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1 Introduction

Charting the space of quantum field theories is a central task of theoretical physics, which

has received renewed impetus with the modern resurgence of the conformal bootstrap

program. Theories that live at the boundary of theory space (because, e.g, they attain the

largest allowed value of a certain operator dimension or central charge) are prime targets

for the bootstrap, as they are often amenable to precise analytical or numerical study.

Thanks to holographic duality, statements about the space of conformal field theories

(CFTs) are equivalent to statements about the landscape of quantum gravity theories

in asymptotically anti de Sitter (AdS) space. The tight consistency conditions of CFT

are expected to translate into non-obvious consistency requirements on the AdS side. To

wit, a low-energy effective theory in AdS with arbitrarily prescribed matter content and

symmetries is in danger of belonging to the “swampland”, that is, of not admitting a

non-perturbative completion. Can this intuition be made precise, leveraging the recent

advances in the bootstrap program?

A fundamental question of this kind is whether “pure” AdS gravity is a consistent

theory, or whether instead new degrees of freedom below the Planck scale (in addition to

multi-gravitons) are needed for non-perturbative consistency. Via AdS/CFT, the quest

for pure gravity can be phrased as follows. One is looking for a sequence of unitarity

CFTs, with increasing number N of degrees of freedom (as measured, for example, by the

normalization CT of the stress tensor), such that for N →∞ the only operators with finite

scaling dimension are multi-trace composites of the stress tensor, and correlation functions

are of mean-field type, i.e., they obey large N factorization. One can also relax these

assumptions slightly by allowing for a finite number of additional single-trace operators

whose dimensions remain bounded in the large N limit.

Black holes, and quantum gravity more generally, seem to live near the edge of theory

space, as a consequence of the large hierarchy between the Planck scale and the low-energy

effective theory. Pure gravity, or, if pure gravity does not exist, the theory of gravity with

the largest gap, lives exactly at the edge, so it could be particularly amenable to bootstrap.

Black holes also suggest a UV/IR connection in quantum gravity, whose implications on the
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CFT side are largely unexplored. For example, the weak gravity conjecture [3], motivated

by properties of extremal black holes, translates into constraints on the spectrum of charged

states in large-N CFTs, with no known origin in quantum field theory.

These questions are particularly sharp for 3D AdS gravity, dual to 2D CFT, because

multigraviton states in AdS3 map to the Virasoro module of the identity in CFT2, which is

a key technical simplification. Consider again the question about “pure gravity”. A natural

strategy to look for 2D CFTs dual to pure gravity (or to rule them out) is to explore the

boundary of theory space characterized by the largest allowed gap — the largest dimension

of the first non-trivial Virasoro primary. The simplest (though by no means the only) set of

constraints on the gap arise from modular invariance of the CFT partition function. This

is the “modular bootstrap” program pioneered by Hellerman [4] and pursued by several

authors [5–7].

In this work, we establish a precise connection between the modular bootstrap in 2D

CFT and the sphere packing problem in Euclidean geometry. The central question in

sphere packing is finding the densest configuration of identical, non-overlapping spheres

in Rd. It is surprisingly deep, with connections to diverse areas from number theory

to cryptography [8]. For d = 2, the answer is the honeycomb lattice, a result proved

rigorously by Tóth in 1940. For d = 3, the answer is the face-centered cubic lattice. This

was conjectured by Kepler four centuries ago, and famously proved by Hales in 1998 [9].

The epic proof fills hundreds of pages, relies on extensive use of computers to exhaustively

check special cases, and took over a decade to be fully verified by a 22-person team [10].

In a remarkable paper in 2016, Viazovska solved the case d = 8 [1], building on work

of Cohn and Elkies [11, 12]. The answer is the E8 root lattice, Λ8, and the proof is simple

and elegant. Viazovska’s proof was immediately extended to d = 24 [2], where the densest

packing is the Leech lattice, Λ24. The proofs of Hales and Viazovska both rely essentially on

the method of linear programming, which is used (either on a computer or analytically) to

rule out the existence of denser sphere packings. Cohn and Elkies conjectured the existence

of ‘magic functions’ which could be used to prove optimality of the Λ8 and Λ24 lattices,

and gave overwhelming numerical evidence for their existence. Viazovska’s breakthrough

was to devise a method to construct magic functions analytically.

In hearing of a relation between sphere packings and modular bootstrap, one’s first

thought might be that lattices will provide the key connection. After all, a d-dimensional

lattice Λ defines both a sphere packing and a 2D CFT (the theory of d free bosons com-

pactified on Λ). However, this does not appear to be either a very natural or very useful

connection. The compactified boson CFT depends on additional data — it admits a contin-

uous moduli space, more naturally related to the geometry of a 2d-dimensional Lorentzian

lattice than to the geometry of a d-dimensional Euclidean lattice. And lattice sphere pack-

ings are very special, indeed it is widely believed that in sufficiently high dimension the

densest packings are not lattice packings.

The relation that we establish in this work is more surprising. We relate the spinless1

modular bootstrap of general CFTs with central charge c to the general sphere packing

1This means that we set the angular potential of the partition function to zero.
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problem in R2c. The key fact is that both problems can be addressed by linear program-

ming methods. The connection is immediate if one assumes that the CFT has chiral algebra

U(1)c. The spinless modular bootstrap of such a CFT can be directly translated to the

Cohn-Elkies linear programming approach to sphere packing in R2c. If a certain technical

conjecture holds (which can be verified in many cases), the two problems are fully mathe-

matically equivalent. On the other hand, the modular bootstrap of greater physical interest

is for CFTs whose chiral algebra is just the Virasoro algebra. The Virasoro modular boot-

strap is not directly equivalent to the Cohn-Elkies problem, but can be formulated in a

very similar way.

Our main observation is that the same analytic functionals can be used to establish

rigorous bounds for the Cohn-Elkies problem, the closely related U(1)c modular bootstrap

and also the Virasoro modular bootstrap. What’s more, these are precisely the analytic

functionals previously constructed in the context of the four-point function bootstrap in 1D

CFT! By a curious historical coincidence, in the same year that Viazovska found the magic

functions that prove optimality of the E8 lattice, one of us [13] independently constructed

analytic functionals for the crossing problem of four identical operators in CFT1. These

functionals (further studied and generalized in [14–18]) prove optimality of the general-

ized free fermion CFT1, for arbitrary external dimension ∆φ. In this context, this means

attaining the largest allowed dimension of the first exchanged operator.

There is a simple dictionary that allows to apply the very same analytic functionals to

the other linear programming problems that we have described. Table 1 in section 4 is our

key relating the Cohn-Elkies approach to sphere packing, the spinless modular bootstrap

and the CFT1 four-point function bootstrap. Our functionals turn out to be optimal for

the modular bootstrap with central charges c = 4 and c = 12, for both the U(1)c case

(which, as we have mentioned, is equivalent to the Cohn-Elkies problem) and the Virasoro

case. Remarkably, when translated into sphere packing variables, they exactly reproduce

the magic functions used by Viazovska [1] and by Cohn et al. [2] to prove that the E8

and Leech lattices are the densest packings in dimensions 8 and 24, respectively. We also

show how a complete basis of functionals for 1D CFTs, constructed in [15], underlies the

complete basis of sphere-packing functions found by mathematicians recently in [19], and

generalizes their results to all dimensions.

For c 6= 4, 12 our modular bootstrap functionals are not optimal, but still lead to

the rigorous upper bound ∆0(c) ≤ c/8 + 1/2 for the largest scaling dimension of the first

non-trivial primary, for any c ∈ (1, 4) ∪ (12,∞), for both Virasoro and U(1)c. As we have

emphasized, the c → ∞ limit is especially interesting because large-c CFTs with sparse

spectrum are dual to AdS3 quantum gravity. In this limit, we are able to find an improved

(though still suboptimal) functional that leads to the Virasoro analytic bound ∆0(c) .
c/8.503. This is the first analytic improvement over Hellerman’s original bound [4] of c/6.

It is not quite as strong as the conjectured asymptotics c/9.08, based on extrapolating the

numerics [7].

Like the Hellerman bound, our bound constrains the spectrum of black holes in 3D

quantum gravity. It is related (though somewhat indirectly due to the distinction between

Virasoro and U(1)c) to constraints on the density of sphere packing in high dimensions. In
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turn, dense sphere packings provide the most efficient classical error-correcting codes. Black

holes are already known or conjectured to saturate bounds on entropy [20], scrambling [21,

22], chaos [23], complexity [24], weak gravity [3], and more. It is intriguing to find yet

another sense in which black holes live on the boundary of theory space.

The rest of the paper is organized as follows. Section 2 and section 3 review modular

bootstrap and sphere packing, respectively, emphasizing the parallels between the linear

programming approaches to both problems. In section 4 we describe succinctly our main

results, leaving most of the technical details for later sections. Section 5 reviews the

construction of analytic functionals for the crossing problem in CFT1. It also contains

some new results for a generalized crossing equation, which we need later to make full

contact with the Cohn-Elkies problem. In section 6 we present the technical details of the

analytic functionals for the modular bootstrap and reproduce the sphere packing magic

functions. In section 7 we study the large central charge limit and derive our asymptotic

analytic bound of c/8.503. In section 8 we sketch the construction of a complete basis of

functionals for the Cohn-Elkies problem in arbitrary dimension. We conclude in section 9

with a discussion and some speculations. Two appendices contain basic reference material

on modular forms and further technical details on analytic functionals.

2 Review of modular bootstrap

2.1 Overview of existing bounds

The modular bootstrap is a method to constrain possible spectra of 2D CFTs. The simplest

question it can address is: given the central charge c, what is the largest allowed scaling

dimension, ∆0, of the first non-trivial primary [4]?

The answer depends on the choice of the chiral algebra that we impose as a symmetry

of the CFT. We will focus on two cases: Virc×Virc, and the current algebra U(1)c×U(1)c.

Here Virc stands for the Virasoro algebra of central charge c, and the two copies of the

algebra correspond to left and right movers. By the Sugawara construction, Virc is a

subalgebra of U(1)c. We will assume c > 1 throughout this paper. The best possible upper

bounds on the dimension of the first nontrivial primary ∆0 from the spinless modular

bootstrap will be denoted ∆V (c) and ∆U (c) for Virasoro and U(1)c, respectively.

The bounds come from imposing invariance of the partition function Z(τ, τ̄) under

the modular group PSL(2,Z). A restricted class of solutions of this problem comes from

assuming that the partition function factorizes Z(τ, τ̄) = Zhol(τ)Zhol(−τ̄), where Zhol(τ) is

a weakly holomorphic modular form of weight zero. In this case, the central charge must

be an integer multiple of 24 and all scaling dimensions take integer values. Furthermore,

it follows from the theory of modular forms that ∆0 ≤ c
24 + 1 for this class of partition

functions [25–27]. We will not assume holomorphic factorization in this paper.

The first constraints valid for general unitary 2D CFTs with c > 1 were obtained by

Hellerman [4], who proved ∆V (c) < c
6 + 0.4737. Using the linear programming method

introduced by Rattazzi, Rychkov, Tonni, and Vichi [28], the bound on ∆0 has since been

improved numerically [5–7]. The strongest current numerical bounds, as a function of c,

were found in [7]. There are two salient points. First, the bound is saturated by known
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Figure 1. Universal features of the spectrum of 3D gravity.

partition functions at c = 4 and c = 12, to very high numerical accuracy. Second, the nu-

merics become increasingly difficult at large c, so for c & 2000, the numerical constraints are

weak, and Hellerman’s bound remains the strongest that has been established rigorously.

Extrapolating the numerics from c . 2000 led to the conjectured asymptotics ∆V ≈ c/9.08

as c→∞ [7].

The large-c limit is especially interesting because 2D CFTs with large c and a large

gap are holographically dual to quantum gravity in three-dimensional anti-de Sitter space.

All of the known, consistent constructions of 3D gravity come from string theory and share

several features in the spectrum. This is summarized by the microcanonical entropy S(∆),

in figure 1. There are black holes with entropy of order c above some threshold, ∆BH ≤ c
12 .

The array of black hole solutions and the exact threshold depend on the particular theory,

but at a minimum, all examples contain BTZ black holes for ∆ ≥ ∆BTZ = c
12 . In the

so-called enigma range, c
12 ≤ ∆ ≤ c

6 , BTZ black holes do not necessarily dominate the

entropy, so S is not universal, but it is bounded above by S ≤ 2π∆. Finally, for ∆ ≥ c
6 ,

all theories have universal S(∆) given by the Cardy entropy. These universal properties

follow from modular invariance in the large-c limit and the assumption of a sparse low-

lying spectrum [29]. For other applications and extensions of the modular bootstrap, see,

e.g., [30–40].

The universality of BTZ black holes on the gravity side suggests that perhaps the bound

from modular invariance is c/12, a factor of two stronger than the Hellerman bound. If

so, and if there are theories with gap ∆0 ≈ c
12 and arbitrarily large c, then these would be

theories of “pure” 3D gravity, consisting only of gravitons and BTZ black holes. It is an

open question whether pure gravity exists as a quantum theory [27, 41, 42]. One goal of

modular bootstrap is to settle this question. More generally, the eventual goal is to explore

whether every consistent theory of quantum gravity in three dimensions comes from string

theory, or to find alternative theories of 3D gravity. This may be possible if the bound on

∆0 can be pushed down to the BTZ black hole threshold, c/12. If the spectrum is allowed

to be continuous then ∆V (c) ≥ c−1
12 [42], but it is logically possible that the bound with a

discrete spectrum could even surpass the BTZ black hole threshold.

2.2 Partition functions

The partition function of a unitary 2D CFT is

Z(τ, τ̄) =
∑

states

qh−c/24q̄h̄−c̄/24 , q = e2πiτ , q̄ = e−2πiτ̄ (2.1)

– 5 –
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where the sum runs over all states of the theory on S1, (h, h̄) are their non-negative

conformal weights and (c, c̄) are the left and right central charges. There is a unique

vacuum state with h = h̄ = 0. The partition function on a Euclidean torus of modulus

τ equals Z(τ, τ̄) restricted to τ̄ = τ∗, where the star stands for complex conjugation.

However, the sum (2.1) converges for any τ ∈ H+ and τ̄ ∈ H−, with H+ and H− the upper

and lower half-planes, so we can treat τ and τ̄ as independent and complex. In fact, Z(τ, τ̄)

is a holomorphic function in H+ × H−, because each summand in (2.1) is holomorphic in

this region and the sum converges uniformly in any compact set.

Modular invariance is the statement

Z

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
= Z(τ, τ̄), for all

(
a b

c d

)
∈ SL(2,Z) . (2.2)

States are organized under the symmetry algebra of the theory, so Z can be expressed as

a sum of characters,

Z(τ, τ̄) = Xvac(τ, τ̄) +
∑

Xh,h̄(τ, τ̄) , (2.3)

where the sum runs over non-vacuum primary operators. The characters include the con-

tribution of a primary and its descendants, so they take the form

Xh,h̄(τ, τ̄) = qh−c/24q̄h̄−c̄/24(1 + non-negative integer powers of q, q̄) . (2.4)

Xvac may or may not be the analytic continuation of Xh,h̄ to h = h̄ = 0, hence the

different name.

We will specialize to the one-complex-dimensional section τ = −τ̄ , and denote the

restricted partition function

Z(τ) = Z(τ,−τ) . (2.5)

This includes in particular all the rectangular Euclidean tori, for which τ = iβ with real

β > 0. The partition function Z(iβ) is the usual partition function of statistical mechanics

at inverse temperature β. Z(τ) is simply the analytic continuation of this function to the

entire upper half-plane. By restricting to τ = −τ̄ , we have set the angular potential to zero,

and therefore dropped information about the spin h− h̄ in the partition function. Z(τ) is

holomorphic in H+, but it generally does not admit a series expansion into integer powers

of q as τ → i∞. The only non-identity element of PSL(2,Z) which remains a symmetry of

Z(τ) is the S-transformation,

Z(τ) = Z(−1/τ) . (2.6)

The T -transformation τ → τ + 1, τ̄ → τ̄ + 1 does not respect the condition τ = −τ̄ .

Z(τ) can be expanded into characters of the symmetry algebra

Z(τ) = χvac(τ) +
∑
∆>0

ρ∆χ∆(τ) , (2.7)

where ∆ = h+ h̄, and ρ∆ is the integer degeneracy of primaries with this scaling dimension.

The positivity condition ρ∆ > 0, which we assume throughout, is referred to as unitarity.

– 6 –
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We will primarily be interested in modular bootstrap with symmetry algebras Virc ×Virc
and U(1)c ×U(1)c. For Virc ×Virc, the characters take the form

χV∆(τ) =
q∆−c/12∏∞

k=1(1− qk)2
=
q∆− c−1

12

η(τ)2
, χVvac(τ) = (1− q)2χV0 (τ) . (2.8)

For the current algebra U(1)c ×U(1)c, we have

χU∆(τ) =
q∆−c/12∏∞

k=1(1− qk)2c
=

q∆

η(τ)2c
, χUvac(τ) = χU0 (τ) . (2.9)

2.3 Linear programming bounds

We can derive bounds on the gap by constructing linear functionals acting on functions of

τ [4, 28]. Let us write S-invariance (2.6) as

ΦA
vac(τ) +

∑
∆>0

ρ∆ΦA
∆(τ) = 0 (2.10)

for all τ ∈ H+, where

ΦA
vac(τ) = χAvac(τ)− χAvac(−1/τ) , ΦA

∆(τ) = χA∆(τ)− χA∆(−1/τ) . (2.11)

Here and in the following A = U, V is a placeholder for the symmetry algebra of choice. If

we can find a linear functional ω satisfying

ω[ΦA
vac] > 0 (2.12)

ω[ΦA
∆] ≥ 0 for all ∆ ≥ ∆∗ , (2.13)

then all unitary partition functions must have a nontrivial primary with ∆ < ∆∗. The

infimum over all functionals with the above properties is the optimal linear programming

bound on the gap. For the limiting functional the first condition is replaced with ω[ΦA
vac] = 0

and there is an associated modular-invariant partition function whose spectrum is annihi-

lated by the optimal (also called extremal) functional.

The optimal bounds, over the space of all linear functionals acting on the spinless

partition function Z(τ), are denoted ∆V (c) for Virasoro and ∆U (c) for U(1)c. We will

see that sphere packing is most directly connected to the modular bootstrap with a U(1)c

chiral algebra, and that the linear programming bounds on sphere packing can be stated

in terms of ∆U (c).

2.4 Functionals as eigenfunctions of the Fourier transform

By construction, the antisymmetrized character ΦA
∆ is a −1 eigenfunction of the S trans-

formation. We It follows that the function

ω(∆) = ω[ΦA
∆] (2.14)

can also be understood as a −1 eigenfunction of S, in the following sense [5]. For Virasoro

symmetry, let us parametrize ∆ by a vector x ∈ R2 as

∆(x) =
x2

2
+
c− 1

12
. (2.15)

– 7 –
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The crossing kernel takes the form of a 2D Fourier transform

S · χV∆(x) =

∫
d2y e−2πix·yχV∆(y), (2.16)

so the function

g(x) = ω(∆(x)) (2.17)

is an eigenfunction of the 2D Fourier transform with eigenvalue −1.

For U(1)c, the same argument demonstrates that g(x) is a −1 eigenfunction of the

(2c)-dimensional Fourier transform, with the identification

∆(x) =
1

2
x2 , x ∈ R2c . (2.18)

A basis of −1 eigenfunctions for the Fourier transform in Rd is provided by the odd-

degree associated Laguerre polynomials,

ωi(∆(x)) = L
d/2−1
2i−1 (4πx2)e−2πx2

. (2.19)

The standard strategy for numerical bootstrap is to construct a basis of functionals by

acting with derivatives (∂τ )k at the crossing-symmetric point τ = i. For modular bootstrap,

this of course produces the same basis, (2.19). The corresponding derivative operator for

Virasoro can be found in [43] and easily generalizes to U(1)c.

2.5 Saturation at c = 4, 12

The Virasoro bootstrap converges to known, S-invariant functions for c = 4, 12 [6, 43,

44]. The numerical bound at c = 12, obtained by truncating to the first 2000 Laguerre

polynomials, is [43]

∆V (12) ≤ 2 + 10−30 . (2.20)

The zeros of the numerical functional appear to converge toward the non-negative inte-

gers, ∆ = 0, 1, 2, 3, . . . . There are single roots at 0, 1, 2 and double roots at the higher

integers. The numerical bootstrap also produces a candidate partition function saturating

this bound. To very high accuracy, it appears to be related to the theta function2 for the

Leech lattice Λ24,

Z12(τ) =
1

η(τ)24
ΘΛ24(τ)− 24 . (2.21)

This can also be written in terms of the modular j-function, Z12(τ) = j(τ)−744. This also

happens to be the partition function of the chiral monster CFT [45], with c = 24, c̄ = 0,

but the appearance of the j-function in the present context is a surprise. Recall that we

did not impose T -invariance; it appears for free in the optimal partition function at c = 12.

In other words, there is no obvious reason a priori to expect an integer spectrum in a

non-chiral CFT.

2The theta function of a lattice Λ in Rd is defined as ΘΛ(τ) =
∑
x∈Λ e

iπτx2

.
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Figure 2. Density of sphere packings in Rd. For the best known packings, see table I.1 of [8].

For c = 4, the situation is similar. The numerics converge towards ∆V (4) = 1, with

zeroes at the nonnegative integers. The candidate partition function with this spectrum is

built from the theta function for the the E8 lattice,

Z4(τ) =
1

η(τ)8
ΘΛ8(τ) = (j(τ))1/3 . (2.22)

3 Review of the sphere packing problem

A thorough introduction to sphere packing can be found in the short book by Thomp-

son [46], the long book by Conway and Sloane [8], and, for recent developments, the review

articles [47–49]. Here we will review just enough background to explain the linear program-

ming method of Cohn and Elkies [11, 12], Viazovska’s proof for E8 [1], and its extension

to the Leech lattice [2]. All of the results reviewed in this section are mathematically rig-

orous in the original papers, including the numerics, which are done in rational or interval

arithmetic to control numerical errors.

3.1 Basics

The simplest packings are lattice packings, where a sphere is centered at each point on

a lattice Λ ⊂ Rd. The sphere diameter is equal to the length of the shortest lattice

vector, so the problem of finding a dense lattice packing is one of constructing lattices

with no short vectors and fixed volume of the unit cell. This is already reminiscent of

the conformal bootstrap, if we were to restrict to compactified free theories, where the

spectrum is specified by a lattice.
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The solved cases, d = 1, 2, 3, 8, 24, are all lattice packings, but in general, lattice

packings are not optimal. A more general configuration is a periodic packing, which is a

crystal, having one or more spheres per unit cell. Not all sphere packings are periodic, but

by taking the unit cell very large, any packing can be well approximated by a periodic one,

so it suffices to restrict to this case for the purposes of proving bounds on the density.

The density of a periodic packing is the fraction of the unit cell occuppied by spheres.

If there are N spheres in the unit cell, each with radius r, then this fraction is

ρd =
N vol(Bd)rd

|Λ| , (3.1)

where vol(Bd) = πd/2/Γ(d/2+1) is the volume of the unit ball in Rd, and the denominator

|Λ| = vol(Rd/Λ) is given by the determinant of the lattice basis. The highest achievable

packing density for a given d will be denoted ρmax.

In most cases, the best known upper bounds on ρmax come from linear program-

ming [11]. These bounds, together with the densest known packings, are plotted for small

d in figure 2. The bounds are saturated in the dimensions where the sphere packing problem

has been solved, with the exception of the Kepler problem, d = 3.

At large d, some general upper and lower bounds are known. Early arguments by

Minkowski (see [50]) and Blichfeldt [51] led to the allowed asymptotics 2−d . ρmax . 2−d/2.

The lower bound has since been improved by a linear prefactor. The current best upper

bound at large d is by Kabatyanski and Levenshtein, ρmax ≤ 2−0.599d+o(d) [52] (with a

prefactor improved by Cohn and Zhao [53]).

3.2 Linear programming method

The Cohn-Elkies theorem. Linear programming has long been used in coding theory,

starting with the work of Delsarte in 1972 [54]. It can be used to bound, for example, the

number of codewords in an error-correcting code. Bounds on error-correcting codes can

be translated into sphere packing, to place rigorous upper bounds on ρmax [52, 55]. (See

the discussion section for further comments on this connection.) Linear programming was

later applied directly to the sphere packing problem, without going through an intermediate

coding problem, by Cohn and Elkies. We will now review the main theorem of Cohn and

Elkies [11, 12]. We reformulate their proof in the language of linear functionals familiar

from the bootstrap.

Consider a periodic packing, specified by a lattice Λ ⊂ Rd and vectors v1, . . . , vN . A

sphere is centered at each vi and its translations by Λ. The distances between centers of

spheres are given by |x+ vi− vj | for x ∈ Λ and i, j = 1, . . . , N . The density of a packing is

invariant under an overall rescaling. Therefore, we can assume without loss of generality

that the shortest distance between the centers of distinct spheres in the packing is equal

to 1, and set the sphere radius to 1/2. The density of the packing is then given by

ρd =
Nvol(Bd)

2d|Λ| . (3.2)

Proving an upper bound on ρd thus amounts to proving a universal upper bound on N/|Λ|
for all periodic sets of vectors which have unit minimal distance between different vectors.
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In order to prove such a bound, we start by defining the averaged theta function as a

weighted sum over all distances between centers of spheres in the packing [56],

Θ(τ) =
N∑

i,j=1

∑
x∈Λ

eπiτ(x+vi−vj)2
. (3.3)

For later convenience, we divide this by a power of the Dedekind η-function to define the

partition function of the packing

Z(τ) =
Θ(τ)

η(τ)d
=

N∑
i,j=1

∑
x∈Λ

χU(x+vi−vj)2/2(τ) , (3.4)

where χU∆(τ) are the U(1)c characters (2.9) for c = d/2. It turns out that there exists a

version of the modular bootstrap equation (2.6) satisfied by every periodic packing. While

Z(τ) is not necessarily invariant under the S transformation, Z(τ) can be expanded in

the crossed-channel characters χU∆(−1/τ) with positive coefficients. The precise equation

follows directly from the Poisson summation formula with respect to the lattice Λ and reads

N∑
i,j=1

∑
x∈Λ

χU(x+vi−vj)2/2(τ) =
1

|Λ|
∑
y∈Λ∗

∣∣∣∣∣
N∑
i=1

e2πivi·y

∣∣∣∣∣
2

χUy2/2(−1/τ) . (3.5)

where Λ∗ stands for the dual lattice.

Let us consider a linear functional ω acting on functions of τ and define f : Rd → R
as the functional action

f(x) = ω
[
χUx2/2(τ)

]
. (3.6)

The action of ω on the crossed-channel characters is given by the Fourier transform of f(x)

ω
[
χUy2/2(−1/τ)

]
= f̂(y) =

∫
Rd
ddx e−2πix·yf(x) . (3.7)

When we apply ω to (3.5), we get

N∑
i,j=1

∑
x∈Λ

f(x+ vi − vj) =
1

|Λ|
∑
y∈Λ∗

∣∣∣∣∣∣
N∑
j=1

e2πivj ·y

∣∣∣∣∣∣
2

f̂(y) . (3.8)

Actually, we could have obtained this equation more simply by applying Poisson summation

directly to the left-hand side of (3.8), without introducing the linear functional ω. This

more direct route is taken by Cohn and Elkies [11]. We have rephrased the proof in terms

of the action of a linear functional to draw a parallel to the conformal bootstrap, and

because this point of view is useful in constructing the optimal functionals analytically.

We will see that (3.8) plays the same role as the crossing equation in confor-

mal field theory. This equation also has an analogue in coding theory, known as the

MacWilliams identities.
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The function f(x) constructed in (3.6) is spherically symmetric, f(x) = f(|x|). The

argument can be generalized so that f(x) in (3.8) is a more general function on Rd, but

this does not improve the bounds [11].

In order to derive a bound on the density from equation (3.8), we proceed by extracting

the “identity” (∆ = 0) contributions from both sides. On the l.h.s. , these come from terms

with x = 0 and i = j, while on the r.h.s. from the term with y = 0. Moving all identity

terms to the left, we arrive at

Nf(0)− N2

|Λ| f̂(0) = −
∑
x 6=0

or i 6=j

f(x+ vi − vj) +
1

|Λ|
∑

y∈Λ∗\{0}

∣∣∣∣∣∣
N∑
j=1

e2πivj ·y

∣∣∣∣∣∣
2

f̂(y) . (3.9)

Suppose now that we can find a functional ω such that f satisfies

f̂(y) ≥ 0 for all y ∈ Rd

f(x) ≤ 0 for all |x| ≥ 1 .
(3.10)

Since the minimal distance between centers of distinct spheres in the packing is 1 by

assumption, it follows that all terms on the r.h.s. of (3.9) are non-negative. Therefore

Nf(0) ≥ N2f̂(0)/|Λ|. This produces the desired upper bound on N/Λ and thus from (3.2)

a general bound on the sphere-packing density3

ρd ≤
vol(Bd)

2d
f(0)

f̂(0)
. (3.11)

It is sometimes convenient to restate the theorem as follows [11, 12]. Suppose that

instead of imposing unit shortest distance between sphere centers, we normalize the packing

by |Λ| = N , so that the density becomes

ρd = vol(Bd)Rd , (3.12)

where 2R is the shortest distance between sphere centers. Thus to prove an upper bound

on ρd, we seek an upper bound on R valid for all packings with |Λ| = N . To prove the

bound R ≤ R∗ from (3.9), we need a function f(x) satisfying

(i) f(0) = f̂(0) > 0

(ii) f̂(y) ≥ 0 for all y ∈ Rd

(iii) f(x) ≤ 0 for all x ≥ 2R∗

(3.13)

If such a function exists, we get the universal bound ρd ≤ vol(Bd)Rd∗. To see that the two

formulations of the Cohn-Elkies theorem lead to precisely the same bound on the density,

we can rescale the argument of f(x) in the second formulation by 2R∗ to produce f(x) of

the first formulation.

It is important to note that for the Possion summation formula (3.8) to hold, f(x)

needs to be sufficiently smooth and decay sufficiently fast at infinity. This is equivalent to

3Note that f(0), f̂(0) > 0 by construction since f̂(y) ≥ 0 for all y ∈ Rd and f(0) =
∫
Rd d

dyf̂(y).
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saying that not every linear functional ω can be commuted with the infinite sums over x

and y in (3.5).4 For (3.8) to hold, it is sufficient that f(x) is a Schwartz function in Rd.
Although (3.8) holds for more general functions, in practice the optimal bounds arise from

Schwartz functions so we can restrict to them in the following. When ω is a finite linear

combination of derivatives in τ evaluated at τ = i, then f(x) is a Schwartz function. We

will see that the functionals which lead to optimal bounds are given by contour integrals

in H+ which still lead to Schwartz functions.

Positivity in Fourier space can also be understood geometrically. A function f(x)

is said to be positive definite if, for any x1, x2, . . . , xN , the matrix f(xi − xj) is positive

semidefinite. Assuming fast enough fall-off, f is positive definite if and only if it has non-

negative Fourier transform. This point of view, explained further in [11, 58], gives another

simple proof of the Cohn-Elkies theorem, and relates it to the results of Delsarte.

Linear programming. Clearly the best bound on ρmax coming from the Cohn-Eliies

theorem is obtained by finding the f in the second formulation with minimal R∗. Alterna-

tively, in the first formulation, we normalize f(0) = 1, and solve the infinite-dimensional

linear programming (LP) problem:

maximize f̂(0) subject to (3.10) . (3.14)

This setup does not completely exhaust the constraints on sphere packing, so even a com-

plete solution of the LP problem does not generally solve the packing problem in d di-

mensions. However, in dimensions d = 1, 2, 8, 24, miraculously, the LP bound becomes

sharp. This was first observed numerically [11, 52] where it was found that the LP bound

is very nearly saturated by the best known packings in these dimensions. For other d,

the LP bound is not optimal; it might still be possible to solve the packing problem by

optimization, but only by replacing positive definiteness by the more general notion of

a geometrically positive function or by including higher-point correlations on the packing

(e.g., [58, 59]).

The direct solution of (3.14) by linear programming is possible but cumbersome. In

practice, Cohn and Elkies trade it for a simpler optimization problem, which produces the

same optimum. Let us work with the second formulation (3.13) and set

f = h− g, f̂ = h+ g . (3.15)

h and g are radial Schwartz functions which are respectively even and odd eigenfunctions

of the Fourier transform in Rd,
ĥ = h, ĝ = −g . (3.16)

These can be decomposed into sums of even or odd degree Laguerre functions, respectively,

g(x) =
M∑
i=1

βiL
ν
2i−1(2π|x|2)e−π|x|

2
, h(x) =

M∑
i=1

αiL
ν
2i−2(2π|x|2)e−π|x|

2
(3.17)

4Conditions under which a linear functional can be commuted with the sum over operators and thus

gives a correct bootstrap equation were analyzed for the sl(2,R) four-point bootstrap in [57].
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where ν = d/2− 1. We have truncated the expansion at some even integer M in order to

render the problem finite dimensional. The bound is rigorous at any M , and improves as

M is increased. To fix the M coefficients βi, up to an overall scaling, impose the M − 1

equations

g(rµ) = g′(rµ) = 0

g(0) = 0
(3.18)

for µ = 1 . . . P , with

P = M/2− 1 . (3.19)

Denote by r0 the position of the last sign change of g, with g(r0) = 0.

The nonlinear optimization problem is to choose the double zeroes rµ in order to

minimize the single zero r0. This step relied on a computer, until Viazovska’s proof.

Once this optimization is done, for any given M , we have now completely determined

g (up to a a multiplicative constant) and r0, . . . , rP . The even eigenfunction h is fixed by

imposing

h(rµ) = h′(rµ) = 0 (3.20)

g(r0) + h(r0) = g′(r0) + h′(r0) = 0

for µ = 1 . . . P .

Although unproven, it was conjectured by Cohn and Elkies, and checked numerically,

that for any d ≥ 1 this procedure gives a function f that satisfies the assumptions of the

Cohn-Elkies theorem and therefore places an upper bound on ρmax. For future reference,

we record this observation as:

Conjecture 3.1 (Cohn and Elkies [11]). The function f = h−g, constructed by forcing the

single and double zeroes as in (3.18) and (3.20) and minizing r0, satisfies the assumptions

of the Cohn-Elkies theorem (3.13).

Unlike the original linear program (3.14), the problem of choosing rµ to maximize r0

is not globally convex, and is not guaranteed to agree with (3.14). However, in practice, a

local optimum is easy to find, and this is good enough — once a candidate f is identified

by this method, it can be checked that it satisfies the assumptions of the theorem, and

therefore leads to rigorous sphere-packing bounds.

The difficult step in the procedure is of course to choose rµ to minimize r0. This

was implemented numerically in [11, 12, 60], by guessing an initial point rµ and using

Newton’s method. As illustrated in figure 2, the numerical upper bound for d = 8, 24 is

extremely close to the packing density of the Λ8 and Λ24 lattices. The strongest numerical

bounds were obtained in [60], keeping P = 200 roots (i.e., Laguerre polynomials through

degree 803):

d = 8 :
ρmax

ρ(Λ8)
≤ 1 + 10−14 (3.21)

d = 24 :
ρmax

ρ(Λ24)
≤ 1 + 10−29
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Cohn and Elkies conjectured that as M →∞, the procedure converges to a ‘magic function’

f8(x) or f24(x) capable of solving the sphere packing problem in these dimensions. The

magic function must have zeroes on the actual length spectrum of the Λ8 or Λ24 lattice, so

that the right-hand side of (3.9) vanishes. This implies, in d = 8,

f8(
√

2k) = f̂8(
√

2k) = 0, k = 1, 2, 3, . . .∞ (3.22)

and all of these should be double zeroes except for f(r0 =
√

2). (Here the spheres have

radius 1/
√

2, since the length of the shortest vector in Λ8 is
√

2.) Similarly, for d = 24, the

magic function must have

f24(
√

2k) = f̂24(
√

2k) = 0, k = 2, 3, . . .∞ (3.23)

with all zeroes of multiplicity two except f(r0 =
√

4).

3.3 Viazovska’s proof

The numerics left little doubt that the magic functions exist, but they were difficult to

find. They were recently found by Viazovska in d = 8 [1] and by Cohn, Kumar, Miller,

Radchenko and Viazovska in d = 24 [2]. The key idea of [1] is to start from the ansatz

h(r) = i sin2(πr2/2)

∫ i∞

0
dτH(τ)eiπr

2τ

g(r) = i sin2(πr2/2)

∫ i∞

0
dτG(τ)eiπr

2τ .

(3.24)

As in (3.15)–(3.16), the magic function is f = h− g with h, g the ±1 eigenfunctions of the

Fourier transform. The integrands G and H will be designed to give h, g all the requisite

properties, using quasimodular forms as building blocks.

The ansatz builds in by hand the desired zeroes at r =
√

2,
√

4,
√

6, . . . . However it

also produces some extraneous zeros. In particular, h(r) should be positive for r = 0.

Furthermore, the double root at r =
√

2 should be a simple root for d = 8, and similarly

the double root at r = 2 should be a simple root in d = 24. These extraneous zeroes must

be canceled by singularities from the integral.

We must find conditions on G,H that will ensure g, h are eigenfunctions of the d-

dimensional Fourier transform. This is achieved by taking the Fourier transform of (3.24)

with the help of some judicious contour deformations, which can be found in Viazovska’s

paper and will be reviewed in section 6.5 when we reproduce these results from the boot-

strap. In the end, we find the following conditions on G,H:

H(−1/τ) = −1

2
(−iτ)2−d/2 [H(τ + 1) +H(τ − 1)− 2H(τ)] (3.25a)

H(τ + 1) = −(−iτ)d/2−2H(−1− 1/τ) (3.25b)

G(−1/τ) =
1

2
(−iτ)2−d/2 [G(τ + 1) +G(τ − 1)− 2G(τ)] (3.25c)

G(τ + 1) = (−iτ)d/2−2G(−1− 1/τ) . (3.25d)

These transformation rules, together with some information about the functions’ singular

behavior, are enough to find H and G. To proceed, we specialize to d = 8 and d = 24 in

turn. Relevant background on modular forms is reviewed in appendix A.
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3.3.1 The magic function in R8

Let φ(τ) = τ2H(−1/τ). For d = 8, (3.25b) implies

φ(τ) = φ(τ + 1) . (3.26)

Therefore, φ has an expansion in q = e2πiτ , and we can hope to build it using modular

forms. The other condition (3.25a) is

φ(τ) = ∆(2)[τ2φ(−1/τ)] (3.27)

where ∆(2) is the second finite difference operator: ∆(2)[X(τ)] = 1
2 [X(τ + 1) +X(τ − 1)−

2X(τ)]. Eq (3.27) is satisfied if we pick φ to be a weakly holomorphic quasimodular form

for SL(2,Z), with weight 0 and depth 2. That is,

φ(−1/τ) = φ(τ) + τ−1ψ1 + τ−2ψ2 , (3.28)

where ψ1 and ψ2 are periodic under τ ∼ τ + 1. Functions of this type can be built from

the second Eisenstein series, E2. In analogy with the construction of the j-function as the

ratio of two weight-12 modular forms, a natural guess is that ∆φ, with ∆ the modular

discriminant, is a weight 12, depth 2 quasimodular form. This suggests the ansatz

φ =
1

∆
× (E2

2p8(E4, E6) + E2p10(E4, E6) + p12(E4, E6)) (3.29)

with pk a weight-k polynomial. Some restrictions on the fall-off behavior, or fixing the

most singular terms by comparing to numerics, then leads to

φ =
4π(E2E4 − E6)2

5(E2
6 − E3

4)
. (3.30)

This defines the +1 eigenfunction in the integral ansatz (3.24), with H(τ) = τ2φ(−1/τ).

The integral converges for r >
√

2 and is otherwise defined by analytic continuation.

At large imaginary τ ,

H(τ) =
1

60πq
+

42

5π
+ 4iτ +O(τ2q) (3.31)

These terms produce singularities that cancel the extraneous zeros in sin2(πr2/2) discussed

above; it is straightforward to integrate them and see that

h(0) = 1 , h(
√

2) = 0 , h′(
√

2) = − 1

60
√

2
. (3.32)

We now turn to the −1 eigenfunction, g. The conditions (3.25) show that φ̃ =

τ2G(−1/τ) is antiperiodic under τ → τ + 1, so that it can be expanded in odd pow-

ers of q1/2. This suggests that the relevant modular group is the congruence subgroup

Γ(2). Indeed, by an argument similar to the above, it suffices to choose G to be a weakly

holomorphic modular form of weight -2 for Γ(2), and impose

τ2G(−1/τ) = G(τ)−G(τ + 1) . (3.33)
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A natural guess is that G is a weight-10 modular form divided by the discriminant, ∆ ∝
(θ2θ3θ4)8. Modular forms for Γ(2) are polynomials in θ4

3 and θ4
4, which are both weight 2.

This gives 6 weight-10 forms that can appear in the numerator; imposing (3.33) fixes some

of the coefficients, and the singular behavior fixes the rest, leading eventually to

G(τ) = −32θ4
4(5θ8

3 − 5θ4
3θ

4
4 + 2θ8

4)

15πθ8
3θ

8
2

. (3.34)

The expansion at large imaginary τ is

G = − 1

60πq
− 12

5π
+

256q1/2

3π
− 5877q

5π
+O(q3/2) . (3.35)

Upon doing the integral in (3.24) we see that the extraneous zeros are canceled as desired,

g(0) = g′(0) = 0, g(
√

2) = 0, g′(
√

2) =
1

60
√

2
. (3.36)

It follows that f = g − h has exactly the properties (3.22) required of the magic function.

This completes the proof that the densest packing in 8 dimensions is the E8 root lattice.

The rigorous proof [1] is not much more difficult than what we have just sketched; the only

extra steps are checking the integral manipulations more carefully, and a straightforward

proof that subtracting h− g does not produce any new roots.

3.3.2 The magic function in R24

The details in d = 24 are a bit different due to the weights in (3.25), but the extension is

straightforward [2]. For the +1 eigenfunction, take H(τ) = τ10φ(−1/τ) with

φ =
65536π25

110565

1

∆2
(25E4

4 − 49E2
6E4 + 48E6E

2
4E2 + (−49E3

4 + 25E2
6)E2

2) . (3.37)

For the -1 eigenfunction, take

G = −1048576π23

4095

1

∆2
(7θ20

4 θ
8
2 + 7θ24

4 θ
4
2 + 2θ28

4 ) . (3.38)

The resulting h, g have the desired roots (3.23). This proves that the densest packing in

24 dimensions is the Leech lattice.

4 The relation between sphere packing and modular bootstrap

There are clear similarities between the modular bootstrap and the Cohn-Elkies method for

bounding the sphere packing density. In this section, we will describe the precise relation,

and summarize how the same analytic functionals can be applied to both problems.
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4.1 The case of isodual lattices

As a warm-up, the modular bootstrap problem with U(1)c characters can be directly used to

constrain isodual lattices in R2c. An isodual lattice is one which is isometric (geometrically

congruent) to its dual lattice. In particular, the vector norms and their multiplicities are

the same for Λ and Λ∗, and we have |Λ| = |Λ∗| = 1. We define the partition function of an

isodual lattice Λ as a special case of (3.4) with N = 1 and v1 = 0,

Z(τ) =
∑
x∈Λ

χUx2/2(τ) . (4.1)

It follows from the Poisson summation formula (3.5) and isoduality of Λ that Z(τ) is

S-invariant,

Z(τ) = Z(−1/τ) . (4.2)

The problem of maximizing the length of the shortest nonzero lattice vector in the sum (4.1)

subject to S-invariance (4.2) is manifestly identical to the problem of maximizing ∆0 in

the U(1)c modular bootstrap discussed in section 2.3. Thus for any isodual lattice in R2c,

the length Lmin of the shortest non-zero vector obeys

Lmin ≤
√

2∆U (c) . (4.3)

Since in a lattice packing the sphere radius is bounded above by Lmin/2, we immediately

obtain an upper bound on the sphere-packing density among all isodual lattice packings,

ρisodual
d ≤ vol(Bd)

(
Lmin

2

)d
= vol(Bd)

[
∆U (d2)

2

] d
2

. (4.4)

4.2 A bound on arbitrary sphere packings

Now we turn to general sphere packings. Let ω be the optimal functional for the U(1)c

bootstrap, leading to the bound ∆U (c). Consider the radial function g : R2c → R obtained

by acting with ω on the crossing equation,

g(x) = ω[ΦU
x2/2] (4.5)

where ΦU
∆(τ) is defined in (2.11). As explained above, g obeys g(0) = 0, is odd under the

Fourier transform in x ∈ R2c and satisfies the positivity condition

g(x) ≥ 0 for all |x| ≥
√

2∆U (c) . (4.6)

Suppose that one can construct another radial function h(x) : R2c → R, which is even

under the Fourier transform, and satisfies

(1) h(0) > 0

(2) h(x)− g(x) ≤ 0 for all |x| ≥
√

2∆U (c) (4.7)

(3) h(x) + g(x) ≥ 0 for all x ∈ R2c
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The Cohn-Elkies theorem states that if such h(x) exists, then the bound on the density (4.4)

actually applies to arbitrary sphere packings. Experimentally, both with numerics and with

the analytic functionals described below, we find that given g(x), it is always possible to

find h(x) satisfying the above properties. This is essentially equivalent to the observation

of Cohn and Elkies, stated above as conjecture 3.1, that h(x) always exists given some

choice of single and double zeroes inherited from g(x).

Thus we have the conjecture that for all sphere packings in Rd,

ρd ≤ vol(Bd)

[
∆U (d2)

2

] d
2

. (4.8)

For all of the analytic and numerical functionals that have been constructed explicitly, this

upper bound is actually a theorem, because in these cases we also have h.

4.3 Asymptotics of the sphere-packing bounds at large d

The large-c (or equivalently large-d) limit is of great interest. In modular bootstrap, this

limit is related to holographic theories of 3d gravity. In sphere packing the large-d limit

has applications to the construction of efficient codes [8].

The Minkowski lower bound on the sphere packing density, ρd ≥ 2−d, combined with

the conjecture (4.8), leads to a lower bound on ∆U (c),

∆U (c) ≥ Γ(c+ 1)
1
c

2π
. (4.9)

For c� 1, this becomes

∆U (c) ≥ c

2πe
+ o(c) . (4.10)

Numerically, 1
2πe ≈ 0.05855 ≈ 1

17.08 . At large d, the densest known sphere packings have

these same asymptotics. It has been proved in [61] that the linear programming bound of

Cohn and Elkies on the density cannot be better than 2−(0.7786···+o(1))d, which (assuming

conjecture (4.8)) translates into

∆U (c) ≥ c

12.57
+ o(c) . (4.11)

The best upper bound on the density at large d is that of Kabatiansky and Levenshtein

(KL) [52],

ρd ≤ 2−(a+o(1))d , (4.12)

with a = 0.5990 . . . . Cohn and Zhao [53] proved that linear programming is at least

as strong as the KL bound (and improved this bound by a linear prefactor). Since the

linear programming bound on isodual lattice packings is at least as strong as the linear

programming bound on general packings, we find the rigorous inequality (not relying on

the conjecture (4.8))
πc

Γ(c+ 1)

[
∆U (c)

2

]c
≤ 2−2(a+o(1))c . (4.13)
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For c� 1, this gives

∆U (c) ≤ c

9.795
+ o(c). (4.14)

In summary, sphere packing bounds lead to

c

12.57
. ∆U (c) .

c

9.795
(4.15)

at large c, with the lower bound conditional on conjecture (4.8). The U(1)c modular

bootstrap bound is at least as good as the best upper bound on general sphere packings,

and it is of great interest to determine the asymptotic slope of ∆U (c), either analytically

or numerically.

We can compare these asymptotic bounds on ∆U (c) with what is known about the

bound in the Virasoro case at large c. It was shown in [5] that ∆V (c) can never drop below

(c− 1)/12 and prior to the present work, the best asymptotic upper bound on ∆V (c) was

that of Hellerman [4]
c

12
. ∆V (c) .

c

6
. (4.16)

In this paper, we will improve the slope of the upper bound to ∆V (c) . c
8.503 . The same

technique also applies to ∆U (c), but only leads to ∆U (c) . c
8.856 , which is weaker than the

KL bound (4.14).

4.4 Preview of analytic functionals

So far, we have described the relation between sphere packing and the U(1)c bootstrap.

Now we will connect both of these problems to the Virasoro bootstrap, relevant to generic

CFTs and to 3D quantum gravity. The Virasoro bootstrap is not equivalent to U(1)c, but

the key point is that exactly the same analytic functionals can be applied to both problems.

These functionals have already been constructed in the bootstrap literature in the context

of the four-point function bootstrap on a line [13, 14]. This will reproduce the results of

Viazovska et al. in 8 and 24 dimensions [1, 2], and unify the sphere packing solutions with

new bounds on black holes from the Virasoro bootstrap. In this section we introduce the

functionals, and preview some results of the more technical sections that follow.

First, let us directly compare the linear programming bounds for Virasoro and U(1)c.

Numerical results are shown in figure 3. We plotted ∆U (c) − c+4
8 and ∆V (c) − c+4

8 . We

can see that the bounds coincide with each other and with c+4
8 at c = 4 and c = 12. In

other words
∆U (4) = ∆V (4) = 1

∆U (12) = ∆V (12) = 2 .
(4.17)

Note that the U(1)c problem with c = 4, 12 maps precisely to the sphere-packing problem

in d = 8, 24.

We provide the following explanation for the above behaviour of ∆U (c) and ∆V (c).

Firstly, the torus partition function of a 2D CFT can be computed as the sphere four-

point function of twist operators in the symmetric product orbifold of two copies of

said theory [62]. When the theory has central charge c, the twist operator has total

scaling dimension

∆φ =
c

8
. (4.18)
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UH1 L

Virasoro

0 5 1 0 1 5 2 0
-0 .0 2

-0 .0 1

0 .0 0

0 .0 1

0 .0 2

c

∆
U
,V

(c
)
−

(c
+

4)
/
8

Figure 3. Upper bounds from linear programming on the gap for U(1)c and Virc, denoted ∆U (c)

and ∆V (c). We have subtracted c+4
8 from both bounds. c+4

8 is the optimal bound in the case of

the four-point function bootstrap in 1D, translated to modular bootstrap variables.

The Euclidean partition function on a torus of modulus τ maps to the Euclidean four-point

function with cross-ratio

z = λ(τ) , (4.19)

where λ(τ) = θ2(τ)4

θ3(τ)4 is the modular lambda function, and the cross-ratio is related to the

location of the twist operators wi ∈ R2, i = 1, . . . , 4 by

|z|2 =
w2

12w
2
34

w2
13w

2
24

, |1− z|2 =
w2

14w
2
23

w2
13w

2
24

, (4.20)

where wij = wi −wj . The S-transformation on the torus τ ↔ −1/τ maps to the standard

crossing transformation of four points z ↔ 1− z. The configurations which are relevant for

the spinless modular bootstrap correspond to rectangular tori, i.e. τ ∈ iR>0. Under (4.19),

this maps to the locus z ∈ (0, 1), which corresponds to configurations where the four

twist operators are collinear. Therefore, spinless modular bootstrap at central charge c is

almost equivalent to the four-point function bootstrap in 1D with external operators of

dimension c/8. The only difference is that the torus characters χU∆(τ) and χV∆(τ) do not

map exactly to the conformal blocks of the 1D conformal algebra sl(2,R). In fact, thanks

to the large symmetry algebra of the symmetric product orbifold, a torus character of

dimension ∆ maps to a positive linear combination of the 1D conformal blocks of dimensions

2∆, 2∆ + 2, 2∆ + 4, . . .. The prefactor 2 is present because a single primary of the original

theory maps to two copies of that primary in the doubled theory.

The merit of the mapping from the torus partition function to the sphere four-point

function is that the optimal upper bound on the gap coming from the four-point function

bootstrap in 1D with sl(2,R) blocks is known exactly, since the extremal functionals have
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been constructed in this case [13, 14]. For any value of the external dimension ∆φ > 0,

the bound is saturated by fermionic mean field theory, where the gap in the spectrum of

sl(2,R) primaries is

∆1D(∆φ) = 2∆φ + 1 . (4.21)

Therefore, if we could ignore the difference between the torus character χU,V∆ (τ) and sl(2,R)

block of dimension 2∆, the modular bootstrap bounds ∆U,V (c) would both be equal to

∆1D(c/8)

2
=
c+ 4

8
. (4.22)

It is precisely for c = 4 and c = 12 that the difference between torus characters and

sl(2,R) blocks plays no role, and (4.22) becomes the correct bound for both U(1)c and

Virc. Furthermore, we can argue that ∆U,V (c) < c+4
8 for c ∈ (1, 4) and c ∈ (12,∞), as

suggested by figure 3.

The claims of the previous paragraph can be proven simply by taking the extremal

functionals for the 1D four-point function bootstrap, and applying them to modular boot-

strap using the inverse of the mapping (4.19)

τ(z) = i
K(1− z)

K(z)
, (4.23)

where K(z) is the complete elliptic integral of the first kind. For any c > 1, this gives a

linear functional βc acting on functions F(τ) of τ ∈ H+. As we will explain in the following

sections, βc takes the form

βc[F ] =

∫ 1

1
2

dzµc(z)Qβc
8
(z)F(τ(z)) +

1

2

∫ 1
2

+i∞

1
2

dzµc(z)Rβc
8
(z)F(τ(z)) . (4.24)

Here µc(z) = [28z(1 − z)]−
c
12 is a measure arising from the Weyl transformation needed

to go from the torus partition function to the sphere four-point function. The functional

is specified by kernels Qβ∆φ
(z), Rβ∆φ

(z). For general ∆φ, the kernels are given in terms

of generalized hypergeometric functions. Rβ∆φ
(z) takes the form (5.29), and Qβ∆φ

(z) =

−(1−z)2∆φ−2Rβ∆φ

(
z
z−1

)
. The special cases c = 4 and c = 12 map to ∆φ = 1

2 and ∆φ = 3
2 .

The kernels reduce to rational functions of z at these points, see (5.28).

We will see that βc has the following properties in the context of modular bootstrap:

• For any c > 1, the functions of ∆ given by βc[Φ
U
∆] and βc[Φ

V
∆] have a simple zero at

∆0 =
c+ 4

8
(4.25)

and double zeroes at

∆n =
c+ 4

8
+ n, n = 1, 2, . . . . (4.26)

• βc[ΦU
∆] and βc[Φ

V
∆] are non-negative for ∆ > ∆0.

• βc[ΦU
vac] and βc[Φ

V
vac] both vanish for c = 4, 12 and are positive for c ∈ (1, 4) and

c ∈ (12,∞).
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Sphere packing Virasoro mod. boot. 1D 4-point boot. Relationship

d: dimension of Rd c: central charge ∆φ: external dim. ∆φ = c
8 = d

16

τ : torus modulus τ : torus modulus z: 4-point cross ratio z(τ) = θ2(τ)4

θ3(τ)4

Θ(τ): theta fn. Z(τ): partition fn. G(z): 4-point fn.
G(z)=

[
2−8z2

(1−z)

] c
12Z(τ)

Z(τ)= Θ(τ)
η(τ)d

r: distance in Rd ∆: exchanged dim. ∆1D: exchanged dim. ∆1D = 2∆ = r2

χU
r2

2

(τ) = eiπr
2τ

η(τ)d
χV∆(τ) = e2πi∆τ

η(τ)2 G∆1D
(z): eqn. (5.10) eqn. (6.25)

Table 1. Dictionary relating the bounds on sphere packing, the Virasoro modular bootstrap and

the four-point function bootstrap on a line.

It follows that for c = 4 and c = 12, βc is the optimal functional for both the U(1)c and Virc
gap maximization problem. Moreover, for these values of c, the functions of x ∈ R2c given

by βc[Φ
U
x2/2] are precisely the Fourier-odd parts of the magic functions for sphere packing

found by Viazovska [1] and Cohn et al. [2]. We will also exhibit the linear functionals giving

the Fourier-even part.

A result worth highlighting is that from the bootstrap point of view, the prefactor

sin2(πr2/2) in Viazovska’s ansatz has a very natural origin. We will see that it comes

from a double discontinuity, an object which has played a central role in recent analytic

approaches to the conformal bootstrap [63, 64].

For c ∈ (1, 4), and c ∈ (12,∞), functional βc proves the upper bounds

∆U (c) <
c+ 4

8
, ∆V (c) <

c+ 4

8
. (4.27)

At large c, this improves on the Hellerman bound, ∆V (c) . c
6 . Away from c = 4, 12, these

bounds are not optimal because the functional is positive, rather than zero, when acting on

the modular bootstrap vacuum characters. (It vanishes on the sl(2,R) vacuum conformal

blocks, but the vacuum torus characters contain additional contributions from sl(2,R)

blocks of dimensions 2, 4, . . ..) With a bit more work, in section 7.3, we will also find a

functional that vanishes on the vacuum at large c, and leads to the asymptotic bounds

∆U (c) .
c

8.856
, ∆V (c) .

c

8.503
. (4.28)

As noted in the introduction, the latter is slightly weaker than the conjectured true asymp-

totics based on extrapolating the numerical bound, ∆V (c) ∼ c/9.08 [7].

The relations between various variables and objects entering the three problems (sphere

packing bounds, Virasoro modular bootstrap and the four-point bootstrap on a line) are

summarized in table 1.
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5 Analytic extremal functionals

5.1 Four-point function bootstrap with sl(2,R)

We will now go through the arguments of the previous section in detail. Our strategy

for understanding the modular bootstrap bounds ∆U (c) and ∆V (c) will be to relate them

to another conformal bootstrap setup, for which the optimal bound and the extremal

functionals are known analytically. This exactly-solved case is the conformal bootstrap of

the four-point function of identical primaries restricted to a line. We will now review this

setup and the analytic construction of the corresponding extremal functionals. Most of this

section is a review of results that can be found in [13] and [14], where the reader can find

more details. Only the construction of functionals for the generalized crossing equation in

section 5.4 is new. We use the language closer to the second reference because it is closer

to Viazovska’s construction of the magic functions.

Let us consider a local operator φ(x) in a unitary CFT in D ≥ 1 dimensions. We will

study the correlation functions of φ(x) restricted to a spacelike line. The subalgebra of the

D-dimensional conformal algebra which maps such a line to itself is sl(2,R) = so(1, 2). We

will take φ(x) to be primary under this sl(2,R). Thus φ(x) can be e.g. a scalar primary

or a component of a spinning primary of the full CFT. If φ(x) has bosonic statistics, its

two-point function takes the form

〈φ(x1)φ(x2)〉 =
1

|x12|2∆φ
, (5.1)

where xi are the positions along the line, xij ≡ xi− xj , and ∆φ is the scaling dimension of

φ(x). If φ(x) has fermionic statistics, we have instead

〈φ(x1)φ(x2)〉 =
sgn(x12)

|x12|2∆φ
. (5.2)

Thanks to conformal symmetry, the four-point function can be written in terms of a single

function G(z) as follows:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉G(z) . (5.3)

Here

z ≡ x12x34

x13x24
(5.4)

is the unique cross-ratio of four points on a line. For the Euclidean correlator, z ranges

over real numbers. If φ(x) is a scalar primary in a D > 1 CFT, we can write the four-point

function in a general (i.e. not necessarily collinear) configuration as follows:

〈φ(w1)φ(w2)φ(w3)φ(w4)〉 = 〈φ(w1)φ(w2)〉〈φ(w3)φ(w4)〉G(z, z̄) , (5.5)

where wi are positions in RD and z, z̄ are defined by

zz̄ =
w2

12w
2
34

w2
13w

2
24

(1− z)(1− z̄) =
w2

14w
2
23

w2
13w

2
24

. (5.6)
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In the Euclidean signature, we have z∗ = z̄, where the star denotes complex conjugation.

Restricting to collinear configurations is equivalent to setting z = z̄ ∈ R

G(z) = G(z, z) . (5.7)

G(z, z̄) is analogous to the torus partition function Z(τ, τ̄) for general shape of the torus,

while G(z) is analogous to Z(τ) = Z(τ,−τ), which describes only rectangular tori.

G(z) has singularities at z = 0, 1,∞, corresponding to the coincident point limits

x2 → x1,3,4. Symmetry under permutations of the external operators fixes G(z) in the

intervals z ∈ (−∞, 0) and z ∈ (1,∞) in terms of G(z) in the interval z ∈ (0, 1). We will

thus focus on G(z) for z ∈ (0, 1) without loss of generality from now on. Symmetry under

x1 ↔ x3 implies the crossing symmetry of G(z)

z−2∆φG(z) = (1− z)−2∆φG(1− z) . (5.8)

This equation holds no matter whether φ has bosonic or fermionic statistics. It is analogous

to the symmetry of the torus partition function under the S transformation.

The four-point function can be expanded using the OPE applied to the product

φ(x1)φ(x2). The OPE can be organized into irreducible representations of sl(2,R), giving

rise to

G(z) =
∑

O∈×φ×φ
(cφφO)2G∆O(z) for z ∈ (0, 1) . (5.9)

The sum runs over the sl(2,R) primaries appearing in the OPE and cφφO is the corre-

sponding OPE coefficient. G∆O(z) stands for the conformal block capturing the total

contribution of O and its sl(2,R) descendants to the four-point function,

G∆(z) = z∆
2F1(∆,∆; 2∆; z) . (5.10)

We assume the theory is unitarity, so we can choose a basis of primary operators such that

cφφO ∈ R, and (cφφO)2 > 0. The existence of the OPE (5.9) guarantees that G(z) can

be analytically continued from z ∈ (0, 1) to the upper and lower half-plane and that the

result is a function holomorphic in R ≡ C\(−∞, 0] ∪ [1,∞). We will denote this analytic

continuation simply G(z). G(z) has a pair of branch cuts at z ∈ (−∞, 0] and z ∈ [1,∞).

The OPE (5.9) converges to G(z) uniformly in any compact subset of R.

It is natural to ask what is the physical meaning of the limit z →∞ of G(z) taken in

the upper or lower half-plane. This limit is known as the Regge, or chaos limit [23, 65].

To see this, we can consider the contour z = 1
2 + it for t ∈ [0,∞). G(1/2) is equal to

the thermal four-point function of the CFTD, quantized on the hyperbolic space HD−1,

with the four operators inserted at equal distances along the thermal circle. For t > 0,

operators φ(x2) and φ(x4) are evolved by a Lorentzian time. G(1/2+ it) thus computes the

out-of-time-order four-point function and t→∞ probes its late-time behaviour. It follows

from positivity of (cφφO)2 that G(z) satisfies a boundedness condition in this limit5

|G(z)| = O(|z|2∆φ) as |z| → ∞ . (5.11)

5This is not the ‘bound on chaos’ proved in [23] but a simpler bound coming from a Cauchy-Schwartz

inequality. See [63] for further discussion.
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The OPE can be combined with the crossing equation (5.8) to get a sum rule known

as the conformal bootstrap equation∑
O∈×φ×φ

(cφφO)2F∆O(z) = 0 , (5.12)

where

F∆(z) = z−2∆φG∆(z)− (1− z)−2∆φG∆(1− z) . (5.13)

Equation (5.12) holds everywhere in R, with the sum converging uniformly in any compact

subset of R.

We can ask what is the maximal gap above the identity in the spectrum of scaling

dimensions appearing in the OPE (5.9) compatible with unitarity and the bootstrap equa-

tion. As explained in 2.3, upper bounds on the gap can be produced by exhibiting suitable

linear functionals ω acting on holomorphic functions in R [28]. Specifically, if we can find

ω satisfying
ω[F0] > 0

ω[F∆] ≥ 0 for all ∆ ≥ ∆* ,
(5.14)

then every unitary solution of (5.12) must contain a primary operator distinct from identity

with ∆ < ∆∗. The conclusion is derived by applying ω to (5.12) and swapping the action of

ω with the infinite sum over O. The swapping is automatically allowed for all functionals

acting only in the interior of R, such as is the case for the numerical bootstrap functionals

consisting of a finite sum of derivatives at z = 1
2 . However, the requirement that the

swapping is allowed is an important constraint on functionals whose support touches the

boundary of R, as will be the case for the extremal functionals constructed shortly [57].

The infimum of values ∆∗ for which a functional satisfying (5.14) exists is the optimal

upper bound on the gap, denoted ∆1D(∆φ). At the same time, ∆1D(∆φ) is the maximal gap

above the identity among all solutions to (5.12). Furthermore, there exists a functional

β∆φ
, called the extremal functional, satisfying (5.14) with ∆∗ = ∆1D(∆φ) and the first

condition replaced by β∆φ
[F0] = 0. This is because β∆φ

must annihilate all F∆ present

in the optimal solution. Indeed, suppose that the optimal solution contains non-identity

primaries with dimensions ∆n for n = 0, 1, . . ., where ∆0 = ∆1D(∆φ). Then β∆φ
[F∆] must

have a zero of odd order at ∆ = ∆0 and zeros of even order at ∆ = ∆n for n = 1, 2, . . . to

ensure β[F∆] ≥ 0 for all ∆ ≥ ∆0. Typically, the zero at ∆0 is first-order and the zeros at

the higher ∆n are second-order.

It turns out that for any ∆φ > 0, the solution of (5.12) with maximal gap is the

four-point function of the elementary fields in fermionic mean field theory:

G(z) = 1 +
(

z
1−z

)2∆φ − z2∆φ . (5.15)

The primary operators appearing in the OPE are the identity and double-trace operators

of dimensions ∆n = 2∆φ + 2n+ 1 for n = 0, 1, . . .

G(z) = 1 +
∞∑
n=0

(cn)2G∆n(z) , (5.16)
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where the OPE coefficients take the form

(cn)2 =
2(2∆φ)2

2n+1

(2n+ 1)!(4∆φ + 2n)2n+1
. (5.17)

Clearly, the gap is

∆1D(∆φ) = 2∆φ + 1 . (5.18)

The strategy of the proof of optimality of this solution is to construct the extremal func-

tional β∆φ
with the correct structure of zeros and positivity properties. We will now review

the construction in more detail.

5.2 Construction of the extremal functionals

In order to prove that the fermionic mean field theory is indeed the optimal solution

to (5.12), we must construct (for each ∆φ > 0) a functional β such that6

1. β∆φ
[F∆] has a simple zero at ∆ = 2∆φ + 1.

2. β∆φ
[F∆] has double zeros at ∆ = 2∆φ + 2n+ 1 for n = 1, 2, . . ..

3. β∆φ
[F∆] ≥ 0 for all ∆ ≥ 2∆φ + 1.

These properties are reminiscent of another object familiar from recent developments in

the analytic conformal bootstrap: the double discontinuity [63, 64]. For our purposes,

we will define the double discontinuity around z = 0 as follows. Firstly, let us define

G̃(z) ≡ z−2∆φG(z), so that crossing symmetry reads G̃(z) = G̃(1 − z). The (fermionic)

double discontinuity of G̃(z) is then given by

dDisc[G̃(z)] = G̃(z) + (1− z)−2∆φ

G̃x
(

z
z−1

)
+ G̃x

(
z
z−1

)
2

for z ∈ (0, 1) . (5.19)

This definition agrees with the standard double discontinuity in D > 1, restricted to

z = z̄, when the external operators are fermions. See [16] for a more detailed discussion.

The symbols G̃x(z), G̃x(z) denote the analytic continuation of G̃(z) from z ∈ (0, 1) to

z ∈ (−∞, 0) above and below the branch point z = 0. The transformation z 7→ z

z − 1
appears because it is a symmetry of the s-channel sl(2,R) Casimir. Crucially, this implies

the s-channel conformal blocks are invariant up to a phase,

Gx
∆

(
z

z − 1

)
= eiπ∆G∆(z)

G
x
∆

(
z

z − 1

)
= e−iπ∆G∆(z) .

(5.20)

Let us now apply dDisc to the contribution of a single s-channel conformal block of di-

mension ∆, i.e. to z−2∆φG∆(z). Using (5.20), we find that the three terms in (5.19) nicely

combine to give

dDisc[z−2∆φG∆(z)] = 2 sin2

[
π

2
(∆− 2∆φ − 1)

]
z−2∆φG∆(z) . (5.21)

6Note the slight change of notation with respect to section 4. There we found it clearer to label the β

functional with the subscript c, here we use the subscript ∆φ = c/8.
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We conclude that for any z ∈ (0, 1), dDisc[z−2∆φG∆(z)] is non-negative for all ∆ ≥ 0 and

has double zeros in ∆ at 2∆φ + 1 + 2Z, which includes the spectrum of the fermionic mean

field theory. It is therefore natural to write an ansatz for β∆φ
[F∆] in the form of an integral

of the double discontinuity times a weight-function Qβ∆φ
(z)

β∆φ
[F∆] =

∫ 1

0
dz Qβ∆φ

(z) dDisc[z−2∆φG∆(z)]

= 2 sin2

[
π

2
(∆− 2∆φ − 1)

] ∫ 1

0
dz Qβ∆φ

(z)z−2∆φG∆(z) .

(5.22)

Provided Qβ∆φ
(z) ≥ 0 for all z ∈ (0, 1) and provided the integral converges, this ansatz gives

a non-negative function of ∆ with double zeros at the fermionic double-trace dimensions,

as required by properties 2 and 3 above. In order for ∆ = 2∆φ + 1 to be a simple zero of

β∆φ
[F∆] rather than a double zero, we need to impose Qβ∆φ

(z) ∼ d z−2 as z → 0+ for some

d > 0. The integral then has a simple pole at ∆ = 2∆φ + 1 since∫ 1

0
dz z∆−2∆φ−2 =

1

∆− 2∆φ − 1
. (5.23)

This simple pole combines with the double zero of sin2
[
π
2 (∆− 2∆φ − 1)

]
to give a simple

zero, as needed. In order to complete the construction, we need to realize the ansatz (5.22)

as a linear functional acting on F∆(z). We will see that the requirement that this is possible

uniquely fixes Qβ∆φ
(z). We claim that the following linear functional does the job7

β∆φ
[F ] =

∫ 1

1
2

dz Qβ∆φ
(z)F(z) +

1

2

∫ 1
2

+i∞

1
2

dz Rβ∆φ
(z)F(z) , (5.24)

where Rβ∆φ
(z) is defined from Qβ∆φ

(z) by

Rβ∆φ
(z) = −(1− z)2∆φ−2Qβ∆φ

(
z

z − 1

)
(5.25)

and Qβ∆φ
(z) is required to satisfy several constraints discussed below. Here F(z) is an

arbitrary function holomorphic in R and satisfying F(z) = F(1 − z). Note that the first

contour integral in (5.24) probes the Euclidean region, including the Euclidean OPE limit

z → 1, while the second contour probes the out-of-time-order region 1
2 + it, including the

Regge/chaos limit z → i∞. When ∆ > 2∆φ + 1, there is a contour deformation which

takes β∆φ
[F∆] from the form (5.24) to the desired form (5.22). The strategy is to deform

the contour in the second term in (5.24) so that it lies on the real axis. The contour

deformation is possible if and only if Qβ∆φ
(z) satisfies the following two constraints:

1. Rβ∆φ
(z) = −(1− z)2∆φ−2Qβ∆φ

(
z
z−1

)
is a holomorphic function in C\[0, 1] satisfying

Rβ∆φ
(z) = Rβ∆φ

(1− z) . (5.26)

7In reference [14], Qβ∆φ(z) and Rβ∆φ(z) were denoted respectively gβ(z) and fβ(z).
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2. Qβ∆φ
(z) satisfies the functional equation

Qβ∆φ
(z) +Qβ∆φ

(1− z)− (1− z)2∆φ−2
Qβx∆φ

(
z
z−1

)
+Qβ

x
∆φ

(
z
z−1

)
2

= 0 (5.27)

for z ∈ (0, 1).

It follows from constraint 1 that Qβ∆φ
(z) is a holomorphic function in R. Constraint 2

essentially says that the double discontinuity of Qβ∆φ
(z) around z = 0 must vanish. Finally,

we must impose constraints on the asymptotic behaviour of Qβ∆φ
(z) as z → 0, 1:

3. Qβ∆φ
(z) = O((1− z)2∆φ) as z → 1 or equivalently Rβ∆φ

(z) = O(z−2) as z →∞.

4. Qβ∆φ
(z) ∼ 2

π2 z
−2 as z → 0.

Constraint 3 is needed to ensure that β∆φ
[F∆] is finite for all ∆ ≥ 0 and also that β∆φ

can

be swapped with the OPE sum although the contours in the definition (5.24) reach the

boundary of R.8 As discussed above, constraint 4 guarantees that β∆φ
[F∆] has a simple

zero at ∆ = 2∆φ + 1 and unit slope there.

Qβ∆φ
(z) is uniquely fixed by constraints 1–4. For ∆φ = 1/2 and ∆φ = 3/2, Qβ∆φ

(z) is

a rational function of z:

∆φ =
1

2
: Qβ1

2

(z) =
(1− z)

(
2z2 + z + 2

)
π2z2

, Rβ1
2

(z) = −5(z − 1)z + 2

π2(z − 1)2z2

∆φ =
3

2
: Qβ3

2

(z) =
(1− z)3

(
2z2 + 3z + 2

)
π2z2

, Rβ3
2

(z) = −7(z − 1)z + 2

π2(z − 1)2z2
.

(5.28)

For general ∆φ, Rβ∆φ
(z) is given in terms of generalized hypergeometric functions

Rβ∆φ
(z) = −κ(∆φ)

2z − 1

w3/2

[
3F̃2

(
−1

2
,

3

2
, 2∆φ +

3

2
; ∆φ + 1,∆φ + 2;− 1

4w

)
+

9

16w
3F̃2

(
1

2
,

5

2
, 2∆φ +

5

2
; ∆φ + 2,∆φ + 3;− 1

4w

)]
,

(5.29)

where w ≡ z(z − 1), 3F̃2 stands for the regularized hypergeometric function9 and

κ(∆φ) =
Γ(4∆φ + 4)

28∆φ+5Γ(∆φ + 1)2
. (5.30)

It can be checked that Qβ∆φ
(z) > 0 for all z ∈ (0, 1) and all ∆φ > 0, which guarantees

β∆φ
[F∆] ≥ 0 for all ∆ > 2∆φ + 1. Finally, note that our β∆φ

automatically annihilates the

identity vector F0(z) as a result of crossing symmetry of the fermionic mean-field four-point

function (5.15) since it already annihilates F2∆φ+2n+1(z) for all n = 0, 1, . . ..

8We need the integrals to be sufficiently suppressed near the boundary of R to ensure the functional

satisfies the swapping property. See [14] for a detailed discussion of how constraint 3 arises.
9The regularized hypergeometric function is defined as pF̃q(a1, . . . , ap; b1, . . . , bq; z) =

[Γ(b1) · · ·Γ(bq)]
−1

pFq(a1, . . . , ap; b1, . . . , bq; z).
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5.3 The α functional

It will be useful to review another interesting functional introduced in [14], called α in

that reference. Just like β∆φ
[F∆], also α∆φ

[F∆] has double zeros at ∆ = 2∆φ + 2n+ 1 for

n = 1, 2, . . ., but instead of

β∆φ
[F2∆φ+1] = 0 , β∆φ

[∂∆F2∆φ+1] = 1 , (5.31)

we have

α∆φ
[F2∆φ+1] = 1 , α∆φ

[∂∆F2∆φ+1] = 0 . (5.32)

Again, there is a unique functional with these properties. Several expressions simplify if

we work instead with the following linear combination of α∆φ
and β∆φ

α̃∆φ
≡ α∆φ

−
[

3

2
H

(
∆φ +

1

2

)
− 1

2
H(∆φ)− log(2)

]
β∆φ

, (5.33)

where H(x) is the harmonic number. α̃∆φ
is also defined as in (5.24) using a suitable

weight-function Qα̃∆φ
(z). Qα̃∆φ

(z) now needs to satisfy the same properties 1–3 above, with

property 4 replaced by

Qα̃∆φ
(z) = − 2

π2

[
log(z) +

3

2
H

(
∆φ +

1

2

)
− 1

2
H(∆φ)− log(2) + o(1)

]
z−2 (5.34)

as z → 0+. The extra log(z) means that the integral in (5.22) develops a double pole at

∆ = 2∆φ + 1, which cancels against the double zero of the prefactor, leading to nonzero

α̃∆φ
[F2∆φ+1]. The weight-function Rα̃∆φ

(z) ≡ −(1 − z)2∆φ−2Qα̃∆φ

(
z
z−1

)
which solves all

these constraints reads

Rα̃∆φ
(z) =κ(∆φ)

2(z − 2)(z + 1)

(2z − 1)w3/2

[
3F̃2

(
−1

2
,−1

2
, 2∆φ +

3

2
; ∆φ + 2,∆φ + 2;− 1

4w

)
+

(2∆φ + 3)(2∆φ + 5)

16w
3F̃2

(
1

2
,

1

2
, 2∆φ +

5

2
; ∆φ + 3,∆φ + 3;− 1

4w

)
− 3(4∆φ + 5)

256w2 3F̃2

(
3

2
,

3

2
, 2∆φ +

7

2
; ∆φ + 4,∆φ + 4;− 1

4w

)]
.

(5.35)

Unlike β∆φ
, α̃∆φ

does not annihilate the identity vector F0. Indeed, if we apply α̃∆φ
to the

crossing equation for the fermionic mean field, we get

α̃∆φ
[F0] = −(c1)2α̃∆φ

[F2∆φ+1] = −2∆φ , (5.36)

Among other things, α̃∆φ
can be used to make the proof of extremality of the fermionic

mean field fully rigorous. Indeed, the extremal functional β∆φ
does not rule out the exis-

tence of potential solutions to crossing with spectrum consisting of identity and a subset

of the fermionic mean field spectrum not including the operator at ∆ = 2∆φ + 1. To fix

this, we can consider the family of functionals β∆φ
− εα̃∆φ

for small and positive ε. This

functional is positive when acting on identity, and non-negative for ∆ ≥ 2∆φ + 1 + δ(ε),

where δ(ε) → 0+ as ε → 0+. Thus, every unitary solution to crossing (5.12) must have a

gap at most 2∆φ + 1.
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5.4 Functionals for a generalized crossing equation

The functionals α̃∆φ
and β∆φ

constructed above are useful when both sides of the crossing

equation involve the same set of operators with identical coefficients. For the applications

to the sphere-packing problem, it will be important to consider a generalization of the

crossing equation where the s- and t-channel sum are allowed to be independent∑
O
c2
Oz
−2∆φG∆O(z) =

∑
P
c2
P(1− z)−2∆φG∆P (1− z) . (5.37)

We will assume that both sums start with the identity operator ∆ = 0, which appears

with unit coefficient on both sides. We would like to maximize the gap in the s-channel

with no constraint on the t-channel spectrum, assuming c2
O, c

2
P > 0. This problem is the

sl(2,R) analogue of the sphere-packing bootstrap problem discussed in section 3.2, while the

standard crossing equation (5.12) is the analogue of the sphere-packing bootstrap restricted

to isodual lattices.

Let us denote
G̃

(s)
∆ (z) ≡ z−2∆φG∆(z)

G̃
(t)
∆ (z) ≡ (1− z)−2∆φG∆(1− z) .

(5.38)

In order to prove an upper bound ∆∗ on the s-channel gap, we need to construct a linear

functional ω such that

1. ω[G̃
(s)
0 ] > ω[G̃

(t)
0 ]

2. ω[G̃
(s)
∆ ] ≥ 0 for all ∆ ≥ ∆∗

3. ω[G̃
(t)
∆ ] ≤ 0 for all ∆ ≥ 0

For the extremal functional, the first condition is replaced by ω[G̃
(s)
0 ] = ω[G̃

(t)
0 ]. We

conjecture that the s-channel gap in this more general problem is still maximized by the

fermionic mean field theory, with the same spectrum and OPE coefficients in both channels.

This means that the extremal functional annihilates G̃
(s)
2∆φ+2n+1 and G̃

(t)
2∆φ+2n+1 for n =

0, 1, . . .. We should then anticipate the following structure of zeros

1. ω[G̃
(s)
∆ ] has a simple zero at ∆ = 2∆φ + 1 with positive slope.

2. ω[G̃
(s)
∆ ] has double zeros for all ∆ = 2∆φ + 2n+ 1 where n = 1, 2, . . ..

3. ω[G̃
(t)
∆ ] has double zeros for all ∆ = 2∆φ + 2n+ 1 where n = 0, 1, . . ..

We will construct the extremal functional by decomposing it into parts symmetric and

antisymmetric under z ↔ 1− z

ω[F(z)] = ω+

[F(z) + F(1− z)

2

]
+ ω−

[F(z)−F(1− z)

2

]
. (5.39)

Let us denote

F±∆ (z) = z−2∆φG∆(z)± (1− z)−2∆φG∆(1− z) , (5.40)
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so that

ω[G̃
(s)
∆ ] =

ω+[F+
∆ (z)] + ω−[F−∆ (z)]

2

ω[G̃
(t)
∆ ] =

ω+[F+
∆ (z)]− ω−[F−∆ (z)]

2
.

(5.41)

We will take ω− = β∆φ
, i.e. the extremal functional for the standard crossing problem

discussed above. It remains to fix ω+, which we will denote β+
∆φ

= ω+ from now on.

β+
∆φ

[F+
∆ ] must have the following structure of zeros

1. β+
∆φ

[F+
∆ ] has a simple zero at ∆ = 2∆φ + 1 with unit slope.

2. β+
∆φ

[F+
∆ ] has double zeros for all ∆ = 2∆φ + 2n+ 1 where n = 1, 2, . . ..

The construction of β+
∆φ

proceeds along the same lines as the construction of β∆φ
. We first

make the ansatz

β+
∆φ

[F+
∆ ] = 2 sin2

[
π

2
(∆− 2∆φ − 1)

] ∫ 1

0
dz Qβ+

∆φ
(z)z−2∆φG∆(z) (5.42)

and demand Qβ+
∆φ

(z) ∼ 2π−2z−2 as z → 0+ so that the pole of the integral at ∆ = 2∆φ + 1

produces a simple zero of β+
∆φ

[F+
∆ ] with a unit derivative. Again, this ansatz arises from a

genuine linear functional of the form

β+
∆φ

[F+] =

∫ 1

1
2

dz Qβ+
∆φ

(z)F+(z) +
1

2

∫ 1
2

+i∞

1
2

dz Rβ+
∆φ

(z)F+(z) , (5.43)

where Rβ+
∆φ

(z) ≡ −(1 − z)2∆φ−2Qβ+
∆φ

(
z
z−1

)
, and where Qβ+

∆φ
(z) is required to satisfy a

set of functional constraints. Here F+(z) is any function holomorphic in R satisfying

F+(z) = F+(1 − z). The constraints on Qβ+
∆φ

(z) are essentially the same as those on

Qβ∆φ
(z), with a few extra minus signs sprinkled in

1. Rβ+
∆φ

(z) ≡ −(1− z)2∆φ−2Qβ+
∆φ

(
z
z−1

)
is a holomorphic function in C\[0, 1] satisfying

Rβ+
∆φ

(z) = −Rβ+
∆φ

(1− z) . (5.44)

2. Qβ+
∆φ

(z) satisfies the functional equation

Qβ+
∆φ

(z)−Qβ+
∆φ

(1− z)− (1− z)2∆φ−2
Qβ+x

∆φ

(
z
z−1

)
+Qβ+x

∆φ

(
z
z−1

)
2

= 0 (5.45)

for z ∈ (0, 1).

3. Qβ+
∆φ

(z) = O((1− z)2∆φ) as z → 1 or equivalently Rβ+
∆φ

(z) = O(z−2) as z →∞.

4. Qβ+
∆φ

(z) ∼ 2
π2 z
−2 as z → 0+.
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We can solve for Qβ+
∆φ

(z) for general ∆φ > 0 using a similar procedure as used in [14] to

find Qβ∆φ
(z). The details are in appendix B. We find the unique solution

Rβ+
∆φ

(z) =
(4∆φ + 8)κ

(
∆φ + 1

2

)
(4∆φ + 5)w

3
2

3F̃2

(
−1

2
,

3

2
, 2∆φ +

5

2
; ∆φ +

3

2
,∆φ +

5

2
;− 1

4w

)
, (5.46)

where w = z(z − 1). The formula is valid for z > 1 and extended to C\[0, 1] by analytic

continuation from there. For example for ∆φ = 1/2, this reduces to

Qβ+
1
2

(z) =

{
(
√
z + 1)

2
(2z − 3

√
z + 2)K

[
−(1−

√
z)

2

4
√
z

]
− 4(z2 − z + 1)E

[
−(1−

√
z)

2

4
√
z

]}2

2π2(z − 1)2z3/2
,

(5.47)

where K(z) and E(z) are respectively the complete elliptic integrals of the first and sec-

ond kind.

Our contruction guarantees that ω, given by (5.39) has the right structure of simple

and double zeros on the fermionic mean field operators in both channels. However, we still

need to check that it has the right positivity properties. While we could not find a general

proof of the correct positivity properties for arbitrary ∆φ > 0, we checked that they are

satisfied for many different values of ∆φ and expect that they are valid for all ∆φ > 0.

6 Analytic functionals for modular bootstrap and sphere packing

6.1 From τ to z

Although the functionals α and β of the previous section were derived in the context of

the 1D four-point function bootstrap, they are also very useful for the modular bootstrap.

This is because the torus partition function of a 2D CFT can be equivalently thought of

as the sphere four-point function of twist operators in the Z2 symmetric product orbifold

of the CFT. To see this, note that a complex torus of modulus τ can be presented as the

following curve in C2

y2 = x(x− λ(τ))(x− 1) , (6.1)

where (x, y) ∈ C2 and

λ(τ) =
θ2(τ)4

θ3(τ)4
. (6.2)

Here θ2(τ) and θ3(τ) are theta functions reviewed in appendix A. In other words, the torus

is a double cover of the four-punctured sphere with punctures at 0, λ(τ), 1 and ∞, where

the covering map sends (x, y) 7→ x.

Let us denote the original CFT by T and the product orbifold of two copies of T by

Sym2(T ). The above covering gives us the following recipe for computing the torus partition

function of T . Sym2(T ) contains the Z2 twist operator σ2, which has the property that

going once around it is equivalent to switching the two copies of T .10 When T has central

10More precisely, we take σ2 to be the vacuum in the twisted sector.
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charge c, σ2 is a scalar conformal primary of scaling dimension

∆σ =
c

8
. (6.3)

Consider Sym2(T ) on S2. If we place four twist operators at x = 0, λ(τ), 1,∞, the two

copies of T will be connected in the right way to act as a single copy of T living on the

curve (6.1). This means that the torus partition function of T is simply related to the

S2 four-point function of σ2. The only subtlety is that the partition function Z(τ, τ̄) is

defined on the torus with the flat metric, which is equal to the pull-back metric from flat

C\{0, λ(τ), 1} only up to a Weyl transformation. Let us write the four-point function of

twist operators in flat space as

〈σ2(w1)σ2(w2)σ2(w3)σ2(w4)〉 = 〈σ2(w1)σ2(w2)〉〈σ2(w3)σ2(w4)〉G(z, z̄) . (6.4)

Then G(z, z̄) is related to Z(τ, τ̄) as follows [62]

G(z, z̄) =

∣∣∣∣ z2

28(1− z)

∣∣∣∣
c
12

Z(τ, τ̄) , (6.5)

where z = λ(τ) and z̄ = λ(−τ̄). The prefactor comes from the Weyl transformation

between the two metrics and nonzero conformal weight of the twist operators.

For the Euclidean partition function computed on physical tori, we have τ̄ = τ∗, which

maps to the four-point function G(z, z̄) computed in Euclidean signature, i.e. for z̄ = z∗. As

discussed earlier, Z(τ, τ̄) can in fact be analytically continued to a function of independent

complex variables τ and τ̄ , which is holomorphic in H+ × H−. This produces an analytic

continuation of G(z, z̄) to arbitrary independent complex z and z̄.

Let us describe the mapping τ 7→ z = λ(τ) in more detail. Firstly, there is a non-trivial

group of conformal automorphisms of H+ which leave λ(τ) invariant. This group consists

of all matrices in SL(2,Z) which are congruent to the identity matrix modulo 2. It is

denoted Γ(2).

λ
(
aτ+b
cτ+d

)
= λ(τ) ∧

(
a b

c d

)
∈ SL(2,R) ⇔

(
a b

c d

)
∈ Γ(2) . (6.6)

The fundamental domain for Γ(2) can be chosen as the region in H+ bounded by the two

lines Re(τ) = 1 and Re(τ) = −1 and the two semi-circles of radius 1/2 centered at τ = 1/2

and τ = −1/2. The interior of this region maps to R ≡ C\(−∞, 0] ∪ [1,∞) under λ(τ).

The cusps of the fundamental domain get mapped as follows

λ(i∞) = 0

λ(0) = 1

λ(±1) = ±i∞ .

(6.7)

The boundary vertical lines Re(τ) = 1 and Re(τ) = −1 both map to z ∈ (−∞, 0), while

the boundary semicircles both map to z ∈ (1,∞). The fundamental domain as well as the

details of the map from τ to z are illustrated in figure 4.
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τ
<latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit>

0
<latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit><latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit><latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit><latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit>

1<latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit><latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit><latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit><latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit>−1<latexit sha1_base64="FEc3X/Pfz0CRpBTqRQ7vfCuqQqg=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMQ9IljA725sMmZ1dZmaFEAJ+gFf9BG/i1V/xC/wNJ8keNLGgoajqprsrSAXXxnW/nMLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqB1Sj4BIbhhuB7VQhjQOBrWB4M/Vbj6g0T+SDGaXox7QvecQZNVa6P/N65YpbdWcgy8TLSQVy1Hvl726YsCxGaZigWnc8NzX+mCrDmcBJqZtpTCkb0j52LJU0Ru2PZ5dOyIlVQhIlypY0ZKb+nhjTWOtRHNjOmJqBXvSm4r+etqcMMFxYb6Irf8xlmhmUbL49ygQxCZlmQUKukBkxsoQyxe0DhA2ooszYxEo2GW8xh2XSPK96btW7u6jUrvOMinAEx3AKHlxCDW6hDg1gEMEzvMCr8+S8Oe/Ox7y14OQzh/AHzucPymCVxQ==</latexit><latexit sha1_base64="FEc3X/Pfz0CRpBTqRQ7vfCuqQqg=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMQ9IljA725sMmZ1dZmaFEAJ+gFf9BG/i1V/xC/wNJ8keNLGgoajqprsrSAXXxnW/nMLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqB1Sj4BIbhhuB7VQhjQOBrWB4M/Vbj6g0T+SDGaXox7QvecQZNVa6P/N65YpbdWcgy8TLSQVy1Hvl726YsCxGaZigWnc8NzX+mCrDmcBJqZtpTCkb0j52LJU0Ru2PZ5dOyIlVQhIlypY0ZKb+nhjTWOtRHNjOmJqBXvSm4r+etqcMMFxYb6Irf8xlmhmUbL49ygQxCZlmQUKukBkxsoQyxe0DhA2ooszYxEo2GW8xh2XSPK96btW7u6jUrvOMinAEx3AKHlxCDW6hDg1gEMEzvMCr8+S8Oe/Ox7y14OQzh/AHzucPymCVxQ==</latexit><latexit sha1_base64="FEc3X/Pfz0CRpBTqRQ7vfCuqQqg=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMQ9IljA725sMmZ1dZmaFEAJ+gFf9BG/i1V/xC/wNJ8keNLGgoajqprsrSAXXxnW/nMLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqB1Sj4BIbhhuB7VQhjQOBrWB4M/Vbj6g0T+SDGaXox7QvecQZNVa6P/N65YpbdWcgy8TLSQVy1Hvl726YsCxGaZigWnc8NzX+mCrDmcBJqZtpTCkb0j52LJU0Ru2PZ5dOyIlVQhIlypY0ZKb+nhjTWOtRHNjOmJqBXvSm4r+etqcMMFxYb6Irf8xlmhmUbL49ygQxCZlmQUKukBkxsoQyxe0DhA2ooszYxEo2GW8xh2XSPK96btW7u6jUrvOMinAEx3AKHlxCDW6hDg1gEMEzvMCr8+S8Oe/Ox7y14OQzh/AHzucPymCVxQ==</latexit><latexit sha1_base64="FEc3X/Pfz0CRpBTqRQ7vfCuqQqg=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMQ9IljA725sMmZ1dZmaFEAJ+gFf9BG/i1V/xC/wNJ8keNLGgoajqprsrSAXXxnW/nMLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqB1Sj4BIbhhuB7VQhjQOBrWB4M/Vbj6g0T+SDGaXox7QvecQZNVa6P/N65YpbdWcgy8TLSQVy1Hvl726YsCxGaZigWnc8NzX+mCrDmcBJqZtpTCkb0j52LJU0Ru2PZ5dOyIlVQhIlypY0ZKb+nhjTWOtRHNjOmJqBXvSm4r+etqcMMFxYb6Irf8xlmhmUbL49ygQxCZlmQUKukBkxsoQyxe0DhA2ooszYxEo2GW8xh2XSPK96btW7u6jUrvOMinAEx3AKHlxCDW6hDg1gEMEzvMCr8+S8Oe/Ox7y14OQzh/AHzucPymCVxQ==</latexit>

i
<latexit sha1_base64="CE6uSYKcf/xrpUIcUS7QswxP0PA=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotPqzW3Lq7APlLvILUoEBzWP0ahAnLYpSGCap133NT4+dUGc4EziqDTGNK2YSOsG+ppDFqP18cOiNnVglJlChb0pCF+nMip7HW0ziwnTE1Y73qzcV/PW1PGWO4st5E137OZZoZlGy5PcoEMQmZR0FCrpAZMbWEMsXtA4SNqaLM2MAqNhlvNYe/pHNR99y617qsNW6KjMpwAqdwDh5cQQPuoAltYIDwBM/w4jw6r86b875sLTnFzDH8gvPxDbbNlcY=</latexit><latexit sha1_base64="CE6uSYKcf/xrpUIcUS7QswxP0PA=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotPqzW3Lq7APlLvILUoEBzWP0ahAnLYpSGCap133NT4+dUGc4EziqDTGNK2YSOsG+ppDFqP18cOiNnVglJlChb0pCF+nMip7HW0ziwnTE1Y73qzcV/PW1PGWO4st5E137OZZoZlGy5PcoEMQmZR0FCrpAZMbWEMsXtA4SNqaLM2MAqNhlvNYe/pHNR99y617qsNW6KjMpwAqdwDh5cQQPuoAltYIDwBM/w4jw6r86b875sLTnFzDH8gvPxDbbNlcY=</latexit><latexit sha1_base64="CE6uSYKcf/xrpUIcUS7QswxP0PA=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotPqzW3Lq7APlLvILUoEBzWP0ahAnLYpSGCap133NT4+dUGc4EziqDTGNK2YSOsG+ppDFqP18cOiNnVglJlChb0pCF+nMip7HW0ziwnTE1Y73qzcV/PW1PGWO4st5E137OZZoZlGy5PcoEMQmZR0FCrpAZMbWEMsXtA4SNqaLM2MAqNhlvNYe/pHNR99y617qsNW6KjMpwAqdwDh5cQQPuoAltYIDwBM/w4jw6r86b875sLTnFzDH8gvPxDbbNlcY=</latexit><latexit sha1_base64="CE6uSYKcf/xrpUIcUS7QswxP0PA=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotPqzW3Lq7APlLvILUoEBzWP0ahAnLYpSGCap133NT4+dUGc4EziqDTGNK2YSOsG+ppDFqP18cOiNnVglJlChb0pCF+nMip7HW0ziwnTE1Y73qzcV/PW1PGWO4st5E137OZZoZlGy5PcoEMQmZR0FCrpAZMbWEMsXtA4SNqaLM2MAqNhlvNYe/pHNR99y617qsNW6KjMpwAqdwDh5cQQPuoAltYIDwBM/w4jw6r86b875sLTnFzDH8gvPxDbbNlcY=</latexit>

z
<latexit sha1_base64="brkMgqB08g3IZ7BW+KbdGSXPI9w=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7SRDZmeXmVkhLsEP8Kqf4E28+i1+gb/hJNmDJhY0FFXddHcFieDauO6XU1hb39jcKm6Xdnb39g/Kh0ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYxvZ377AZXmsbw3kwT9iA4lH3BGjZUaj/1yxa26c5BV4uWkAjnq/fJ3L4xZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n80Ck5s0pIBrGyJQ2Zq78nMhppPYkC2xlRM9LL3kz819P2lBGGS+vN4NrPuExSg5Ittg9SQUxMZlGQkCtkRkwsoUxx+wBhI6ooMzawkk3GW85hlbQuqp5b9RqXldpNnlERTuAUzsGDK6jBHdShCQwQnuEFXp0n5815dz4WrQUnnzmGP3A+fwDR9pXX</latexit><latexit sha1_base64="brkMgqB08g3IZ7BW+KbdGSXPI9w=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7SRDZmeXmVkhLsEP8Kqf4E28+i1+gb/hJNmDJhY0FFXddHcFieDauO6XU1hb39jcKm6Xdnb39g/Kh0ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYxvZ377AZXmsbw3kwT9iA4lH3BGjZUaj/1yxa26c5BV4uWkAjnq/fJ3L4xZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n80Ck5s0pIBrGyJQ2Zq78nMhppPYkC2xlRM9LL3kz819P2lBGGS+vN4NrPuExSg5Ittg9SQUxMZlGQkCtkRkwsoUxx+wBhI6ooMzawkk3GW85hlbQuqp5b9RqXldpNnlERTuAUzsGDK6jBHdShCQwQnuEFXp0n5815dz4WrQUnnzmGP3A+fwDR9pXX</latexit><latexit sha1_base64="brkMgqB08g3IZ7BW+KbdGSXPI9w=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7SRDZmeXmVkhLsEP8Kqf4E28+i1+gb/hJNmDJhY0FFXddHcFieDauO6XU1hb39jcKm6Xdnb39g/Kh0ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYxvZ377AZXmsbw3kwT9iA4lH3BGjZUaj/1yxa26c5BV4uWkAjnq/fJ3L4xZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n80Ck5s0pIBrGyJQ2Zq78nMhppPYkC2xlRM9LL3kz819P2lBGGS+vN4NrPuExSg5Ittg9SQUxMZlGQkCtkRkwsoUxx+wBhI6ooMzawkk3GW85hlbQuqp5b9RqXldpNnlERTuAUzsGDK6jBHdShCQwQnuEFXp0n5815dz4WrQUnnzmGP3A+fwDR9pXX</latexit><latexit sha1_base64="brkMgqB08g3IZ7BW+KbdGSXPI9w=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7SRDZmeXmVkhLsEP8Kqf4E28+i1+gb/hJNmDJhY0FFXddHcFieDauO6XU1hb39jcKm6Xdnb39g/Kh0ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYxvZ377AZXmsbw3kwT9iA4lH3BGjZUaj/1yxa26c5BV4uWkAjnq/fJ3L4xZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n80Ck5s0pIBrGyJQ2Zq78nMhppPYkC2xlRM9LL3kz819P2lBGGS+vN4NrPuExSg5Ittg9SQUxMZlGQkCtkRkwsoUxx+wBhI6ooMzawkk3GW85hlbQuqp5b9RqXldpNnlERTuAUzsGDK6jBHdShCQwQnuEFXp0n5815dz4WrQUnnzmGP3A+fwDR9pXX</latexit>
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Figure 4. Left: the fundamental domain of Γ(2) in the upper half-plane. Right: its image in the

space of the four-point cross-ratio z under the mapping τ 7→ λ(τ). The image of the interior of the

fundamental domain is the complex plane without the branch cuts (−∞, 0] and [1,∞). The four

boundary segments are mapped as shown by the different arrows.

In other words, the low-temperature limit τ → i∞, τ̄ → −i∞ maps to the s-channel

OPE limit z, z̄ → 0, while the high-temperature limit τ, τ̄ → 0 maps to the t-channel OPE

limit z, z̄ → 1. The u-channel OPE limit z → i∞, z̄ → −i∞ corresponds to τ, τ̄ → 1.

More generally, Z(τ, τ̄) is potentially singular for any τ, τ̄ ∈ Q. What is the physical

interpretation of these singularities in terms of the four-point function G(z, z̄)? If τ and τ̄

approach the same rational number, this is equivalent to one of the OPE limits above by a

Γ(2) transformation. What about when τ and τ̄ approach distinct rational numbers? These

can be understood as various interesting limits of G(z, z̄) in Lorentzian kinematics. Indeed,

if we fix τ̄ and move τ continuously from the inside to the outside of the fundamental domain

of Γ(2), z will travel around the branch points at z = 0 or z = 1. This corresponds to

a situation when one operator in the four-point function crosses the light-cone of another

operator. By moving τ and τ̄ independently on the upper half-plane, we can reach an

arbitrary Wightman function of the four twist operators on the Lorentzian cylinder, in any

ordering. For example, the Regge limits have the following interpretation on H+ ×H−:

s-channel Regge: z, z̄ → 0 after z 	 1 ⇔ τ → −1/2, τ̄ → −i∞
t-channel Regge: z, z̄ → 1 after z � 0 ⇔ τ → 2, τ̄ → 0

u-channel Regge: z, z̄ → i∞ ⇔ τ → 1, τ̄ → −1

(6.8)

In summary, while G(z, z̄) is not a single-valued function of z, z̄ unless z̄ = z∗, by lifting

it to Z(τ, τ̄), we get a single-valued function in H+ × H−, which is also the full region of

analyticity of the correlator.11

11The perspective of lifting a general four-point function to a function on H+ × H− using (6.2) was

used in [66] to show that correlators in local and unitary 2D CFTs have no ‘bulk-point’ singularities. The

argument only works in 2D because the expansion of the correlator in Virasoro conformal blocks converges

on the whole upper half-plane, whereas the expansion in global conformal blocks only converges in the

fundamental domain of Γ(2). It would be interesting to analyze whether four-point functions in general

local unitary CFTs are always analytic in H+ × H− and whether this perspective can be useful in the

conformal bootstrap.
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It is not hard to see that modular invariance of Z(τ, τ̄) becomes crossing symmetry

of G(z, z̄). Invariance under the Γ(2) subgroup of SL(2,Z) is manifest since G(z, z̄) is

single-valued in the Euclidean signature. It remains to understand invariance under the

quotient

SL(2,Z)/Γ(2) = S3 . (6.9)

The three transpositions in S3 have representatives S, T and STS in PSL(2,Z). The

two 3-cycles have representatives ST and TS. Under the mapping λ(τ), this S3 simply

permutes the punctures at 0, 1,∞:

λ ◦ S(τ) = 1− λ(τ)

λ ◦ T (τ) =
λ(τ)

λ(τ)− 1

λ ◦ STS(τ) =
1

λ(τ)

λ ◦ ST (τ) =
1

1− λ(τ)

λ ◦ TS(τ) =
λ(τ)− 1

λ(τ)
.

(6.10)

In particular, S becomes the usual crossing transformation z ↔ 1− z and T becomes the

transformation z ↔ z/(z − 1), which corresponds to switching operators 1 and 2. This is

an order-two transformation because T 2 ∈ Γ(2).

Recall that we are interested in the spinless modular bootstrap, which amounts to

restricting τ = −τ̄ ∈ H+. This maps to the restriction z = z̄ ∈ R at the level of the

four-point function. As above, we write Z(τ) ≡ Z(τ,−τ) and G(z) ≡ G(z, z). It follows

from (6.5) that

z−
c
4G(z) =

[
28z(1− z)

]− c
12 Z(τ(z)) , (6.11)

where τ(z) is a left inverse of λ(τ) sending z ∈ R to the fundamental domain of Γ(2)

τ(z) = i
K(1− z)

K(z)
. (6.12)

Here K(z) is the elliptic integral

K(z) ≡ 1

2

∫ 1

0

dt√
t(1− t)(1− tz)

=
π

2
2F1

(
1

2
,

1

2
; 1; z

)
. (6.13)

The only transformation in the modular group which respects the identification τ = −τ̄ is

S. It becomes the crossing symmetry of the four-point function

z−
c
4G(z) = (1− z)−

c
4G(1− z) . (6.14)

6.2 Torus characters and conformal blocks

The expansion of the torus partition function into characters maps to the OPE of the four-

point function of twist operators. However, the torus characters do not simply map to the
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sl(2,R) conformal blocks appropriate for the 1D bootstrap discussed in section 5. This is

because Sym2(T ) has a large chiral algebra and the torus characters become the conformal

blocks of the full chiral algebra. In general, if T has a (left-moving) chiral symmetry algebra

A, then the left-moving chiral algebra of Sym2(T ) is (A⊗ A)/Z2. This means that under

the mapping (6.2) the torus characters appropriate for chiral algebra A become the sphere

conformal blocks for the chiral algebra (A⊗A)/Z2 and external twist operators.

It follows that local operators in theory T which are primary under A (and its right-

moving counterpart) must be in one-to-one correspondence with local operators of Sym2(T )

which are primary under (A⊗A)/Z2 (and its right-moving counterpart) and which appear

in the OPE of two twist operators. To see this in a different way, first note that the σ2×σ2

OPE can only contain operators from the untwisted sector. There is a basis for primaries

in the untwisted sector consisting of Pij = (Oi,Oj) + (Oj ,Oi), where Oi span a basis of

primaries of T . We claim that Pij appears in the σ2×σ2 OPE if and only if i = j. Indeed,

we can compute the three-point function 〈σ2σ2Pij〉 by going to the covering space, where

it becomes the sphere two-point function 〈OiOj〉 in theory T . This two-point function is

nonzero if and only if i = j. The conclusion is that

σ2 × σ2 =
∑
i

(Oi,Oi) + descendants , (6.15)

where the sum runs over primaries of T . Let us recall the expansion of the partition

function in the characters of A

Z(τ) =
∑
i

χA∆i
(τ) . (6.16)

We have explained that this becomes the OPE of G(z)

G(z) =
∑
i

GA2∆i
(z) , (6.17)

where GA2∆i
(z) is the conformal block capturing the contributions of (Oi,Oi) and all of its

descendants under both left- and right-moving (A⊗A)/Z2 (recall that we are working on

the diagonal locus z = z̄). We use 2∆ instead of ∆ as the label of the conformal block

since this is the scaling dimension of the primary under the dilatation operator of Sym2(T ).

Using (6.14), we get

GA2∆(z) =

[
z2

28(1− z)

] c
12

χA∆(τ(z)) . (6.18)

The global conformal algebra sl(2,R) of the spacelike line to which the twist operators

are restricted is a subalgebra of the full [(A⊗A)/Z2]L × [(A⊗A)/Z2]R. It follows that

GA2∆(z) admits an expansion into the sl(2,R) conformal blocks (5.10) considered in the

previous section

GA2∆(z) =
∞∑
n=0

anG2∆+2n(z) . (6.19)

Only sl(2,R) blocks with dimensions of the form 2∆+2m appear in the expansion because

the contribution of odd-level descandants is fully contained in the individual sl(2,R) blocks.
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It is instructive to prove this claim using the transformation of G∆(z) under z 7→ z/(z−1),

see (5.20). First, note that q(z) = e2πiτ(z) admits a Taylor expansion in z, starting with z2:

q(z) =
z2

256
+

z3

256
+

29z4

8192
+

13z5

4096
+

11989z6

4194304
+O(z7) . (6.20)

Recall the general form of the torus character for arbitrary A

χA∆(τ) = q∆− c
12

[
1 +

∞∑
j=1

bjq
j

]
. (6.21)

It follows from (6.18) that GA2∆(z) admits an expansion in powers of z of the form z2∆+j

with j = 0, 1, . . .. Such series can always be rearranged to a sum over sl(2,R) blocks

GA2∆(z) =
∞∑
j=0

cjG2∆+j(z) . (6.22)

It remains to be demonstrated that only terms with j even appear in the sum. We will

now use the transformation (5.20) of G2∆+j(z):

Gx
2∆+j

(
z

z − 1

)
= (−1)je2πi∆G2∆+j(z) . (6.23)

At the same time, it is not difficult to show from (6.18) that GA2∆(z) satisfies

GAx2∆

(
z

z − 1

)
= e2πi∆GA2∆(z) . (6.24)

Indeed, the continuation from z to 7→ z/(z − 1) above z = 0 maps to the continuation

τ 7→ τ + 1, under which q∆ picks up a phase e2πi∆. Equation (6.24) is only compatible

with (6.22) if only terms with even j appear.

Furthermore, the coefficients an in (6.19) have to be positive. This is because GA2∆(z)

with z ∈ (0, 1) can be interpreted as the norm of a state in radial quantization, and (6.19)

expresses this norm as a sum over norms of that state projected to orthogonal subspaces

corresponding to irreducible representations of sl(2,R). For concreteness, when A is re-

spectively U(1)c and Virc, we obtain

GU2∆(z) = 2−8∆

[
G2∆(z) +

8∆2 − 6∆ + 4∆c+ c

64(4∆ + 1)
G2∆+2(z) + . . .

]
GV2∆(z) = 2−8∆

[
G2∆(z) +

16∆2 − 8∆ + 4∆c+ c+ 1

128(4∆ + 1)
G2∆+2(z) + . . .

]
.

(6.25)

Recalling c ≥ 1, ∆ ≥ 0, the coefficient shown are indeed positive.

In summary, we have explained that the spinless modular bootstrap in the presence

of chiral algebra AL ⊗ AR takes the form of the four-point function bootstrap with four

external operators of dimension c/8 restricted to a line, with conformal blocks related to the

sl(2,R) blocks by (6.19). This will allow us to straightforwardly use the analytic extremal

functionals reviewed in section 5 for the modular bootstrap problem.

– 38 –



J
H
E
P
1
2
(
2
0
1
9
)
0
4
8

6.3 Saturation at c = 4

Let us consider the modular bootstrap equation in the presence of chiral algebra AL⊗AR.

We have explained that it can be cast as a four-point crossing equation

FAvac(z) +
∑
i

FA2∆i
(z) = 0 , (6.26)

where
FA2∆(z) = z−

c
4GA2∆(z)− (1− z)−

c
4GA2∆(1− z)

=
[
28z(1− z)

]− c
12
[
χA∆(τ(z))− χA∆(−1/τ(z))

]
FAvac(z) =

[
28z(1− z)

]− c
12
[
χAvac(τ(z))− χAvac(−1/τ(z))

]
.

(6.27)

We will now specialize the discussion to A = U(1)c and A = Virc. We would like to learn

as much as possible about the optimal upper bounds on the gap ∆U (c) and ∆V (c) using

our knowledge about the sl(2,R) crossing problem. Firstly, note that a unitary solution

of the U(1)c and Virc modular problem with gap ∆ gives a unitary solution of the sl(2,R)

crossing problem with gap min(2∆, 2). The gap can not be greater than 2 because the torus

vacuum character contains an sl(2,R) block of dimension 2 in its decomposition. Since the

optimal upper bound on the gap in the sl(2,R) problem with external dimension ∆φ = c
8

is 2∆φ + 1 = c
4 + 1, we find for all c > 1

min(∆U,V (c), 1) ≤ c

8
+

1

2
. (6.28)

The right-hand side is smaller than 1 for c < 4, so that in that case we must in fact have

∆U,V (c) ≤ c

8
+

1

2
for c ∈ (1, 4) . (6.29)

Let us now show that for c = 4, the optimal solutions of the U(1)c, Virc and sl(2,R)

bootstrap all coincide, which in particular implies

∆U (4) = ∆V (4) = 1 . (6.30)

c = 4 maps to crossing with ∆φ = 1
2 . We already know that in that case the optimal

solution of sl(2,R) bootstrap is the fermionic mean field correlator

G(z) = 1 +
z

1− z − z =
1− z + z2

1− z , (6.31)

which decomposes into sl(2,R) blocks of dimensions 0, 2, 4, . . .. Using (6.11), this maps to

the partition function

Z(τ) =

[
28(1− λ(τ))

λ(τ)2

] 1
3

G(λ(τ)) =
E4(τ)

η(τ)8
, (6.32)

where E4(τ) is an Eisenstein series and η(τ) is the Dedekind eta function, both of which

are reviewed in appendix A. The last equality follows from

λ(τ) =
θ2(τ)4

θ3(τ)4

2E4(τ) = θ2(τ)8 + θ3(τ)8 + θ4(τ)8

24η(τ)12 = θ2(τ)4θ3(τ)4θ4(τ)4 .

(6.33)
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The decomposition of Z(τ) into U(1)4 or Vir4 characters contains the vacuum and operators

of dimensions 1, 2, . . .. This is of course consistent with the fact that the decomposition

into sl(2,R) conformal blocks contains only dimensions 0, 2, 4, . . .. Furthermore, one can

see that the coefficients in the U(1)4 or Vir4 decompositions are positive. For example, the

U(1)4 characters are equal to η(τ)−8q∆, so that decomposition of Z(τ) simply amounts

to the power series of E4(τ) around q = 0, which is known to have positive coefficients.

Explicitly, we find

Z(τ) = χUvac(τ) + 240χU1 (τ) + 2160χU2 (τ) + 6720χU3 (τ) + . . .

Z(τ) = χVvac(τ) + 248χV1 (τ) + 3626χV2 (τ) + 26258χV3 (τ) + . . . .
(6.34)

One may wonder whether Z(τ) arises as a partition function of a full-fledged unitary CFT

after specializing to τ = −τ̄ . The answer is yes, the CFT being 8 free fermions with

diagonal GSO projection, as pointed out in [6]. The full partition function reads

Z(τ, τ̄) =
θ2(τ)4θ2(−τ̄)4 + θ3(τ)4θ3(−τ̄)4 + θ4(τ)4θ4(−τ̄)4

2η(τ)4η(−τ̄)4
. (6.35)

From the point of view of the sphere-packing problem, Z(τ) corresponds to the E8 lattice

packing. Indeed, the theta function of the E8 lattice is precisely the Eisenstein series E4(τ)

E4(τ) =
∑
x∈Λ8

eiπτx
2
, (6.36)

where Λ8 stands for the E8 lattice.

The nontrivial task is to show that there are no unitary solutions of (6.26) for c = 4 with

gap greater than one. This can be proven using the same extremal functional which also

proves extremality of the free fermion for the sl(2,R) problem, i.e. functional β reviewed

in section 5. Let us keep c = 8∆φ general for now and consider the action of β∆φ
on the

functions FU,V2∆ (z) defined in (6.27). Recall from (6.19) that

FU,V2∆ (z) =
∞∑
n=0

aU,Vn F2∆+2n(z) , (6.37)

where F∆(z) are the functions entering the sl(2,R) bootstrap and aU,Vn > 0. Let us also

recall the definition of functional β∆φ
, i.e. (5.24) which we repeat here for convenience

β c
8
[F ] =

∫ 1

1
2

dz Qβc
8
(z)F(z) +

1

2

∫ 1
2

+i∞

1
2

dz Rβc
8
(z)F(z) , (6.38)

where Rβc
8
(z) = −(1 − z)

c
4
−2Qβc

8

(
z
z−1

)
is given in (5.29) for general c. Let us act with β c

8

on FU,V2∆ (z) and use the series (6.37). β c
8

can be swapped with the sum over n thanks to

the dominated convergence theorem (the theorem applies since aU,Vn > 0), giving

β c
8
[FU,V2∆ ] =

∞∑
n=0

aU,Vn β c
8
[F2∆+2n] . (6.39)
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Now, β c
8
[F∆(z)] is non-negative for ∆ ≥ c

4 + 1 with a simple zero at ∆ = c
4 + 1 and double

zeros at ∆ = c
4 + 2n + 1 for n = 1, 2, . . .. It follows that β c

8
[FU,V2∆ ] is non-negative for

∆ ≥ c+4
8 , has a simple zero at ∆ = c+4

8 and double zeros at ∆ = c+4
8 + n for n = 1, 2, . . ..

There is also the following more direct way to reach this conclusion. When β c
8

acts on

FU,V2∆ , we can use the same contour deformation as when it acts on F∆ to show that for

∆ > c+4
8

β c
8
[FU,V2∆ ] = 2 sin2

[
π

(
∆− c+ 4

8

)]∫ 1

0
dz Qβc

8
(z)z−

c
4GU,V2∆ (z) . (6.40)

Indeed, the contour deformation argument only relies on the transformation property of

conformal blocks (5.20), which also holds for GU,V2∆ (z), see (6.24). The integral in the last

expression converges for ∆ > c+4
8 and both Qβc

8
(z) and GU,V2∆ (z) are positive for z ∈ (0, 1),

thus manifesting the required positivity of β[FU,V2∆ ] and its structure of zeros.

Next, let us show that for c = 4

β 1
2
[FU,Vvac ] = 0 . (6.41)

This follows directly from (6.39) and the facts that FU,Vvac decomposes into F2n with n =

0, 1, . . ., which are all annihilated by β∆φ
when ∆φ = 1

2 . The same conclusion also follows

from applying β 1
2

to (6.26) expressing S-invariance of the partition function (6.32) and

noting that β 1
2

annihilates all FU,V2n for n = 1, 2, . . ., as proven in the above.

We conclude that β 1
2

is the extremal functional for gap maximization for both U(1)4

and Vir4 modular bootstrap. The existence of β 1
2

implies that every unitary solution of

these modular bootstrap equations either has a gap above the vacuum smaller than one,

or its spectrum consists of the vacuum and a (possibly proper) subset of positive integers.

In the latter case, η(τ)8Z(τ) has a Fourier expansion into non-negative integer powers of q

and therefore must be a modular form of weight 4. But E4(τ) is the unique such modular

form up to multiplication, which concludes the proof that ∆U (4) = ∆V (4) = 1.

6.4 Saturation at c = 12

The underlying reason why the optimal solutions of the three bootstrap problems coincide

for c = 4 is that the spectrum of sl(2,R) blocks present in the decomposition of the U(1)4

and Vir4 vacuum blocks matches the spectrum of sl(2,R) blocks in the free fermion four-

point function at ∆φ = 1
2 . We will now use a small modification of this idea to show that

the optimal bounds coincide also for c = 12, i.e. that

∆U (12) = ∆V (12) = 2 . (6.42)

c = 12 maps to ∆φ = 3
2 , for which the fermionic mean field correlator takes the form

G(z) = 1 +
(

z
1−z

)3
− z3 . (6.43)

Again, we can make the four-point function into a partition function using (6.11)

Z(τ) =
28(1− λ(τ))

λ(τ)2
G(λ(τ)) = j(τ)− 768 . (6.44)
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Here j(τ) is the modular j-function, and one arrives at the last equation by using

j(τ) =
28[λ(τ)2 − λ(τ) + 1]3

λ(τ)2[1− λ(τ)]2
. (6.45)

Let us recall the Fourier expansion of j(τ)

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 +O(q3) . (6.46)

When we decompose Z(τ) = j(τ)− 768 into U(1)12 or Vir12 characters, we find a primary

of dimension one, whereas we want the gap equal to two. This problem can be easily fixed

by adding an appropriate constant to Z(τ), which of course does not spoil its S-invariance.

For U(1)12, we get the partition function

ZU (τ) = j(τ)− 720 = χUvac(τ) + 196560χU2 (τ) + 16773120χU3 (τ) + . . . . (6.47)

For Vir12, we take instead

ZV (τ) = j(τ)− 744 = χVvac(τ) + 196882χV2 (τ) + 21099994χV3 (τ) + . . . . (6.48)

What is the physical interpretation of these partition functions? η(τ)24ZU (τ) is the theta

function of the Leech lattice

η(τ)24ZU (τ) =
∑
x∈Λ24

eiπτx
2
. (6.49)

This has to be the case since the Leech lattice is the unique even self-dual lattice in R24

with no vector of length
√

2. ZV (τ) is the partition function of a chiral half of the Monster

CFT with left- and right-moving central charges c = 24 and c̄ = 0 [45]. These realizations

of ZU,V (τ) also show that all higher coefficients in their decompositions (6.47), (6.48) are

non-negative. One may wonder if ZU (τ) can arise as a partition function of a unitary CFT

with c = c̄ = 12, specialized to τ = −τ̄ . In fact, this possibility was excluded by the

numerical studies of [6], which showed that the upper bound on the gap coming from full

modular bootstrap at c = c̄ = 12 is strictly less than two.

In order to prove optimality of the above partition functions, we use the exact same

logic as we did for c = 4. We simply apply the extremal functional β 3
2

to the functions

FU,V2∆ (z). It follows from (6.40) that β 3
2
[FU,V2∆ (z)] is non-negative for ∆ ≥ 2, has a simple

zero at ∆ = 2 and double zeros at ∆ = 3, 4, . . .. Since we constructed explicit partition

functions whose spectrum consists of the vacuum and ∆ = 2, 3, . . ., it follows from their

S-invariance that β 3
2
[FUvac(z)] = β 3

2
[F Vvac(z)] = 0. Therefore, β 3

2
is the extremal functional

also for the U(1)12 and Vir12 problems. While β 3
2

in principle allows for partition functions

whose spectrum is a proper subset of the extremal spectrum ∆ = 2, 3, . . ., it is easy to see

they do not exist. Indeed, the difference between such a partition function and ZU,V (τ)

would have to be a modular form for SL(2,Z) of weight zero, with q-expansion starting at

q2, and so would have to vanish identically.
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As a side note, the above results explain why β 3
2
[F∆] has a simple zero at ∆ = 2.

This zero may seem accidental since the fermionic mean field correlator does not contain

any operator at this dimension. However, the partition functions (6.47) and (6.48) do

contain G2(z) in their sl(2,R) block decomposition and β 3
2
[F2] = 0 thus follows from their

S-invariance, together with β 3
2
[F0] = 0 and β 3

2
[F2n] = 0 for n = 2, 3, . . ..

6.5 Solution of the sphere-packing problem in R8 and R24

Let us see compare the above results to the solution of the sphere packing problem in

R8 [1] and R24 [2]. Recall that the linear programming bounds on sphere packing in Rd are

equivalent to the modular bootstrap bound with U(1)
d
2 characters. Therefore, the magic

functions constructed by Viazovska in R8 and by Cohn et al. in R24 should be equal to

the action of extremal functionals on the functions FUr2(z) for c = 4 and c = 12, where r

is the norm of a vector in Rd. Recall that the magic functions take the form of integrals

of eiπr
2τ against a judiciously chosen weight functions in the upper half-plane. Since the

extremal functionals are written as contour integrals in the z variable, we can prove they

are equivalent to the magic functions simply by a change of variables from z = λ(τ) to τ .

Let us start in eight dimensions.12 We claim that the Fourier-odd radial function g(r)

of Viazovska is a constant multiple of the action of the extremal functional β 1
2

on FUr2(z)

g(r) =
16

15
β 1

2
[FUr2 ] . (6.50)

This claim can be most easily checked using the form of g(r) which manifests the sin2(πr2/2)

prefactor, i.e. equation (3.24)

g(r) = i sin2(πr2/2)

∫ i∞

0
G(τ)eiπr

2τdτ , (6.51)

where

G(τ) = −32θ4
4(5θ8

3 − 5θ4
3θ

4
4 + 2θ8

4)

15πθ8
3θ

8
2

. (6.52)

This should be compared with (6.40), which gives

β 1
2
[FUr2 ] = 2 sin2(πr2/2)

∫ 1

0
Qβ1

2

(z)[28z(1− z)]−
1
3χUr2/2(τ(z))dz

= 2 sin2(πr2/2)

∫ 1

0
Qβ1

2

(z)[28z(1− z)]−
1
3 η(τ(z))−8eiπr

2τ(z)dz

(6.53)

with Qβ1
2

(z) given in the first line of (5.28)

Qβ1
2

(z) =
(1− z)

(
2z2 + z + 2

)
π2z2

. (6.54)

12We use the notation of section 3.3, i.e. the Cohn-Elkies function f(r) decomposes as f(r) = h(r)−g(r),

where h(r) and g(r) are respectively Fourier-even and Fourier-odd. Viazovska’s paper [1] uses instead

functions a(r) and b(r), which are related to our h(r) and g(r) as follows: h(r) = iπ
8640

a(r), g(r) = i
240π

b(r).
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0
<latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit><latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit><latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit><latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit>

1
<latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit><latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit><latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit><latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit>

I
<latexit sha1_base64="oR3D88vzAmnVFXSgdkQNEACMF68=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG91VsA9sh5LJZNrQJDMkGaEM3fsBbvUT3Ilbf8Mv8DfMtLPQ1gOBwzn3ck9OkHCmjet+OaWV1bX1jfJmZWt7Z3evun/Q1nGqCG2RmMeqG2BNOZO0ZZjhtJsoikXAaScYX+d+55EqzWJ5byYJ9QUeShYxgo2VHvoCm5ES2e10UK25dXcGtEy8gtSgQHNQ/e6HMUkFlYZwrHXPcxPjZ1gZRjidVvqppgkmYzykPUslFlT72SzxFJ1YJURRrOyTBs3U3xsZFlpPRGAn84R60cvFfz1to4xouHDeRJd+xmSSGirJ/HqUcmRilHeCQqYoMXxiCSaK2Q8gMsIKE2Obq9hmvMUelkn7rO65de/uvNa4KjoqwxEcwyl4cAENuIEmtICAhGd4gVfnyXlz3p2P+WjJKXYO4Q+czx8PnJnd</latexit><latexit sha1_base64="oR3D88vzAmnVFXSgdkQNEACMF68=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG91VsA9sh5LJZNrQJDMkGaEM3fsBbvUT3Ilbf8Mv8DfMtLPQ1gOBwzn3ck9OkHCmjet+OaWV1bX1jfJmZWt7Z3evun/Q1nGqCG2RmMeqG2BNOZO0ZZjhtJsoikXAaScYX+d+55EqzWJ5byYJ9QUeShYxgo2VHvoCm5ES2e10UK25dXcGtEy8gtSgQHNQ/e6HMUkFlYZwrHXPcxPjZ1gZRjidVvqppgkmYzykPUslFlT72SzxFJ1YJURRrOyTBs3U3xsZFlpPRGAn84R60cvFfz1to4xouHDeRJd+xmSSGirJ/HqUcmRilHeCQqYoMXxiCSaK2Q8gMsIKE2Obq9hmvMUelkn7rO65de/uvNa4KjoqwxEcwyl4cAENuIEmtICAhGd4gVfnyXlz3p2P+WjJKXYO4Q+czx8PnJnd</latexit><latexit sha1_base64="oR3D88vzAmnVFXSgdkQNEACMF68=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG91VsA9sh5LJZNrQJDMkGaEM3fsBbvUT3Ilbf8Mv8DfMtLPQ1gOBwzn3ck9OkHCmjet+OaWV1bX1jfJmZWt7Z3evun/Q1nGqCG2RmMeqG2BNOZO0ZZjhtJsoikXAaScYX+d+55EqzWJ5byYJ9QUeShYxgo2VHvoCm5ES2e10UK25dXcGtEy8gtSgQHNQ/e6HMUkFlYZwrHXPcxPjZ1gZRjidVvqppgkmYzykPUslFlT72SzxFJ1YJURRrOyTBs3U3xsZFlpPRGAn84R60cvFfz1to4xouHDeRJd+xmSSGirJ/HqUcmRilHeCQqYoMXxiCSaK2Q8gMsIKE2Obq9hmvMUelkn7rO65de/uvNa4KjoqwxEcwyl4cAENuIEmtICAhGd4gVfnyXlz3p2P+WjJKXYO4Q+czx8PnJnd</latexit><latexit sha1_base64="oR3D88vzAmnVFXSgdkQNEACMF68=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG91VsA9sh5LJZNrQJDMkGaEM3fsBbvUT3Ilbf8Mv8DfMtLPQ1gOBwzn3ck9OkHCmjet+OaWV1bX1jfJmZWt7Z3evun/Q1nGqCG2RmMeqG2BNOZO0ZZjhtJsoikXAaScYX+d+55EqzWJ5byYJ9QUeShYxgo2VHvoCm5ES2e10UK25dXcGtEy8gtSgQHNQ/e6HMUkFlYZwrHXPcxPjZ1gZRjidVvqppgkmYzykPUslFlT72SzxFJ1YJURRrOyTBs3U3xsZFlpPRGAn84R60cvFfz1to4xouHDeRJd+xmSSGirJ/HqUcmRilHeCQqYoMXxiCSaK2Q8gMsIKE2Obq9hmvMUelkn7rO65de/uvNa4KjoqwxEcwyl4cAENuIEmtICAhGd4gVfnyXlz3p2P+WjJKXYO4Q+czx8PnJnd</latexit>

II
<latexit sha1_base64="enar0XwBi5icknwsj31dO3X0pPQ=">AAACB3icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ae0Q8lk7rShSWZIMkIZ+gF+gFv9BHfi1s/wC/wNM+0stPVA4HDOvdyTEyScaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9QKigTMJbcMMh16igIiAQzeY3OZ+9xGUZrF8MNMEfEFGkkWMEmOl/kAQM1YiazZnw2rNrbtz4FXiFaSGCrSG1e9BGNNUgDSUE637npsYPyPKMMphVhmkGhJCJ2QEfUslEaD9bB55hs+sEuIoVvZJg+fq742MCK2nIrCTeUS97OXiv562UcYQLp030bWfMZmkBiRdXI9Sjk2M81JwyBRQw6eWEKqY/QCmY6IINba6im3GW+5hlXQu6p5b9+4va42boqMyOkGn6Bx56Ao10B1qoTaiKEbP6AW9Ok/Om/PufCxGS06xc4z+wPn8Aa06mjA=</latexit><latexit sha1_base64="enar0XwBi5icknwsj31dO3X0pPQ=">AAACB3icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ae0Q8lk7rShSWZIMkIZ+gF+gFv9BHfi1s/wC/wNM+0stPVA4HDOvdyTEyScaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9QKigTMJbcMMh16igIiAQzeY3OZ+9xGUZrF8MNMEfEFGkkWMEmOl/kAQM1YiazZnw2rNrbtz4FXiFaSGCrSG1e9BGNNUgDSUE637npsYPyPKMMphVhmkGhJCJ2QEfUslEaD9bB55hs+sEuIoVvZJg+fq742MCK2nIrCTeUS97OXiv562UcYQLp030bWfMZmkBiRdXI9Sjk2M81JwyBRQw6eWEKqY/QCmY6IINba6im3GW+5hlXQu6p5b9+4va42boqMyOkGn6Bx56Ao10B1qoTaiKEbP6AW9Ok/Om/PufCxGS06xc4z+wPn8Aa06mjA=</latexit><latexit sha1_base64="enar0XwBi5icknwsj31dO3X0pPQ=">AAACB3icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ae0Q8lk7rShSWZIMkIZ+gF+gFv9BHfi1s/wC/wNM+0stPVA4HDOvdyTEyScaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9QKigTMJbcMMh16igIiAQzeY3OZ+9xGUZrF8MNMEfEFGkkWMEmOl/kAQM1YiazZnw2rNrbtz4FXiFaSGCrSG1e9BGNNUgDSUE637npsYPyPKMMphVhmkGhJCJ2QEfUslEaD9bB55hs+sEuIoVvZJg+fq742MCK2nIrCTeUS97OXiv562UcYQLp030bWfMZmkBiRdXI9Sjk2M81JwyBRQw6eWEKqY/QCmY6IINba6im3GW+5hlXQu6p5b9+4va42boqMyOkGn6Bx56Ao10B1qoTaiKEbP6AW9Ok/Om/PufCxGS06xc4z+wPn8Aa06mjA=</latexit><latexit sha1_base64="enar0XwBi5icknwsj31dO3X0pPQ=">AAACB3icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ae0Q8lk7rShSWZIMkIZ+gF+gFv9BHfi1s/wC/wNM+0stPVA4HDOvdyTEyScaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9QKigTMJbcMMh16igIiAQzeY3OZ+9xGUZrF8MNMEfEFGkkWMEmOl/kAQM1YiazZnw2rNrbtz4FXiFaSGCrSG1e9BGNNUgDSUE637npsYPyPKMMphVhmkGhJCJ2QEfUslEaD9bB55hs+sEuIoVvZJg+fq742MCK2nIrCTeUS97OXiv562UcYQLp030bWfMZmkBiRdXI9Sjk2M81JwyBRQw6eWEKqY/QCmY6IINba6im3GW+5hlXQu6p5b9+4va42boqMyOkGn6Bx56Ao10B1qoTaiKEbP6AW9Ok/Om/PufCxGS06xc4z+wPn8Aa06mjA=</latexit>

III
<latexit sha1_base64="ib62/oVAKHWxqiGukMYJsleXFSk=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ad0hpLJ3LahSWZIMkIZ+gN+gFv9BHfi1r/wC/wNM+0stPVA4HDOvdyTEyacaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9UKigTMJbcMMh16igIiQQzec3OZ+9xGUZrF8MNMEAkFGkg0ZJcZKvi+IGSuRNZvN2aBac+vuHHiVeAWpoQKtQfXbj2KaCpCGcqJ133MTE2REGUY5zCp+qiEhdEJG0LdUEgE6yOaZZ/jMKhEexso+afBc/b2REaH1VIR2Ms+ol71c/NfTNsoYoqXzZngdZEwmqQFJF9eHKccmxnkrOGIKqOFTSwhVzH4A0zFRhBrbXcU24y33sEo6F3XPrXv3l7XGTdFRGZ2gU3SOPHSFGugOtVAbUZSgZ/SCXp0n5815dz4WoyWn2DlGf+B8/gBLMpqD</latexit><latexit sha1_base64="ib62/oVAKHWxqiGukMYJsleXFSk=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ad0hpLJ3LahSWZIMkIZ+gN+gFv9BHfi1r/wC/wNM+0stPVA4HDOvdyTEyacaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9UKigTMJbcMMh16igIiQQzec3OZ+9xGUZrF8MNMEAkFGkg0ZJcZKvi+IGSuRNZvN2aBac+vuHHiVeAWpoQKtQfXbj2KaCpCGcqJ133MTE2REGUY5zCp+qiEhdEJG0LdUEgE6yOaZZ/jMKhEexso+afBc/b2REaH1VIR2Ms+ol71c/NfTNsoYoqXzZngdZEwmqQFJF9eHKccmxnkrOGIKqOFTSwhVzH4A0zFRhBrbXcU24y33sEo6F3XPrXv3l7XGTdFRGZ2gU3SOPHSFGugOtVAbUZSgZ/SCXp0n5815dz4WoyWn2DlGf+B8/gBLMpqD</latexit><latexit sha1_base64="ib62/oVAKHWxqiGukMYJsleXFSk=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ad0hpLJ3LahSWZIMkIZ+gN+gFv9BHfi1r/wC/wNM+0stPVA4HDOvdyTEyacaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9UKigTMJbcMMh16igIiQQzec3OZ+9xGUZrF8MNMEAkFGkg0ZJcZKvi+IGSuRNZvN2aBac+vuHHiVeAWpoQKtQfXbj2KaCpCGcqJ133MTE2REGUY5zCp+qiEhdEJG0LdUEgE6yOaZZ/jMKhEexso+afBc/b2REaH1VIR2Ms+ol71c/NfTNsoYoqXzZngdZEwmqQFJF9eHKccmxnkrOGIKqOFTSwhVzH4A0zFRhBrbXcU24y33sEo6F3XPrXv3l7XGTdFRGZ2gU3SOPHSFGugOtVAbUZSgZ/SCXp0n5815dz4WoyWn2DlGf+B8/gBLMpqD</latexit><latexit sha1_base64="ib62/oVAKHWxqiGukMYJsleXFSk=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ad0hpLJ3LahSWZIMkIZ+gN+gFv9BHfi1r/wC/wNM+0stPVA4HDOvdyTEyacaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9UKigTMJbcMMh16igIiQQzec3OZ+9xGUZrF8MNMEAkFGkg0ZJcZKvi+IGSuRNZvN2aBac+vuHHiVeAWpoQKtQfXbj2KaCpCGcqJ133MTE2REGUY5zCp+qiEhdEJG0LdUEgE6yOaZZ/jMKhEexso+afBc/b2REaH1VIR2Ms+ol71c/NfTNsoYoqXzZngdZEwmqQFJF9eHKccmxnkrOGIKqOFTSwhVzH4A0zFRhBrbXcU24y33sEo6F3XPrXv3l7XGTdFRGZ2gU3SOPHSFGugOtVAbUZSgZ/SCXp0n5815dz4WoyWn2DlGf+B8/gBLMpqD</latexit>

IV
<latexit sha1_base64="GizaR4WN2j++2VJdzX+oV9bCsRA=">AAACB3icbVBLSgNBFOyJvxh/UZduGoPgKsyIoMugG91FMDGQDKGn5yVp0p+hu0cIQw7gAdzqEdyJW4/hCbyGPcksNLGgoah6j1ddUcKZsb7/5ZVWVtfWN8qbla3tnd296v5B26hUU2hRxZXuRMQAZxJallkOnUQDERGHh2h8nfsPj6ANU/LeThIIBRlKNmCUWCd1e4LYkRbZbXvar9b8uj8DXiZBQWqoQLNf/e7FiqYCpKWcGNMN/MSGGdGWUQ7TSi81kBA6JkPoOiqJABNms8hTfOKUGA+Udk9aPFN/b2REGDMRkZvMI5pFLxf/9YyLMoJ44bwdXIYZk0lqQdL59UHKsVU4LwXHTAO1fOIIoZq5D2A6IppQ66qruGaCxR6WSfusHvj14O681rgqOiqjI3SMTlGALlAD3aAmaiGKFHpGL+jVe/LevHfvYz5a8oqdQ/QH3ucPwgyaPQ==</latexit><latexit sha1_base64="GizaR4WN2j++2VJdzX+oV9bCsRA=">AAACB3icbVBLSgNBFOyJvxh/UZduGoPgKsyIoMugG91FMDGQDKGn5yVp0p+hu0cIQw7gAdzqEdyJW4/hCbyGPcksNLGgoah6j1ddUcKZsb7/5ZVWVtfWN8qbla3tnd296v5B26hUU2hRxZXuRMQAZxJallkOnUQDERGHh2h8nfsPj6ANU/LeThIIBRlKNmCUWCd1e4LYkRbZbXvar9b8uj8DXiZBQWqoQLNf/e7FiqYCpKWcGNMN/MSGGdGWUQ7TSi81kBA6JkPoOiqJABNms8hTfOKUGA+Udk9aPFN/b2REGDMRkZvMI5pFLxf/9YyLMoJ44bwdXIYZk0lqQdL59UHKsVU4LwXHTAO1fOIIoZq5D2A6IppQ66qruGaCxR6WSfusHvj14O681rgqOiqjI3SMTlGALlAD3aAmaiGKFHpGL+jVe/LevHfvYz5a8oqdQ/QH3ucPwgyaPQ==</latexit><latexit sha1_base64="GizaR4WN2j++2VJdzX+oV9bCsRA=">AAACB3icbVBLSgNBFOyJvxh/UZduGoPgKsyIoMugG91FMDGQDKGn5yVp0p+hu0cIQw7gAdzqEdyJW4/hCbyGPcksNLGgoah6j1ddUcKZsb7/5ZVWVtfWN8qbla3tnd296v5B26hUU2hRxZXuRMQAZxJallkOnUQDERGHh2h8nfsPj6ANU/LeThIIBRlKNmCUWCd1e4LYkRbZbXvar9b8uj8DXiZBQWqoQLNf/e7FiqYCpKWcGNMN/MSGGdGWUQ7TSi81kBA6JkPoOiqJABNms8hTfOKUGA+Udk9aPFN/b2REGDMRkZvMI5pFLxf/9YyLMoJ44bwdXIYZk0lqQdL59UHKsVU4LwXHTAO1fOIIoZq5D2A6IppQ66qruGaCxR6WSfusHvj14O681rgqOiqjI3SMTlGALlAD3aAmaiGKFHpGL+jVe/LevHfvYz5a8oqdQ/QH3ucPwgyaPQ==</latexit><latexit sha1_base64="GizaR4WN2j++2VJdzX+oV9bCsRA=">AAACB3icbVBLSgNBFOyJvxh/UZduGoPgKsyIoMugG91FMDGQDKGn5yVp0p+hu0cIQw7gAdzqEdyJW4/hCbyGPcksNLGgoah6j1ddUcKZsb7/5ZVWVtfWN8qbla3tnd296v5B26hUU2hRxZXuRMQAZxJallkOnUQDERGHh2h8nfsPj6ANU/LeThIIBRlKNmCUWCd1e4LYkRbZbXvar9b8uj8DXiZBQWqoQLNf/e7FiqYCpKWcGNMN/MSGGdGWUQ7TSi81kBA6JkPoOiqJABNms8hTfOKUGA+Udk9aPFN/b2REGDMRkZvMI5pFLxf/9YyLMoJ44bwdXIYZk0lqQdL59UHKsVU4LwXHTAO1fOIIoZq5D2A6IppQ66qruGaCxR6WSfusHvj14O681rgqOiqjI3SMTlGALlAD3aAmaiGKFHpGL+jVe/LevHfvYz5a8oqdQ/QH3ucPwgyaPQ==</latexit>

τ
<latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit><latexit sha1_base64="H1w37xDZYiD4yvWarL5bEZMCVbs=">AAACAHicbVDLSsNAFJ3UV62vqks3wSK4KokIuiy6cVnBPqANZTK5aYZOJmHmRiihGz/ArX6CO3Hrn/gF/oaTNgttPXDhcM693HuPnwqu0XG+rMra+sbmVnW7trO7t39QPzzq6iRTDDosEYnq+1SD4BI6yFFAP1VAY19Az5/cFn7vEZTmiXzAaQpeTMeSh5xRLKQh0mxUbzhNZw57lbglaZAS7VH9exgkLItBIhNU64HrpOjlVCFnAma1YaYhpWxCxzAwVNIYtJfPb53ZZ0YJ7DBRpiTac/X3RE5jraexbzpjipFe9grxX0+bUyIIltZjeO3lXKYZgmSL7WEmbEzsIg074AoYiqkhlCluHrBZRBVlaDKrmWTc5RxWSfei6TpN9/6y0bopM6qSE3JKzolLrkiL3JE26RBGIvJMXsir9WS9We/Wx6K1YpUzx+QPrM8fIr2XIQ==</latexit>

0
<latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit><latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit><latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit><latexit sha1_base64="m0N0Styk6LZ8lqS47tGFtUw85K4=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotd1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG1u8lY0=</latexit>

1
<latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit><latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit><latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit><latexit sha1_base64="fuP6GpjCgfismcnXW0BRIkBkizU=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48JmAckS5id7U2GzM4uM7NCWIIf4FU/wZt49Vv8An/DSbIHjRY0FFXddHcFqeDauO6nU1pb39jcKm9Xdnb39g+qh0cdnWSKYZslIlG9gGoUXGLbcCOwlyqkcSCwG0xu5373AZXmibw30xT9mI4kjzijxkotb1ituXV3AfKXeAWpQYHmsPo1CBOWxSgNE1Trvuemxs+pMpwJnFUGmcaUsgkdYd9SSWPUfr44dEbOrBKSKFG2pCEL9edETmOtp3FgO2NqxnrVm4v/etqeMsZwZb2Jrv2cyzQzKNlye5QJYhIyj4KEXCEzYmoJZYrbBwgbU0WZsYFVbDLeag5/Seei7rl1r3VZa9wUGZXhBE7hHDy4ggbcQRPawADhCZ7hxXl0Xp03533ZWnKKmWP4BefjG11VlY4=</latexit>−1

<latexit sha1_base64="FEc3X/Pfz0CRpBTqRQ7vfCuqQqg=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMQ9IljA725sMmZ1dZmaFEAJ+gFf9BG/i1V/xC/wNJ8keNLGgoajqprsrSAXXxnW/nMLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqB1Sj4BIbhhuB7VQhjQOBrWB4M/Vbj6g0T+SDGaXox7QvecQZNVa6P/N65YpbdWcgy8TLSQVy1Hvl726YsCxGaZigWnc8NzX+mCrDmcBJqZtpTCkb0j52LJU0Ru2PZ5dOyIlVQhIlypY0ZKb+nhjTWOtRHNjOmJqBXvSm4r+etqcMMFxYb6Irf8xlmhmUbL49ygQxCZlmQUKukBkxsoQyxe0DhA2ooszYxEo2GW8xh2XSPK96btW7u6jUrvOMinAEx3AKHlxCDW6hDg1gEMEzvMCr8+S8Oe/Ox7y14OQzh/AHzucPymCVxQ==</latexit><latexit sha1_base64="FEc3X/Pfz0CRpBTqRQ7vfCuqQqg=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMQ9IljA725sMmZ1dZmaFEAJ+gFf9BG/i1V/xC/wNJ8keNLGgoajqprsrSAXXxnW/nMLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqB1Sj4BIbhhuB7VQhjQOBrWB4M/Vbj6g0T+SDGaXox7QvecQZNVa6P/N65YpbdWcgy8TLSQVy1Hvl726YsCxGaZigWnc8NzX+mCrDmcBJqZtpTCkb0j52LJU0Ru2PZ5dOyIlVQhIlypY0ZKb+nhjTWOtRHNjOmJqBXvSm4r+etqcMMFxYb6Irf8xlmhmUbL49ygQxCZlmQUKukBkxsoQyxe0DhA2ooszYxEo2GW8xh2XSPK96btW7u6jUrvOMinAEx3AKHlxCDW6hDg1gEMEzvMCr8+S8Oe/Ox7y14OQzh/AHzucPymCVxQ==</latexit><latexit sha1_base64="FEc3X/Pfz0CRpBTqRQ7vfCuqQqg=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMQ9IljA725sMmZ1dZmaFEAJ+gFf9BG/i1V/xC/wNJ8keNLGgoajqprsrSAXXxnW/nMLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqB1Sj4BIbhhuB7VQhjQOBrWB4M/Vbj6g0T+SDGaXox7QvecQZNVa6P/N65YpbdWcgy8TLSQVy1Hvl726YsCxGaZigWnc8NzX+mCrDmcBJqZtpTCkb0j52LJU0Ru2PZ5dOyIlVQhIlypY0ZKb+nhjTWOtRHNjOmJqBXvSm4r+etqcMMFxYb6Irf8xlmhmUbL49ygQxCZlmQUKukBkxsoQyxe0DhA2ooszYxEo2GW8xh2XSPK96btW7u6jUrvOMinAEx3AKHlxCDW6hDg1gEMEzvMCr8+S8Oe/Ox7y14OQzh/AHzucPymCVxQ==</latexit><latexit sha1_base64="FEc3X/Pfz0CRpBTqRQ7vfCuqQqg=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMQ9IljA725sMmZ1dZmaFEAJ+gFf9BG/i1V/xC/wNJ8keNLGgoajqprsrSAXXxnW/nMLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqB1Sj4BIbhhuB7VQhjQOBrWB4M/Vbj6g0T+SDGaXox7QvecQZNVa6P/N65YpbdWcgy8TLSQVy1Hvl726YsCxGaZigWnc8NzX+mCrDmcBJqZtpTCkb0j52LJU0Ru2PZ5dOyIlVQhIlypY0ZKb+nhjTWOtRHNjOmJqBXvSm4r+etqcMMFxYb6Irf8xlmhmUbL49ygQxCZlmQUKukBkxsoQyxe0DhA2ooszYxEo2GW8xh2XSPK96btW7u6jUrvOMinAEx3AKHlxCDW6hDg1gEMEzvMCr8+S8Oe/Ox7y14OQzh/AHzucPymCVxQ==</latexit>

I
<latexit sha1_base64="oR3D88vzAmnVFXSgdkQNEACMF68=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG91VsA9sh5LJZNrQJDMkGaEM3fsBbvUT3Ilbf8Mv8DfMtLPQ1gOBwzn3ck9OkHCmjet+OaWV1bX1jfJmZWt7Z3evun/Q1nGqCG2RmMeqG2BNOZO0ZZjhtJsoikXAaScYX+d+55EqzWJ5byYJ9QUeShYxgo2VHvoCm5ES2e10UK25dXcGtEy8gtSgQHNQ/e6HMUkFlYZwrHXPcxPjZ1gZRjidVvqppgkmYzykPUslFlT72SzxFJ1YJURRrOyTBs3U3xsZFlpPRGAn84R60cvFfz1to4xouHDeRJd+xmSSGirJ/HqUcmRilHeCQqYoMXxiCSaK2Q8gMsIKE2Obq9hmvMUelkn7rO65de/uvNa4KjoqwxEcwyl4cAENuIEmtICAhGd4gVfnyXlz3p2P+WjJKXYO4Q+czx8PnJnd</latexit><latexit sha1_base64="oR3D88vzAmnVFXSgdkQNEACMF68=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG91VsA9sh5LJZNrQJDMkGaEM3fsBbvUT3Ilbf8Mv8DfMtLPQ1gOBwzn3ck9OkHCmjet+OaWV1bX1jfJmZWt7Z3evun/Q1nGqCG2RmMeqG2BNOZO0ZZjhtJsoikXAaScYX+d+55EqzWJ5byYJ9QUeShYxgo2VHvoCm5ES2e10UK25dXcGtEy8gtSgQHNQ/e6HMUkFlYZwrHXPcxPjZ1gZRjidVvqppgkmYzykPUslFlT72SzxFJ1YJURRrOyTBs3U3xsZFlpPRGAn84R60cvFfz1to4xouHDeRJd+xmSSGirJ/HqUcmRilHeCQqYoMXxiCSaK2Q8gMsIKE2Obq9hmvMUelkn7rO65de/uvNa4KjoqwxEcwyl4cAENuIEmtICAhGd4gVfnyXlz3p2P+WjJKXYO4Q+czx8PnJnd</latexit><latexit sha1_base64="oR3D88vzAmnVFXSgdkQNEACMF68=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG91VsA9sh5LJZNrQJDMkGaEM3fsBbvUT3Ilbf8Mv8DfMtLPQ1gOBwzn3ck9OkHCmjet+OaWV1bX1jfJmZWt7Z3evun/Q1nGqCG2RmMeqG2BNOZO0ZZjhtJsoikXAaScYX+d+55EqzWJ5byYJ9QUeShYxgo2VHvoCm5ES2e10UK25dXcGtEy8gtSgQHNQ/e6HMUkFlYZwrHXPcxPjZ1gZRjidVvqppgkmYzykPUslFlT72SzxFJ1YJURRrOyTBs3U3xsZFlpPRGAn84R60cvFfz1to4xouHDeRJd+xmSSGirJ/HqUcmRilHeCQqYoMXxiCSaK2Q8gMsIKE2Obq9hmvMUelkn7rO65de/uvNa4KjoqwxEcwyl4cAENuIEmtICAhGd4gVfnyXlz3p2P+WjJKXYO4Q+czx8PnJnd</latexit><latexit sha1_base64="oR3D88vzAmnVFXSgdkQNEACMF68=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG91VsA9sh5LJZNrQJDMkGaEM3fsBbvUT3Ilbf8Mv8DfMtLPQ1gOBwzn3ck9OkHCmjet+OaWV1bX1jfJmZWt7Z3evun/Q1nGqCG2RmMeqG2BNOZO0ZZjhtJsoikXAaScYX+d+55EqzWJ5byYJ9QUeShYxgo2VHvoCm5ES2e10UK25dXcGtEy8gtSgQHNQ/e6HMUkFlYZwrHXPcxPjZ1gZRjidVvqppgkmYzykPUslFlT72SzxFJ1YJURRrOyTBs3U3xsZFlpPRGAn84R60cvFfz1to4xouHDeRJd+xmSSGirJ/HqUcmRilHeCQqYoMXxiCSaK2Q8gMsIKE2Obq9hmvMUelkn7rO65de/uvNa4KjoqwxEcwyl4cAENuIEmtICAhGd4gVfnyXlz3p2P+WjJKXYO4Q+czx8PnJnd</latexit>

II
<latexit sha1_base64="enar0XwBi5icknwsj31dO3X0pPQ=">AAACB3icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ae0Q8lk7rShSWZIMkIZ+gF+gFv9BHfi1s/wC/wNM+0stPVA4HDOvdyTEyScaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9QKigTMJbcMMh16igIiAQzeY3OZ+9xGUZrF8MNMEfEFGkkWMEmOl/kAQM1YiazZnw2rNrbtz4FXiFaSGCrSG1e9BGNNUgDSUE637npsYPyPKMMphVhmkGhJCJ2QEfUslEaD9bB55hs+sEuIoVvZJg+fq742MCK2nIrCTeUS97OXiv562UcYQLp030bWfMZmkBiRdXI9Sjk2M81JwyBRQw6eWEKqY/QCmY6IINba6im3GW+5hlXQu6p5b9+4va42boqMyOkGn6Bx56Ao10B1qoTaiKEbP6AW9Ok/Om/PufCxGS06xc4z+wPn8Aa06mjA=</latexit><latexit sha1_base64="enar0XwBi5icknwsj31dO3X0pPQ=">AAACB3icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ae0Q8lk7rShSWZIMkIZ+gF+gFv9BHfi1s/wC/wNM+0stPVA4HDOvdyTEyScaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9QKigTMJbcMMh16igIiAQzeY3OZ+9xGUZrF8MNMEfEFGkkWMEmOl/kAQM1YiazZnw2rNrbtz4FXiFaSGCrSG1e9BGNNUgDSUE637npsYPyPKMMphVhmkGhJCJ2QEfUslEaD9bB55hs+sEuIoVvZJg+fq742MCK2nIrCTeUS97OXiv562UcYQLp030bWfMZmkBiRdXI9Sjk2M81JwyBRQw6eWEKqY/QCmY6IINba6im3GW+5hlXQu6p5b9+4va42boqMyOkGn6Bx56Ao10B1qoTaiKEbP6AW9Ok/Om/PufCxGS06xc4z+wPn8Aa06mjA=</latexit><latexit sha1_base64="enar0XwBi5icknwsj31dO3X0pPQ=">AAACB3icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ae0Q8lk7rShSWZIMkIZ+gF+gFv9BHfi1s/wC/wNM+0stPVA4HDOvdyTEyScaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9QKigTMJbcMMh16igIiAQzeY3OZ+9xGUZrF8MNMEfEFGkkWMEmOl/kAQM1YiazZnw2rNrbtz4FXiFaSGCrSG1e9BGNNUgDSUE637npsYPyPKMMphVhmkGhJCJ2QEfUslEaD9bB55hs+sEuIoVvZJg+fq742MCK2nIrCTeUS97OXiv562UcYQLp030bWfMZmkBiRdXI9Sjk2M81JwyBRQw6eWEKqY/QCmY6IINba6im3GW+5hlXQu6p5b9+4va42boqMyOkGn6Bx56Ao10B1qoTaiKEbP6AW9Ok/Om/PufCxGS06xc4z+wPn8Aa06mjA=</latexit><latexit sha1_base64="enar0XwBi5icknwsj31dO3X0pPQ=">AAACB3icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ae0Q8lk7rShSWZIMkIZ+gF+gFv9BHfi1s/wC/wNM+0stPVA4HDOvdyTEyScaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9QKigTMJbcMMh16igIiAQzeY3OZ+9xGUZrF8MNMEfEFGkkWMEmOl/kAQM1YiazZnw2rNrbtz4FXiFaSGCrSG1e9BGNNUgDSUE637npsYPyPKMMphVhmkGhJCJ2QEfUslEaD9bB55hs+sEuIoVvZJg+fq742MCK2nIrCTeUS97OXiv562UcYQLp030bWfMZmkBiRdXI9Sjk2M81JwyBRQw6eWEKqY/QCmY6IINba6im3GW+5hlXQu6p5b9+4va42boqMyOkGn6Bx56Ao10B1qoTaiKEbP6AW9Ok/Om/PufCxGS06xc4z+wPn8Aa06mjA=</latexit>

III
<latexit sha1_base64="ib62/oVAKHWxqiGukMYJsleXFSk=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ad0hpLJ3LahSWZIMkIZ+gN+gFv9BHfi1r/wC/wNM+0stPVA4HDOvdyTEyacaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9UKigTMJbcMMh16igIiQQzec3OZ+9xGUZrF8MNMEAkFGkg0ZJcZKvi+IGSuRNZvN2aBac+vuHHiVeAWpoQKtQfXbj2KaCpCGcqJ133MTE2REGUY5zCp+qiEhdEJG0LdUEgE6yOaZZ/jMKhEexso+afBc/b2REaH1VIR2Ms+ol71c/NfTNsoYoqXzZngdZEwmqQFJF9eHKccmxnkrOGIKqOFTSwhVzH4A0zFRhBrbXcU24y33sEo6F3XPrXv3l7XGTdFRGZ2gU3SOPHSFGugOtVAbUZSgZ/SCXp0n5815dz4WoyWn2DlGf+B8/gBLMpqD</latexit><latexit sha1_base64="ib62/oVAKHWxqiGukMYJsleXFSk=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ad0hpLJ3LahSWZIMkIZ+gN+gFv9BHfi1r/wC/wNM+0stPVA4HDOvdyTEyacaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9UKigTMJbcMMh16igIiQQzec3OZ+9xGUZrF8MNMEAkFGkg0ZJcZKvi+IGSuRNZvN2aBac+vuHHiVeAWpoQKtQfXbj2KaCpCGcqJ133MTE2REGUY5zCp+qiEhdEJG0LdUEgE6yOaZZ/jMKhEexso+afBc/b2REaH1VIR2Ms+ol71c/NfTNsoYoqXzZngdZEwmqQFJF9eHKccmxnkrOGIKqOFTSwhVzH4A0zFRhBrbXcU24y33sEo6F3XPrXv3l7XGTdFRGZ2gU3SOPHSFGugOtVAbUZSgZ/SCXp0n5815dz4WoyWn2DlGf+B8/gBLMpqD</latexit><latexit sha1_base64="ib62/oVAKHWxqiGukMYJsleXFSk=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ad0hpLJ3LahSWZIMkIZ+gN+gFv9BHfi1r/wC/wNM+0stPVA4HDOvdyTEyacaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9UKigTMJbcMMh16igIiQQzec3OZ+9xGUZrF8MNMEAkFGkg0ZJcZKvi+IGSuRNZvN2aBac+vuHHiVeAWpoQKtQfXbj2KaCpCGcqJ133MTE2REGUY5zCp+qiEhdEJG0LdUEgE6yOaZZ/jMKhEexso+afBc/b2REaH1VIR2Ms+ol71c/NfTNsoYoqXzZngdZEwmqQFJF9eHKccmxnkrOGIKqOFTSwhVzH4A0zFRhBrbXcU24y33sEo6F3XPrXv3l7XGTdFRGZ2gU3SOPHSFGugOtVAbUZSgZ/SCXp0n5815dz4WoyWn2DlGf+B8/gBLMpqD</latexit><latexit sha1_base64="ib62/oVAKHWxqiGukMYJsleXFSk=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLoxu4q2Ad0hpLJ3LahSWZIMkIZ+gN+gFv9BHfi1r/wC/wNM+0stPVA4HDOvdyTEyacaeO6X05pbX1jc6u8XdnZ3ds/qB4edXScKgptGvNY9UKigTMJbcMMh16igIiQQzec3OZ+9xGUZrF8MNMEAkFGkg0ZJcZKvi+IGSuRNZvN2aBac+vuHHiVeAWpoQKtQfXbj2KaCpCGcqJ133MTE2REGUY5zCp+qiEhdEJG0LdUEgE6yOaZZ/jMKhEexso+afBc/b2REaH1VIR2Ms+ol71c/NfTNsoYoqXzZngdZEwmqQFJF9eHKccmxnkrOGIKqOFTSwhVzH4A0zFRhBrbXcU24y33sEo6F3XPrXv3l7XGTdFRGZ2gU3SOPHSFGugOtVAbUZSgZ/SCXp0n5815dz4WoyWn2DlGf+B8/gBLMpqD</latexit>

IV
<latexit sha1_base64="GizaR4WN2j++2VJdzX+oV9bCsRA=">AAACB3icbVBLSgNBFOyJvxh/UZduGoPgKsyIoMugG91FMDGQDKGn5yVp0p+hu0cIQw7gAdzqEdyJW4/hCbyGPcksNLGgoah6j1ddUcKZsb7/5ZVWVtfWN8qbla3tnd296v5B26hUU2hRxZXuRMQAZxJallkOnUQDERGHh2h8nfsPj6ANU/LeThIIBRlKNmCUWCd1e4LYkRbZbXvar9b8uj8DXiZBQWqoQLNf/e7FiqYCpKWcGNMN/MSGGdGWUQ7TSi81kBA6JkPoOiqJABNms8hTfOKUGA+Udk9aPFN/b2REGDMRkZvMI5pFLxf/9YyLMoJ44bwdXIYZk0lqQdL59UHKsVU4LwXHTAO1fOIIoZq5D2A6IppQ66qruGaCxR6WSfusHvj14O681rgqOiqjI3SMTlGALlAD3aAmaiGKFHpGL+jVe/LevHfvYz5a8oqdQ/QH3ucPwgyaPQ==</latexit><latexit sha1_base64="GizaR4WN2j++2VJdzX+oV9bCsRA=">AAACB3icbVBLSgNBFOyJvxh/UZduGoPgKsyIoMugG91FMDGQDKGn5yVp0p+hu0cIQw7gAdzqEdyJW4/hCbyGPcksNLGgoah6j1ddUcKZsb7/5ZVWVtfWN8qbla3tnd296v5B26hUU2hRxZXuRMQAZxJallkOnUQDERGHh2h8nfsPj6ANU/LeThIIBRlKNmCUWCd1e4LYkRbZbXvar9b8uj8DXiZBQWqoQLNf/e7FiqYCpKWcGNMN/MSGGdGWUQ7TSi81kBA6JkPoOiqJABNms8hTfOKUGA+Udk9aPFN/b2REGDMRkZvMI5pFLxf/9YyLMoJ44bwdXIYZk0lqQdL59UHKsVU4LwXHTAO1fOIIoZq5D2A6IppQ66qruGaCxR6WSfusHvj14O681rgqOiqjI3SMTlGALlAD3aAmaiGKFHpGL+jVe/LevHfvYz5a8oqdQ/QH3ucPwgyaPQ==</latexit><latexit sha1_base64="GizaR4WN2j++2VJdzX+oV9bCsRA=">AAACB3icbVBLSgNBFOyJvxh/UZduGoPgKsyIoMugG91FMDGQDKGn5yVp0p+hu0cIQw7gAdzqEdyJW4/hCbyGPcksNLGgoah6j1ddUcKZsb7/5ZVWVtfWN8qbla3tnd296v5B26hUU2hRxZXuRMQAZxJallkOnUQDERGHh2h8nfsPj6ANU/LeThIIBRlKNmCUWCd1e4LYkRbZbXvar9b8uj8DXiZBQWqoQLNf/e7FiqYCpKWcGNMN/MSGGdGWUQ7TSi81kBA6JkPoOiqJABNms8hTfOKUGA+Udk9aPFN/b2REGDMRkZvMI5pFLxf/9YyLMoJ44bwdXIYZk0lqQdL59UHKsVU4LwXHTAO1fOIIoZq5D2A6IppQ66qruGaCxR6WSfusHvj14O681rgqOiqjI3SMTlGALlAD3aAmaiGKFHpGL+jVe/LevHfvYz5a8oqdQ/QH3ucPwgyaPQ==</latexit><latexit sha1_base64="GizaR4WN2j++2VJdzX+oV9bCsRA=">AAACB3icbVBLSgNBFOyJvxh/UZduGoPgKsyIoMugG91FMDGQDKGn5yVp0p+hu0cIQw7gAdzqEdyJW4/hCbyGPcksNLGgoah6j1ddUcKZsb7/5ZVWVtfWN8qbla3tnd296v5B26hUU2hRxZXuRMQAZxJallkOnUQDERGHh2h8nfsPj6ANU/LeThIIBRlKNmCUWCd1e4LYkRbZbXvar9b8uj8DXiZBQWqoQLNf/e7FiqYCpKWcGNMN/MSGGdGWUQ7TSi81kBA6JkPoOiqJABNms8hTfOKUGA+Udk9aPFN/b2REGDMRkZvMI5pFLxf/9YyLMoJ44bwdXIYZk0lqQdL59UHKsVU4LwXHTAO1fOIIoZq5D2A6IppQ66qruGaCxR6WSfusHvj14O681rgqOiqjI3SMTlGALlAD3aAmaiGKFHpGL+jVe/LevHfvYz5a8oqdQ/QH3ucPwgyaPQ==</latexit>

Figure 5. Left: contour integral definition of the analytic extremal functional in the z-plane,

see (5.24), (6.59). Right: Viazovska’s contour integral definition of the magic functions, see (6.57).

The two definitions are related by the transformation z = λ(τ). The contours labelled by the same

Roman numerals get mapped to each other.

In order to show the equivalence of (6.51) and (6.53), it remains to change coordinates in

the latter from z = λ(τ) to τ . The integration contour z ∈ (0, 1) maps to τ ∈ iR>0 as

needed. The measure transforms as follows

dz = iπ
θ2(τ)4θ4(τ)4

θ3(τ)4
dτ . (6.55)

Therefore, the claim (6.50) is equivalent to

G(τ) = −32πθ2(τ)4θ4(τ)4

15θ3(τ)4
[28λ(τ)(1− λ(τ))]−

1
3 η(τ)−8Qβ1

2

(λ(τ)) , (6.56)

which is a true identity.

What is the counterpart of our formula (5.24), which manifests that β 1
2

can be written

as a linear functional? This is equation (52) in [1], which manifests the fact that g(r) is

odd under the Fourier transform:

g(r) =− i

2

∫ 0

i
G(τ)eiπr

2τdτ +
i

2

∫ i∞

i
GS(τ)eiπr

2τdτ

+
i

4

∫ 1

i
GT (τ)eiπr

2τdτ +
i

4

∫ −1

i
GT (τ)eiπr

2τdτ ,

(6.57)

where
GS(τ) ≡ τ2G(−1/τ)

GT (τ) ≡ G(τ + 1) .
(6.58)

Indeed, we can start from our equation (5.24) with F(z) = FUr2(z), and write FUr2(z) as the

difference of the character and its S-transformation to arrive at

β 1
2
[FUr2 ] =

[∫ 1

1
2

dz Qβ1
2

(z) +

∫ 0

1
2

dz Qβ1
2

(1− z) +
1

2

∫ 1
2

+i∞

1
2

dzRβ1
2

(z) +
1

2

∫ 1
2
−i∞

1
2

dzRβ1
2

(z)

]

× [28z(1− z)]−
1
3 η(τ(z))−8eiπr

2τ(z) ,

(6.59)
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where we performed the change of variables z 7→ 1 − z in the terms involving the S-

transformed character. The square bracket is meant to be distributed over the integrand on

the second line. If we now change the integration variable from z to τ in (6.59), we arrive

precisely at Viazovska’s formula (6.57). Indeed, the four straight contours z ∈ (1/2, 1),

z ∈ (1/2, 0), z ∈ (1/2, 1/2 + i∞) and z ∈ (1/2, 1/2 − i∞) map to τ ∈ (i, 0), τ ∈ (i, i∞),

τ ∈ (i, 1) and τ ∈ (i,−1), as shown in figure 5. The integrands can be checked to match

as well.

Finally, it can be seen that the functional constraints which G(τ) needs to satisfy for

Viazovska’s contruction to work are precisely equivalent to the constraints that can be used

to fix Qβ1
2

(z). Indeed, the constraint (5.26) is equivalent to (3.25d)

GT (τ) = −τ2GT (−1/τ) , (6.60)

while the constraint (5.27) is equivalent to (3.25c)

G(τ)−GS(τ)−GT (τ) = 0 . (6.61)

This completes the proof of equivalence of the Fourier-odd magic function g(r) in R8

with the extremal functional β 1
2
. The Fourier-even magic function h(r) arises in exactly

the same manner from the action of the extremal functional β+
1
2

, discussed in section 5.4,

on the symmetric combination

FU+
r2 (z) = z−

c
4GUr2(z) + (1− z)−

c
4GUr2(1− z)

=
[
28z(1− z)

]− c
12

[
χUr2/2(τ(z)) + χUr2/2(−1/τ(z))

]
,

(6.62)

where we should take c = 4. More precisely, we find

h(r) = −16

15
β+

1
2

[FU+
r2 ] . (6.63)

This follows from the identity

H(τ) = −32πθ2(τ)4θ4(τ)4

15θ3(τ)4
[28λ(τ)(1− λ(τ))]−

1
3 η(τ)−8Qβ+

1
2

(λ(τ)) , (6.64)

whereH(τ) is described in section 3.3.1 andQβ+
1
2

(z) is given in equation (5.47). Incidentally,

this identity gives a simple proof of the fact

H(τ) < 0 for τ ∈ iR>0 , (6.65)

which is useful in proving positivity properties of the magic functions. Finally, we can

combine h(r) and g(r) into the magic function f(r)

f(r) = h(r)− g(r) . (6.66)

Using (6.50) and (6.63), we can express f(r) and its Fourier transform f̂(r) in terms of

actions of the extremal functionals

f(r) = −16

15

{
β+

1
2

[FU+
r2 ] + β 1

2
[FUr2 ]

}
f̂(r) = −16

15

{
β+

1
2

[FU+
r2 ]− β 1

2
[FUr2 ]

}
.

(6.67)
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These are the right linear combinations of β 1
2

and β+
1
2

with the required structure of zeros

and positivity properties.13

The magic functions for the sphere packing problem R24 can be recovered from the

extremal functionals for ∆φ = 3
2 in exactly the same way as we did for R8 and ∆φ = 1

2 .

This time, we find the following proportionality constants14

h(r) = −2048

4095
β+

3
2

[FU+
r2 ]

g(r) =
2048

4095
β 3

2
[FUr2 ] .

(6.68)

7 Bounds at large central charge

7.1 Upper bounds for c 6= 4, 12

Having understood the exact bounds ∆U (c) and ∆V (c) for c = 4, 12, we will now analyze

them away from these special points — first for general c, and then focussing on the regime

of large c.

It is natural to apply the extremal functional β c
8

to the modular bootstrap equations for

general c. We have seen from equation (6.40) that, for any c > 1, β c
8
[FA2∆] is non-negative

for ∆ ≥ c+4
8 and vanishes at15

∆n =
c+ 4

8
+ n for n = 0, 1, . . . . (7.1)

Therefore, c+4
8 is a valid upper bound on the gap whenever β c

8
[FAvac] > 0. In order to study

the sign of β c
8
[FAvac], we can first expand it in terms of action of β c

8
on the sl(2,R) blocks

of dimensions 2, 4, 6, . . .

β c
8
[FAvac] =

∞∑
n=1

bAnβ c8 [F2n] , (7.2)

where bAn > 0 and we used β c
8
[F0] = 0. We can immediately conclude β c

8
[FAvac] > 0 for

c ∈ (1, 4) since then all terms in the sum over n are positive. In this way we recover the

bound (6.29), derived here in a different way.

What is the sign of β c
8
[FAvac] for c ≥ 4? We already know that β c

8
[FAvac] vanishes at

c = 4, 12 and it is a reasonable guess that these are the only zeros of β c
8
[FAvac] and thus

β c
8
[FAvac] < 0 for c ∈ (4, 12)

β c
8
[FAvac] > 0 for c ∈ (12,∞) .

(7.3)

This guess turns out to be correct, which can be established beyond reasonable doubt for

example by numerically evaluating the contour integrals defining β c
8
. Figure 6 illustrates

13The prefactor 16
15

sets the normalization to f(0) = f̂(0) = 1, while the functionals are normalized by

∂∆β 1
2
[F∆] = ∂∆β

+
1
2

[F∆] = 1 at ∆ = 2.
14The functions a(r) and b(r) of reference [2] are related to h(r) and g(r) as follows: h(r) = − πi

113218560
a(r),

g(r) = i
262080π

b(r).
15The symbol A is a placeholder for U or V , but many results in this section hold also for general chiral

algebra A.
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β c
8
[FU,V

vac ]
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Figure 6. Action of the functional β c
8

on the vacuum modular bootstrap vectors FU,Vvac . The orange

curve corresponds to the U(1)c vacuum and the blue one to the Virc vacuum. The action on both

kinds of vacuum characters vanishes at c = 4 and c = 12, where β c
8

becomes the optimal functional.

The plot also illustrates that the vacuum action is positive for c ∈ (1, 4) ∪ (12,∞). For c > 12, the

vacuum action increases exponentially with c.

this fact in the range c ∈ (1, 15). We will also soon give a rigorous argument for the second

inequality at large c. It follows that the existence of β c
8

implies the rigorous inequality

∆U,V (c) <
c+ 4

8
for c ∈ (12,∞) . (7.4)

That is, every unitary 2D CFT of central charge c ≥ 12 contains a Virasoro primary other

than identity of scaling dimension at most c/8 + 1/2.

7.2 Saddle-point evaluation of the functional actions

Let us consider the regime of large central charge. The key insight is that the action

of functionals β c
8

and α̃ c
8

can be evaluated using the saddle-point approximation. The

discussion of this subsection is analogous to the computation of the action of β∆φ
on

sl(2,R) conformal blocks in the limit of a large external dimension, explained in appendix

B of [14]. We will first derive the saddle-point approximation and use it to show that

β[FU,Vvac ] > 0 for large enough c. This will establish ∆U,V (c) > c/8 + 1/2 for large enough

c. In the next subsection, we will improve the asymptotic bound by considering a suitable

linear combination of functionals β c
8

and α̃ c
8
.

Let us analyze the functional action on operators whose dimension is proportional to

c. We set ∆ = µc, keep µ fixed and look at

β c
8
[FA2µc] (7.5)

for c→∞. We will focus on the regime µ ∈ [0, 1/8). In this range, the contour deformation

leading to (6.40) is invalid and we need to resort to the contour prescription (5.24)

β c
8
[FA2µc] =

∫ 1

1
2

dz Qβc
8
(z)FA2µc(z) +

1

2

∫ 1
2

+i∞

1
2

dz Rβc
8
(z)FA2µc(z) . (7.6)
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As we will now explain, the contour integrals localize to a saddle point when c→∞. We

will need the large-c behaviour of the functional kernels. It turns out to be very simple:

Rβc
8
(z)

c→∞∼ −
√
c

2π3/2

2z − 1

[z(z − 1)]3/2

Rα̃c
8
(z)

c→∞∼ 2

π3/2
√
c

(z − 2)(z + 1)(2z − 1)

[z(z − 1)]5/2
.

(7.7)

To proceed, let us first use the definition of FA2µc(z) in terms of modular characters:

β c
8
[FA2µc] =

∫ 1

1
2

dz Qβc
8
(z)[28z(1− z)]−

c
12
[
χAµc(τ(z))− χAµc(τ(1− z))

]
+

+
1

2

∫ 1
2

+i∞

1
2

dzRβc
8
(z)[28z(1− z)]−

c
12
[
χAµc(τ(z))− χAµc(τ(1− z))

]
.

(7.8)

Let us change coordinates from z to 1 − z in the terms involving the crossed-channel

character to arrive at

β c
8
[FA2µc] =

[∫ 1

1
2

dz Qβc
8
(z) +

∫ 0

1
2

dz Qβc
8
(1− z) +

1

2

∫ 1
2

+i∞

1
2

dzRβc
8
(z) +

1

2

∫ 1
2
−i∞

1
2

dzRβc
8
(z)

]
× [28z(1− z)]−

c
12χAµc(τ(z)) , (7.9)

where the square bracket is meant to be distributed on the term on the second line and we

used Rβc
8
(z) = Rβc

8
(1 − z). Now, we use the following trick. Since the double discontinuity

of Qβc
8
(z) vanishes (see (5.27)), we can simultaneously shift the starting point of all four

integrals in the square bracket from z = 1/2 to an arbitrary z0 ∈ (0, 1):

β c
8
[FA2µc] =

[∫ 1

z0

dz Qβc
8
(z) +

∫ 0

z0

dz Qβc
8
(1− z) +

1

2

∫ 1
2

+i∞

z0

dzRβc
8
(z) +

1

2

∫ 1
2
−i∞

z0

dzRβc
8
(z)

]

× [28z(1− z)]−
c
12χAµc(τ(z)) . (7.10)

The idea is to choose z0 to be the c → ∞ saddle-point of the integrals involving Rβc
8
(z).

Let us isolate the exponential dependence of the integrand at large c by writing

[28z(1− z)]−
c
12χAµc(τ(z)) = h0(z)ec h1(z) , (7.11)

where h0,1(z) are independent of c. The saddle point of the integrals involving Rβc
8
(z) is

located at the stationary point of h1(z). For A = U(1)c, one finds

h0(z) = 1

h1(z) = − 1

12
log[28z(1− z)]− 2 log[η(τ(z))] + 2πiτ(z)µ

(7.12)

and for A = Virc, we have

h0(z) =
eiπτ(z)/6

η(τ(z))2

h1(z) = − 1

12
log[28z(1− z)] + 2πiτ(z)

(
µ− 1

12

)
.

(7.13)
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Let z0(µ) be the minimum of h1(z) in the interval z ∈ (0, 1). z0(µ) depends on both µ and

algebra A. One can check that z0(1/8) = 0 for both algebras of interest. Furthermore,

z0(µ) is monotonic decreasing. As we decrease µ from 1/8 to 0, z0(µ) increases to

z0(0) = 0.826115 . . . for A = U(1)c

z0(0) = 0.887578 . . . for A = Virc .
(7.14)

Going back to the expression for the functional action (7.10), we see that the path of

the steepest descent of the integrals including Rβc
8
(z) is parallel to the imaginary axis at

z = z0(µ). At the same time, the integrals involving Qβc
8
(z) are exponentially subleading

in the c→∞ limit because Qβc
8
(z) includes the extra (exponentially small) factor (1− z)

c
4

with respect to Rβc
8
(z). In order to evaluate the integrals involving Rβc

8
(z), let us expand

h1(z) around z = z0(µ)

h1(z) = h1(z0(µ)) +
1

2
h
′′
1(z0(µ))(z − z0(µ))2 + . . . . (7.15)

The saddle-point evaluation then leads to

β c
8
[FA2µc]

c→∞∼ −Im

Rβc8 (z0(µ) + i0+)
√
c

√ π

2h
′′
1(z0(µ))

h0(z0(µ))ec h1(z0(µ)) . (7.16)

If we insert the explicit form of the large-c limit of Rβc
8
(z) from (7.7), we arrive at

β c
8
[FA2µc]

c→∞∼ 2z0(µ)− 1

[z0(µ)(1− z0(µ))]3/2
h0(z0(µ))√

8π2h
′′
1(z0(µ))

ec h1(z0(µ)) . (7.17)

We are interested in the sign of the above expression. All terms except for 2z0(µ) − 1 in

the numerator are manifestly positive, and thus the sign of β c
8
[FA2µc] at large c agrees with

the sign of 2z0(µ)− 1. We can see from (7.14) that

2z0(0)− 1 > 0

2z0(1/8)− 1 < 0 .
(7.18)

In particular, the action of β c
8

on FA0 (z) is positive at large c. Thus we immediately

conclude

β c
8
[FUvac] > 0 (7.19)

for sufficiently large c. For A = Virc, the vacuum block differs from the µ = 0 block by

factor (1− e2πiτ(z))2, which is positive for z = z0(0), so the same conclusion follows in this

case too:

β c
8
[F Vvac] > 0 (7.20)

for sufficiently large c. As µ rises from 0 to 1/8, the expression 2z0(µ) − 1 monotonically

decreases, showing that at large c, β c
8
[FA2µc] has a single zero as a function of µ in the region
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µ ∈ (0, 1/8), located at the solution of equation z0(µ0) = 1/2. In fact, the value of µ0 can

be found analytically:

µ0 =
1

4π
for A = U(1)c

µ0 =
1

12
for A = Virc .

(7.21)

Note that when we study the action α̃ c
8
[FA2µc] at large c, equation (7.16) still applies, with

the appropriate replacement β → α̃, i.e. the only difference is in the asymptotic form of

R(z), given in (7.7).

7.3 Improved bound at large c

We have seen that β implies upper bounds with asymptotic form ∆U,V (c) < c/8 + O(1)

as c → ∞. Now we will obtain a better bound from an appropriate linear combination of

β and α̃. The underlying idea is that β is not the optimal functional at large c because

its action on vacuum is positive. On the other hand, the action of α̃ on the vacuum is

negative. By taking a linear combination of β and α̃ which annihilates the vacuum at large

c, we get a functional which is non-negative from ∆∗(c) <
c+4

8 , thus obtaining a stronger

bound than when using only β.

In order to get an interesting answer, the linear combination of β and α̃ should be such

that as c → ∞, β c
8
[FA2µc] and α̃ c

8
[FA2µc] contribute at the same order in the c−1 expansion.

Looking at (7.7) and (7.16), it follows we want

β̃ c
8

= β c
8

+ a c α̃ c
8
, (7.22)

where c is the central charge and a is a constant which we want to fix. We can see

from (7.16) that if µ ∈ (0, 1/8), then the sign of β̃ c
8
[FA2µc] at large c agrees with the sign of

− Im

Rβc8 (z0(µ) + i0+)
√
c

+ a
√
cRα̃c

8
(z0(µ) + i0+)

 (7.23)

so let us define for z ∈ (0, 1)

K(z) = −2π3/2[z(1− z)]5/2 lim
c→∞

Im

Rβc8 (z + i0+)
√
c

+ a
√
cRα̃c

8
(z + i0+)


= (2z − 1) [−z(z − 1) + 4a(z + 1)(z − 2)] ,

(7.24)

so that the sign of β̃ c
8
[FA2µc] at large c agrees with the sign of K(z0(µ)). Now, functional β̃

will imply an asymptotic upper bound of the form ∆∗(c) < µ∗c+O(1) for some µ∗ < 1/8

only if
K(z0(0)) > 0

K(z0(µ)) > 0 for all µ ∈ (µ∗, 1/8) .
(7.25)

It will be more convenient to parametrize the undetermined constant a using x as follows

a ≡ (1− x)x

4(2− x)(x+ 1)
(7.26)

– 50 –



J
H
E
P
1
2
(
2
0
1
9
)
0
4
8

so that

K(z) =
2(2z − 1)(x− z)(x+ z − 1)

(2− x)(x+ 1)
. (7.27)

For x = 0, we recover the original extremal functional β. Now, let us deform β by increasing

x to some value x ∈ (0, 1/2). We find the following signs for K(z) in the unit interval:

K(z) > 0 for 0 < z < x

K(z) < 0 for x < z < 1/2

K(z) > 0 for 1/2 < z < 1− x
K(z) < 0 for 1− x < z < 1 .

(7.28)

Recall from equation (7.14) that 1/2 < z0(0) < 1. It then follows from the third line

of (7.28) that the first line of (7.25) will be satisfied provided x < 1− z0(0). Since z0(µ) is

monotonic decreasing, it follows from the first line of (7.28) that the second line of (7.25)

will be satisfied provided z0(µ∗) < x. Since we want to minimize µ∗, we must maximize x

subject to x < 1−z0(0). In the optimal case, we get x = 1−z0(0) and z0(µ∗) = x. In other

words, the slope µ∗ of the best upper bound that can be derived using β̃ is the solution of

z0(µ∗) = 1− z0(0) . (7.29)

There exists precisely one solution since z0(0) > 1/2, z0(1/8) = 0 and z0(µ) is decreasing.

The solution can be found to an arbitrary precision starting from the expressions for h1(z)

in (7.12) and (7.13). We find

µ∗ = 0.1129140 . . . =
1

8.856295 . . .
for A = U(1)c

µ∗ = 0.1176008 . . . =
1

8.503345 . . .
for A = Virc .

(7.30)

Finally, we should check that β̃ c
8
[FA2µc] ≥ 0 for µ > 1/8. This follows from the inequality

Qβc
8
(z) + a cQα̃c

8
(z) ≥ 0 for 0 < z < 1, which indeed holds for the optimal choice of a.

7.4 Comments on the optimal solution for general c

It is natural to ask what are the optimal partition functions ZUc (τ), ZVc (τ) saturating the

upper bounds on the gap for general c. One can find an approximation to the optimal

solution using numerical bootstrap. In the limit of a large number of derivatives, this

approximate spectrum approaches the true optimal spectrum. The following observations

will be based on the results of the numerical bootstrap analysis of [7], which were obtained

for the Virasoro case. We expect similar comments apply also in the U(1)c case.

ZVc (τ) can be expanded in the appropriate characters as follows

ZVc (τ) = χVvac(τ) +
∞∑
n=0

ρn(c)χV∆n(c)(τ) , (7.31)

where ∆n(c) for n = 0, 1, . . . is the optimal spectrum and ρn(c) are the corresponding

degeneracies. If we were expanding instead in sl(2,R) blocks and asking for the maximal

– 51 –



J
H
E
P
1
2
(
2
0
1
9
)
0
4
8

gap above identity, the spectrum of the optimal solution would be that coming from the

free fermion OPE

∆free
n (c) =

c+ 4

8
+ n . (7.32)

This is not be the optimal spectrum for the U(1)c and Virc problems unless c = 4, 12,

which follows immediately from applying β c
8

to the optimal solution and noting that the

action of β c
8

on the vacuum is non-vanishing.

Nevertheless, there is a sense in which the optimal solutions are close to the free

fermion solution for any c > 12. Indeed, we find that for any fixed c the optimal spectrum

asymptotes to the free spectrum (7.32) as n→∞. Define the anomalous dimensions by

γn(c) = ∆n(c)−∆free
n (c) . (7.33)

Based on the numerics, we conjecture that for fixed c > 12, γn(c) is negative for all

n, and approaches zero exponentially fast as n → ∞. More precisely, we find γn(c) ∼
− exp{−t√n[1 + o(1)]} as n→∞ with c fixed, where t is a c-dependent coefficient.

Since −γn(c) is monotonic decreasing, the gaps between consecutive primaries

∆n+1(c) − ∆n(c) are bigger than 1 and approach 1 as n → ∞. It was recently proven

in [67] that the gap between consecutive Virasoro primaries is asymptotically bounded by

2
√

3
π2 ≈ 1.1, which is consistent with this behavior of ZVc (τ). Since the optimal spec-

trum is asymptotically free at high energy, one can try to bootstrap it in perturbation

theory at large n. There may also exist a perturbative expansion at large c with n/c fixed,

which would help us derive the true asymptotic slope of the optimal bounds. We leave this

interesting direction for future work.

Finally, note that the optimal partition functions ZV,Uc (τ) presumably do not corre-

spond to physical CFTs for c > 4 since the bootstrap bound on the gap coming from

modular invariance of the full τ, τ̄ -dependent partition function is expected to be strictly

stronger than the spinless bound discussed in the present paper (for c > 4).

8 Complete sets of functionals and Fourier interpolation in any

dimension

8.1 A complete set for the sl(2,R) problem

It is natural to ask whether the functional β, which played a central role in this work, is

a part of a more general framework. An affirmative answer was provided in [15], where

it was explained that there is a distinguished basis for the space of functionals, and β is

simply one element of this basis. Remarkably, the analogous basis was recently constructed

independently in the literature related to the sphere-packing problem [19], where it was

shown to lead, among other impressive results, to Fourier interpolation formulas in d =

8, 24. The purpose of this section is to explain the connection between these sets of results,

and sketch how to generalize them to arbitrary d.

We start by recalling some of the results of [15]. There, a basis of functionals acting on

crossing-antisymmetric functions was constructed. We will find it useful to generalize the
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discussion to include functionals acting on crossing-symmetric functions too. Thus, define

F+
∆ (z) = z−2∆φG∆(z) + (1− z)−2∆φG∆(1− z) ,

F−∆ (z) = z−2∆φG∆(z)− (1− z)−2∆φG∆(1− z) ,
(8.1)

where G∆(z) is the sl(2,R) block (5.10). Set ∆n = 2∆φ + 2n+ 1. The claim is that there

exist linear functionals α+
n , β+

n for n ∈ N acting on functions satisfying F(z) = F(1 − z)

and functionals α−n , β−n acting on functions satisfying F(z) = −F(1− z), such that16

α+
n [F+

∆m
] = δmn α+

n [∂∆F
+
∆m

] = 0

β+
n [F+

∆m
] = 0 β+

n [∂∆F
+
∆m

] = δmn
(8.2)

and
α−n [F−∆m

] = δmn α−n [∂∆F
−
∆m

] = 0

β−n [F−∆m
] = 0 β−n [∂∆F

−
∆m

] = δmn
(8.3)

for all m,n ∈ N. The functionals used earlier in this paper are specific elements of the

basis. In particular: β = β−0 , α = α−0 , β+ = β+
0 . The functionals for higher values

of n are constructed in a similar way as the n = 0 functionals. They always take the

form (5.24), (5.43), and the kernels satisfy essentially the same constraints discussed in

sections 5.2, 5.3 and 5.4 for all n ∈ N. Indeed, the functionals α±n , β±n can be thought of

as a complete set of solutions of these constraints.

This basis of functionals can be used for example to prove interesting theorems about

the distribution of primary operators in unitary solutions to crossing and for perturbative

calculations around mean field theory. The existence of the basis is closely connected to a

Lorentzian inversion formula for sl(2,R) [16].

It follows from the completeness of the functional basis that the functions F±∆ (z) with

general ∆ can be expanded in the basis consisting of functions F±∆n
(z) and ∂∆F

±
∆n

(z)

F+
∆ (z) =

∞∑
n=0

[
α+
n [F+

∆ ]F+
∆n

(z) + β+
n [F+

∆ ]∂∆F
+
∆n

(z)
]

F−∆ (z) =
∞∑
n=0

[
α−n [F−∆ ]F−∆n

(z) + β−n [F−∆ ]∂∆F
−
∆n

(z)
]
.

(8.4)

For most practical purposes, we need some control over the functional actions α±n [F±∆ ],

β±n [F±∆ ]. For that and other reasons, it is useful to package these functions of ∆ into

generating functions, dubbed the Polyakov blocks

P+
∆ (z) = G∆(z)−

∞∑
n=0

[
α+
n [F+

∆ ]G∆n(z) + β+
n [F+

∆ ]∂∆G∆n(z)
]

P−∆ (z) = G∆(z)−
∞∑
n=0

[
α−n [F−∆ ]G∆n(z) + β−n [F−∆ ]∂∆G∆n(z)

]
.

(8.5)

16N stands for the set of non-negative integers. To avoid cluttered notation, we drop the ∆φ label from

all functionals.
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The Polyakov blocks contain the single-trace contribution G∆(z) as well as an infinite

tower of double-trace contributions, whose coefficients are computed precisely by the basis

functionals. The advantage of this presentation is that there is a constructive way to

compute P±∆ (z) without knowing the integral kernels defining the individual functionals.

Indeed, P±∆ (z) are computed by sums of appropriate exchange Witten diagrams in AdS2

in the s-, t- and u-channel with fermionic external legs and exchange dimension ∆. The

functional actions can then be read off by expanding P±∆ (z) in conformal blocks.

Finally, note that equations (8.4) are equivalent to saying that P+
∆ (z) and P−∆ (z) are

respectively antisymmetric and symmetric under crossing

z−2∆φP+
∆ (z) + (1− z)−2∆φP+

∆ (1− z) = 0

z−2∆φP−∆ (z)− (1− z)−2∆φP−∆ (1− z) = 0 .
(8.6)

8.2 A complete set for the U(1)c problem

It is relatively straightforward to adjust the above discussion to the context of the modular

bootstrap. We will focus on the modular bootstrap with U(1)c characters. In order to

emphasize the connection to the sphere-packing literature, we will set c = d/2 and ∆ =

r2/2, where d is the dimension of space and r is the distance in Rd. We start by defining

the analogue of the functions17 F±∆ (z)

Φ+
r (τ) =

eiπr
2τ

η(τ)d
+

e−iπ r
2/τ

η(−1/τ)d
,

Φ−r (τ) =
eiπr

2τ

η(τ)d
− e−iπ r

2/τ

η(−1/τ)d
.

(8.7)

Note that Φ+
|x|(τ) and Φ−|x|(τ) are respectively even and odd under the d-dimensional Fourier

transform in x. Recall from (6.19) that the characters can be expanded in the sl(2,R) blocks

ν d
2
(τ)

eiπr
2τ

η(τ)d
=

∞∑
j=0

sj(d, r)λ(τ)−
d
8Gr2+2j(λ(τ)) , (8.8)

where νc(τ) ≡
[
28λ(τ)(1− λ(τ))

]− c
12 and sj(d, r) are computable rational functions. It

follows that Φ±r (τ) can be expanded in F±∆ (λ(τ))

ν d
2
(τ)Φ+

r (τ) =
∞∑
j=0

sj(d, r)F
+
r2+2j

(λ(τ))

ν d
2
(τ)Φ−r (τ) =

∞∑
j=0

sj(d, r)F
−
r2+2j

(λ(τ)) .

(8.9)

Recall that F±∆n
(z) and ∂∆F

±
∆n

(z) form a basis for the space of functions of z. Equa-

tions (8.9) then give a change of basis to Φ±rn(τ) and ∂rΦ
±
rn(τ), where rn is the set of radii

given by

r2
n = ∆n =

d

8
+ 2n+ 1 for n ∈ N , (8.10)

17We change notation slightly with respect to (2.11) and label the Φ(τ) functions by r rather than by

∆ = r2/2.
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where we used ∆φ = d/16. Explicitly, we find

Φ±rn(τ) = ν d
2
(τ)−1

∞∑
j=0

sj(d, rn)F±∆n+j
(λ(τ))

∂rΦ
±
rn(τ) = ν d

2
(τ)−1

∞∑
j=0

[
∂rsj(d, rn)F±∆n+j

(λ(τ)) + 2rnsj(d, rn)∂∆F
±
∆n+j

(λ(τ))
]
.

(8.11)

Analogously to the previous section, we can now define a set of linear functionals A±n
and B±n as the dual basis of Φ±rn(τ) and ∂rΦ

±
rn(τ). Thus A+

n and B+
n act on functions τ

satisfying F(τ) = F(−1/τ) and A−n and B−n act on functions satisfying F(τ) = −F(−1/τ),

and we have
A+
n [Φ+

rm ] = δmn A+
n [∂rΦ

+
rm ] = 0

B+
n [Φ+

rm ] = 0 B+
n [∂rΦ

+
rm ] = δmn

(8.12)

and
A−n [Φrm ] = δmn A−n [∂rΦ

−
rm ] = 0

B−n [Φ−rm ] = 0 B−n [∂rΦ
−
rm ] = δmn .

(8.13)

It follows from (8.11) that A±n and B±n are finite linear combinations of the sl(2,R) func-

tionals α±n and β±n .18 More precisely, B+
n is a computable linear combination of β+

m with

0 ≤ m ≤ n and A+
n is a linear combination of α+

m and β+
m with 0 ≤ m ≤ n (and similarly

for A−n , B−n ).

Analogously to (8.4), we can expand Φ±r (τ) for general r in the basis as follows

Φ+
r (τ) =

∞∑
n=0

[
A+
n [Φ+

r ]Φ+
rn(τ) +B+

n [Φ+
r ]∂rΦ

+
rn(τ)

]
Φ−r (τ) =

∞∑
n=0

[
A−n [Φ−r ]Φ−rn(τ) +B−n [Φ−r ]∂rΦ

−
rn(τ)

]
.

(8.14)

Again by analogy with (8.5), we can define the Polyakov blocks for the U(1)
d
2 problem as

the generating functions for the functional actions

Π+
r (τ) = eiπr

2τ −
∞∑
n=0

[
A+
n [Φ+

r ]eiπr
2
nτ + 2πirnτB

+
n [Φ+

r ]eiπr
2
nτ
]

Π−r (τ) = eiπr
2τ −

∞∑
n=0

[
A−n [Φ−r ]eiπr

2
nτ + 2πirnτB

−
n [Φ−r ]eiπr

2
nτ
]
.

(8.15)

It follows from the completeness of the two functional bases that the Polyakov blocks

for U(1)
d
2 can be decomposed into the Polyakov blocks for sl(2,R) with exactly the same

terms and coefficients that appear in the decomposition of U(1)
d
2 characters into conformal

blocks, i.e. (8.8)

Π±r (τ) = η(τ)dλ(τ)−
d
8 ν d

2
(τ)−1

∞∑
j=0

sj(d, r)P
±
r2+2j

(λ(τ)) . (8.16)

18Here and in the following, we will use the tacit convention that when α±n and β±n act on a function of

τ , we first need to multiply the function by the conversion factor ν d
2

(τ) and then act with the functional.
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In particular, Π±r (τ) is still computed by exchange Witten diagrams in AdS2, where the

usual bulk to bulk propagator is replaced with an exchange of infinitely many particles of

dimensions r2 + 2j. Note that equations (8.14) are equivalent to

Π+
r (τ) + (−iτ)−

d
2 Π+

r (−1/τ) = 0

Π−r (τ)− (−iτ)−
d
2 Π−r (−1/τ) = 0 .

(8.17)

8.3 Fourier interpolation in any d

The functionals A±n and B±n can be used to generalize the Fourier interpolation formula

of [19] to any d. It will be convenient to introduce shorthand notation for the actions of

the basis functionals on the functions Φ±r (τ) for general r

a+
n (r) = A+

n [Φ+
r ] b+n (r) = B+

n [Φ+
r ]

a−n (r) = A−n [Φ−r ] b−n (r) = B−n [Φ−r ] .
(8.18)

a±n (x) and b±n (x) are radial Schwartz functions on Rd. Here and in the following a±n (x),

b±n (x) really means a±n (|x|) and b±n (|x|). a+
n (x) and b+n (x) are even under the Fourier

transform in Rd, while a−n (x) and b−n (x) are Fourier-odd. Equations (8.12) and (8.13)

translate into a specific structure of double zeros of the functions a±n (r), b±n (r) on the radii

rm = d
8 + 2m+ 1. Let us also introduce the functions

an(r) =
a+
n (r) + a−n (r)

2
bn(r) =

b+n (r) + b−n (r)

2

ãn(r) =
a+
n (r)− a−n (r)

2
b̃n(r) =

b+n (r)− b−n (r)

2
.

(8.19)

These functions have the following structure of double zeros

an(rm) = δmn a′n(rm) = 0

bn(rm) = 0 b′n(rm) = δmn

ãn(rm) = 0 ã′n(rm) = 0

b̃n(rm) = 0 b̃′n(rm) = 0

(8.20)

where the prime denotes the radial derivative. Furthermore, ãn(x) and b̃n(x) are the Fourier

transforms of an(x) and bn(x) respectively.

The key observation is that by taking the average of the two lines in (8.14), we can

write eiπr
2τ for an arbitrary r and τ as the linear combination

eiπr
2τ =

∞∑
n=0

an(r)eiπr
2
nτ + 2πiτ

∞∑
n=0

rnbn(r)eiπr
2
nτ

+
∞∑
n=0

ãn(r)
e−iπr

2
n/τ

(−iτ)
d
2

− 2πi

τ

∞∑
n=0

rnb̃n(r)
e−iπr

2
n/τ

(−iτ)
d
2

.

(8.21)

Consider now a linear functional ω acting on holomorphic functions of τ in the upper

half-plane. Set

f(x) = ω[eiπx
2τ ] . (8.22)
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f(x) is a radial function on Rd and (under a suitable restriction on ω) is in the Schwartz

space.19 Furthermore, every radial Schwartz function on Rd arises in this way from some ω.

Let us apply ω to (8.21). If f(x) is Schwartz then ω can be chosen such that it commutes

with the infinite sums on the r.h.s. . We find

f(x) =

∞∑
n=0

f(rn)an(x) +

∞∑
n=0

f ′(rn)bn(x)

+
∞∑
n=0

f̂(rn)ãn(x) +
∞∑
n=0

f̂ ′(rn)̃bn(x) ,

(8.23)

where f̂(x) is the Fourier transform of f(x). This is the Fourier interpolation theorem,

proven rigorously in [19] for d = 8 and d = 24. The theorem reconstructs an arbitrary

radial Schwartz function f(x) from the values f(rn), f ′(rn), f̂(rn) and f̂ ′(rn) using the

interpolating functions an(x), bn(x), ãn(x) and b̃n(x). Furthermore, the existence of the

individual interpolating functions shows that there is no universal linear relation among

f(rn), f ′(rn), f̂(rn) and f̂ ′(rn) valid for all radial Schwartz functions.

We sketched how to generalize the theorem to arbitrary d. One of the main remaining

technical challenges is a more explicit construction of the interpolating functions. As men-

tioned after equation (8.15), the interpolating functions in any d are in principle computed

by infinite sums of exchange Witten diagrams in AdS2. It will be important to study and

simplify this prescription further, and fill in the remaining details of our sketch.

9 Discussion

We have described a connection between sphere packing in Rd and modular bootstrap. The

bootstrap problem with chiral algebra U(1)c maps to the Cohn-Elkies linear programming

method for sphere packing in d = 2c dimensions. The bootstrap upper bound on the first

primary operator, ∆U (c), is related to the linear programming bound on the sphere packing

density by equation (4.8).

More accurately, the usual modular bootstrap problem maps to the Fourier-odd part

of the sphere packing method. According to a conjecture of Cohn and Elkies, supported

by numerics and for which we have supplied new analytical examples, the bounds on the

Fourier-odd part are identical to the full bounds.

It is worth emphasizing that our result is not exactly a map between CFTs and sphere

packings, or even between the modular bootstrap and sphere packings. Rather it is a map

between the modular bootstrap and the linear programming bounds on sphere packing.

There are known to be additional constraints on sphere packings, and away from d =

1, 2, 8, 24, the linear programming bounds are not believed to be saturated or even close to

saturated by actual packings (see for example [58]). The situation with CFTs is similar;

the spinless modular bootstrap is just one of an infinite family of consistency conditions,

including also the spinning modular bootstrap and the crossing equations for correlation

functions. We do not know whether the additional constraints on CFTs, beyond the spinless

19For example, if ω is a finite linear combination of derivatives at τ = i, then f(x) is a Schwartz function.
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modular bootstrap, have any relationship to the additional constraints on sphere packings

that go beyond the Cohn-Elkies method. It would clearly be of great interest, for example,

to find a version of the modular bootstrap that maps to sphere packing in d = 3, i.e. the

Kepler problem.

The magic functions of sphere packing are related to the extremal functionals of the

bootstrap. Acting with the extremal functional on the U(1)c characters for c = 4 and

c = 12 produces the magic functions for sphere packing in 8 and 24 dimensions, which were

found numerically by Cohn and Elkies [11] and analytically by Viazovska [1] and Cohn

et al. [2]. The optimality of the E8 lattice for sphere packing in 8 dimensions maps to

the statement that a CFT consisting of 8 free fermions with a diagonal GSO projection

saturates the modular bootstrap bound, ∆U (4) = 1. In 24 dimensions, the optimality of

sphere packing on the Leech lattice maps to the statement that the modular j-function, up

to a constant, saturates the modular bootstrap bound ∆U (12) = 2. In this case, although

this function satisfies all the requirements of the spinless modular bootstrap, it does not

correspond to a full-fledged c = 12 CFT. For both c = 4 and c = 12, the bootstrap bounds

for the U(1)c algebra are identical to the bounds obtained using just the Virasoro algebra,

appropriate to general 2D CFTs.

The extremal functionals for the spinless modular bootstrap at central charge c = 4, 12

are essentially the same as those for the four-point function bootstrap on a line, with

external scaling dimension ∆φ = 1
2 ,

3
2 . Remarkably, an analytic construction of these

functionals appeared in the conformal bootstrap literature independently in the same year

when Viazovska constructed the magic functions [13]. We have explained the equivalence

of the two approaches in the main text.

The generalization of the four-point bootstrap functionals to arbitrary ∆φ > 0 found

in [13, 14] can be applied to the modular bootstrap equation for any c ≥ 1. This gives

bounds on sphere packing in higher dimensions, generalizing Viazovska’s construction to

all d ≥ 2. In bootstrap language, this proves the upper bounds ∆U,V (c) < c+4
8 for c ∈

(1, 4) ∪ (12,∞). However, for these values of c the functional is positive rather than zero

on the vacuum term, so this bound is suboptimal. We constructed an improved functional

that leads to a better bound at large c, but it is still suboptimal.

In the modular bootstrap, the limit of large central charge c → ∞ is the regime

relevant to quantum gravity in macroscopic AdS3 space. The asymptotics of the sphere

packing problem as d → ∞ are also of interest to mathematicians. This limit may even

have practical applications: dense sphere packings in high dimensions correspond to highly

effective classical error-correcting codes, with a large number of codewords [46]. To make

the connection, we can view each codeword in a message as a vector in Rd. If we send

this message through a noisy channel, the receiver has the best chance of decoding it if the

allowed codewords are spaced sufficiently far apart in Rd. Thus the problem of constructing

effective codes maps to the problem of packing non-overlapping spheres.

Codes are, in fact, the origin of the best known upper bounds on the sphere packing

density as d → ∞. The starting point is a linear programming bound on spherical codes.

A spherical code of minimal angle θ is a set of points on the unit sphere in Rd, with no

two points closer than θ. An upper bound on the size of a spherical code also places an
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Figure 7. A dense sphere packing (solid gray) can be used to construct a large spherical code

(dashed blue) by surrounding some of the centers with an auxiliary sphere, then projecting the

enclosed centers onto that sphere.

upper bound on the density of a sphere packing, by a geometric argument illustrated in

figure 7 [8, 52, 53, 68]. The result, which can also be obtained directly from the Cohn-

Elkies linear program [53], is the Kabatiansky-Levenshtein bound reviewed in section 4. It

implies the analytic bootstrap bound ∆U . c/9.796 as c → ∞, significantly better than

our bound from the four-point extremal functionals, ∆U . c/8.856.

This leaves open two very interesting questions. The first is whether the Kabatiansky-

Levenshtein bound is the best asymptotic bound that can be obtained from linear pro-

gramming. The second is whether something similar can be achieved for the Virasoro

modular bootstrap, where the numerics suggest it should be possible to improve the bound

to ∆V . c/9.08 [7]. For the Virasoro bootstrap, we do not know of any analogue of

spherical codes or the geometric argument above.

Another approach that leads to strong but suboptimal bounds on sphere packing, or

U(1)c bootstrap, uses functionals with compact support in Fourier space [11, 69]. This could

be another route to improving the Virasoro bound at large c. There are some intriguing

similarities between this approach and the very recent modular bootstrap results of [67].

Parisi and Zamponi have also described a connection between large-d sphere packing

and the physics of glassy systems [70, 71].

It would also be interesting to explore whether our results can be extended to the full,

spinning modular bootstrap. It is not clear whether this generalization has an analogue

in sphere packing. Little is known about analytic extremal functionals for problems with

spin. One rather trivial exception is the scalar gap maximization in the spinning modular

bootstrap at c = 4. In this case, the optimal bound and optimal theory are the same

as for the spinlees modular bootstrap, i.e. eight free fermions, with scalar gap ∆s=0
0 = 1.

The optimal functional for the spinning problem is identical to the one for the spinless

problem i.e. β 1
2

acting on modular characters specialized to τ̄ = −τ , so its action is spin-

independent. In particular, the simple zero of β 1
2

at ∆ = 1 sits at the scalar gap in the

scalar sector, at the unitarity bound in the spin-one sector, and below the unitarity bound

for all higher spins, so this is indeed the correct extremal functional.
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It would be interesting to translate the recent advances in understanding of CFTs

in Lorentzian signature to the context of the torus partition function and the modular

bootstrap [63, 64, 72]. Our work suggests a clear candidate for the analogue of the dou-

ble discontinuity of the torus partition function, namely the double commutator of twist

operators in the Z2 symmetric product orbifold.

Finally, returning to the question of whether sphere packings are related to interact-

ing CFTs beyond the linear programming constraints discussed here, let us point out one

more similarity. Free bosons compactified on a lattice have a perfectly regular spectrum,

determined by the distances between pairs of lattice points. Interacting CFTs, on the

other hand, have a quasi-regular structure of spins and scaling dimensions. The low-lying

dimensions are irregular, depending strongly on the interactions, but regularity begins to

appear at high spin [73, 74] and scaling dimension [75]. This is due to the pattern of com-

posite operators, enforced by locality and the bootstrap constraints. These features have a

qualitative parallel in sphere packing. Lattice packings are perfectly regular, while general

packings can be well approximated by a periodic packing, in which the low-lying spectrum

is arbitrary — defining the unit cell — while eventually, the spectrum has regularities set

by the underlying lattice. Perhaps this suggests a more complete, quantitative mapping

between sphere packing and CFT.
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A Modular forms

For an introduction to modular forms, see [76]. H+ denotes the upper half complex plane.

The modular group Γ(1) ≡ PSL(2,Z) acts on τ ∈ H+ as

γτ =
aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ Γ(1) . (A.1)

It is generated by

T : τ → τ + 1, S : τ → −1/τ . (A.2)

The level N principal congruence subgroup is defined

Γ(N) = {γ ∈ Γ(1) | γ = 1 mod N} . (A.3)

For example, Γ(2) is generated by T 2 and ST 2S.

A modular form of weight k and congruence subgroup Γ is a holomorphic function

f(τ) that for γ ∈ Γ transforms as

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), (A.4)
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and for any γ ∈ Γ(1) has a Fourier expansion

f

(
aτ + b

cτ + d

)
= (cτ + d)k

∞∑
n=0

cf

(
γ,

n

nγ

)
e2πinτ/nγ (A.5)

with nγ ∈ N. There are no negative Fourier modes, so f is holomorphic at τ = i∞. If this

condition is relaxed so negative modes n < 0 are allowed, f is called weakly holomorphic.

A quasimodular form of weight k and depth s transforms as

f

(
aτ + b

cτ + d

)
= (cτ + d)k

s∑
j=0

fj(τ)

(
c

cτ + d

)j
. (A.6)

These arise naturally by taking derivatives of modular forms.

The Eisenstein series, for even k ≥ 2, is

Ek(τ) =
1

2ζ(k)

∑
(c,d)∈Z2\(0,0)

(cτ + d)−k . (A.7)

For k ≥ 4, this is a modular form of weight k for Γ(1). These are useful for building a basis

for the finite-dimensional space of weight-p modular forms for Γ(1).

The case k = 2 is special, because the sum does not converge absolutely. This leads to

the anomalous transformation law

E2(−1/τ) = τ2E2(τ)− 6iτ

π
, (A.8)

so it is a weight-2, depth-1 quasimodular form.

Any modular form for Γ(1) can be written as a polynomial in E4 and E6. Similarly,

any quasimodular form for Γ(1) is a polynomial in E2, E4, E6, with degree in E2 equal to

its depth.

An important example of a weakly holomorphic modular form for Γ(1) is the modular

j-function,

j =
1728E3

4

E3
4 − E2

6

= q−1 + 744 + 196884q + · · · (A.9)

with q = e2πiτ . Both numerator and denominator have weight 12, so j has weight zero.

The denominator is proportional to the modular discriminant,

∆ =
64π12

27
(E3

4 − E2
6) = (2π)12η(τ)24 , (A.10)

with η = q1/24
∏∞
m=1(1 − qm) the Dedekind η, which satisfies η(τ + 1) = eiπ/12η(τ) and

η(−1/τ) = (−iτ)1/2η(τ). ∆ is the unique weight-12 form which vanishes at q = 0.

We will also make use of the theta functions

θ2 = θ10 =
∑
n∈Z

eiπ(n+ 1
2

)2τ (A.11)

θ3 = θ00 =
∑
n∈Z

eiπn
2τ (A.12)

θ4 = θ01 =
∑
n∈Z

(−1)neiπn
2τ . (A.13)
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These satisfy the Jacobi identity

θ4
3 = θ4

4 + θ4
2 (A.14)

and transform as

θ4
3

(−1

τ

)
= −τ2θ4

3 , θ4
2

(−1

τ

)
= −τ2θ4

4 , θ4
4

(−1

τ

)
= −τ2θ4

2 . (A.15)

θ4
2(τ + 1) = −θ4

2 , θ4
3(τ + 1) = θ4

4(τ), θ4
4(τ + 1) = θ4

3 . (A.16)

θ4
i=1,2,3 are modular forms of weight 2 for Γ(2). In particular, they are periodic under

τ → τ + 2.

B Details of analytic extremal functionals

Let us explain in more detail how we used the constraints 1–4 after equation (5.43) to arrive

at the solution for the weight-function Rβ+
∆φ

(z), shown in equation (5.46). Our discussion

parallels section 4.2 and appendix A.2 of reference [14], which can be consulted for more

details. The first step is to note that when ∆φ ∈ N, the constraints admit a solution of

the form

Rβ+
∆φ

(z) =
1

w2

∆φ+1∑
k=1

akw
k

 log( z−1
z ) + (2z − 1)

∆φ∑
k=0

bkw
k

 , (B.1)

where w = z(z − 1). In fact, the constraints uniquely fix the coefficients ak and bk. For

example for ∆φ = 1, we find

Rβ+
1 (z) =

4 log
(
z−1
z

)
π2

+
2(2z − 1)

(
z2 − z + 1

)
π2(z − 1)2z2

. (B.2)

A general formula for Rβ+
∆φ

(z) and all ∆φ can be found by first performing the following

Mellin transform

M∆φ
(s) = − 1

2 cos(πs)

∫ 1

0
dz [z(1− z)]s(2z − 1)Re[Rβ+

∆φ
(z)] . (B.3)

By computing M(s) for many low-lying values of ∆φ ∈ N, we find experimentally that it

always takes the form

M∆φ
(s) = −2−2(∆φ+s)Γ(∆φ + 3)Γ

(
1
2 − s

)
Γ(s− 1)Γ(s+ 1)Γ(2∆φ + s+ 2)

π2Γ
(
∆φ + 3

2

)
Γ(∆φ + s+ 1)Γ(∆φ + s+ 2)

. (B.4)

It is natural to conjecture that this is the correct Mellin transform for general ∆φ > 0.

The transform can be inverted using the formula

Rβ+
∆φ

(z) =

∫
Γ

ds

2πi
[z(z − 1)]1−sM∆φ

(s) , (B.5)

where the contour Γ goes from s = −i∞ to s = i∞ passing to the left of the poles of M∆φ
(s)

at s = 1/2 + n with n = 0, 1, . . . and to the right of all other poles, including s = 1. We

arrive at the general formula (5.46) by inserting (B.4) into (B.5). The integral becomes a

sum over residues at positive half-integer s. We checked that the resulting Rβ+
∆φ

(z) satisfies

the constraints 1–4 for general ∆φ, and not just ∆φ ∈ N.
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