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Abstract 

Differential expression analyses provide powerful tools for the identification of genes 

playing a role in disease pathogenesis. Yet, such approaches are usually restricted by 

the high variation in expression profiles when primary specimens are analyzed. It is 

conceivable that with the assessment of the degree of coordination in gene expression 

as opposed to the magnitude of differential expression, we may obtain hints 

underscoring different biological and pathological states.  Here we have analyzed a 

publicly available dataset related to frailty, a syndrome characterized by reduced 

responsiveness to stressors and exhibiting increased prevalence in the elderly. We 

evaluated the transcriptome that loses its coordination between the frailty and control 

groups and assessed the biological functions that are acquired in the former group. 

Among the top genes exhibiting the lowest correlation, at the whole transcriptome level, 

between the control and frailty groups were TSIX, BEST1 and ADAMTSL4. Processes 

related to immune response and regulation of cellular metabolism and the metabolism 

of macromolecules emerged in the frailty group. The proposed strategy confirms and 

extends earlier findings regarding the pathogenesis of frailty and provide a paradigm on 

how the diversity in expression profiles of primary specimens could be leveraged for 

target discovery.  
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Introduction 

Frailty is a clinical syndrome that is characterized by reduced responsiveness to 

stressors due to physiological decline in multiple organs and is associated with poor 

health outcomes including falls, incident disability, hospitalization, and mortality (1-4). 

Frailty is usually studied in the elderly, yet it affects younger individuals as well, 45 – 64 

years old (5,6). With the number of Americans aged 65 and older projected to double by 

2060 (7) frailty consists of a condition with important implications in the quality of life of 

older individuals and overall healthcare management.  

Despite that this condition is being recognized as a distinct clinical entity, our 

understanding of its pathogenetic mechanism remains limited. Comprehensive 

molecular studies at the whole transcriptome level, were only recently initiated 

underscoring the role of a proinflammatory response in the development of this 

condition (8,9). Despite this progress, additional research is imperative, both at the level 

of generation of new primary experimental data and at the level of application of novel 

analytical approaches, facilitating extraction of biologically relevant and clinically 

meaningful information. 

Conventionally, gene expression analyses aim to identify differentially expressed 

genes in predefined experimental groups. In such analyses, the magnitude of over- or 

under-expression is considered indicative for the impact of the corresponding genes in 

the pathology of interest. Such strategies are frequently limited by the variation in 

expression between specimens which is particularly relevant when genetically diverse 

specimens are analyzed (10,11). To overcome these limitations, we have applied an 

alternative strategy at which samples were evaluated by comparing the correlation of 
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expression of specific genes with the whole transcriptome, in different experimental 

groups (12,13). Coupling such analysis with publicly available gene ontology platforms 

(14-17) could identify changes in the transcriptome that would not be appreciated by 

conventional differential expression analysis. Furthermore, could provide hints regarding 

the biological implications of such changes. For example, by focusing on the unfolded 

protein response (UPR) we were able to unveil specific functions of UPR branches and 

how they change during pathology (12,13).  

To apply this strategy to frailty we have reanalyzed publicly available data 

extracted from a comprehensive study that was performed in individuals that developed 

this syndrome (9).  

 

Methodology 

Data used were retrieved from GEO (Accession number: GSE129534). 

Specimens’ characteristics are described in detail in the original study (9). Participants 

of the study were from the Healthy Aging in Neighborhoods of Diversity across the Life 

Span (HANDLS) study of the National Institute on Aging Intramural Research Program 

(NIA IRP), National Institutes of Health. In our analysis we assigned the specimens in 2 

groups, with (FRA) or without (NOR) frailty, consistently with the classification of the 

original study (9). Each group consisted of 8 samples, each of which included 4 whites 

and 4 African Americans, both males (50%) and females (50%). All individuals were 45-

49 years old (Mean ± sd = 48.09 ±1.21 and 47.85 ± 1.84 for the NOR and FRA groups 

respectively). RNA-seq was performed in peripheral blood mononuclear cells (9). 
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The experimental outline we applied is shown in Figure 1. Initially we identified 

the transcripts exhibiting relatively high abundance. Arbitrarily we selected genes that 

displayed at least 70 reads in the NOR group (resulting in n=178 highly expressed 

genes). Subsequently we calculated the correlation (R, Pearson’s) for these 178 genes 

with the whole transcriptome, independently in the NOR and the FRA groups. In order 

to test for which of these genes correlation with the transcriptome changes in the 

different groups, we calculated the composite correlation (Pc) from the R values 

calculated above. This transformation assigned a unique Pc value to each of these 

genes which reflects the degree by which coordination with the whole transcriptome 

changes in the 2 groups for the corresponding genes of interest. Then, the genes were 

sorted according to Pc, and for the ones that exhibited the lowest Pc (3 genes in this 

study) their correlation (R) with the whole transcriptome, in the NOR and the FRA 

groups was calculated. These R values were used to sort the transcriptome and supply 

it to a GO platform for further analysis. As a cut-off we arbitrarily chose genes with 

R>0.5. Finally, predicted functions were compared between the NOR and the FRA 

groups for the genes selected. 

 

Results and Discussion 

 By arbitrarily selecting at least 70 reads as the cut-off in the NOR group we 

identified 178 highly expressed transcripts. This limit was set for the convenience of the 

calculations and in theory could be increased indefinitely, provided that appropriate 

tools for computational analysis are developed. For the same reason specimens were 
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assigned to only 2 groups, the NOR and the FRA groups, however additional sub-

groups could be utilized, if a higher number of samples were available. 

Initially, we asked how the expression among these 178 highly expressed genes 

is correlated between the NOR and FRA groups. To that end we calculated the 

correlation coefficient R (Pearson’s) for all pairwise comparisons between these 178 

highly expressed genes, generating a heatmap illustrating the correlation in their 

expression. As shown in Figure 2, the vast majority of the genes subjected to this type 

of analysis was highly correlated with each other and the correlation increased in the 

FRA group. It is generally accepted that correlated expression or co-expression implies 

coregulation, by the same or similar transcription factors that define transcriptional 

networks (18-20). According to the results of Figure 2, this coregulation becomes more 

intense during frailty. It is plausible that the lower degree of correlation in the control 

group (NOR) is indicative of the margins of expression at which physiological function 

for these genes can be attained. This flexibility is abolished in frailty because activation 

of signaling pathways under these conditions dictates more robust expression profiles. 

In line with this notion we recently reported that correlation was more intense in primary 

fibroblasts of outbred rodents, under endoplasmic reticulum stress as compared to 

unstressed cells in culture (21). 

Subsequently, we estimated how the whole transcriptome is correlated with 

these 178 genes and compared how this correlation changes during frailty. To that end, 

a composite P (Pc) was calculated for each gene which corresponds to the correlation 

of the R values this gene has, with the whole transcriptome between the NOR and FRA 

groups. Then, we ranked these genes according to Pc (Supplementary Table 1). 
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Therefore, high Pc indicates retention of coordination between the NOR and FRA 

groups while low Pc is suggestive for the loss of coordination, when the pathology 

emerges. The top 3 genes with lowest Pc were TSIX, BEST1 and ADAMTSL4 (-0.069, 

0.074 and 0.135 respectively) while the top 3 with highest Pc were PNPT1, ORAI2 and 

MAP3K13 (0.462, 0.462 and 0.466 respectively) (Figure 3). These genes (such as 

TSIX, BEST1 and ADAMTSL4 are the ones that according to our hypotheses are being 

affected by (or affecting) frailty,) or being affected minimally by this syndrome such as 

PNPT1, ORAI2 and MAP3K13). TSIX encodes for an antisense RNA that is involved in 

the regulation of XIST and therefore in X chromosome inactivation (22,23). BEST1 

encodes for a member of the bestrophin family of proteins that are calcium-activated 

chloride channels and have been associated with retinal disease (24, 25). ADAMTSL4 

participates in the formation of microfibrils and is associated with the development of 

ectopia lentis, an eye disorder (26).  

In order to better understand the relevance of loss of coordination in TSIX, 

BEST1 and ADAMTSL4 we ranked the transcriptome according to its coordination with 

these 3 genes, Then, by using R=0.5 as a cut-off, we subjected the corresponding 

transcriptome to GO analysis (14,15). This analysis indicated that for the same gene, 

several functions were retained between the NOR and FRA groups, but several novel 

functions were also acquired (Figure 4 and Supplementary Table 2). Among the latter, 

the most prominent ones included functions related to immune system processes and 

metabolic processes (Table 1). 

 These findings confirm and extend previous findings on the role of immune 

system in the pathogenesis of frailty and also identify the significance of metabolic 
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deregulation or reprogramming in the development of this syndrome. In addition, they 

provide novel gene targets that may play a role in the development of this condition. It is 

conceivable that refinement of the proposed strategy, by including larger datasets and 

deeper and more expanded roster of genes to initiate the coregulation assessment, will 

be applicable to various conditions and be leveraged - as opposed to be restricted - by 

the high variation, when genetically diverse specimens are analyzed.   
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Table 1. Biological processes according to GO that were common for TSIX, BEST1 and 
ADAMTSL4 in the FRA group.  

ADAMTSL4 
FRA BEST1 
FRA TSIX FRA 
 

103 
 

immune system process (GO:0002376) regulation of cellular macromolecule 
biosynthetic process (GO:2000112) organic cyclic compound biosynthetic process 
(GO:1901362) cellular macromolecule metabolic process (GO:0044260) negative 
regulation of biosynthetic process (GO:0009890) cellular biosynthetic process 
(GO:0044249) negative regulation of RNA metabolic process (GO:0051253) 
cellular process (GO:0009987) macromolecule metabolic process (GO:0043170) 
positive regulation of macromolecule metabolic process (GO:0010604) negative 
regulation of RNA biosynthetic process (GO:1902679) negative regulation of 
transcription, DNA-templated (GO:0045892) detection of chemical stimulus 
involved in sensory perception of smell (GO:0050911) cellular component 
organization or biogenesis (GO:0071840) response to organic substance 
(GO:0010033) intracellular signal transduction (GO:0035556) detection of 
chemical stimulus involved in sensory perception (GO:0050907) nitrogen 
compound metabolic process (GO:0006807) regulation of RNA biosynthetic 
process (GO:2001141) positive regulation of cellular process (GO:0048522) 
cellular response to stress (GO:0033554) nucleic acid-templated transcription 
(GO:0097659) positive regulation of cellular metabolic process (GO:0031325) 
biological regulation (GO:0065007) positive regulation of transcription, DNA-
templated (GO:0045893) positive regulation of nucleic acid-templated 
transcription (GO:1903508) RNA metabolic process (GO:0016070) biological 
process (GO:0008150) regulation of multicellular organismal process 
(GO:0051239) cellular aromatic compound metabolic process (GO:0006725) 
regulation of cellular process (GO:0050794) Unclassified (UNCLASSIFIED) 
organic cyclic compound metabolic process (GO:1901360) gene expression 
(GO:0010467) positive regulation of cellular biosynthetic process (GO:0031328) 
detection of chemical stimulus (GO:0009593) negative regulation of cellular 
macromolecule biosynthetic process (GO:2000113) cellular macromolecule 
biosynthetic process (GO:0034645) primary metabolic process (GO:0044238) 
biosynthetic process (GO:0009058) organic substance biosynthetic process 
(GO:1901576) cellular nitrogen compound metabolic process (GO:0034641) 
regulation of developmental process (GO:0050793) positive regulation of gene 
expression (GO:0010628) cellular response to stimulus (GO:0051716) regulation 
of macromolecule metabolic process (GO:0060255) positive regulation of protein 
metabolic process (GO:0051247) negative regulation of gene expression 
(GO:0010629) regulation of cellular metabolic process (GO:0031323) positive 
regulation of biological process (GO:0048518) positive regulation of nitrogen 
compound metabolic process (GO:0051173) metabolic process (GO:0008152) 
regulation of nitrogen compound metabolic process (GO:0051171) positive 
regulation of RNA biosynthetic process (GO:1902680) negative regulation of 
cellular process (GO:0048523) negative regulation of biological process 
(GO:0048519) apoptotic process (GO:0006915) negative regulation of 
macromolecule biosynthetic process (GO:0010558) macromolecule biosynthetic 
process (GO:0009059) localization (GO:0051179) regulation of transcription, 
DNA-templated (GO:0006355) nucleobase-containing compound metabolic 
process (GO:0006139) sensory perception of chemical stimulus (GO:0007606) 
hematopoietic or lymphoid organ development (GO:0048534) regulation of 
catalytic activity (GO:0050790) regulation of response to stress (GO:0080134) 
small molecule metabolic process (GO:0044281) negative regulation of nucleic 
acid-templated transcription (GO:1903507) detection of stimulus involved in 
sensory perception (GO:0050906) RNA biosynthetic process (GO:0032774) 
sensory perception of smell (GO:0007608) cellular component assembly 
(GO:0022607) positive regulation of macromolecule biosynthetic process 
(GO:0010557) cellular component organization (GO:0016043) regulation of 
cellular biosynthetic process (GO:0031326) immune system development 
(GO:0002520) positive regulation of metabolic process (GO:0009893) detection of 
stimulus (GO:0051606) regulation of metabolic process (GO:0019222) 
developmental process (GO:0032502) positive regulation of molecular function 
(GO:0044093) nucleic acid metabolic process (GO:0090304) leukocyte activation 
(GO:0045321) heterocycle biosynthetic process (GO:0018130) transcription, 
DNA-templated (GO:0006351) regulation of macromolecule biosynthetic process 
(GO:0010556) regulation of biological process (GO:0050789) regulation of gene 
expression (GO:0010468) regulation of nucleic acid-templated transcription 
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(GO:1903506) cell activation (GO:0001775) regulation of nucleobase-containing 
compound metabolic process (GO:0019219) regulation of RNA metabolic process 
(GO:0051252) positive regulation of RNA metabolic process (GO:0051254) 
regulation of biosynthetic process (GO:0009889) cellular metabolic process 
(GO:0044237) heterocycle metabolic process (GO:0046483) sensory perception 
(GO:0007600) regulation of immune system process (GO:0002682) positive 
regulation of biosynthetic process (GO:0009891) regulation of primary metabolic 
process (GO:0080090) organic substance metabolic process (GO:0071704) 
regulation of molecular function (GO:0065009) positive regulation of nucleobase-
containing compound metabolic process (GO:0045935) 
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Figure legends 

Figure 1. Outline of the coordination analysis applied in the present study. 

Figure 2. Heatmaps of the correlation coefficients (R) among all pairwise comparisons 

between the most highly expressed genes in the NOR group. 

Figure 3. Violin plots showing the R values between each of TSIX, BEST1, ADAMTSL4 

and MAP3K13 in the NOR and the FRA groups. 

Figure 4. Function Retention Index (FRI) and Function Acquisition Index (FAI) for each 

of TSIX, BEST1, ADAMTSL4 and MAP3K13. FRI reflects the ratio of the functions in the 

NOR group that were retained in the FRA group (FRI=common functions in both 

groups/all functions in FRA group). FAI reflects the ratio of the novel functions in the 

FRA group that were absent from the NOR group (FAI=new functions in FRA group/all 

functions in FRA group).  

 

 

 

 


