amount of charge on the particle is an order of magnitude smaller than what is required to pro-158

duce electrically enhanced growth, and such growth is therefore unlikely (Davis 2010). A 5-mW,159

632.8-nm helium-neon laser is used to illuminate the particle, providing both particle position and160

scattering diffraction patterns. The particle initial radius is determined (to typically within 1 µm)161

by matching the measured diffraction patterns with Mie theory while the particle is still liquid, as162

in our prior work (Xue et al. 2005; Harrison et al. 2016a). A PythonT M program developed by our163

group maintains the particle vertical location by adjusting the bottom plate voltage. We use the164

recorded bottom-plate voltage and the initial particle size to determine the particle mass, since the165

ratio of the voltage to its initial value is equivalent to the mass, m, normalized to the initial mass,166
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m0. We use the mass ratio, mr ≡ m/m0, in our analysis because it is a directly measured quantity167

with little uncertainty. The mass ratio has an estimated maximum relative error of 5%, which we168

use in our analysis below.169

Supersaturation in the chamber is produced by diffusive transport of water vapor from the up-170

per, warmer plate to the lower, colder plate. Filter paper soaked in HPLC water is attached to171

both plates to serve as the vapor source, though there are holes in the filter paper on the top plate172

for the electrodes and the launcher opening. A recent experiment at low supersaturation suggests173

that these holes have little impact on the supersaturation at the particle location (see Appendix).174

Moreover, the experiment provides evidence that the supersaturation is near the value determined175

from standard, flat-plate diffusion chamber theory (e.g., Elliott 1971), which is used here. Super-176

saturation uncertainty is from the plate temperatures (± 0.2◦C) and chamber depth (± 0.1 mm)177

typically resulting in a relative uncertainty of about 10%.178

3. Analysis Methods179

a. Vapor Growth Model180

Interpretation of laboratory data requires a flexible model of vapor growth that includes the in-181

fluences of attachment kinetics. While hexagonal and cylindrical models of crystal growth exist182

(Nelson and Baker 1996; Wood et al. 2001), a simplified approach is better suited here, given the183

unknown geometry of the growing crystals. We use the Diffusion Surface Kinetics Ice Crystal184

Evolution (DiSKICE) model (Zhang and Harrington 2014), which approximates ice as a spheroid185

with two dimensions a and c. The DiSKICE model is valid for faceted growth, it compares well186

to hexagonal model solutions (Zhang and Harrington 2014), and has been successful in the inter-187

pretation of laboratory growth data (Harrison et al. 2016a; Harrington et al. 2019). DiSKICE uses188
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capacitance theory to model the far-field gas-phase diffusion to the particle,189

dm
dt

= 4πC(c,a)si ρeq

[
1

Dv
+

ρeqls
KT T

(
ls

RvT
−1
)]−1

︸ ︷︷ ︸
≡D

, (2)

where C(c,a) is the capacitance that depends on the a and c semi-axis lengths, Dv is the vapor190

diffusivity in air, KT is the thermal conductivity of air, Rv is the vapor gas constant, ls is the191

enthalpy of sublimation, ρeq is the ice equilibrium vapor density, and D is a growth factor that192

combines the vapor and thermal diffusivity (hereafter “vapor-thermal diffusivity”) following the193

form in Lamb and Verlinde (2011). In DiSKICE, the vapor diffusivity (Dv) is replaced with a194

kinetically-modified vapor diffusivity (Dkin) that includes the deposition coefficients for the two195

primary axes (a and c) of the crystal (αa and αc),196

Dkin =
2
3
× Dv(

4DvC
αcvvac +

C
C∆

) +
1
3
× Dv(

4DvC
αavva2 +

C
C∆

) . (3)

Here, vv is the mean speed of a vapor molecule and C∆ is the capacitance evaluated a distance ∆197

(the vapor mean free path) away from the crystal surface. Once Dkin replaces D in Eq. 2, the vapor-198

thermal diffusivity (D) becomes an “effective” diffusivity (De f f ≡ D(α,KT ,C)) that depends on199

attachment kinetics. Eq. 3 combines vapor diffusion in air with attachment kinetics that depend200

on size and supersaturation through α (Eq. 1). Attachment kinetics therefore reduce the mass201

growth of a crystal since Dkin is generally less than Dv, however as α approaches unity DiSKICE202

approaches the capacitance solution, or diffusion-limited growth.203

The particles grown in our diffusion chamber are relatively small (typical maximum radius of204

30 - 40 µm), and are likely isometric. Therefore our analysis will assume spherical growth, so that205

a= c≡ r and αa =αc≡α . However, we examine the theoretical limits of this assumption through206

calculations of non-isometric growth, which is treated in DiSKICE with a theory to distribute mass207
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along the crystal axes based on Nelson and Baker (1996),208

dc
da

=
αc

αa
≡ Γ. (4)

This equation is valid for faceted growth and assumes that ledge growth begins at crystal edges209

(Nelson and Baker 1996). Its use with Eqs. 1 and 2 produces relatively accurate evolution of single210

crystalline ice (Harrington et al. 2019).211

b. Scaled Growth Rate Analysis212

Prior studies of the growth of small ice crystals have often directly analyzed the timeseries213

of the particle mass, and mass derivative (e.g., Magee et al. 2006). This approach, however,214

requires knowledge of the supersaturation which is challenging to measure accurately in most215

laboratory devices. Uncertainty in the supersaturation has led to questions regarding the accuracy216

of deposition coefficient estimates made from measured growth rates (Magee et al. 2006; Skrotzki217

et al. 2013; Harrison et al. 2016a). It is therefore advantageous to develop an analysis procedure218

that does not directly depend on si. The analysis method developed below uses the time-averaged219

growth rate, which can be determined directly from the data, as a proxy for the supersaturation.220

The ice particle growth rate is scaled by the time-averaged value effectively removing the direct si221

dependence from the analysis. This analysis, or a modified version, may be useful for any single222

ice particle growth experiment where si is constant.223

We begin by assuming that our small particles are spherical (C = r) and average over the entire224

growth timeseries (Eq. 2) such that225

ṁ = 4πrDe f f si. (5)
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Since si is independent of time, we can use Eq. 5 to replace si in Eq 2, which gives the mass growth226

rate in terms of its time-average,227

ṁ =
rDe f f

rDe f f
ṁ =

rDe f f

r̄DR
ṁ where DR =

∑rDe f f

∑r
(6)

is the radius-weighted average effective diffusivity. We next normalize Eq. 6 by the mean mass228

growth rate (ṁ), and rewrite it in terms of the mass ratio, mr,229

ṁr

ṁr
=

m1/3
r De f f

m1/3
r DR

, (7)

which applies to spherical, diffusion-kinetics growth.230

An advantage of Eq. 7 is that the diffusion and kinetics limits can be determined directly from231

the data. In diffusion-limited growth, where α→ 1, Dkin approaches Dv, De f f is constant, and the232

capacitance model (Eq. 2) is recovered, leading to233

ṁr

ṁr
=

r
r̄
=

m1/3
r

m1/3
r

. (8)

Conversely, when growth is kinetics-limited (α → 0) gas-phase diffusion no longer limits the234

growth rates. In this case, De f f approaches αr (Harrington et al. 2009, their Eq. 15) and the mass235

growth rate becomes proportional to r2:236

ṁr

ṁr
=

r2

r2
=

m2/3
r

m2/3
r

. (9)

Instead of using Eqs. 7-9 in our analysis, we have found it more convenient to use a scaled mass237

growth rate (Gs), which is defined using the kinetics limit as a basis,238

Gs ≡
ṁr

ṁr
m2/3

r . (10)
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Finally, we take the natural logarithm of Gs, and following the same procedure for Eqs. 7 and 8239

gives240

lnGs = ln

m2/3
r

m1/3
r

+ 1
3

lnmr + ln
[

De f f

DR

]
(diffusion-kinetics limited growth)

lnGs = ln

m2/3
r

m1/3
r

+ 1
3

lnmr (diffusion-limited growth)

lnGs =
2
3

lnmr (kinetics-limited growth).

(11)

All of the terms in Eq. 11 can be determined directly from the data, with the exception of the241

effective diffusivity terms. The effective diffusivity depends weakly on temperature and strongly242

on the deposition coefficient and size. The DiSKICE model can be used to determine De f f /DR243

and, therefore, α through best fits to the scaled mass growth rate. This procedure is advantageous244

because it does not require the supersaturation, which is not directly measured, and it uses the245

mass ratio, which we directly measure with low uncertainty.246

Theoretical calculations of Gs using DiSKICE illustrate the advantages and limitations of this247

approach. Figure 2 shows an example calculation for a spherical ice particle growing from an248

initial radius of 10 µm at a temperature of -40◦C and si =10%, conditions similar to our experi-249

ments. Note that ln(Gs) curves for the diffusion and kinetics limits intersect once, and produce a250

bounding region for diffusion-kinetics growth. Ice particles undergoing diffusion-kinetics limited251

growth were simulated either with a constant α (Fig. 2a) or using ledge nucleation (M = 10) with252

a given schar (Fig. 2b). In either case, when α is large (α > 0.1) or schar is small (which produces253

larger α), the scaled growth rate is near the diffusion limit. Particles growing with lower α or254

higher schar follow curves that are between the diffusion and kinetics limit, but the curves intersect255

at the same location.256
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The scaled growth rate analysis is limited in that it is strictly valid for spherical (isometric) par-257

ticles. Our measured crystals remain small, but some non-isometric growth may occur. It would258

then be useful to know whether non-isometric growth at the diffusion limit (high α) could be259

falsely identified as diffusion-kinetics limited growth (low α), in particular. DiSKICE simulations260

indicate that false identification is unlikely since diffusion-limited columns and plates (aspect ra-261

tios between 0.1 and 10) have scaled mass growth rates that do not deviate far from the diffusion262

limit calculated for spherical crystals (Fig. 2a). Additionally, non-isometric crystals growing by263

ledge nucleation (schar between 5 and 10%), with low α , have scaled growth rates that fall within264

the kinetics and diffusion limits determined for spherical growth (Fig. 2b). However, it is possible265

for moderate kinetics influence on non-isometric growth to be misidentified as diffusion limited266

(i.e., schar < 10%). That is, the scaled growth rate analysis for non-isometric particles can pro-267

duce false-positive results of diffusion-limited growth, even though the crystals grew with kinetics268

limitations. Together, these results indicate that deviations from the diffusion limit provide an esti-269

mate of the overall kinetics limitations of growing particles, even if the particles are non-spherical.270

However, this method alone does not conclusively identify diffusion-limited growth.271

c. Power-law Analysis272

A second analysis method that is independent of the supersaturation originates from expressing273

the mass growth rate of an ice crystal in a power-law form with respect to size or mass. Often,274

dm/dt ∝ mP/3, where P = 1 for diffusion-limited growth (Eq. 8) and P = 2 for kinetics-limited275

growth (Eq. 9) (see also Swanson et al. 1999). This form is possible because the effective diffu-276

sivity, De f f in Eq. 2 has a size-dependent power law as shown by the solid curves in Fig. 3. We277

can therefore write the effective diffusivity as278

De f f = D0mn/3
r , (12)
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where D0 is the effective diffusivity at the initial particle size (mr = 1). For faceted growth, the279

exponent n takes a value between 0 (diffusion limited) and 1 (kinetics limited). Rewriting Eq. 2280

in terms of the mass ratio, substituting in Eq. 12 for D, and normalizing by the initial growth rate281

(ṁ0), shows that for diffusion-kinetics limited growth282

ṁ
ṁ0

= m
1+n

3
r . (13)

We isolate the power exponent, 1+n, by taking the natural logarithm of both sides of Eq. 13 and283

rearranging such that284

3
ln ṁ

ṁ0

lnmr
= 1+n≡ P. (14)

The power exponent, P, is independent of the supersaturation and is only weakly dependent on the285

initial particle radius. Moreover, note that the left-hand side of Eq. 14 can be computed directly286

from the mass data without the use of a growth model. In our analysis, we use ṁ0 with a short287

time-average to remove high frequency noise (see §4a).288

Theoretical calculations with the DiSKICE model reveal the advantages and limits of the power-289

law approach (Fig. 4). Like the scaling analysis, P values for isometric growth are confined290

between the diffusion and kinetics limits, with larger deposition coefficients and smaller char-291

acteristic supersaturations resulting in values of P nearer the diffusion limit. Diffusion-limited292

non-isometric growth produces values of P that do not deviate far from the diffusion limit for293

spherical growth, indicating that this method, like the scaled growth rate, will not falsely identify294

diffusion-limited, non-spherical growth as kinetically-limited. These calculations also suggest that295

values of P & 1.1 indicate growth is limited, in part, by attachment kinetics, regardless of parti-296

cle shape. The power-law analysis provides a robust estimate of attachment kinetics influence on297

growth, like the scaled growth rate analysis. Unlike that method, however, the shape of the curve298
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differs for isometric and non-isometric growth, which can produce P < 1 during early stages of299

non-isometric growth.300

4. Results301

Mass ratio timeseries taken from ice crystals grown in the BEL chamber are analyzed in this sec-302

tion. Ice crystals were nucleated both homogeneously (Pokrifka et al. 2018) and heterogeneously303

using the bionucleant Snomax R© (Harrison et al. 2016b) in the experiments. The timeseries of the304

ice crystals nucleated heterogeneously were presented in a prior work (Harrison et al. 2016a) and305

will be used in the analysis here. In Table 1, we give the temperatures and supersaturations under306

which the particles grew, and their initial radii (generally r0 < 15µm). We do not include the final307

particle sizes, but they rarely grow beyond a radius of 60 µm. Figure 5 shows a representative308

sample of the data, including two experiments that produced very long periods of growth, though309

the particles usually grew for less than 1500 seconds. The data were originally recorded at 10 - 30310

Hz, thus we plot the data at a much lower frequency to avoid cluttering the figure, but do include311

enough points such that the trend is obvious. Though the growth timeseries for heterogeneously312

and homogeneously nucleated ice appear to be similar (compare Fig. 5 to Fig. 4 from Harrison313

et al. (2016a)), analysis of the growth rates reveals important differences.314

a. Refining Raw Data315

Since our analysis methods require the mass ratio derivatives, the particle timeseries must be316

smoothed to remove noise and low-frequency features caused by the software controlling particle317

levitation. We use a low pass filter with a sliding window that is operated forward and backward.318

Filtering both forward and backward avoids the phase shift that occurs from forward-only filtering.319

A different window width is used in each case, such that noise is sufficiently removed and and the320
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derivatives can be computed. However, a window’s-width of data are always lost at the beginning321

and end of the timeseries, and some low frequency oscillations are only partially removed by the322

filter. Because lower frequency features are challenging to remove, we also analyze the data by323

first fitting them with cubic polynomials following Magee (2006). Doing so effectively removes324

the low-frequency features but retains the overall growth trend. We find that both of these methods325

of data smoothing produce timeseries and derivatives in close agreement with the raw data (Fig. 6).326

Note that the derivatives of the lowpass-filtered and cubic-fit data both follow the same trend as327

the smoothed growth rate determined from the raw data, and all three fall within the uncertainty328

range determined from the uncertainty on mr. The smoothing process shown in Fig. 6 is similarly329

accurate for all of the other datasets. Because low-frequency features are removed by the cubic330

fits to the data, they are used in the analysis below, unless otherwise stated.331

b. Scaled Growth Rate Results332

Applying the scaled growth analysis from §3b to the heterogeneously frozen drops indicates that333

each individual timeseries can be modeled by faceted growth theory (Eqs. 1 - 3). For example, the334

crystal in Fig. 7 has a scaled growth rate that lies within the diffusion- and kinetics-limit boundaries335

(Fig. 7a), and has a curve shape similar to faceted growth theory (Fig. 2). As in Harrison et al.336

(2016a), we fit the data with DiSKICE assuming a constant α . This is justifiable if the particles337

grow by a single growth mechanism (M = constant in Eq. 1) and they remain small (r ∼ 10 -338

30 µm). DiSKICE model fits to both the lowpass-filtered data and the cubic-fit data accurately339

simulate the particles’ scaled and actual growth rates (Fig. 7b). The case shown in Fig. 7 is clearly340

limited by attachment kinetics, and the model fits to the data indicate that α = 0.008± 0.002,341

with the uncertainty determined by using the uncertainty in the mass ratio growth rates. This α342

is similar to the α = 0.009± 0.003 determined by Harrison et al. (2016a) using fits to the mass343
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ratio timeseries. All of the heterogeneously frozen droplets have scaled growth rates similar to344

that shown in Fig. 7, with varying degrees of kinetic limitation.345

Originally, Harrison et al. (2016a) determined that all of their particles grew with deposition346

coefficients less than 0.1, but the scaled growth rate analysis indicates that the low si cases grew347

with somewhat higher α , sometimes near unity. Since the scaled growth rate analysis uses the348

measured mean-mass growth rate instead of the unmeasured supersaturation used by Harrison349

et al. (2016a), these new results are arguably more reliable. Consequently these results suggest350

that the supersaturation determined from the two-dimensional chamber model of Harrison et al.351

(2016a) may be too high when si is low. The chamber model is most sensitive to the uncertainty in352

the ice coverage on the top plate in low si conditions, understandably leading to the largest errors353

occurring at the lowest si. The low si experiments from Harrison et al. (2016a) are, therefore,354

modified the most by the scaled analysis, though the general variability of α with temperature355

(green points in Fig. 8) is similar to that shown in Fig. 13 of Harrison et al. (2016a). The scaled356

growth analysis shows that the heterogeneously frozen particles demonstrate both growth that is357

diffusion-limited or diffusion-kinetics limited, as α ranges between 0.008 and unity.358

Ten of the seventeen experiments with homogeneously frozen droplets grow similarly to the359

heterogeneous freezing cases. Some data show growth at the diffusion limit (Fig. 9), and others360

demonstrate the influence of attachment kinetics (Fig. 10). In all of these cases, there is good361

agreement between the DiSKICE model fits to the scaled growth rate and mass ratio growth rate,362

as determined from both the lowpass-filtered and the cubic-fit data. These results indicate that the363

classical model of faceted growth fits the general growth features of the data.364

There are, however, seven of the seventeen cases where the homogeneously frozen ice growth365

data cannot be modeled using current theory. These cases have scaled growth rates that reside366

outside of the region between the diffusion and kinetics limits (Fig. 11a), and they have nearly367
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constant mass growth rates (Fig. 11b). It is worth noting that similar growth rates have been368

observed by Gonda and Yamazaki (1984) (their Fig. 3) and Nelson and Swanson (2019) (their Fig.369

5) for crystals with emerging facets, where the growth rates initially rise, but asymptote in time. If370

our crystals grew similarly, it is then not surprising that fitting the growth rates assuming faceted371

growth using DiSKICE initially underestimates, then overestimates, the growth rates (Fig. 11,372

black curve). Recall that the mass growth rate is proportional to the ice particle size and the373

effective diffusivity (Eq. 2), both of which increase in time for faceted growth. Thus, a constant374

mass growth rate in a static environment is only achievable by decreasing the effective diffusivity375

with size, which only occurs if the deposition coefficient falls as the particle size increases. This is376

consistent with what can occur during a kinetics transition, when fast growing regions disappear,377

or become shadowed, leaving only slow growing regions, and causing a substantial decline in the378

deposition coefficient.379

Other processes that can produce unusual growth rates include changing aspect ratios, the loss380

or gain of charge on the particle, and gas contamination. Changes in aspect ratio generally lead381

to increases in growth rate with size, not decreases. Charge loss or gain has never been detected382

in prior studies with the BEL chamber. For instance, equilibrated solution droplets were levitated383

for long periods without changes in size or location. The uptake of foreign gases potentially could384

inhibit growth, but this effect would most likely diminish, not amplify, as the particle grew. An385

amplification in the effect would be required to produce a roughly constant growth rate. Though386

these processes seem unlikely to cause the observed growth rates, there could be other processes387

occurring of which we are unaware.388

At this time, no model exists for the growth of a particle that undergoes a transition from one389

mode of growth to another. However, the process can be roughly approximated by allowing M390
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(the exponent on α in Eq. 1) to change as the particle increases in size:391

M = 1+9
[

r− r0

r f − r0

] 3
4

, (15)

where r0 and r f are the initial and final particle radii, respectively. This model allows particles392

to begin with efficient growth (spiral dislocations, M = 1) and transition to less-efficient growth393

(ledge nucleation, M = 10) over time. As a result, α will decline substantially along with the394

effective diffusivity (dashed curves in Fig. 3). The exponent of 3/4 was chosen to produce a395

nearly constant mass growth rate, as shown by our measurements. Using this model to fit the data396

requires the supersaturation-dependent α (Eq. 1) and, therefore, schar is determined from the fitting397

procedure. We emphasize that Eq. 15 is not a physical model of faceting transitions, but instead398

is a qualitative model that mimics the data and has plausible behavior consistent with a kinetics399

transition. For example, a spherical crystal may in reality begin with rough growth (M ∼ 0) then400

transition to dislocation growth (M = 1). Consequently, the schar determined with this method401

should be viewed with caution, since the fitting uses a number of empirical parameters and a402

hypothetical model (Eq. 15).403

Including Eq. 15 in the DiSKICE model allows us to simulate nearly constant mass growth rates,404

and fit the growth data shown in Fig. 11. The resulting fits to the scaled growth rates follow the405

data and reside outside of the diffusion- and kinetics-limit boundaries. The model suggests that406

this is caused by a deposition coefficient that decreases by about an order of magnitude during407

growth (Fig. 11, α decreases from 0.025 to 0.0016). Since α varies greatly during growth for408

these cases, we show the range of α variability in the error bars. The remaining six experiments,409

which are all similar to that shown in Fig. 11, were also well fit by this model (Eq. 15).410

The deposition coefficients derived from the homogeneously frozen droplets that can be fit with411

faceted growth theory (Eqs. 1 - 3) range from 0.004 to unity, which is similar to the heteroge-412
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neously frozen particles, but the experiments that require a kinetics transition (Eq. 15) cause α to413

fall below 0.002 by the end of particle growth (Figs. 8 and 11). Furthermore, the rapid decline414

in α skews the mass-ratio weighted mean α towards the minimum value. All of the α values that415

we have determined are scattered with temperature (Fig. 8a) as has been shown in prior studies416

(Skrotzki et al. 2013), but they show some supersaturation dependence (Fig. 8b). The deposition417

coefficients derived from the heterogeneously frozen drops decrease with increasing si, which is418

counter to the supersaturation-dependence expected for faceted growth theory (Fig. 1). However,419

α values determined from the homogeneous freezing cases increase with si. The potential cause420

for these differences will be discussed in §5.421

c. Power-law Results422

Qualitatively, the power-law analysis produces similar results to the scaled growth rate analysis,423

which is noteworthy since the two methods are independent: The scaled growth rate analysis424

makes no assumption about the functional dependence of De f f , whereas the power-law analysis425

does. All of the heterogeneously frozen drops from Harrison et al. (2016a) and some of our426

homogeneously frozen drops have P exponents within the range expected for faceted ice growth,427

as shown for a representative sample in Fig. 12. The curves, which are derived from the data using428

Eq. 14, are remarkably similar to the theoretical calculations (Fig. 4). Some of these data have429

P values that begin with values less than 1, but exceed 1 by the end of growth (green curve in430

Fig. 12), which may indicate that the particle became non-isometric (see Fig. 4, grey shade). The431

remaining homogeneous freezing cases have P < 1 for their entire growth period, similar to the432

purple curves in Fig. 12, which the faceted growth model cannot reproduce.433

For P < 1, it must be the case that n < 0 in Eq. 14, which indicates that the effective diffusivity434

decreases with particle size (see Eq. 12) as would be expected in a kinetics transition. Indeed,435
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DiSKICE simulations that include a kinetics transition (Eq. 15) all show a decreasing effective436

diffusivity with increasing mass (Fig. 3), indicating that the model can reproduce values of P < 1.437

All seven of the homogeneously-frozen crystals that appear to be undergoing kinetics transitions438

have P < 1.439

We should expect P to be correlated with α if crystals undergo classical faceted growth. Indeed,440

the P-values determined from the data are strongly correlated to the α values derived from the441

model fits for crystals nucleated heterogeneously, and for homogeneously nucleated crystals that442

appear to follow faceted growth (Fig. 13). The clear organization of the data is in sharp contrast to443

the scattered α−T relationship often shown in works on the deposition coefficient (e.g., Skrotzki444

et al. 2013, and our Fig. 8a). The decline in P with increasing α makes physical sense for faceted445

growth; since P = 1 and α = 1 both pertain to diffusion-limited growth, while P = 2 and α → 0446

represent kinetics-limited growth. The dependence of P on α is also remarkably consistent with447

the general shape of the curve derived from Eqs. 1 - 3 for faceted growth (Fig. 13, black curve).448

This suggests that the model for α is consistent with these growth data. However, the data that449

indicate the occurrence of kinetics transitions show a different trend, where P seems to increase450

with α , but such a relationship is poorly constrained due to the large temporal variability in both451

P and α (as indicated by the error bars).452

5. Discussion453

Our results indicate that the method of nucleation may be critical for the early stages of ice454

vapor-growth. Each timeseries for heterogeneously frozen ice could be represented by the faceted455

growth model, but the homogeneously frozen ice requires a kinetics transition model in 7 out of 17456

cases. If the HPLC was somehow contaminated with nuclei in the other 10 cases, causing them to457

have frozen heterogeneously, then the data would show a distinct divide in the behavior of growth458
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from homogeneously versus heterogeneously frozen drops. While contamination is possible, it459

seems unlikely given past experiments with this chamber. In past studies, we never succeeded in460

freezing HPLC water droplets at temperatures above -36◦C, and this is the main reason Harrison461

et al. (2016a) used Snomax R© in their studies.462

Despite only a few cases requiring a kinetics transition model, it is likely that all of the measured463

particles undergo a kinetics transition, since they begin as rough spheres upon which facets emerge.464

The transitions may simply occur on different timescales. The data that we can simulate with465

faceted growth may have involved kinetics transitions, but only briefly at the beginning of growth.466

For instance, it is possible that the heterogeneous ice particles measured by Harrison et al. (2016a)467

grew into single-crystals, which can transition from a sphere to a hexagonal prism within a couple468

minutes (Gonda and Yamazaki 1984, Fig. 1). If this occurred, the transition may not be clearly469

evident in our analysis. In contrast, some of the homogeneously frozen droplets could have formed470

polycrystals, which is very common at low temperatures. The growth of facets away from the grain471

boundaries can take tens of minutes (Bacon et al. 2003, Fig. 8) and, if this occurs, it would be more472

apparent in our growth data. It is important to note that this assumes that polycrystaline ice would473

begin with rapid growth. Though intersecting facets can produce rapid growth (Pedersen et al.474

2011), it is unknown whether this happens during the emergence of facets (Strickland-Constable475

1968, pg. 161). Regardless, the kinetics transition for a single-crystal may be more challenging to476

detect, given the shorter transition period, than for a polycrystal. Additionally, the particle’s initial477

size may influence the timescale on which a kinetics transition occurs. For example, one would478

expect the emergence of facets to require more time over a larger surface area sphere. Indeed, our479

three largest homogeneously frozen particles (r0 = 16 - 27 µm) all require a kinetics transition480

model, and most of the remaining homogeneously frozen particles were a few microns larger in481

initial radius than the heterogeneously frozen particles (compare in Table 1). Unfortunately, we482
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cannot measure the shape of the small particles, and future work should endeavor to image particle483

shapes during growth. However, the evidence of kinetics transitions that we have found may help484

to reconcile the disagreement among prior measurements of the deposition coefficient (e.g., Magee485

et al. 2006; Skrotzki et al. 2013; Harrison et al. 2016a). Kinetics transitions occurring shortly486

after freezing would lead to different deposition coefficients being determined depending on if the487

measurements were made before (high α), after (low α), or during (variable α) the transitions.488

Another distinction between the two datasets is how they correlate with supersaturation. The489

deposition coefficients determined from homogeneously-frozen ice rise with the supersaturation,490

which is as expected from theory (Fig. 1), while the opposite is true for heterogeneous freezing491

(Fig. 8b). The latter behavior is more clearly shown in the growth rate (Fig. 14), dm/dt, when it492

is normalized by 4πrD. This normalization reduces the temperature and size dependences, and493

leaves only the supersaturation and kinetics dependences. To ensure the growth rates normalized494

by 4πrD are robust, we average them over 1-micron size ranges (r = 15 - 16 µm in Fig. 14),495

which makes them independent of the original smoothing method (not shown). Additionally, this496

normalized growth rate can be compared to theoretical calculations of the maximum diffusion-497

limited rate, and the faceted growth rate assuming either dislocation or ledge nucleation growth.498

The heterogeneously frozen particles have increasing normalized growth rates with supersaturation499

(Fig. 14), though the values are generally below the maximum rate and have a different slope than500

diffusion limited theory (Fig. 14, red line). The normalized growth rates at low-si may be described501

by dislocation growth (high α), and are near the maximum rate, but the higher-si data fall roughly502

into the ledge nucleation growth (low α) region. The behavior of declining α and normalized503

growth rates with si is inconsistent with faceted growth that assumes a single growth mechanism,504

but it is broadly consistent with prior studies (Nelson and Knight 1998; Harrington et al. 2019).505

Those studies show that crystals at low si appear to grow by dislocations, as originally introduced506
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by Burton et al. (1951). Conversely, at high si (when si > schar), ledges should nucleate readily,507

and growth can become instead dominated by ledge nucleation (Nelson and Knight 1998). It is508

also possible that self-perpetuating stacking faults may influence the growth, as Ming et al. (1988)509

show this growth mode to produce a minimum growth rate at mid-range values of si. Unlike510

heterogeneous freezing, homogeneously frozen particles show a more complex supersaturation511

dependence of the normalized growth rate. The crystals that can be modeled with faceted growth512

(Fig 14, purple circles) show a general increase in the normalized growth rate with si, similar to the513

trend in α (Fig. 8). The crystals that require a kinetics transition show no consistent dependence514

on si (Fig. 14, black triangles).515

Figure 14 also demonstrates that the normalized growth rates for heterogeneously frozen516

droplets increase with particle radius as the radius range increases from 10 - 11 µm to 15 - 16517

µm to 19 - 20 µm, which is not possible with diffusion-limited growth under constant super-518

saturation (Eq. 2). However, this size-dependence is consistent with attachment kinetics, since519

(1/r)dm/dt ∝ r (Eq. 9) under diffusion-kinetics limited growth. On the other hand, there is no520

correlation between the normalized growth rates and size for the homogeneously frozen droplets.521

Though, some crystals grew near the maximum rate, where a size dependence would be difficult522

to discern.523

We can estimate schar for some of our data, particularly when α is small (< 0.05) and attachment524

kinetics dominate the growth. This is accomplished by fitting the growth rates with schar assuming525

either a ledge growth model (M = 10) or a kinetics transition from dislocation to ledge growth526

(M → 10). While our values cover a wide range of 1.63 - 34.0% (Fig. 15), the general trend527

suggests that schar increases commensurately with supercooling, a result that is consistent with all528

past studies (Nelson and Knight 1998; Harrington et al. 2019). Interestingly, the data that can be529

fit using the ledge growth model tend to cluster at higher values of schar than the data that require530
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kinetics transitions. This is not surprising, since a kinetics transition begins with a reduced kinetic531

resistance to growth. As with the analysis of kinetics transitions (Eq. 15), these results depend on532

the supersaturation, and thus have more substantial uncertainties in comparison to the scaled mass533

growth rate results, and should therefore be treated with caution.534

Future studies are required to gain insight into the impacts of ice nucleation and kinetics transi-535

tions on the early growth of ice. Most notably, images of growing particles would be useful, even536

if they are only available at the end of the growth when particles are large. Such images could pro-537

vide evidence of the type of transition that occured. Furthermore, growth experiments conducted538

at lower pressures would be useful: The gas phase resistance for water vapor transport is reduced539

at low pressure, thus increasing the diffusivity and the particle’s sensitivity to the surface kinet-540

ics. Under lower pressure, the effects of a kinetics transition should be easier to detect. Finally,541

ice growth experiments using a variety of ice nucleating particles or solutions could determine if542

detectable kinetics transitions are truly unique to homogeneously frozen crystals.543

6. Summary544

Theoretical models of ice crystal growth from the vapor are largely unconstrained at tempera-545

tures below -20◦C, due to a lack of sufficient laboratory data. Thus, we measured the mass ratios546

of homogeneously frozen crystals grown within the Button Electrode Levitation (BEL) diffusion547

chamber (Harrison et al. 2016a) at temperatures between -44 and -36◦C. These data, and the het-548

erogeneously frozen ice growth data from Harrison et al. (2016a), were analyzed with two new549

methods that are independent of the ambient supersaturation, a quantity that is challenging to mea-550

sure in laboratory devices. The first analysis method uses the time-average of the mass growth rate551

instead of the supersaturation. Scaling the growth rate by its mean isolates the effects of the sur-552

face attachment kinetics. Fitting the scaled growth rate with the Diffusion Surface Kinetics Ice553
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Crystal Evolution (DiSKICE) model (Zhang and Harrington 2014) then estimates the deposition554

coefficient, α . The second analysis method utilizes the power law dependence in size of the mass555

growth rate; the power-law exponent can be calculated directly from the data, providing another556

estimate of the attachment kinetic influences on growth.557

We found that the deposition coefficient ranges between 0.002 and unity, with indications of a558

supersaturation dependence and no dependence on temperature (Fig. 8). Additionally, we found559

that the method of ice nucleation influenced the growth. Individual timeseries data from the het-560

erogeneously frozen drops and some of the homogeneously frozen drops could be modeled by561

faceted growth theory. Modeling the remaining homogeneously frozen drops required a “kinetics562

transition”, in which the growth mechanism changed from efficient (dislocations) to inefficient563

(ledge nucleation). Prior measurements (e.g., Gonda and Yamazaki 1984; Bacon et al. 2003) show564

that frozen droplets transform into faceted crystals over time, such that fast-growing regions are565

replaced with slow-growing facets, which provides the basis for our modeled kinetics transition.566

Such a process causes a rapid decline in α , rendering the use of a single deposition coefficient567

value meaningless. All frozen droplets probably experience a kinetics transition as facets emerge,568

which could in part be responsible for the discrepancy in prior measurements of α .569

Analysis of mass growth rates normalized by 4πrD, where r is a 1-µm radius range and D is the570

effective diffusivity showed that the heterogeneously frozen crystals often had normalized growth571

rates that increased with both size and supersaturation, but were well below the theoretical max-572

imum, which is consistent with kinetics-limited growth. On the other hand, the homogeneously573

frozen crystals demonstrated no size dependence, and the normalized growth rates of those that574

could be fit with a faceted growth model were often near the theoretical maximum. The homoge-575

neously frozen crystals that required a kinetics transition did not have a consistent supersaturation576

trend in the normalized growth rate.577
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Our results suggest that the early growth of ice is significantly impacted by the ice nucleation578

mechanism, which appears to affect the attachment kinetics. Furthermore, crystals that appear to579

undergo a kinetics transition have constant growth rates for extended periods of time. Kinetics580

transitions could influence cloud processes that occur near ice nucleation zones in cold clouds.581

APPENDIX582

Determination of the supersaturation in laboratory devices requires either a direct measurement,583

or a model that is calibrated with indirect measurements. We determine si in the BEL chamber584

using a calibrated, two-dimensional diffusion chamber model that assumes that the electrodes and585

launcher opening areas are not covered with ice (uncovered areas). In Harrison et al. (2016a), this586

model was calibrated by direct measurements of si using equilibrated levitated sulfuric acid solu-587

tion droplets following our prior work (i.e., Xue et al. 2005). In that experiment, si was determined588

to be 28.6 ± 1.8%, which is about 12% lower than the value determined from flat-plate diffusion589

chamber theory (32.6 ± 2%, Harrison et al. 2016a, their Fig. 2b). The model was then calibrated590

by adjusting the uncovered areas until a best fit with the measurements were produced. However,591

a recent experiment indicates that this calibration is too aggressive: The calibrated model predicts592

that the chamber should be sub-saturated when the difference in temperatures between the plates593

is relatively small. This sub-saturation remains, though it is slightly smaller, even if a third dimen-594

sion (horizontal y-dimension) is included in the chamber model (not shown). However, as shown595

below, no such sub-saturation is observed with growth measurements under these conditions.596

Figure 16 shows a timeseries of the supersaturation estimated from an experiment conducted597

with a very small temperature difference (∼ 1◦C) between the plates. This experiment was con-598

ducted with a homogeneously frozen HPLC water droplet that grew slowly for nearly 3 hours.599

The particle remained small and so was likely isometric. Moreover, because the crystal was ac-600
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tively growing at very low si the deposition coefficient must be relatively high, which is consistent601

with growth theory (see the Introduction). We therefore estimated si by assuming rough growth602

(α = 1), which should produce a low estimate of si. (The supersaturation would be larger if603

α < 1.) The supersaturation determined from the measured growth rate varies from about 0.2 to604

0.8%. For these conditions, the chamber model suggests sub-saturated conditions (around -0.3%),605

which clearly contradicts the growth measurements. We have also included the si calculated with606

flat-plate diffusion theory along with the range in that solution produced by including a ± 0.2◦C607

uncertainty on the plate temperature measurements. Note that the si estimated from the growth608

data falls well within the range of the flat-plate solution. This result provides strong evidence that609

the chamber supersaturation is larger than that determined by the chamber model, and is close to610

the value determined from flat plate diffusion theory. While this result may seem counter-intuitive,611

it is physically plausible: Gas phase diffusion should cause the opening for the droplet launcher612

to become nearly saturated with water vapor, and the electrodes may gain an ice coating during613

experiments.614

It is important to note that the upper plate temperature drifted slowly with time in this experiment615

due a build up of ice in the cryogen housing. However, the temperature changed by less than616

0.9◦C over nearly 3 hours. This very slow drift in the temperature produced no transients in the617

vapor field, since calculations of the supersaturation with the time-dependent diffusion equation618

are indistinguishable from the steady-state solution (not shown).619

To calibrate the chamber model with the experimental result, we reduced the uncovered areas620

to reproduce the minimum observed si of 0.21 ± 0.01%. This reduction in area is based on the621

above argument that the launch opening likely fills in with vapor and that the electrodes may gain622

a thin layer of frost. When we take into account the uncertainty in the temperature measurement623

(a maximum plate temperature difference of 1.4◦C), we must reduce the uncovered area by 60%624
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of the physical area, at minimum, to reproduce the measured si. However, reducing the uncovered625

areas by 60% produces supersaturations that are not much different from the values determined626

from flat-plate diffusion theory (0.13% vs. 0.21%). Therefore, it appears that the BEL chamber627

may be approximated as a flat-plate diffusion chamber.628

Be aware that this result is not inconsistent with the result of Harrison et al. (2016a). Simulations629

with the chamber model show that the supersaturation at the particle growth location is not very630

sensitive to the uncovered areas at the high-si used in their case (about 28%). High supersaturations631

are produced by relatively large plate temperature differences, which tend to drive very rapid632

diffusion rates. We suspect that this is the reason for the lack of sensitivity to the uncovered area633

at high si. Hence, it would not be easily possible to detect the effects of the uncovered areas on634

si in the experiments of Harrison et al. (2016a). Moreover, as Harrison et al. (2016a) pointed635

out, using solution drops to calibrate the chamber is potentially problematic in that the ice surface636

becomes contaminated. Solution contamination on the bottom plate demonstrably lowers si, and637

could account for the somewhat lower si measurements of Harrison et al. (2016a) compared to the638

flat-plate diffusion theory solution.639
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TABLE 1. Experimental conditions, temperature (T ) and supersaturation (si), and initial particle radii (r0).

Column (a) applies to homogeneous freezing experiments, and column (b) show data from heterogeneous freez-

ing experiments from Harrison et al. (2016a).

754

755

756

(a) T (◦C) si (%) r0 (µm) (b) T (◦C) si (%) r0 (µm)

-43.5 ± 0.1 17.2 ± 1.5 10.55 ± 0.16 -35.7 ± 0.1 28.6 ± 2.1 8.9 ± 0.7

-43.5 ± 0.1 17.4 ± 1.5 9.92 ± 0.38 -35.7 ± 0.1 28.6 ± 2.1 8.2 ± 0.5

-43.4 ± 0.1 12.9 ± 1.3 21.55 ± 0.35 -35.7 ± 0.1 28.6 ± 2.1 9.2 ± 0.5

-43.4 ± 0.1 17.1 ± 1.4 8.65 ± 0.39 -35.7 ± 0.1 28.6 ± 2.1 10.3 ± 0.5

-42.4 ± 0.1 17.7 ± 1.5 10.82 ± 0.42 -33.8 ± 0.1 17.0 ± 1.1 9.86 ± 0.25

-42.2 ± 0.1 18.1 ± 1.5 15.05 ± 0.43 -33.8 ± 0.1 17.0 ± 1.1 8.9 ± 0.2

-42.1 ± 0.1 18.8 ± 1.5 10.60 ± 0.20 -33.0 ± 0.1 10.0 ± 1.1 8.7 ± 0.3

-40.2 ± 0.1 13.5 ± 1.3 9.25 ± 0.32 -33.0 ± 0.1 10.0 ± 1.1 5.8 ± 0.4

-38.4 ± 0.1 3.7 ± 0.4 26.43 ± 1.4 -33.0 ± 0.1 10.0 ± 1.1 7.6 ± 0.3

-37.8 ± 0.1 7.5 ± 0.7 11.65 ± 1.2 -32.6 ± 0.1 11.0 ± 0.9 10.44 ± 0.15

-37.4 ± 0.1 11.0 ± 1.1 7.59 ± 0.85 -32.6 ± 0.1 11.0 ± 0.9 11.7 ± 0.2

-37.4 ± 0.1 11.0 ± 1.1 9.86 ± 0.88 -32.0 ± 0.1 7.5 ± 0.7 9.6 ± 0.3

-37.4 ± 0.1 7.5 ± 0.7 11.34 ± 1.0 -31.7 ± 0.1 7.5 ± 0.7 6.3 ± 0.4

-37.0 ± 0.1 14.0 ± 1.4 10.0 ± 0.70 -31.7 ± 0.1 7.5 ± 0.7 12.0 ± 0.1

-36.7 ± 0.1 14.1 ± 1.4 7.84 ± 0.74 -31.5 ± 0.1 5.0 ± 0.6 10.69 ± 0.17

-36.6 ± 0.1 18.7 ± 1.5 13.2 ± 1.5 -30.9 ± 0.1 4.0 ± 0.5 8.2 ± 0.4

-36.6 ± 0.1 14.2 ± 1.4 9.45 ± 0.76 -30.9 ± 0.1 4.0 ± 0.5 7.7 ± 0.3

-36.3 ± 0.1 4.6 ± 0.4 16.83 ± 0.76
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FIG. 9. An example of the scaled mass growth rate analysis with diffusion limited particle growth from

homogeneous freezing data. (a) The natural logarithm of the scaled mass growth rate as a function of the mass

ratio. The lowpass-filtered data (purple points) were used to calculate the diffusion (blue) and kinetics (brown)

limits. Purple shading is the uncertainty range given by the cubic fit to the data. DiSKICE simulations of the

lowpass-filtered (solid teal) and cubic-fit (dashed red) data are shown. (b) Growth rates of the data and model

fits shown in (a).
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FIG. 10. An example of the scaled mass growth rate analysis with diffusion-kinetics limited particle growth

from homogeneous freezing data. (a) The natural logarithm of the scaled mass growth rate as a function of the

mass ratio. The lowpass-filtered data (purple points) were used to calculate the diffusion (blue) and kinetics

(brown) limits. Purple shading is the uncertainty range given by the cubic fit to the data. DiSKICE simulations

of the lowpass-filtered (solid teal) and cubic-fit (dashed red) data are shown. (b) Growth rates of the data and

model fits shown in (a).
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FIG. 11. An example of the scaled mass growth rate analysis with kinetics transitioning particle growth from

homogeneous freezing data. (a) The natural logarithm of the scaled mass growth rate as a function of the mass

ratio. The lowpass-filtered data (purple points) were used to calculate the diffusion (blue) and kinetics (brown)

limits. Purple shading is the uncertainty range given by the cubic fit to the data. DiSKICE simulations using

Eq. 15 of the lowpass-filtered (solid teal) and cubic-fit (dashed red) data are shown. The range of α determined

from the fit is indicated on the figure. (b) Growth rates of the data and model fits shown in (a). A DiSKICE fit

to the mass ratio timeseries assuming ledge nucleation is given by the black curve.
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FIG. 12. Power-law exponents as a function of mass ratio as calculated from data. The dashed blue curve

is a heterogeneously frozen case using the lowpass-filtered data, and the solid curves are from homogeneously

frozen cases with the cubic-fit data. Shaded regions between the dotted lines are calculated from the DiSKICE

model fits to the mass ratio uncertainties. Shown here are examples of diffusion-kinetics-limited growth (blue),

diffusion-limited growth (red), possible columnar growth (green), and growth with a kinetics transition (purple).
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FIG. 13. Power-law exponents as a function of the DiSKICE model-fit deposition coefficient. Points are

from the average P, with the error bars indicating the maxima and minima throughout growth. Values using

heterogeneously (red) and homogeneously frozen ice that follows faceted growth (blue) assume a constant α .

Data indicative of kinetics transitions (purple) include the ranges over which α varies (dashed black uncertainty)

with the points at the mass ratio weighted average values. Plotted over the data are the results of a ledge growth

simulation (solid black) with schar = 10%. The diffusion and kinetics limits are indicated by the grey lines.
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FIG. 14. Effective growth velocity averaged over the period of growth where the particle radius is between 15

and 16 µm versus supersaturation. Points are from heterogeneous (green) and homogeneous (purple) freezing

data, with black triangles representing particles with kinetics transitions. Green curves are regression fits to the

heterogeneous freezing data over the size ranges of 10 - 11 µm (dashed), 15 - 16 µm (solid), and 19 - 20 µm

(dot-dot-dashed). Theoretical ranges for spherical growth with dislocation and ledge nucleation (schar between

5 and 20%) are shaded in blue. The maximum growth rate of a sphere, according to capacitance theory is in red.
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FIG. 15. Characteristic supersaturation versus supercooling (Harrington et al. 2019, based on their Fig. 1). We

have added results with influential attachment kinetics (α < 0.05) for heterogeneous freezing (red diamonds)

and homogeneous freezing with normal faceted growth (blue diamonds) and with kinetics transitions (purple

diamonds). Filled black points are from prior faceted growth measurements and empty black circles are estimates

from mass growth rates Harrington et al. (2019).

926

927

928

929

930

55



time (s)
0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0

su
p

e
rs

a
tu

ra
ti

o
n

 (
%

)

purple, data 

green, flat plate

diffusion theory

FIG. 16. Supersaturation with a small chamber plate temperature difference (∼ 1◦C). The steady-state flat

plate diffusion chamber theory solution is in green, with ± 0.2◦C error on the measured plate temperatures. The

supersaturation estimated from a growing ice particle, assuming that it had a deposition coefficient near unity is

in purple. The purple curve assumes that the particle is spherical, with ± 0.15 µm error on the initial radius.
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