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The modular bootstrap bound for chiral algebra U(1)¢ maps exactly to the Cohn-Elkies
linear programming bound on the sphere packing density in d = 2¢ dimensions. We also
show that the analytic functionals developed earlier for the correlator conformal bootstrap
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duce the “magic functions” used recently by Viazovska [1] and Cohn et al. [2] to solve the
sphere packing problem in dimensions 8 and 24. The same functionals are also applied to
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1 Introduction

Charting the space of quantum field theories is a central task of theoretical physics, which
has received renewed impetus with the modern resurgence of the conformal bootstrap
program. Theories that live at the boundary of theory space (because, e.g, they attain the
largest allowed value of a certain operator dimension or central charge) are prime targets
for the bootstrap, as they are often amenable to precise analytical or numerical study.

Thanks to holographic duality, statements about the space of conformal field theories
(CFTs) are equivalent to statements about the landscape of quantum gravity theories
in asymptotically anti de Sitter (AdS) space. The tight consistency conditions of CFT
are expected to translate into non-obvious consistency requirements on the AdS side. To
wit, a low-energy effective theory in AdS with arbitrarily prescribed matter content and
symmetries is in danger of belonging to the “swampland”, that is, of not admitting a
non-perturbative completion. Can this intuition be made precise, leveraging the recent
advances in the bootstrap program?

A fundamental question of this kind is whether “pure” AdS gravity is a consistent
theory, or whether instead new degrees of freedom below the Planck scale (in addition to
multi-gravitons) are needed for non-perturbative consistency. Via AdS/CFT, the quest
for pure gravity can be phrased as follows. One is looking for a sequence of unitarity
CFTs, with increasing number N of degrees of freedom (as measured, for example, by the
normalization Cp of the stress tensor), such that for N — oo the only operators with finite
scaling dimension are multi-trace composites of the stress tensor, and correlation functions
are of mean-field type, i.e., they obey large N factorization. One can also relax these
assumptions slightly by allowing for a finite number of additional single-trace operators
whose dimensions remain bounded in the large N limit.

Black holes, and quantum gravity more generally, seem to live near the edge of theory
space, as a consequence of the large hierarchy between the Planck scale and the low-energy
effective theory. Pure gravity, or, if pure gravity does not exist, the theory of gravity with
the largest gap, lives exactly at the edge, so it could be particularly amenable to bootstrap.
Black holes also suggest a UV /IR connection in quantum gravity, whose implications on the



CFT side are largely unexplored. For example, the weak gravity conjecture [3], motivated
by properties of extremal black holes, translates into constraints on the spectrum of charged
states in large-N CFTs, with no known origin in quantum field theory.

These questions are particularly sharp for 3D AdS gravity, dual to 2D CFT, because
multigraviton states in AdS3; map to the Virasoro module of the identity in CFT5, which is
a key technical simplification. Consider again the question about “pure gravity”. A natural
strategy to look for 2D CFTs dual to pure gravity (or to rule them out) is to explore the
boundary of theory space characterized by the largest allowed gap — the largest dimension
of the first non-trivial Virasoro primary. The simplest (though by no means the only) set of
constraints on the gap arise from modular invariance of the CFT partition function. This
is the “modular bootstrap” program pioneered by Hellerman [4] and pursued by several
authors [5-7].

In this work, we establish a precise connection between the modular bootstrap in 2D
CFT and the sphere packing problem in Euclidean geometry. The central question in
sphere packing is finding the densest configuration of identical, non-overlapping spheres
in RY. Tt is surprisingly deep, with connections to diverse areas from number theory
to cryptography [8]. For d = 2, the answer is the honeycomb lattice, a result proved
rigorously by Téth in 1940. For d = 3, the answer is the face-centered cubic lattice. This
was conjectured by Kepler four centuries ago, and famously proved by Hales in 1998 [9].
The epic proof fills hundreds of pages, relies on extensive use of computers to exhaustively
check special cases, and took over a decade to be fully verified by a 22-person team [10].

In a remarkable paper in 2016, Viazovska solved the case d = 8 [1], building on work
of Cohn and Elkies [11, 12]. The answer is the Eg root lattice, Ag, and the proof is simple
and elegant. Viazovska’s proof was immediately extended to d = 24 [2]|, where the densest
packing is the Leech lattice, Aog. The proofs of Hales and Viazovska both rely essentially on
the method of linear programming, which is used (either on a computer or analytically) to
rule out the existence of denser sphere packings. Cohn and Elkies conjectured the existence
of ‘magic functions’ which could be used to prove optimality of the Ag and Aoy lattices,
and gave overwhelming numerical evidence for their existence. Viazovska’s breakthrough
was to devise a method to construct magic functions analytically.

In hearing of a relation between sphere packings and modular bootstrap, one’s first
thought might be that lattices will provide the key connection. After all, a d-dimensional
lattice A defines both a sphere packing and a 2D CFT (the theory of d free bosons com-
pactified on A). However, this does not appear to be either a very natural or very useful
connection. The compactified boson CFT depends on additional data — it admits a contin-
uous moduli space, more naturally related to the geometry of a 2d-dimensional Lorentzian
lattice than to the geometry of a d-dimensional Euclidean lattice. And lattice sphere pack-
ings are very special, indeed it is widely believed that in sufficiently high dimension the
densest packings are not lattice packings.

The relation that we establish in this work is more surprising. We relate the spinless’
modular bootstrap of general CFTs with central charge ¢ to the general sphere packing

LThis means that we set the angular potential of the partition function to zero.



problem in R?¢. The key fact is that both problems can be addressed by linear program-
ming methods. The connection is immediate if one assumes that the CFT has chiral algebra
U(1)¢. The spinless modular bootstrap of such a CFT can be directly translated to the
Cohn-Elkies linear programming approach to sphere packing in R?¢. If a certain technical
conjecture holds (which can be verified in many cases), the two problems are fully mathe-
matically equivalent. On the other hand, the modular bootstrap of greater physical interest
is for CFT's whose chiral algebra is just the Virasoro algebra. The Virasoro modular boot-
strap is not directly equivalent to the Cohn-Elkies problem, but can be formulated in a
very similar way.

Our main observation is that the same analytic functionals can be used to establish
rigorous bounds for the Cohn-Elkies problem, the closely related U(1)¢ modular bootstrap
and also the Virasoro modular bootstrap. What’s more, these are precisely the analytic
functionals previously constructed in the context of the four-point function bootstrap in 1D
CFT! By a curious historical coincidence, in the same year that Viazovska found the magic
functions that prove optimality of the Eg lattice, one of us [13] independently constructed
analytic functionals for the crossing problem of four identical operators in CFT;. These
functionals (further studied and generalized in [14-18]) prove optimality of the general-
ized free fermion CFT1, for arbitrary external dimension Ay. In this context, this means
attaining the largest allowed dimension of the first exchanged operator.

There is a simple dictionary that allows to apply the very same analytic functionals to
the other linear programming problems that we have described. Table 1 in section 4 is our
key relating the Cohn-Elkies approach to sphere packing, the spinless modular bootstrap
and the CFT; four-point function bootstrap. Our functionals turn out to be optimal for
the modular bootstrap with central charges ¢ = 4 and ¢ = 12, for both the U(1)¢ case
(which, as we have mentioned, is equivalent to the Cohn-Elkies problem) and the Virasoro
case. Remarkably, when translated into sphere packing variables, they exactly reproduce
the magic functions used by Viazovska [1] and by Cohn et al. [2] to prove that the Eg
and Leech lattices are the densest packings in dimensions 8 and 24, respectively. We also
show how a complete basis of functionals for 1D CFTs, constructed in [15], underlies the
complete basis of sphere-packing functions found by mathematicians recently in [19], and
generalizes their results to all dimensions.

For ¢ # 4,12 our modular bootstrap functionals are not optimal, but still lead to
the rigorous upper bound Ag(c) < ¢/8 + 1/2 for the largest scaling dimension of the first
non-trivial primary, for any ¢ € (1,4) U (12, 00), for both Virasoro and U(1)¢. As we have
emphasized, the ¢ — oo limit is especially interesting because large-c CFTs with sparse
spectrum are dual to AdS3 quantum gravity. In this limit, we are able to find an improved
(though still suboptimal) functional that leads to the Virasoro analytic bound Ag(c) <
¢/8.503. This is the first analytic improvement over Hellerman’s original bound [4] of ¢/6.
It is not quite as strong as the conjectured asymptotics ¢/9.08, based on extrapolating the
numerics [7].

Like the Hellerman bound, our bound constrains the spectrum of black holes in 3D
quantum gravity. It is related (though somewhat indirectly due to the distinction between
Virasoro and U(1)¢) to constraints on the density of sphere packing in high dimensions. In



turn, dense sphere packings provide the most efficient classical error-correcting codes. Black
holes are already known or conjectured to saturate bounds on entropy [20], scrambling [21,
22], chaos [23], complexity [24], weak gravity [3], and more. It is intriguing to find yet
another sense in which black holes live on the boundary of theory space.

The rest of the paper is organized as follows. Section 2 and section 3 review modular
bootstrap and sphere packing, respectively, emphasizing the parallels between the linear
programming approaches to both problems. In section 4 we describe succinctly our main
results, leaving most of the technical details for later sections. Section 5 reviews the
construction of analytic functionals for the crossing problem in CFT;. It also contains
some new results for a generalized crossing equation, which we need later to make full
contact with the Cohn-Elkies problem. In section 6 we present the technical details of the
analytic functionals for the modular bootstrap and reproduce the sphere packing magic
functions. In section 7 we study the large central charge limit and derive our asymptotic
analytic bound of ¢/8.503. In section 8 we sketch the construction of a complete basis of
functionals for the Cohn-Elkies problem in arbitrary dimension. We conclude in section 9
with a discussion and some speculations. Two appendices contain basic reference material
on modular forms and further technical details on analytic functionals.

2 Review of modular bootstrap

2.1 Overview of existing bounds

The modular bootstrap is a method to constrain possible spectra of 2D CFTs. The simplest
question it can address is: given the central charge ¢, what is the largest allowed scaling
dimension, Ay, of the first non-trivial primary [4]?

The answer depends on the choice of the chiral algebra that we impose as a symmetry
of the CFT. We will focus on two cases: Vir, x Vir., and the current algebra U(1)¢x U(1)c.
Here Vir, stands for the Virasoro algebra of central charge ¢, and the two copies of the
algebra correspond to left and right movers. By the Sugawara construction, Vir. is a
subalgebra of U(1)¢. We will assume ¢ > 1 throughout this paper. The best possible upper
bounds on the dimension of the first nontrivial primary Ag from the spinless modular
bootstrap will be denoted Ay (¢) and Ay (c) for Virasoro and U(1)€, respectively.

The bounds come from imposing invariance of the partition function Z(7,7) under
the modular group PSL(2,7Z). A restricted class of solutions of this problem comes from
assuming that the partition function factorizes Z(7,7) = Znol(7) Zhot(—7), where Zyo (1) is
a weakly holomorphic modular form of weight zero. In this case, the central charge must
be an integer multiple of 24 and all scaling dimensions take integer values. Furthermore,
it follows from the theory of modular forms that Ay < i + 1 for this class of partition
functions [25-27]. We will not assume holomorphic factorization in this paper.

The first constraints valid for general unitary 2D CFTs with ¢ > 1 were obtained by
Hellerman [4], who proved Ay (c) < § +0.4737. Using the linear programming method
introduced by Rattazzi, Rychkov, Tonni, and Vichi [28], the bound on Ag has since been
improved numerically [5-7]. The strongest current numerical bounds, as a function of ¢,
were found in [7]. There are two salient points. First, the bound is saturated by known
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Figure 1. Universal features of the spectrum of 3D gravity.

partition functions at ¢ = 4 and ¢ = 12, to very high numerical accuracy. Second, the nu-
merics become increasingly difficult at large ¢, so for ¢ 2 2000, the numerical constraints are
weak, and Hellerman’s bound remains the strongest that has been established rigorously.
Extrapolating the numerics from ¢ < 2000 led to the conjectured asymptotics Ay = ¢/9.08
as ¢ — oo [7].

The large-c limit is especially interesting because 2D CFTs with large ¢ and a large
gap are holographically dual to quantum gravity in three-dimensional anti-de Sitter space.
All of the known, consistent constructions of 3D gravity come from string theory and share
several features in the spectrum. This is summarized by the microcanonical entropy S(A),
in figure 1. There are black holes with entropy of order ¢ above some threshold, Agy < 5.
The array of black hole solutions and the exact threshold depend on the particular theory,
but at a minimum, all examples contain BTZ black holes for A > Aprz = 5. In the
, 13 < A < &, BTZ black holes do not necessarily dominate the
entropy, so S is not universal, but it is bounded above by S < 27A. Finally, for A > ¢,

so-called enigma range

all theories have universal S(A) given by the Cardy entropy. These universal properties
follow from modular invariance in the large-c limit and the assumption of a sparse low-
lying spectrum [29]. For other applications and extensions of the modular bootstrap, see,
e.g., [30-40].

The universality of BTZ black holes on the gravity side suggests that perhaps the bound
from modular invariance is ¢/12, a factor of two stronger than the Hellerman bound. If
so, and if there are theories with gap Ao ~ {5 and arbitrarily large ¢, then these would be
theories of “pure” 3D gravity, consisting only of gravitons and BTZ black holes. It is an
open question whether pure gravity exists as a quantum theory [27, 41, 42]. One goal of
modular bootstrap is to settle this question. More generally, the eventual goal is to explore
whether every consistent theory of quantum gravity in three dimensions comes from string
theory, or to find alternative theories of 3D gravity. This may be possible if the bound on
Ay can be pushed down to the BTZ black hole threshold, ¢/12. If the spectrum is allowed
to be continuous then Ay (c) > % [42], but it is logically possible that the bound with a
discrete spectrum could even surpass the BTZ black hole threshold.

2.2 Partition functions

The partition function of a unitary 2D CFT is

Z(r,7) = Z qh—c/24qﬁ—5/24’ g =X = 2T (2.1)

states



where the sum tuns over all states of the theory on S!, (h,h) are their non-negative
conformal weights and (c,¢) are the left and right central charges. There is a unique
vacuum state with » = h = 0. The partition function on a Euclidean torus of modulus

* where the star stands for complex conjugation.

T equals Z(7,T) restricted to 7 = 7
However, the sum (2.1) converges for any 7 € H, and 7 € H_, with H; and H_ the upper
and lower half-planes, so we can treat 7 and 7 as independent and complex. In fact, Z (7, T)
is a holomorphic function in Hy x H_, because each summand in (2.1) is holomorphic in
this region and the sum converges uniformly in any compact set.

Modular invariance is the statement

P ar+b at+b
cr+d et +d

) =Z(r,7), for all (Z Z) € SL(2,7Z) . (2.2)

States are organized under the symmetry algebra of the theory, so Z can be expressed as
a sum of characters,

Z(1,7) = Xoae(r,7) + Y X3, 1(7,7) (2.3)

where the sum runs over non-vacuum primary operators. The characters include the con-
tribution of a primary and its descendants, so they take the form

Xpp(r,7) = qh*C/24q575/24(1 + non-negative integer powers of ¢, q) . (2.4)
Xvac may or may not be the analytic continuation of X, ; to h = h = 0, hence the
different name.

We will specialize to the one-complex-dimensional section 7 = —7, and denote the
restricted partition function

Z(ry=Z(r,—7) . (2.5)

This includes in particular all the rectangular Euclidean tori, for which 7 = i8 with real
B > 0. The partition function Z(i/3) is the usual partition function of statistical mechanics
at inverse temperature 3. Z(7) is simply the analytic continuation of this function to the
entire upper half-plane. By restricting to 7 = —7, we have set the angular potential to zero,
and therefore dropped information about the spin h — h in the partition function. Z(7) is
holomorphic in H, but it generally does not admit a series expansion into integer powers
of ¢ as 7 — i00. The only non-identity element of PSL(2,7Z) which remains a symmetry of
Z(7) is the S-transformation,

Z(r)=Z(-1/71) . (2.6)

The T-transformation 7 — 7+ 1, T — 7 + 1 does not respect the condition 7 = —7.
Z(7) can be expanded into characters of the symmetry algebra

Z(1) = Xvac(T) + Y paxa(r), (2.7)
A>0

where A = h+h, and pa is the integer degeneracy of primaries with this scaling dimension.
The positivity condition pa > 0, which we assume throughout, is referred to as unitarity.



We will primarily be interested in modular bootstrap with symmetry algebras Vir, x Vir,
and U(1)¢ x U(1)°. For Vir, x Vir,, the characters take the form

A—c/12 A—cl

q q 12
XA(T) = T =g~ Xuae(T) = (1 = 0)xg (7) - (2.8)
=1
For the current algebra U(1)¢ x U(1)¢, we have
A—c/12 A
q q
XA(T) = T2, (=g~ n(r) Xvae(T) = X0 (7) - (2.9)
=1

2.3 Linear programming bounds

We can derive bounds on the gap by constructing linear functionals acting on functions of
7 [4, 28]. Let us write S-invariance (2.6) as

(I)éac(’r) + Z pA(I)g(T) =0 (210)
A>0

for all 7 € Hy, where

(I)éa(:(’r) - X\éac(’r) - Xéac(_l/’r) ) q)g(’]') - Xg(’r) - Xﬁ(—l/’i’) : (211)

Here and in the following A = U,V is a placeholder for the symmetry algebra of choice. If
we can find a linear functional w satisfying

w[®4

vac

>0 (2.12)
w[®A] >0 forall A>A,, (2.13)

then all unitary partition functions must have a nontrivial primary with A < A,. The
infimum over all functionals with the above properties is the optimal linear programming
bound on the gap. For the limiting functional the first condition is replaced with w[®Z ] =0
and there is an associated modular-invariant partition function whose spectrum is annihi-
lated by the optimal (also called extremal) functional.

The optimal bounds, over the space of all linear functionals acting on the spinless
partition function Z(7), are denoted Ay (c) for Virasoro and Ay(c) for U(1)¢. We will
see that sphere packing is most directly connected to the modular bootstrap with a U(1)¢
chiral algebra, and that the linear programming bounds on sphere packing can be stated
in terms of Ay (c).

2.4 Functionals as eigenfunctions of the Fourier transform

By construction, the antisymmetrized character @g is a —1 eigenfunction of the S trans-
formation. We It follows that the function

w(A) = w[®4] (2.14)
can also be understood as a —1 eigenfunction of S, in the following sense [5]. For Virasoro
symmetry, let us parametrize A by a vector z € R? as

T c—1
Ax) = > + TR (2.15)




The crossing kernel takes the form of a 2D Fourier transform

S - XX(m) = /dQ?J 672ﬂim.yXX(y)7 (2.16)

so the function
g9(z) = w(A(x)) (2.17)

is an eigenfunction of the 2D Fourier transform with eigenvalue —1.
For U(1)¢, the same argument demonstrates that g(x) is a —1 eigenfunction of the
(2¢)-dimensional Fourier transform, with the identification

Ax) = za~, r € R* . (2.18)

A basis of —1 eigenfunctions for the Fourier transform in R? is provided by the odd-
degree associated Laguerre polynomials,

wi(A(z)) = LI (dra?)e 2" (2.19)

The standard strategy for numerical bootstrap is to construct a basis of functionals by
acting with derivatives (0, )* at the crossing-symmetric point 7 = 4. For modular bootstrap,
this of course produces the same basis, (2.19). The corresponding derivative operator for
Virasoro can be found in [43] and easily generalizes to U(1).

2.5 Saturation at ¢ = 4,12

The Virasoro bootstrap converges to known, S-invariant functions for ¢ = 4,12 [6, 43,
44]. The numerical bound at ¢ = 12, obtained by truncating to the first 2000 Laguerre
polynomials, is [43]

Ay(12) <24 10739 (2.20)

The zeros of the numerical functional appear to converge toward the non-negative inte-
gers, A = 0,1,2,3,.... There are single roots at 0,1,2 and double roots at the higher
integers. The numerical bootstrap also produces a candidate partition function saturating
this bound. To very high accuracy, it appears to be related to the theta function? for the
Leech lattice Aoy,

1
n(r)*

This can also be written in terms of the modular j-function, Z12(7) = j(7) — 744. This also

212(7‘) = @A24(7') —24 . (2.21)

happens to be the partition function of the chiral monster CFT [45], with ¢ = 24,¢ = 0,
but the appearance of the j-function in the present context is a surprise. Recall that we
did not impose T-invariance; it appears for free in the optimal partition function at ¢ = 12.
In other words, there is no obvious reason a priori to expect an integer spectrum in a
non-chiral CFT.

*The theta function of a lattice A in R? is defined as Oa(T) =3, 4 e’
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Figure 2. Density of sphere packings in R%. For the best known packings, see table I.1 of [8].

For ¢ = 4, the situation is similar. The numerics converge towards Ay (4) = 1, with
zeroes at the nonnegative integers. The candidate partition function with this spectrum is
built from the theta function for the the Eg lattice,

1

77(T)8@A8 (1) = (j(T))1/3 . (2.22)

24(7')

3 Review of the sphere packing problem

A thorough introduction to sphere packing can be found in the short book by Thomp-
son [46], the long book by Conway and Sloane [8], and, for recent developments, the review
articles [47-49]. Here we will review just enough background to explain the linear program-
ming method of Cohn and Elkies [11, 12], Viazovska’s proof for Eg [1], and its extension
to the Leech lattice [2]. All of the results reviewed in this section are mathematically rig-
orous in the original papers, including the numerics, which are done in rational or interval

arithmetic to control numerical errors.

3.1 Basics

The simplest packings are lattice packings, where a sphere is centered at each point on
a lattice A C R% The sphere diameter is equal to the length of the shortest lattice
vector, so the problem of finding a dense lattice packing is one of constructing lattices
with no short vectors and fixed volume of the unit cell. This is already reminiscent of
the conformal bootstrap, if we were to restrict to compactified free theories, where the

spectrum is specified by a lattice.



The solved cases, d = 1,2,3,8,24, are all lattice packings, but in general, lattice
packings are not optimal. A more general configuration is a periodic packing, which is a
crystal, having one or more spheres per unit cell. Not all sphere packings are periodic, but
by taking the unit cell very large, any packing can be well approximated by a periodic one,
so it suffices to restrict to this case for the purposes of proving bounds on the density.

The density of a periodic packing is the fraction of the unit cell occuppied by spheres.
If there are N spheres in the unit cell, each with radius 7, then this fraction is

N vol(B%)rd
Pd = W) ) (3.1)

where vol(B%) = n%/2/T'(d/2+ 1) is the volume of the unit ball in R, and the denominator
|A| = vol(R%/A) is given by the determinant of the lattice basis. The highest achievable
packing density for a given d will be denoted pax.

In most cases, the best known upper bounds on pmax come from linear program-
ming [11]. These bounds, together with the densest known packings, are plotted for small
d in figure 2. The bounds are saturated in the dimensions where the sphere packing problem
has been solved, with the exception of the Kepler problem, d = 3.

At large d, some general upper and lower bounds are known. Early arguments by
Minkowski (see [50]) and Blichfeldt [51] led to the allowed asymptotics 2~¢ < ppax < 2742
The lower bound has since been improved by a linear prefactor. The current best upper
bound at large d is by Kabatyanski and Levenshtein, ppa, < 270299940(@ [52] (with a
prefactor improved by Cohn and Zhao [53]).

3.2 Linear programming method

The Cohn-Elkies theorem. Linear programming has long been used in coding theory,
starting with the work of Delsarte in 1972 [54]. It can be used to bound, for example, the
number of codewords in an error-correcting code. Bounds on error-correcting codes can
be translated into sphere packing, to place rigorous upper bounds on pmax [52, 55]. (See
the discussion section for further comments on this connection.) Linear programming was
later applied directly to the sphere packing problem, without going through an intermediate
coding problem, by Cohn and Elkies. We will now review the main theorem of Cohn and
Elkies [11, 12]. We reformulate their proof in the language of linear functionals familiar
from the bootstrap.

Consider a periodic packing, specified by a lattice A C R? and vectors v1,...,vy. A
sphere is centered at each v; and its translations by A. The distances between centers of
spheres are given by |z +v; —v;| for x € A and i,j = 1,..., N. The density of a packing is
invariant under an overall rescaling. Therefore, we can assume without loss of generality
that the shortest distance between the centers of distinct spheres in the packing is equal
to 1, and set the sphere radius to 1/2. The density of the packing is then given by

_ Nvol(B%)
Pd = 72(1’ Al

Proving an upper bound on p, thus amounts to proving a universal upper bound on N/|A]

(3.2)

for all periodic sets of vectors which have unit minimal distance between different vectors.

~10 -



In order to prove such a bound, we start by defining the averaged theta function as a
weighted sum over all distances between centers of spheres in the packing [56],

N
L $ et 59
i,j=1z€A

For later convenience, we divide this by a power of the Dedekind n-function to define the
partition function of the packing

N
Zﬁ%=2gl=§j§jﬁ@mvymv% (3.4)

ij=1z€A

where XX (7) are the U(1)¢ characters (2.9) for ¢ = d/2. It turns out that there exists a
version of the modular bootstrap equation (2.6) satisfied by every periodic packing. While
Z(7) is not necessarily invariant under the S transformation, Z(7) can be expanded in
the crossed-channel characters xX(—1/7) with positive coefficients. The precise equation
follows directly from the Poisson summation formula with respect to the lattice A and reads

§ :627rwl Y

=1

Xy2/o(—1/7). (3.5)

Z ZX (z+v;—vj) /2 ‘A’ Z

i,j=1xz€EA yEA*

where A* stands for the dual lattice.
Let us consider a linear functional w acting on functions of 7 and define f : R — R
as the functional action

f@) =w [xp(r)] - (3.6)
The action of w on the crossed-channel characters is given by the Fourier transform of f(x)
o [\l-1/m)] = Fl) = [ dtoemienpia) (37)
Rd
When we apply w to (3.5), we get
DD flatvi- o Z Z Tl Fy) (3.8)

i,j=1x€A yeA* |j=1

Actually, we could have obtained this equation more simply by applying Poisson summation
directly to the left-hand side of (3.8), without introducing the linear functional w. This
more direct route is taken by Cohn and Elkies [11]. We have rephrased the proof in terms
of the action of a linear functional to draw a parallel to the conformal bootstrap, and
because this point of view is useful in constructing the optimal functionals analytically.

We will see that (3.8) plays the same role as the crossing equation in confor-
mal field theory. This equation also has an analogue in coding theory, known as the
MacWilliams identities.
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The function f(x) constructed in (3.6) is spherically symmetric, f(xz) = f(|z|). The
argument can be generalized so that f(x) in (3.8) is a more general function on R?, but
this does not improve the bounds [11].

In order to derive a bound on the density from equation (3.8), we proceed by extracting
the “identity” (A = 0) contributions from both sides. On the L.h.s., these come from terms
with £ = 0 and ¢ = j, while on the r.h.s. from the term with y = 0. Moving all identity
terms to the left, we arrive at

2
N2 1 N .
Nf(0) - mf(@) ==Y flatuv—v)+ 0y S Do Fy) . (3.9)
) yeA\{0} |j=1

Suppose now that we can find a functional w such that f satisfies

= d
j:((y) >0 forallyeR (3.10)

xz) <0 forall x| >1.

Since the minimal distance between centers of distinct spheres in the packing is 1 by
assumption, it follows that all terms on the r.h.s. of (3.9) are non-negative. Therefore
Nf(0) > N2f(0)/|A|. This produces the desired upper bound on N/A and thus from (3.2)
a general bound on the sphere-packing density?

< YlBY 1) (3.11)

P00 R )

It is sometimes convenient to restate the theorem as follows [11, 12]. Suppose that

instead of imposing unit shortest distance between sphere centers, we normalize the packing
by |A| = N, so that the density becomes

pq = vol(BY) R, (3.12)

where 2R is the shortest distance between sphere centers. Thus to prove an upper bound
on pg, we seek an upper bound on R valid for all packings with |[A| = N. To prove the
bound R < R, from (3.9), we need a function f(x) satisfying

f
(i) f(y)>0 forall yeR? (3.13)
(iii) f(x) <0 forall x>2R,

If such a function exists, we get the universal bound pg < vol(B%)R%. To see that the two
formulations of the Cohn-Elkies theorem lead to precisely the same bound on the density,
we can rescale the argument of f(z) in the second formulation by 2R, to produce f(z) of
the first formulation.

It is important to note that for the Possion summation formula (3.8) to hold, f(z)
needs to be sufficiently smooth and decay sufficiently fast at infinity. This is equivalent to

~

%Note that £(0), f(0) > 0 by construction since f(y) >0 for all y € R? and f(0) = Jza ddyf(y).
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saying that not every linear functional w can be commuted with the infinite sums over z
and y in (3.5).* For (3.8) to hold, it is sufficient that f(x) is a Schwartz function in R¢.
Although (3.8) holds for more general functions, in practice the optimal bounds arise from
Schwartz functions so we can restrict to them in the following. When w is a finite linear
combination of derivatives in 7 evaluated at 7 = i, then f(z) is a Schwartz function. We
will see that the functionals which lead to optimal bounds are given by contour integrals
in H; which still lead to Schwartz functions.

Positivity in Fourier space can also be understood geometrically. A function f(x)
is said to be positive definite if, for any x1,x9,...,z N, the matrix f(z; — x;) is positive
semidefinite. Assuming fast enough fall-off, f is positive definite if and only if it has non-
negative Fourier transform. This point of view, explained further in [11, 58], gives another
simple proof of the Cohn-Elkies theorem, and relates it to the results of Delsarte.

Linear programming. Clearly the best bound on ppax coming from the Cohn-Eliies
theorem is obtained by finding the f in the second formulation with minimal R,. Alterna-
tively, in the first formulation, we normalize f(0) = 1, and solve the infinite-dimensional

linear programming (LP) problem:

o~

maximize f(0) subject to (3.10) . (3.14)

This setup does not completely exhaust the constraints on sphere packing, so even a com-
plete solution of the LP problem does not generally solve the packing problem in d di-
mensions. However, in dimensions d = 1,2,8,24, miraculously, the LP bound becomes
sharp. This was first observed numerically [11, 52] where it was found that the LP bound
is very nearly saturated by the best known packings in these dimensions. For other d,
the LP bound is not optimal; it might still be possible to solve the packing problem by
optimization, but only by replacing positive definiteness by the more general notion of
a geometrically positive function or by including higher-point correlations on the packing
(e.g., [58, 59]).

The direct solution of (3.14) by linear programming is possible but cumbersome. In
practice, Cohn and Elkies trade it for a simpler optimization problem, which produces the
same optimum. Let us work with the second formulation (3.13) and set

f=h-—g, ]?:h+g. (3.15)

h and g are radial Schwartz functions which are respectively even and odd eigenfunctions
of the Fourier transform in R¢,
h=h, g=-g. (3.16)

These can be decomposed into sums of even or odd degree Laguerre functions, respectively,

M M
v —7|x|? v —lz|?
g(z) = ZBiL2i71(2ﬂ'|x’2)e = , h(z) = Zaz‘infz(Qﬂx’Q)e = (3.17)
i=1 i=1

4Conditions under which a linear functional can be commuted with the sum over operators and thus
gives a correct bootstrap equation were analyzed for the sl(2,R) four-point bootstrap in [57].
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where v = d/2 — 1. We have truncated the expansion at some even integer M in order to
render the problem finite dimensional. The bound is rigorous at any M, and improves as
M is increased. To fix the M coefficients (3;, up to an overall scaling, impose the M — 1

equations
r,) =g (r,) =0
o) = (1) a1s)
9(0)=0
for y=1...P, with
P=M/2-1. (3.19)

Denote by g the position of the last sign change of g, with g(r¢) = 0.
The nonlinear optimization problem is to choose the double zeroes 7, in order to
minimize the single zero rg. This step relied on a computer, until Viazovska’s proof.
Once this optimization is done, for any given M, we have now completely determined
g (up to a a multiplicative constant) and rg,...,rp. The even eigenfunction h is fixed by
imposing

h(ry) = (r,) =0 (3.20)
g(ro) 4+ h(ro) = ¢'(ro) + B’ (ro) = 0

fory=1...P.

Although unproven, it was conjectured by Cohn and Elkies, and checked numerically,
that for any d > 1 this procedure gives a function f that satisfies the assumptions of the
Cohn-Elkies theorem and therefore places an upper bound on pyax. For future reference,
we record this observation as:

Conjecture 3.1 (Cohn and Elkies [11]). The function f = h—g, constructed by forcing the
single and double zeroes as in (3.18) and (3.20) and minizing o, satisfies the assumptions
of the Cohn-Elkies theorem (3.13).

Unlike the original linear program (3.14), the problem of choosing 7, to maximize rg
is not globally convex, and is not guaranteed to agree with (3.14). However, in practice, a
local optimum is easy to find, and this is good enough — once a candidate f is identified
by this method, it can be checked that it satisfies the assumptions of the theorem, and
therefore leads to rigorous sphere-packing bounds.

The difficult step in the procedure is of course to choose 7, to minimize ry. This
was implemented numerically in [11, 12, 60], by guessing an initial point r, and using
Newton’s method. As illustrated in figure 2, the numerical upper bound for d = 8,24 is
extremely close to the packing density of the Ag and Asy lattices. The strongest numerical
bounds were obtained in [60], keeping P = 200 roots (i.e., Laguerre polynomials through
degree 803):

Pmax —14
d=28: <1410 3.21
p(As) ( )
Pmax —29
d=24: <1+10
p(Aaq)
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Cohn and Elkies conjectured that as M — oo, the procedure converges to a ‘magic function’
fs(x) or fay(x) capable of solving the sphere packing problem in these dimensions. The
magic function must have zeroes on the actual length spectrum of the Ag or Asgy lattice, so
that the right-hand side of (3.9) vanishes. This implies, in d = 8,

fs(V2k) = fs(V2k) =0,  k=1,2,3,...00 (3.22)

and all of these should be double zeroes except for f(ro = v/2). (Here the spheres have
radius 1/v/2, since the length of the shortest vector in Ag is v/2.) Similarly, for d = 24, the
magic function must have

foa(V2k) = fas(V2k) =0,  k=2,3,...0 (3.23)
with all zeroes of multiplicity two except f(rq = v/4).

3.3 Viazovska’s proof

The numerics left little doubt that the magic functions exist, but they were difficult to
find. They were recently found by Viazovska in d = 8 [1] and by Cohn, Kumar, Miller,
Radchenko and Viazovska in d = 24 [2]. The key idea of [1] is to start from the ansatz
100
h(r) = isin®(7r?/2) / dTH(T)e“"’QT
0 (3.24)
100
g(r) = isinz(ﬂr2/2)/ dTG(T)e“”"QT.
0
As in (3.15)—(3.16), the magic function is f = h — g with h, g the 1 eigenfunctions of the
Fourier transform. The integrands G and H will be designed to give h, g all the requisite
properties, using quasimodular forms as building blocks.

The ansatz builds in by hand the desired zeroes at r = v/2,v4,v6,.... However it
also produces some extraneous zeros. In particular, h(r) should be positive for r = 0.
Furthermore, the double root at r = /2 should be a simple root for d = 8, and similarly
the double root at r = 2 should be a simple root in d = 24. These extraneous zeroes must
be canceled by singularities from the integral.

We must find conditions on G, H that will ensure g,h are eigenfunctions of the d-
dimensional Fourier transform. This is achieved by taking the Fourier transform of (3.24)
with the help of some judicious contour deformations, which can be found in Viazovska’s
paper and will be reviewed in section 6.5 when we reproduce these results from the boot-
strap. In the end, we find the following conditions on G, H:

H(-1/7) = 3 (~ir)* V2 [H(r +1) + H(r 1) ~ 2H(r) (3.25)
H(t+1) = —(—in)¥*2H(-1-1/7) (3.25h)
G(-1/r) = (=i 2 [G(r + 1) + Glr 1)~ 26(7) (3.25¢)
G(r+1) = (—in)¥?*72G(-1 - 1/7) . (3.25d)

These transformation rules, together with some information about the functions’ singular
behavior, are enough to find H and G. To proceed, we specialize to d = 8 and d = 24 in
turn. Relevant background on modular forms is reviewed in appendix A.
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3.3.1 The magic function in R3

Let ¢(7) = 72H(—1/7). For d = 8, (3.25b) implies

o(r) =o(t+1) . (3.26)

2miT

Therefore, ¢ has an expansion in ¢ = ™7, and we can hope to build it using modular

forms. The other condition (3.25a) is

o(r) = AP [¢(~1/7)] (3.27)

where A is the second finite difference operator: A@[X ()] = (X (7 +1) + X (7 — 1) —
2X(7)]. Eq (3.27) is satisfied if we pick ¢ to be a weakly holomorphic quasimodular form
for SL(2,7Z), with weight 0 and depth 2. That is,

O(—1/7) = ¢(7) + 7711 + 7 24y, (3.28)

where 17 and 19 are periodic under 7 ~ 7 + 1. Functions of this type can be built from
the second Eisenstein series, Fy. In analogy with the construction of the j-function as the
ratio of two weight-12 modular forms, a natural guess is that A¢, with A the modular
discriminant, is a weight 12, depth 2 quasimodular form. This suggests the ansatz

1
¢ = N (E3ps(E4, Eg) + Eapi0(Es, Ee) + p12(Ea, E)) (3.29)

with pr a weight-k polynomial. Some restrictions on the fall-off behavior, or fixing the
most singular terms by comparing to numerics, then leads to

b= 4m(EyEy — Eg)?
b(E§ — EY)

(3.30)

This defines the +1 eigenfunction in the integral ansatz (3.24), with H(7) = 72¢(—1/7).
The integral converges for r > /2 and is otherwise defined by analytic continuation.
At large imaginary T,
1

H(t)= 07 + = + 4iT 4+ O(1%q) (3.31)

These terms produce singularities that cancel the extraneous zeros in sin?(7r2/2) discussed
above; it is straightforward to integrate them and see that

1
C60v2

We now turn to the —1 eigenfunction, g. The conditions (3.25) show that qg =

h0)=1, h(vV2)=0, W2 = (3.32)

72G(—1/7) is antiperiodic under 7 — 7 + 1, so that it can be expanded in odd pow-

1/2

ers of ¢ This suggests that the relevant modular group is the congruence subgroup

I'(2). Indeed, by an argument similar to the above, it suffices to choose G to be a weakly
holomorphic modular form of weight -2 for I'(2), and impose

2G(-1/7) = G(1) - G(r + 1) . (3.33)
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A natural guess is that G is a weight-10 modular form divided by the discriminant, A
(620504)®. Modular forms for T'(2) are polynomials in §5 and 64, which are both weight 2.
This gives 6 weight-10 forms that can appear in the numerator; imposing (3.33) fixes some
of the coefficients, and the singular behavior fixes the rest, leading eventually to

_ 32604(505 — 560307 + 265)

G(r) = 3.34
) 15760363 (3:34)
The expansion at large imaginary 7 is
1 12 256¢/%2 5877
S i S L. Y TP e (3.35)

60mqg 5w 3 T

1

9(0)=¢'(0)=0, ¢(v2)=0, ¢'(V2)= 03"

(3.36)

It follows that f = g — h has exactly the properties (3.22) required of the magic function.
This completes the proof that the densest packing in 8 dimensions is the Eg root lattice.
The rigorous proof [1] is not much more difficult than what we have just sketched; the only
extra steps are checking the integral manipulations more carefully, and a straightforward
proof that subtracting h — g does not produce any new roots.

3.3.2 The magic function in R4
The details in d = 24 are a bit different due to the weights in (3.25), but the extension is
straightforward [2]. For the +1 eigenfunction, take H(7) = 7% (—1/7) with

65536725 1 1 5 5 3 P

For the -1 eigenfunction, take

1048576723 1 2018 24 4 28
G — *Wﬂ(m‘* 05 + 703105 + 207°) . (3.38)

The resulting h, g have the desired roots (3.23). This proves that the densest packing in
24 dimensions is the Leech lattice.

4 The relation between sphere packing and modular bootstrap
There are clear similarities between the modular bootstrap and the Cohn-Elkies method for

bounding the sphere packing density. In this section, we will describe the precise relation,
and summarize how the same analytic functionals can be applied to both problems.
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4.1 The case of isodual lattices

As a warm-up, the modular bootstrap problem with U(1)¢ characters can be directly used to
constrain isodual lattices in R?°. An isodual lattice is one which is isometric (geometrically
congruent) to its dual lattice. In particular, the vector norms and their multiplicities are
the same for A and A*, and we have |A| = |A*| = 1. We define the partition function of an
isodual lattice A as a special case of (3.4) with N =1 and v; =0,

2(r) = 3w (7 - (4.1)

TEN

It follows from the Poisson summation formula (3.5) and isoduality of A that Z(7) is
S-invariant,

Z(r) = Z(~1/7) . (4.2)

The problem of maximizing the length of the shortest nonzero lattice vector in the sum (4.1)
subject to S-invariance (4.2) is manifestly identical to the problem of maximizing Ag in
the U(1)¢ modular bootstrap discussed in section 2.3. Thus for any isodual lattice in R,
the length L, of the shortest non-zero vector obeys

Lunin < V2A0(c) (4.3)

Since in a lattice packing the sphere radius is bounded above by Ly, /2, we immediately

obtain an upper bound on the sphere-packing density among all isodual lattice packings,

gl

Au(g) |
2

. Lmin d
p:isodual < VOl(Bd) <2> = VOl(Bd) (44)

4.2 A bound on arbitrary sphere packings

Now we turn to general sphere packings. Let w be the optimal functional for the U(1)¢
bootstrap, leading to the bound Ay (c). Consider the radial function g : R — R obtained
by acting with w on the crossing equation,

g(x) = w[‘bgz/z] (4.5)

where ®§ (7) is defined in (2.11). As explained above, g obeys g(0) = 0, is odd under the
Fourier transform in 2 € R?® and satisfies the positivity condition

g(x) >0 forall |z]>+/2Ap(c). (4.6)

Suppose that one can construct another radial function h(z) : R?*® — R, which is even
under the Fourier transform, and satisfies

(2) h(z)—g(x) <0 forall [z]>+/2Ap(c) (4.7)
(3) h(z)+g(z) >0 forall zeR*
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The Cohn-Elkies theorem states that if such h(x) exists, then the bound on the density (4.4)
actually applies to arbitrary sphere packings. Experimentally, both with numerics and with
the analytic functionals described below, we find that given g(x), it is always possible to
find h(zx) satisfying the above properties. This is essentially equivalent to the observation
of Cohn and Elkies, stated above as conjecture 3.1, that h(z) always exists given some
choice of single and double zeroes inherited from g(z).

Thus we have the conjecture that for all sphere packings in R%,

AU(%)] : . (4.8)

pa < vol(BY) 5

For all of the analytic and numerical functionals that have been constructed explicitly, this
upper bound is actually a theorem, because in these cases we also have h.

4.3 Asymptotics of the sphere-packing bounds at large d

The large-c (or equivalently large-d) limit is of great interest. In modular bootstrap, this
limit is related to holographic theories of 3d gravity. In sphere packing the large-d limit
has applications to the construction of efficient codes [§].

The Minkowski lower bound on the sphere packing density, pg > 2~%, combined with
the conjecture (4.8), leads to a lower bound on Ay (c),

1
r 1)e
Ap(e) > Her e (49
27
For ¢ > 1, this becomes
c
A > — . 4.1
v(e) 25— +o(c) (4.10)
Numerically, ﬁ =~ 0.05855 ~ ﬁ. At large d, the densest known sphere packings have

these same asymptotics. It has been proved in [61] that the linear programming bound of
Cohn and Elkies on the density cannot be better than 2 (0.7786+o(1)d " whijch (assuming
conjecture (4.8)) translates into

c

A > — . 4.11

0(€) > o5 e+ olc) (111)

The best upper bound on the density at large d is that of Kabatiansky and Levenshtein
(KL) [52],

Pd S 27(a+0(1))d’ (412)

with @ = 0.5990.... Cohn and Zhao [53] proved that linear programming is at least
as strong as the KL bound (and improved this bound by a linear prefactor). Since the
linear programming bound on isodual lattice packings is at least as strong as the linear
programming bound on general packings, we find the rigorous inequality (not relying on
the conjecture (4.8))

m° Ay(c)]* < 9—2(ato(1))e (4.13)
F(c+1) 2 N
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For ¢ > 1, this gives

c
A < — . 4.14
0(€) < gz + 0l (414)
In summary, sphere packing bounds lead to
c c
<A < 4.15
1257 ~ 20 3 5755 (4.15)

at large ¢, with the lower bound conditional on conjecture (4.8). The U(1)¢ modular
bootstrap bound is at least as good as the best upper bound on general sphere packings,
and it is of great interest to determine the asymptotic slope of Ay (c), either analytically
or numerically.

We can compare these asymptotic bounds on Ay (c) with what is known about the
bound in the Virasoro case at large c. It was shown in [5] that Ay (¢) can never drop below
(¢ —1)/12 and prior to the present work, the best asymptotic upper bound on Ay (c) was
that of Hellerman [4]

c c
< Av(e) < & 4.1
5 S Avie) S (4.16)

In this paper, we will improve the slope of the upper bound to Ay (c) < g553. The same

technique also applies to Ay (c), but only leads to Ay(c) < ggz5, Which is weaker than the
KL bound (4.14).

4.4 Preview of analytic functionals

So far, we have described the relation between sphere packing and the U(1)¢ bootstrap.
Now we will connect both of these problems to the Virasoro bootstrap, relevant to generic
CFTs and to 3D quantum gravity. The Virasoro bootstrap is not equivalent to U(1)¢, but
the key point is that exactly the same analytic functionals can be applied to both problems.
These functionals have already been constructed in the bootstrap literature in the context
of the four-point function bootstrap on a line [13, 14]. This will reproduce the results of
Viazovska et al. in 8 and 24 dimensions [1, 2], and unify the sphere packing solutions with
new bounds on black holes from the Virasoro bootstrap. In this section we introduce the
functionals, and preview some results of the more technical sections that follow.

First, let us directly compare the linear programming bounds for Virasoro and U(1)¢.
Numerical results are shown in figure 3. We plotted Ay (c) — % and Ay (c) — %. We
can see that the bounds coincide with each other and with % at c=4and ¢ =12. In
other words

Ay(4) =Av(4) =1
Apy(12) = Ay (12) = 2.
Note that the U(1)¢ problem with ¢ = 4, 12 maps precisely to the sphere-packing problem
in d =8, 24.
We provide the following explanation for the above behaviour of Ay (c) and Ay (c).

(4.17)

Firstly, the torus partition function of a 2D CFT can be computed as the sphere four-
point function of twist operators in the symmetric product orbifold of two copies of
said theory [62]. When the theory has central charge ¢, the twist operator has total
scaling dimension

Ay = (4.18)

¢
5
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Figure 3. Upper bounds from linear programming on the gap for U(1)¢ and Vir,, denoted Ay (c)
and Ay (c). We have subtracted <t* from both bounds. <t? is the optimal bound in the case of

the four-point function bootstrap in 1D, translated to modular bootstrap variables.

The Euclidean partition function on a torus of modulus 7 maps to the Euclidean four-point
function with cross-ratio

z=MT1), (4.19)

where A\(1) = zgg:gi is the modular lambda function, and the cross-ratio is related to the

location of the twist operators w; € R?, i =1,...,4 by

2 92 2 .2
o2 = DIy 2 = DAY (4.20)
WiaWay WizWyy

where w;; = w; — wj. The S-transformation on the torus 7 <> —1/7 maps to the standard
crossing transformation of four points z <+ 1 — 2. The configurations which are relevant for
the spinless modular bootstrap correspond to rectangular tori, i.e. 7 € i Rsg. Under (4.19),
this maps to the locus z € (0,1), which corresponds to configurations where the four
twist operators are collinear. Therefore, spinless modular bootstrap at central charge c is
almost equivalent to the four-point function bootstrap in 1D with external operators of
dimension ¢/8. The only difference is that the torus characters x{ () and xX(7) do not
map exactly to the conformal blocks of the 1D conformal algebra si(2,R). In fact, thanks
to the large symmetry algebra of the symmetric product orbifold, a torus character of
dimension A maps to a positive linear combination of the 1D conformal blocks of dimensions
2A, 2A+2, 2A +4,. ... The prefactor 2 is present because a single primary of the original
theory maps to two copies of that primary in the doubled theory.

The merit of the mapping from the torus partition function to the sphere four-point
function is that the optimal upper bound on the gap coming from the four-point function
bootstrap in 1D with si(2,R) blocks is known exactly, since the extremal functionals have
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been constructed in this case [13, 14]. For any value of the external dimension A, > 0,
the bound is saturated by fermionic mean field theory, where the gap in the spectrum of
sl(2,R) primaries is

Arn(Ag) = 28y 11, (4.21)

Therefore, if we could ignore the difference between the torus character XX’V(T) and sl(2,R)
block of dimension 2A, the modular bootstrap bounds Ay (c) would both be equal to
Aip(c/8)  c+4

2 8

It is precisely for ¢ = 4 and ¢ = 12 that the difference between torus characters and
sl(2,R) blocks plays no role, and (4.22) becomes the correct bound for both U(1)¢ and
Vir.. Furthermore, we can argue that Ay y(c) < % for ¢ € (1,4) and ¢ € (12,00), as

(4.22)

suggested by figure 3.

The claims of the previous paragraph can be proven simply by taking the extremal
functionals for the 1D four-point function bootstrap, and applying them to modular boot-
strap using the inverse of the mapping (4.19)

K(1—2)

7(z) = ’LW ; (4.23)

where K(z) is the complete elliptic integral of the first kind. For any ¢ > 1, this gives a
linear functional . acting on functions F(7) of 7 € Hy. As we will explain in the following
sections, . takes the form

1 1 %-l—ioo
BelF] = / dzpe(2)Q2 (2)F(7(2)) + 5 / dzpe(z) Re () F(7(2)) - (4.24)
2 2
Here pu.(z) = [282(1 — 2)] 712 is a measure arising from the Weyl transformation needed

to go from the torus partition function to the sphere four-point function. The functional
is specified by kernels Q’Z¢(2), Ri¢(z). For general Ay, the kernels are given in terms

of generalized hypergeometric functions. Rgd) (z) takes the form (5.29), and Qi(ﬁ(z) =
—(1 —2)2A¢_2Ri¢ ( = ) The special cases ¢ = 4 and ¢ = 12 map to Ay = & and Ay = 3.

z—1
The kernels reduce to rational functions of z at these points, see (5.28).
We will see that 3. has the following properties in the context of modular bootstrap:

e For any ¢ > 1, the functions of A given by 8.[®X] and B.[®4] have a simple zero at

c+4
8

Ag = (4.25)

and double zeroes at

4
An:c; tn,  n=1,2,... . (4.26)

e 3.[®X] and B.[®X] are non-negative for A > A,.

o 3.0V

vac

c € (12, 00).

] and B.[®Y. ] both vanish for ¢ = 4,12 and are positive for ¢ € (1,4) and

vac
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Sphere packing

Virasoro mod. boot.

1D 4-point boot.

Relationship

d: dimension of R?

7: torus modulus

c: central charge

7: torus modulus

Ag: external dim.

z: 4-point cross ratio

O(7): theta fn. Z(7): partition fn. G(z): 4-point fn.

_ 9
2(r) =5z
r: distance in R¢ A: exchanged dim. Aip: exchanged dim. Ajp = 2A =72
inr3r 2miAT
X7 (1) = en(f)d xK(r) = ST Ga,p(2): eqn. (5.10)  eqn. (6.25)

2z

Table 1. Dictionary relating the bounds on sphere packing, the Virasoro modular bootstrap and
the four-point function bootstrap on a line.

It follows that for ¢ = 4 and ¢ = 12, f3. is the optimal functional for both the U(1)¢ and Vir,
gap maximization problem. Moreover, for these values of ¢, the functions of x € R?¢ given
by ﬁc[q)gz /2] are precisely the Fourier-odd parts of the magic functions for sphere packing
found by Viazovska [1] and Cohn et al. [2]. We will also exhibit the linear functionals giving
the Fourier-even part.

A result worth highlighting is that from the bootstrap point of view, the prefactor
sin?(7r2/2) in Viazovska’s ansatz has a very natural origin. We will see that it comes
from a double discontinuity, an object which has played a central role in recent analytic
approaches to the conformal bootstrap [63, 64].

For ¢ € (1,4), and ¢ € (12, 00), functional 3. proves the upper bounds
c+4

Ay (C) < 3

c+4

T (4.27)

Ay(e) <

At large c, this improves on the Hellerman bound, Ay (¢c) < §. Away from ¢ = 4,12, these
bounds are not optimal because the functional is positive, rather than zero, when acting on
the modular bootstrap vacuum characters. (It vanishes on the sl(2,R) vacuum conformal
blocks, but the vacuum torus characters contain additional contributions from sl(2,R)
blocks of dimensions 2,4,....) With a bit more work, in section 7.3, we will also find a
functional that vanishes on the vacuum at large ¢, and leads to the asymptotic bounds

C C
Ap(e) < .
8.856 v(9) S 5503

Ap(e) S (4.28)

As noted in the introduction, the latter is slightly weaker than the conjectured true asymp-
totics based on extrapolating the numerical bound, Ay (¢) ~ ¢/9.08 [7].

The relations between various variables and objects entering the three problems (sphere
packing bounds, Virasoro modular bootstrap and the four-point bootstrap on a line) are

summarized in table 1.
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5 Analytic extremal functionals

5.1 Four-point function bootstrap with sl(2,R)

We will now go through the arguments of the previous section in detail. Our strategy
for understanding the modular bootstrap bounds Ay (¢) and Ay (¢) will be to relate them
to another conformal bootstrap setup, for which the optimal bound and the extremal
functionals are known analytically. This exactly-solved case is the conformal bootstrap of
the four-point function of identical primaries restricted to a line. We will now review this
setup and the analytic construction of the corresponding extremal functionals. Most of this
section is a review of results that can be found in [13] and [14], where the reader can find
more details. Only the construction of functionals for the generalized crossing equation in
section 5.4 is new. We use the language closer to the second reference because it is closer
to Viazovska’s construction of the magic functions.

Let us consider a local operator ¢(x) in a unitary CFT in D > 1 dimensions. We will
study the correlation functions of ¢(x) restricted to a spacelike line. The subalgebra of the
D-dimensional conformal algebra which maps such a line to itself is sl(2,R) = so(1,2). We
will take ¢(x) to be primary under this si(2,R). Thus ¢(x) can be e.g. a scalar primary
or a component of a spinning primary of the full CFT. If ¢(x) has bosonic statistics, its
two-point function takes the form

1

(¢(x1)9(x2)) (5.1)
where x; are the positions along the line, x;; = x; — x;, and Ay is the scaling dimension of
¢(z). If ¢(x) has fermionic statistics, we have instead

_ sgn(x12)
‘$12‘2A¢ .

(p(z1)p(22)) (5.2)

Thanks to conformal symmetry, the four-point function can be written in terms of a single
function G(z) as follows:

(P(z1)d(22)P(23)p(24)) = (P(1)D(22))(P(23)P(74))G(2) - (5.3)
Here
z= L1234 (5.4)
T13%24

is the unique cross-ratio of four points on a line. For the Euclidean correlator, z ranges
over real numbers. If ¢(z) is a scalar primary in a D > 1 CFT, we can write the four-point
function in a general (i.e. not necessarily collinear) configuration as follows:

(6(1)b(wa) (ws)d(ws)) = (B(wn)(ws)) ($(ws)d(we) Gz, 2) (5.5)
where w; are positions in R” and z, Z are defined by
s _ w%2w§4 5\ wﬂwgg
2Z = Y (1-2(1-2)= Wk, (5.6)
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In the Euclidean signature, we have z* = z, where the star denotes complex conjugation.
Restricting to collinear configurations is equivalent to setting z = zZ € R

G(z) =G(z,2). (5.7)

G(z, z) is analogous to the torus partition function Z(7,7) for general shape of the torus,
while G(z) is analogous to Z(7) = Z(1, —7), which describes only rectangular tori.

G(z) has singularities at z = 0,1,00, corresponding to the coincident point limits
xry — x134. Symmetry under permutations of the external operators fixes G(z) in the
intervals z € (—00,0) and z € (1,00) in terms of G(z) in the interval z € (0,1). We will
thus focus on G(z) for z € (0,1) without loss of generality from now on. Symmetry under
x1 > x3 implies the crossing symmetry of G(z)

2720G(2) = (1 — 2)722G(1 — 2) . (5.8)

This equation holds no matter whether ¢ has bosonic or fermionic statistics. It is analogous
to the symmetry of the torus partition function under the S transformation.

The four-point function can be expanded using the OPE applied to the product
¢(z1)p(z2). The OPE can be organized into irreducible representations of sl(2,R), giving
rise to

G(2) = Y (cps0)’Gaplz) for z€(0,1). (5.9)
Oexpxe
The sum runs over the si(2,R) primaries appearing in the OPE and cy40 is the corre-
sponding OPE coefficient. Ga,(z) stands for the conformal block capturing the total
contribution of O and its sl(2,R) descendants to the four-point function,

Ga(z) = 229 F1 (A, A 24 7). (5.10)

We assume the theory is unitarity, so we can choose a basis of primary operators such that
coso € R, and (cpp0)? > 0. The existence of the OPE (5.9) guarantees that G(z) can
be analytically continued from z € (0,1) to the upper and lower half-plane and that the
result is a function holomorphic in R = C\(—o0,0] U [1,00). We will denote this analytic
continuation simply G(z). G(z) has a pair of branch cuts at z € (—00,0] and z € [1, 00).
The OPE (5.9) converges to G(z) uniformly in any compact subset of R.

It is natural to ask what is the physical meaning of the limit z — oo of G(z) taken in
the upper or lower half-plane. This limit is known as the Regge, or chaos limit [23, 65].
To see this, we can consider the contour z = 1 + it for t € [0,00). G(1/2) is equal to
the thermal four-point function of the CFTp, quantized on the hyperbolic space Hp_1,
with the four operators inserted at equal distances along the thermal circle. For ¢ > 0,
operators ¢(x2) and ¢(x4) are evolved by a Lorentzian time. G(1/2+1t) thus computes the
out-of-time-order four-point function and ¢ — oo probes its late-time behaviour. It follows
from positivity of (css0)? that G(z) satisfies a boundedness condition in this limit®

G(2)] = O(|2)*2?) as |z| = . (5.11)

5This is not the ‘bound on chaos’ proved in [23] but a simpler bound coming from a Cauchy-Schwartz
inequality. See [63] for further discussion.
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The OPE can be combined with the crossing equation (5.8) to get a sum rule known
as the conformal bootstrap equation

Z (C¢¢O)2FAO (2) =0, (5.12)
Oexpxo
where
Fa(z) = 27229Ga(2) — (1 — 2) 7 229GaA(1 — 2). (5.13)

Equation (5.12) holds everywhere in R, with the sum converging uniformly in any compact
subset of R.

We can ask what is the maximal gap above the identity in the spectrum of scaling
dimensions appearing in the OPE (5.9) compatible with unitarity and the bootstrap equa-
tion. As explained in 2.3, upper bounds on the gap can be produced by exhibiting suitable
linear functionals w acting on holomorphic functions in R [28]. Specifically, if we can find
w satisfying

w[Fo] >0

(5.14)
w[FA] >0 forall A > Ax,

then every unitary solution of (5.12) must contain a primary operator distinct from identity
with A < A,. The conclusion is derived by applying w to (5.12) and swapping the action of
w with the infinite sum over O. The swapping is automatically allowed for all functionals
acting only in the interior of R, such as is the case for the numerical bootstrap functionals
consisting of a finite sum of derivatives at z = % However, the requirement that the
swapping is allowed is an important constraint on functionals whose support touches the
boundary of R, as will be the case for the extremal functionals constructed shortly [57].

The infimum of values A, for which a functional satisfying (5.14) exists is the optimal
upper bound on the gap, denoted Aip(Ag). At the same time, Ajp(Ay) is the maximal gap
above the identity among all solutions to (5.12). Furthermore, there exists a functional
Ba,, called the extremal functional, satisfying (5.14) with A, = Aip(Ay) and the first
condition replaced by SBa, [Fy] = 0. This is because fa , must annihilate all Fa present
in the optimal solution. Indeed, suppose that the optimal solution contains non-identity
primaries with dimensions A, for n =0, 1,..., where Ag = A1p(Ag). Then fa,[Fa] must
have a zero of odd order at A = Ay and zeros of even order at A = A, forn=1,2,... to
ensure S[Fa] > 0 for all A > Ag. Typically, the zero at Ay is first-order and the zeros at
the higher A,, are second-order.

It turns out that for any A, > 0, the solution of (5.12) with maximal gap is the
four-point function of the elementary fields in fermionic mean field theory:

G(z) =1+ (152>2A¢ ey (5.15)

The primary operators appearing in the OPE are the identity and double-trace operators
of dimensions A, = 2A4 +2n+1forn =0,1,...

G(2) =14 (cn)*Ga,(2), (5.16)
n=0
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where the OPE coefficients take the form

2(2A4)3
2 ¢/)2n+1
n)? = . 5.17
(C ) (2n + 1)'(4A¢ + 2n)2n+1 ( )
Clearly, the gap is

Arp(Ag) = 28 1 1. (5.18)

The strategy of the proof of optimality of this solution is to construct the extremal func-
tional S, with the correct structure of zeros and positivity properties. We will now review
the construction in more detail.

5.2 Construction of the extremal functionals

In order to prove that the fermionic mean field theory is indeed the optimal solution
to (5.12), we must construct (for each Ay > 0) a functional 3 such that®

1. Ba,[Fa] has a simple zero at A = 2A4 + 1.
2. Ba,[Fa] has double zeros at A = 2A, +2n+1forn=1,2,....
3. 5A¢[FA] >0 for all A > 2A, + 1.

These properties are reminiscent of another object familiar from recent developments in
the analytic conformal bootstrap: the double discontinuity [63, 64]. For our purposes,
we will define the double discontinuity around z = 0 as follows. Firstly, let us define
G(z) = 27224G(2), so that crossing symmetry reads G(z) = G(1 — z). The (fermionic)
double discontinuity of G (z) is then given by

dDisc[G(2)] = G(2) + (1 — 2) %8¢ gﬂ(ﬁ) ;gw(ziJ for ze(0,1).  (5.19)

This definition agrees with the standard double discontinuity in D > 1, restricted to

z = Z, when the external operators are fermions. See [16] for a more detailed discussion.

The symbols G (z), G¥(z) denote the analytic continuation of G(z) from z € (0,1) to
z

z € (—00,0) above and below the branch point z = 0. The transformation z

z—1
appears because it is a symmetry of the s-channel si(2,R) Casimir. Crucially, this implies

the s-channel conformal blocks are invariant up to a phase,

GQ( : >—€”AGA(2)

z—1

GX( : >:e_i”AGA(z).

z—1

(5.20)

Let us now apply dDisc to the contribution of a single s-channel conformal block of di-
mension A, i.e. to 2 224G (z). Using (5.20), we find that the three terms in (5.19) nicely
combine to give

dDisc[z 22¢Ga(z)] = 2sin? [g(A — 20, — 1) [ 27224 GA(2). (5.21)

SNote the slight change of notation with respect to section 4. There we found it clearer to label the S
functional with the subscript ¢, here we use the subscript Ay, = ¢/8.
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We conclude that for any z € (0,1), dDisc[z~224Ga(2)] is non-negative for all A > 0 and
has double zeros in A at 2A4 + 1 + 27, which includes the spectrum of the fermionic mean
field theory. It is therefore natural to write an ansatz for Sa,[Fa] in the form of an integral

of the double discontinuity times a weight-function QZ¢(2)

1
BaulFal = [ 2}, () aDisclz G ()] -
5.22

= 2sin? |:7;(A - 2A¢ — 1):| /01 dz Qid)(z)Z_QAd’GA(Z) .

Provided Qi (z) > 0 for all z € (0,1) and provided the integral converges, this ansatz gives
@

a non-negative function of A with double zeros at the fermionic double-trace dimensions,

as required by properties 2 and 3 above. In order for A = 2A4 + 1 to be a simple zero of

Ba,[Fa] rather than a double zero, we need to impose Qié(z) ~dz"?as z — 01 for some

d > 0. The integral then has a simple pole at A = 2A4 + 1 since

1
1
dzA28¢—2_ =~ 2
/0 z2z A—2A, -1 (5.23)

This simple pole combines with the double zero of sin® [5(A — 2A4 — 1)] to give a simple

zero, as needed. In order to complete the construction, we need to realize the ansatz (5.22)
as a linear functional acting on Fa(z). We will see that the requirement that this is possible

uniquely fixes Qi¢(z). We claim that the following linear functional does the job”

1 %-l—ioo
Ba, [F] = / 424, ()F () + / 4z R (2)F(2). (5.24)
where Rié(z) is defined from Qid) (z) by
B, ) = —1- 2, () (5.25)

and Qi¢ (z) is required to satisfy several constraints discussed below. Here F(z) is an
arbitrary function holomorphic in R and satisfying F(z) = F(1 — z). Note that the first
contour integral in (5.24) probes the Euclidean region, including the Euclidean OPE limit
z — 1, while the second contour probes the out-of-time-order region % + ¢t, including the
Regge/chaos limit z — ico. When A > 2A, + 1, there is a contour deformation which
takes Ba,[Fa] from the form (5.24) to the desired form (5.22). The strategy is to deform
the contour in the second term in (5.24) so that it lies on the real axis. The contour
deformation is possible if and only if Q’Zd}(z) satisfies the following two constraints:

1. Ri¢(z) =—(1- Z)2A¢_2Qi¢ (ﬁ) is a holomorphic function in C\[0, 1] satisfying

R}, (2) = R}, (1-2). (5.26)

"In reference [14], QZ¢ (2) and Rid) (z) were denoted respectively gs(z) and fz(z).
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2. Qid) (z) satisfies the functional equation

QA (1) + Ay (2
QL (2) + @, (1—2) — (1 — )22 il 1>2 il 1):0 (5.27)

for z € (0,1).

It follows from constraint 1 that Qid) (z) is a holomorphic function in R. Constraint 2
essentially says that the double discontinuity of Q&» (z) around z = 0 must vanish. Finally,

we must impose constraints on the asymptotic behaviour of QZ¢(2) as z — 0,1:
3. Qi¢ (2) = O((1 — 2)?2%) as z — 1 or equivalently Ri(p(z) = 0(272) as z — oo.

4. Qg¢ (z) ~ %2_2 as z — 0.

Constraint 3 is needed to ensure that 8a,[Fa] is finite for all A > 0 and also that 8a, can
be swapped with the OPE sum although the contours in the definition (5.24) reach the
boundary of R.2 As discussed above, constraint 4 guarantees that Ba o [FA] has a simple
zero at A = 2A4 + 1 and unit slope there.

Q’Z¢ (2) is uniquely fixed by constraints 1-4. For Ay = 1/2 and Ay = 3/2, Q’Z(ﬁ(z) is
a rational function of z:

1 g,y (1=2)(22°+2+2) 5,y Blz—1)z+2
fo=3: @)= 232 AR R Ca V=R

3 5, (1—2P(22+32+42) s, Tz—1)z+2 '
Ro=g:  @l= 2 B (S T o

For general Ay, Ri¢ (z) is given in terms of generalized hypergeometric functions

~ 13 3 1
Fo( == 2 285+ 2 Ay +1,A 42 ——
32( 2727 ¢+2a ¢+ ’ ¢+ 3 4w>

9 ~ /15 ) 1
— 3F: —,2A — A 2, A 3 ——
+ 3 2( ¢+2a ¢+ ) ¢+ ) 4w>:|7

16w 272
(5.29)
where w = z(z — 1), 3F» stands for the reqularized hypergeometric function® and
I'4A4+4
R(Ay) = —UBs +4) (5.30)

- 28A¢+5F(A¢ + 1)2 :

It can be checked that Qid)(z) > 0 for all z € (0,1) and all Ay > 0, which guarantees
Bay[Fa] > 0 for all A > 2A4 + 1. Finally, note that our S, automatically annihilates the
identity vector Fy(z) as a result of crossing symmetry of the fermionic mean-field four-point
function (5.15) since it already annihilates Foa,42n+1(2) for alln =0,1,.. ..

8We need the integrals to be sufficiently suppressed near the boundary of R to ensure the functional
satisfies the swapping property. See [14] for a detailed discussion of how constraint 3 arises.

°The regularized hypergeometric function is defined as pﬁq(al, coyapybi, .. bgs 2) =
[L(b1) - T(bg)] 'pFylar,...,ap;b1,..., be;2).

~ 99 —



5.3 The o functional

It will be useful to review another interesting functional introduced in [14], called « in
that reference. Just like Ba,[Fa], also aa,[Fa] has double zeros at A = 2A4 + 2n + 1 for
n=1,2,..., but instead of

BasFan,+1] =0,  Ba,[0aFen,+1] =1, (5.31)

we have

@A¢[F2A¢+1] =1, OCA¢[8AF2A¢+1] =0. (5.32)
Again, there is a unique functional with these properties. Several expressions simplify if
we work instead with the following linear combination of aa s and SBa o

~ 3 1 1
where H(z) is the harmonic number. aa, is also defined as in (5.24) using a suitable
weight-function Qi(b(z). Q%d}(z) now needs to satisfy the same properties 1-3 above, with
property 4 replaced by

Q) =5 [log(z) " 2H<A¢, " ;) — SH(B) ~log(2) + 0(1)] 2 (5.34)

as z — 07. The extra log(z) means that the integral in (5.22) develops a double pole at
A = 2A4 + 1, which cancels against the double zero of the prefactor, leading to nonzero

an,[Foa,+1]. The weight-function Rg(b(z) =—(1- z)2A¢*2Qg¢ ( z ) which solves all

z—1
these constraints reads

20z — 2)(z + 1)

5o _ (11 3 1
RA¢(’Z) _H(Ad)) (2Z — 1)w3/2 |:3F2 <_7 _572A¢ + §7A¢ + 27A¢ + 27 _4’U)>

2

(2A¢ + 3)(2A¢ + 5) ~ (11 51 1
= = 2A,+2:A A L 5.35
16w 382 (3090286 + 51 8o 3, 8¢ + 3 =0 (5.35)
3(404+5) ~ (3 3 7 1
_Ee T R (22 9A, 4+ S A A A+ 4 —— ).
5602 P2\ gt TR T B T

Unlike A, @a, does not annihilate the identity vector Fy. Indeed, if we apply aa, to the
crossing equation for the fermionic mean field, we get

aAq{; [FO] = _(01)262A¢ [F2A¢+1] - _2A¢’ (536)

Among other things, aa, can be used to make the proof of extremality of the fermionic
mean field fully rigorous. Indeed, the extremal functional Sa, does not rule out the exis-
tence of potential solutions to crossing with spectrum consisting of identity and a subset
of the fermionic mean field spectrum not including the operator at A = 2A4 + 1. To fix
this, we can consider the family of functionals Sa, — eaa, for small and positive €. This
functional is positive when acting on identity, and non-negative for A > 2A, + 1 + 6(¢),
where §(e) — 01 as € — 07. Thus, every unitary solution to crossing (5.12) must have a
gap at most 2A4 + 1.
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5.4 Functionals for a generalized crossing equation

The functionals aa, and Ba, constructed above are useful when both sides of the crossing
equation involve the same set of operators with identical coefficients. For the applications
to the sphere-packing problem, it will be important to consider a generalization of the
crossing equation where the s- and t-channel sum are allowed to be independent

D PReGAL(2) = Y p(1—2) PReGa, (1 - 2). (5.37)
o P

We will assume that both sums start with the identity operator A = 0, which appears
with unit coefficient on both sides. We would like to maximize the gap in the s-channel
with no constraint on the t-channel spectrum, assuming c%f),c% > (. This problem is the
sl(2,R) analogue of the sphere-packing bootstrap problem discussed in section 3.2, while the
standard crossing equation (5.12) is the analogue of the sphere-packing bootstrap restricted
to isodual lattices.
Let us denote
G (2) = 2 224GA(2)
GD(z)=(1—2)22Ga(1 - 2).

In order to prove an upper bound A, on the s-channel gap, we need to construct a linear

(5.38)

functional w such that
1. w[G§) > w[GP)
2. w[GY)) >0 for all A > A,
3. WGV <0forall A>0

For the extremal functional, the first condition is replaced by w[éé‘s)] = w[éét)]. We
conjecture that the s-channel gap in this more general problem is still maximized by the
fermionic mean field theory, with the same spectrum and OPE coeflicients in both channels.
This means that the extremal functional annihilates GésA)¢ yony1 and ngqb yopy forn =

0,1,.... We should then anticipate the following structure of zeros
1. w[ég)] has a simple zero at A = 2A4 + 1 with positive slope.
2. w[ég)] has double zeros for all A = 2A4 + 2n + 1 where n =1,2,....
3. w[ég)] has double zeros for all A =2A4 +2n + 1 where n =0,1,....

We will construct the extremal functional by decomposing it into parts symmetric and
antisymmetric under z <+ 1 — 2

WIF()] = wy |ZELE 5(1 - Z>] bw [HZ) - 5(1 —2) (5.39)
Let us denote
FE(2) =2729Ga(2) £ (1 — 2) 722 Ga(1 — 2), (5.40)
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so that

W[GY) = [FA ()] + w—[Fx (2)]

Lo (5.41)
Gty _ WA ()] — w-[F (2)]
We will take w_ = fa,, i.e. the extremal functional for the standard crossing problem

discussed above. It remains to fix wy, which we will denote 5&) = w4 from now on.

6&) [Fx] must have the following structure of zeros
1. BX¢ [FX] has a simple zero at A = 2A, + 1 with unit slope.
2. BX¢ [FZ] has double zeros for all A = 2A, 4+ 2n + 1 where n =1,2,. ...

The construction of B& proceeds along the same lines as the construction of Sa,. We first
make the ansatz

T 1
5& [FX] = 2sin? [2(A — 20, — 1)} /0 dz QQZ(Z)Z—M(»GA(Z) (5.42)

and demand Qi: (z) ~ 2772272 as z — 07 so that the pole of the integral at A =2A4+1
produces a simple zero of ﬁgd) [FK] with a unit derivative. Again, this ansatz arises from a

genuine linear functional of the form

1 1 L tico
BE,IF4] = / 4= Q5 () F () + / U R ()F ), (5.43)
2 2
where Ri:(z) = —(1- z)2A¢_2Q§; (Zfl), and where Qit(z) is required to satisfy a

set of functional constraints. Here F,(z) is any function holomorphic in R satisfying
Fi(z) = Fr(1 — z). The constraints on Qi: (z) are essentially the same as those on

Q&)(z), with a few extra minus signs sprinkled in
1. Ri—;(z) =—(1- z)QAtFQQi: < z > is a holomorphic function in C\[0, 1] satisfying

z—1

RA"(2) = —RX(1-2). (5.44)

2. Qi:(z) satisfies the functional equation

B+ B+
QX () + ok (4

5 ) =0  (5.45)

QA (2) = QAT (1 —2) — (1= 27
for z € (0,1).
3. Qgi(z) = O((1 — 2)*2¢) as z — 1 or equivalently Riﬁ(z) = 0(272) as z — oo.

4. Qi;(z) ~ 22 2as 2 — 0t

T2
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We can solve for Qiz(z) for general Ay > 0 using a similar procedure as used in [14] to

find Q’&)(z). The details are in appendix B. We find the unique solution

ANy +8)k (Ap+5) =
R5+(z):( ot )H( ¢’,+ 2) F (_;’;” 5

5 3 1
S20g+ Mg+ o, A +;—>, 5.46
B (404 + 5)w? ot gifetpRetgitg, ) (540

where w = z(z — 1). The formula is valid for z > 1 and extended to C\[0, 1] by analytic
continuation from there. For example for Ay = 1/2, this reduces to

{(\/E—i— 1)% (22 — 3z +2) K[— (14\/\/5)2} APt 1)E[— (14£)2] }2

27m2(z — 1)223/2 ’
(5.47)
where K(z) and E(z) are respectively the complete elliptic integrals of the first and sec-
ond kind.
Our contruction guarantees that w, given by (5.39) has the right structure of simple

Q1" (2) =

and double zeros on the fermionic mean field operators in both channels. However, we still
need to check that it has the right positivity properties. While we could not find a general
proof of the correct positivity properties for arbitrary Ay > 0, we checked that they are
satisfied for many different values of Ay and expect that they are valid for all Ay, > 0.

6 Analytic functionals for modular bootstrap and sphere packing

6.1 From 7 to z

Although the functionals a and g of the previous section were derived in the context of
the 1D four-point function bootstrap, they are also very useful for the modular bootstrap.
This is because the torus partition function of a 2D CFT can be equivalently thought of
as the sphere four-point function of twist operators in the Zs symmetric product orbifold
of the CFT. To see this, note that a complex torus of modulus 7 can be presented as the
following curve in C?

y* = a(z = A(n)(z - 1), (6.1)

where (z,y) € C? and
_ by(n)*
Alr) = O3(1)* "

Here 02(7) and 03(7) are theta functions reviewed in appendix A. In other words, the torus

(6.2)

is a double cover of the four-punctured sphere with punctures at 0, A(7), 1 and oo, where
the covering map sends (z,y) — .

Let us denote the original CFT by T and the product orbifold of two copies of T by
Sym?(7). The above covering gives us the following recipe for computing the torus partition
function of 7. Sym?(7) contains the Z, twist operator oy, which has the property that
going once around it is equivalent to switching the two copies of 7.1 When 7 has central

0\ ore precisely, we take o2 to be the vacuum in the twisted sector.
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charge ¢, oy is a scalar conformal primary of scaling dimension

c
Ay =—. .

Consider Sym?(7) on S2. If we place four twist operators at x = 0, \(7), 1, 00, the two
copies of 7 will be connected in the right way to act as a single copy of 7 living on the
curve (6.1). This means that the torus partition function of 7 is simply related to the
S? four-point function of o3. The only subtlety is that the partition function Z(r,7) is
defined on the torus with the flat metric, which is equal to the pull-back metric from flat
C\{0,\(7),1} only up to a Weyl transformation. Let us write the four-point function of
twist operators in flat space as

(o2(w1)o2(we)o2(ws)oa(wa)) = (oa(wi)oa(w))(o2(ws)o2(wa))G(2, 2) - (6.4)
Then G(z, z) is related to Z(7,7) as follows [62]

22

S PR )

Z(1,7), (6.5)

where z = A(7) and z = A(—7). The prefactor comes from the Weyl transformation
between the two metrics and nonzero conformal weight of the twist operators.

For the Euclidean partition function computed on physical tori, we have 7 = 7%, which
maps to the four-point function G(z, z) computed in Euclidean signature, i.e. for z = z*. As
discussed earlier, Z(7,7T) can in fact be analytically continued to a function of independent
complex variables 7 and 7, which is holomorphic in H x H_. This produces an analytic
continuation of G(z, z) to arbitrary independent complex z and Zz.

Let us describe the mapping 7 +— z = A(7) in more detail. Firstly, there is a non-trivial
group of conformal automorphisms of H; which leave A(7) invariant. This group consists
of all matrices in SL(2,7Z) which are congruent to the identity matrix modulo 2. It is
denoted I'(2).

A (g;jg) = A(T) A (Z Z) eSL(2,R) & <‘C‘ Z) eT(2). (6.6)

The fundamental domain for I'(2) can be chosen as the region in H; bounded by the two
lines Re(7) = 1 and Re(7) = —1 and the two semi-circles of radius 1/2 centered at 7 = 1/2
and 7 = —1/2. The interior of this region maps to R = C\(—o0,0] U [1,00) under (7).
The cusps of the fundamental domain get mapped as follows

Aico) =0
A(0) =1 (6.7)
A(£1) = +ico.

The boundary vertical lines Re(7) = 1 and Re(7) = —1 both map to z € (—o0,0), while
the boundary semicircles both map to z € (1,00). The fundamental domain as well as the
details of the map from 7 to z are illustrated in figure 4.
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Figure 4. Left: the fundamental domain of I'(2) in the upper half-plane. Right: its image in the
space of the four-point cross-ratio z under the mapping 7 — A(7). The image of the interior of the
fundamental domain is the complex plane without the branch cuts (—o0, 0] and [1,00). The four
boundary segments are mapped as shown by the different arrows.

In other words, the low-temperature limit 7 — ico, 7 — —too maps to the s-channel
OPE limit 2,z — 0, while the high-temperature limit 7,7 — 0 maps to the t-channel OPE
limit z,Z — 1. The u-channel OPE limit z — {00, Z — —ioco corresponds to 7,7 — 1.

More generally, Z(7,7) is potentially singular for any 7,7 € Q. What is the physical
interpretation of these singularities in terms of the four-point function G(z,2)? If 7 and 7
approach the same rational number, this is equivalent to one of the OPE limits above by a
I'(2) transformation. What about when 7 and 7 approach distinct rational numbers? These
can be understood as various interesting limits of G(z, z) in Lorentzian kinematics. Indeed,
if we fix 7 and move 7 continuously from the inside to the outside of the fundamental domain
of I'(2), z will travel around the branch points at z = 0 or z = 1. This corresponds to
a situation when one operator in the four-point function crosses the light-cone of another
operator. By moving 7 and 7 independently on the upper half-plane, we can reach an
arbitrary Wightman function of the four twist operators on the Lorentzian cylinder, in any
ordering. For example, the Regge limits have the following interpretation on H, x H_:

s-channel Regge: 2,z —0after 201 < 71— —1/2,7— —ico
t-channel Regge: 2,z — lafterz00 & 72, 7—0 (6.8)

u-channel Regge: 2,z — 100 & 721, 7= -1

In summary, while G(z, Z) is not a single-valued function of z, z unless z = z*, by lifting

it to Z(7,7), we get a single-valued function in Hy x H_, which is also the full region of

analyticity of the correlator.!!

"The perspective of lifting a general four-point function to a function on Hy x H_ using (6.2) was
used in [66] to show that correlators in local and unitary 2D CFTs have no ‘bulk-point’ singularities. The
argument only works in 2D because the expansion of the correlator in Virasoro conformal blocks converges
on the whole upper half-plane, whereas the expansion in global conformal blocks only converges in the
fundamental domain of T'(2). It would be interesting to analyze whether four-point functions in general
local unitary CFTs are always analytic in H; x H_ and whether this perspective can be useful in the
conformal bootstrap.
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It is not hard to see that modular invariance of Z(7,7) becomes crossing symmetry
of G(#,%). Invariance under the I'(2) subgroup of SL(2,Z) is manifest since G(z,Z) is
single-valued in the Euclidean signature. It remains to understand invariance under the

quotient
SL(2,Z)/T'(2) = S5. (6.9)

The three transpositions in S3 have representatives S, T and ST'S in PSL(2,Z). The
two 3-cycles have representatives ST and T'S. Under the mapping A(7), this S3 simply
permutes the punctures at 0,1, co:

Ao T(r) = A(i@ :
o STS(r) = A(lT) (6.10)

Mo ST(r) = l_i(T)

NoTS(r) = A(;()T; !

In particular, S becomes the usual crossing transformation z <+ 1 — z and T becomes the
transformation z <> z/(z — 1), which corresponds to switching operators 1 and 2. This is
an order-two transformation because T2 € I'(2).

Recall that we are interested in the spinless modular bootstrap, which amounts to
restricting 7 = —7 € H,. This maps to the restriction z = z € R at the level of the
four-point function. As above, we write Z(7) = Z(7,—7) and G(z) = G(z,2). It follows
from (6.5) that

25G(2) = [282(1 — 2)] 2 Z(r(2)) (6.11)

where 7(z) is a left inverse of A\(7) sending z € R to the fundamental domain of I'(2)

K(1-2)
K(z)

T(z) =1 (6.12)

Here K (z) is the elliptic integral

_Lr dt _ e (L L
K(Z) = 2/0 \/t(l _t)(l _tz) = 9 2F1 <2, 2,1,2) . (613)

The only transformation in the modular group which respects the identification 7 = —7 is

S. It becomes the crossing symmetry of the four-point function
2TiG(2) = (1—2)71G(1 — 2). (6.14)

6.2 Torus characters and conformal blocks

The expansion of the torus partition function into characters maps to the OPE of the four-
point function of twist operators. However, the torus characters do not simply map to the
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sl(2,R) conformal blocks appropriate for the 1D bootstrap discussed in section 5. This is
because Sym?(7) has a large chiral algebra and the torus characters become the conformal
blocks of the full chiral algebra. In general, if 7 has a (left-moving) chiral symmetry algebra
A, then the left-moving chiral algebra of Sym?(7) is (A ® A)/Za. This means that under
the mapping (6.2) the torus characters appropriate for chiral algebra A become the sphere
conformal blocks for the chiral algebra (A ® A)/Zs and external twist operators.

It follows that local operators in theory 7 which are primary under A (and its right-
moving counterpart) must be in one-to-one correspondence with local operators of Sym?(T)
which are primary under (A ® A)/Zy (and its right-moving counterpart) and which appear
in the OPE of two twist operators. To see this in a different way, first note that the g9 X o9
OPE can only contain operators from the untwisted sector. There is a basis for primaries
in the untwisted sector consisting of P;; = (0;, O;) + (O;, O;), where O; span a basis of
primaries of 7. We claim that P;; appears in the o9 X 09 OPE if and only if ¢ = j. Indeed,
we can compute the three-point function (oe09P;;) by going to the covering space, where
it becomes the sphere two-point function (O;0;) in theory 7. This two-point function is
nonzero if and only if ¢ = j. The conclusion is that

09 X 09 = Z((’)i, O;) + descendants,, (6.15)
i
where the sum runs over primaries of 7. Let us recall the expansion of the partition
function in the characters of A

Z(r) =) xaA(n). (6.16)
We have explained that this becomes the OPE of G(z)

G(z) = > G (2). (617)

where G?Ai(z) is the conformal block capturing the contributions of (O;, O;) and all of its
descendants under both left- and right-moving (A ® A)/Zs (recall that we are working on
the diagonal locus z = z). We use 2A instead of A as the label of the conformal block
since this is the scaling dimension of the primary under the dilatation operator of Sym? (7).
Using (6.14), we get

sl

2
) = | —s| AEE), (6.15)
The global conformal algebra sl(2,R) of the spacelike line to which the twist operators
are restricted is a subalgebra of the full [(A® A)/Zs]; x [(A® A)/Zs]p. It follows that
G4\ () admits an expansion into the sl(2,R) conformal blocks (5.10) considered in the

previous section
Goa(2) = ZanG2A+2n(z) : (6.19)
n=0

Only si(2,R) blocks with dimensions of the form 2A +2m appear in the expansion because
the contribution of odd-level descandants is fully contained in the individual sl(2,R) blocks.
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It is instructive to prove this claim using the transformation of Ga(z) under z — z/(z —1),
see (5.20). First, note that ¢(z) = e*™7(*) admits a Taylor expansion in z, starting with z2:
222920 1325 119892°

7
_z = , 2
9(2) = 556+ 256 * 3102 T 2096 T 2104304 T ) (6.20)

Recall the general form of the torus character for arbitrary A

XA(T) = ¢~ 12

1+> quﬂ'] : (6.21)
j=1

It follows from (6.18) that G4\ (z) admits an expansion in powers of z of the form 224+
with j = 0,1,.... Such series can always be rearranged to a sum over sl/(2,R) blocks
[e.e]
Goa(2) =Y ¢;Ganyj(2). (6.22)
j=0

It remains to be demonstrated that only terms with j even appear in the sum. We will
now use the transformation (5.20) of Gaa4;j(2):

a z j 2T
2A+j <z_1> = (=1)7e*™ 2 Gon1j(2) . (6.23)

At the same time, it is not difficult to show from (6.18) that G4\ (2) satisfies

) z e
G124A (z—l) = 62 AGéA(Z) . (624)

Indeed, the continuation from z to — z/(z — 1) above z = 0 maps to the continuation
7+ 7 + 1, under which ¢® picks up a phase ¢*™2. Equation (6.24) is only compatible
with (6.22) if only terms with even j appear.

Furthermore, the coefficients a,, in (6.19) have to be positive. This is because G4 (2)
with z € (0,1) can be interpreted as the norm of a state in radial quantization, and (6.19)
expresses this norm as a sum over norms of that state projected to orthogonal subspaces
corresponding to irreducible representations of sl(2,R). For concreteness, when A is re-
spectively U(1)¢ and Vir,, we obtain

8A2 — 6A +4Ac+c
64(4A—{—1) G2A+2(2)+...:|

16A%2 —8A +4Ac+c+1
128(4A + 1)

GYa(z) = 275 [Gm(z) n
(6.25)

GXA(Z) =984 |:G2A(Z) + G2A+2(Z> + .. :| .
Recalling ¢ > 1, A > 0, the coefficient shown are indeed positive.

In summary, we have explained that the spinless modular bootstrap in the presence
of chiral algebra A; ® Ag takes the form of the four-point function bootstrap with four
external operators of dimension ¢/8 restricted to a line, with conformal blocks related to the
sl(2,R) blocks by (6.19). This will allow us to straightforwardly use the analytic extremal
functionals reviewed in section 5 for the modular bootstrap problem.
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6.3 Saturation at ¢ = 4

Let us consider the modular bootstrap equation in the presence of chiral algebra Ap ® ARg.
We have explained that it can be cast as a four-point crossing equation

FA (2) + Z Fi\ (2)=0, (6.26)

where . .
Fyp(2) = 27 3Gop(2) — (1 — 2)73Goa(1 — 2)

= [2%2(1 - 2)] 7 [xA(r(2) — xA(-1/7(2))] (6.27)

Fite(2) = [252(1 = 2)] 77 ke (7(2) — xibe (<1/7(2))]

We will now specialize the discussion to A = U(1)¢ and A = Vir,. We would like to learn
as much as possible about the optimal upper bounds on the gap Ay (c) and Ay (c) using
our knowledge about the sl(2,R) crossing problem. Firstly, note that a unitary solution
of the U(1)¢ and Vir, modular problem with gap A gives a unitary solution of the sl(2,R)
crossing problem with gap min(2A,2). The gap can not be greater than 2 because the torus
vacuum character contains an sl(2,R) block of dimension 2 in its decomposition. Since the
optimal upper bound on the gap in the s/(2, R) problem with external dimension Ay = g
is 2A4 +1 = ¢+ 1, we find for all ¢ > 1

1
min(Agy (c), 1) < g +5- (6.28)
The right-hand side is smaller than 1 for ¢ < 4, so that in that case we must in fact have
1
Apv(c) < §+ 5 for ce(14). (6.29)

Let us now show that for ¢ = 4, the optimal solutions of the U(1)¢, Vir. and sl(2,R)
bootstrap all coincide, which in particular implies

Ay(d) =Ay(4)=1. (6.30)
¢ = 4 maps to crossing with A, = % We already know that in that case the optimal
solution of sl(2,R) bootstrap is the fermionic mean field correlator

z 1—2z+22
—1 =t 31
G(s) =14 2 o= =2 (6:31)

which decomposes into sl(2,R) blocks of dimensions 0,2,4,.... Using (6.11), this maps to
the partition function

8 — T % T
2= | 2525 s = 28

where F4(7) is an Eisenstein series and 7(7) is the Dedekind eta function, both of which

(6.32)

are reviewed in appendix A. The last equality follows from

()4
o3
2E4(7) = 03(7)% + 05(7)% + 04(7)® (6.33)

240(7)' = 05()"03(7) 0a(7)" .

-39 —



The decomposition of Z(7) into U(1)* or Viry characters contains the vacuum and operators
of dimensions 1,2,.... This is of course consistent with the fact that the decomposition
into sl(2,R) conformal blocks contains only dimensions 0,2,4,.... Furthermore, one can
see that the coefficients in the U(1)* or Viry decompositions are positive. For example, the
U(1)* characters are equal to n(7)~8¢”, so that decomposition of Z(r) simply amounts
to the power series of E4(7) around ¢ = 0, which is known to have positive coefficients.
Explicitly, we find

Z(1) = XY (1) + 240xY (1) + 21605 (7) + 6720xY (7) + . ..

6.34
XV (T) + 2481 (T) + 3626y (1) + 26258y (7) + ... . (6:34)

A\
—~
\]
~—
I

One may wonder whether Z(7) arises as a partition function of a full-fledged unitary CFT

after specializing to 7 = —7. The answer is yes, the CFT being 8 free fermions with

diagonal GSO projection, as pointed out in [6]. The full partition function reads
02(7)"02(—7)" + 03(7)103(—7)" + 04(7)*04(—7)*

Z(1,7) = 2n(7)in(—7) . (6.35)

From the point of view of the sphere-packing problem, Z(7) corresponds to the Eg lattice

packing. Indeed, the theta function of the Ejg lattice is precisely the Eisenstein series Fy(7)

=) et (6.36)
TEAg
where Ag stands for the Eg lattice.

The nontrivial task is to show that there are no unitary solutions of (6.26) for ¢ = 4 with
gap greater than one. This can be proven using the same extremal functional which also
proves extremality of the free fermion for the si(2,R) problem, i.e. functional § reviewed
in section 5. Let us keep ¢ = 8A; general for now and consider the action of Sa, on the
functions FZUA’V(Z) defined in (6.27). Recall from (6.19) that

oo
F(2) = alV Foatan(2), (6.37)
n=0

where Fa(z) are the functions entering the sl(2,R) bootstrap and a5 > 0. Let us also
recall the definition of functional 8a,, i.e. (5.24) which we repeat here for convenience

B

1 %—i—ioo
1= [ d= Qg ()7 (2) + ;ﬁ dz R:(2)F (), (6.38)

z

where R? (2) = —-(1- z)i‘%)ﬁ( fl) is given in (5.29) for general c. Let us act with Be
8 8
on F2UA7V(Z) and use the series (6.37). Sc can be swapped with the sum over n thanks to

the dominated convergence theorem (the theorem applies since an > 0), giving

Be[FyR'] = ZaU Be[Faatan] - (6.39)
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Now, B¢[Fa(z)] is non-negative for A > ¢ +1 with a simple zero at A = ¢ +1 and double
zeros at A = 7 +2n+ 1 for n = 1,2,.... It follows that Bg [FQUA’V] is non-negative for
A > %, has a simple zero at A = % and double zeros at A = % +nforn=12,....
There is also the following more direct way to reach this conclusion. When Bg acts on

FQUA’V, we can use the same contour deformation as when it acts on Fa to show that for
A g

1
Be [FQUA’V} = 25in? [77 <A - —18— 4>} /0 dz Qg(z)z_iGg’AV(z) . (6.40)

Indeed, the contour deformation argument only relies on the transformation property of

conformal blocks (5.20), which also holds for Gg’AV(z), see (6.24). The integral in the last

expression converges for A > % and both Q2 (z) and GQU’AV(Z) are positive for z € (0,1),
8

thus manifesting the required positivity of 3 [FQUA’V] and its structure of zeros.
Next, let us show that for ¢ = 4

BilFad1=0. (6.41)

vac

This follows directly from (6.39) and the facts that Fl decomposes into Fa, with n =
0,1,..., which are all annihilated by 8a, when Ay = % The same conclusion also follows
from applying 1 to (6.26) expressing S-invariance of the partition function (6.32) and

noting that 3 1 annihilates all Fg;v for n =1,2,..., as proven in the above.

We conclude that S 1 is the extremal functional for gap maximization for both U(1)4
and Viry modular bootstrap. The existence of 1 implies that every unitary solution of
these modular bootstrap equations either has a ggp above the vacuum smaller than one,
or its spectrum consists of the vacuum and a (possibly proper) subset of positive integers.
In the latter case, n(7)®Z(7) has a Fourier expansion into non-negative integer powers of ¢
and therefore must be a modular form of weight 4. But E4(7) is the unique such modular
form up to multiplication, which concludes the proof that Ay (4) = Ay (4) = 1.

6.4 Saturation at ¢ = 12

The underlying reason why the optimal solutions of the three bootstrap problems coincide
for ¢ = 4 is that the spectrum of sl(2,R) blocks present in the decomposition of the U(1)*
and Viry vacuum blocks matches the spectrum of sl(2,R) blocks in the free fermion four-
point function at Ay = % We will now use a small modification of this idea to show that
the optimal bounds coincide also for ¢ = 12, i.e. that

Ap(12) = Ay (12) = 2. (6.42)

¢ =12 maps to Ay = %, for which the fermionic mean field correlator takes the form

3 .
G(z) =1+ (%) -2 (6.43)
Again, we can make the four-point function into a partition function using (6.11)
28(1 — A :
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Here j(7) is the modular j-function, and one arrives at the last equation by using

2?2 = A () + 1P

i(T) = A4
AU TEE e 049
Let us recall the Fourier expansion of j(7)
1
§(7) = = + 744 + 196884q + 21493760¢2 + O(¢?) . (6.46)

q

When we decompose Z(7) = j(7) — 768 into U(1)'2 or Virjy characters, we find a primary
of dimension one, whereas we want the gap equal to two. This problem can be easily fixed
by adding an appropriate constant to Z(7), which of course does not spoil its S-invariance.
For U(1)!2, we get the partition function

Zy(r) = j(1) — 720 = XU (7) + 196560x5 (1) + 16773120xY (7) + ... . (6.47)
For Viryo, we take instead
Zy (1) = j(1) — 744 = x4 (T) + 196882xY (1) + 21099994 XY (1) + . .. . (6.48)

What is the physical interpretation of these partition functions? 1(7)?*Zy(7) is the theta
function of the Leech lattice

n(n*zy(r) =Y ™. (6.49)

IEGA24

This has to be the case since the Leech lattice is the unique even self-dual lattice in R4
with no vector of length v/2. Zy-(7) is the partition function of a chiral half of the Monster
CFT with left- and right-moving central charges ¢ = 24 and ¢ = 0 [45]. These realizations
of Zyy(7) also show that all higher coefficients in their decompositions (6.47), (6.48) are
non-negative. One may wonder if Z(7) can arise as a partition function of a unitary CEFT
with ¢ = ¢ = 12, specialized to 7 = —7. In fact, this possibility was excluded by the
numerical studies of [6], which showed that the upper bound on the gap coming from full
modular bootstrap at ¢ = ¢ = 12 is strictly less than two.

In order to prove optimality of the above partition functions, we use the exact same
logic as we did for ¢ = 4. We simply apply the extremal functional ﬁ% to the functions

FQUA’V(Z). It follows from (6.40) that (s [FQUA’V(Z)] is non-negative for A > 2, has a simple
zero at A = 2 and double zeros at A Z 3,4,.... Since we constructed explicit partition
functions whose spectrum consists of the vacuum and A = 2,3,..., it follows from their
S-invariance that 6% [FU.(2)] = ﬂ% [FY (2)] = 0. Therefore, B% is the extremal functional
also for the U(1)'2 and Virjs problems. While 3 3 in principle allows for partition functions
whose spectrum is a proper subset of the extremal spectrum A = 2,3,..., it is easy to see
they do not exist. Indeed, the difference between such a partition function and Zy v (1)
would have to be a modular form for SL(2,Z) of weight zero, with g-expansion starting at
¢?, and so would have to vanish identically.
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As a side note, the above results explain why (3[Fa] has a simple zero at A = 2.
This zero may seem accidental since the fermionic meQan field correlator does not contain
any operator at this dimension. However, the partition functions (6.47) and (6.48) do
contain Gz(z) in their sl(2,R) block decomposition and S 3 [F5] = 0 thus follows from their
S-invariance, together with B% [Fp] = 0 and B% [Fo,] =0 forn=2,3,....

6.5 Solution of the sphere-packing problem in R® and R?*

Let us see compare the above results to the solution of the sphere packing problem in
R® [1] and R?* [2]. Recall that the linear programming bounds on sphere packing in R? are
equivalent to the modular bootstrap bound with U(l)% characters. Therefore, the magic
functions constructed by Viazovska in R® and by Cohn et al. in R?4 should be equal to
the action of extremal functionals on the functions Fqg (z) for ¢ = 4 and ¢ = 12, where r
is the norm of a vector in R?. Recall that the magic functions take the form of integrals
of ei™*7 against a judiciously chosen weight functions in the upper half-plane. Since the
extremal functionals are written as contour integrals in the z variable, we can prove they
are equivalent to the magic functions simply by a change of variables from z = A(7) to 7.

Let us start in eight dimensions.'? We claim that the Fourier-odd radial function g(r)

of Viazovska is a constant multiple of the action of the extremal functional 31 on Fr[é(z)
2

1

g(r) = Tgﬂé [F5]. (6.50)

This claim can be most easily checked using the form of g(r) which manifests the sin?(7r2/2)
prefactor, i.e. equation (3.24)

g(r) = isin®(rr2/2) | G(r)e"™ Tdr, (6.51)
0
where 4( 8 44 8)
3204 (565 — 50202 + 26
™) 1570568 (6.52)
This should be compared with (6.40), which gives
1
8y1F8) = 2t (er/2) [ Q22551 — ) Il o(r(2))d:
2 0 2
) (6.53)
1 .
— 2sin?(mr2/2) / Q° (2)[282(1 = 2)] S (r(2)) BT g
0 2
with Qg (z) given in the first line of (5.28)
2
1—2)(222+2+2
QY= G B ret D), (654

12We use the notation of section 3.3, i.e. the Cohn-Elkies function f(r) decomposes as f(r) = h(r) — g(r),
where h(r) and g(r) are respectively Fourier-even and Fourier-odd. Viazovska’s paper [1] uses instead

functions a(r) and b(r), which are related to our h(r) and g(r) as follows: h(r) = gZ-a(r), g(r) = 5;5-b(r).
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Figure 5. Left: contour integral definition of the analytic extremal functional in the z-plane,
see (5.24), (6.59). Right: Viazovska’s contour integral definition of the magic functions, see (6.57).
The two definitions are related by the transformation z = A(7). The contours labelled by the same
Roman numerals get mapped to each other.

In order to show the equivalence of (6.51) and (6.53), it remains to change coordinates in
the latter from z = A\(7) to 7. The integration contour z € (0,1) maps to 7 € iR5( as
needed. The measure transforms as follows

. Oa(1)*0u(r)*
dz = ZTFWdT. (6.55)
Therefore, the claim (6.50) is equivalent to
70o(7)404(7)* !
6(r) = -2 A - A SO (656)

which is a true identity.

What is the counterpart of our formula (5.24), which manifests that 51 can be written

2
as a linear functional? This is equation (52) in [1], which manifests the fact that g(r) is
odd under the Fourier transform:
100 .

Gg(r)e'™ Tdr

i
i (1 2 T 2 (6:57)
+ 4/ Gr(m)e™ Tdr + 4/ Gr(rm)e™ Tdr,
i i

7

. 0
Q imr3r
g(r)=— 2/i G(T)e dr + 5

where

Ggs(r) = TZG(—l/T) (6.58)
Gr(t)=G(r+1). ’

Indeed, we can start from our equation (5.24) with F(z) = FY(z), and write F4(z) as the
difference of the character and its S-transformation to arrive at

1 0 1 [zt 1 [&ioo
B1[FY] = / szé(zH/ dz@ff(1_z)+/2 dzR/f(z)+/2 dzR" (2)
2 1 3 1 3 2 3 2 /1 3

2

NI

x [282(1 — 2)] “5n(r(2)) ST
(6.59)
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where we performed the change of variables z — 1 — z in the terms involving the S-
transformed character. The square bracket is meant to be distributed over the integrand on
the second line. If we now change the integration variable from z to 7 in (6.59), we arrive
precisely at Viazovska’s formula (6.57). Indeed, the four straight contours z € (1/2,1),
z € (1/2,0), z € (1/2,1/2 +ic0) and z € (1/2,1/2 — ico) map to 7 € (3,0), 7 € (3,i00),
7 € (i,1) and 7 € (i,—1), as shown in figure 5. The integrands can be checked to match
as well.

Finally, it can be seen that the functional constraints which G(7) needs to satisfy for
Viazovska’s contruction to work are precisely equivalent to the constraints that can be used
to fix Qg(z) Indeed, the constraint (5.26) is equivalent to (3.25d)

2

Gr(t) = —m*Gr(-1/71), (6.60)
while the constraint (5.27) is equivalent to (3.25¢)
G(1) — Gs(1) — Gp(r) =0. (6.61)

This completes the proof of equivalence of the Fourier-odd magic function g(r) in R®
with the extremal functional 1. The Fourier-even magic function h(r) arises in exactly
2

the same manner from the action of the extremal functional BI, discussed in section 5.4,
2

on the symmetric combination

FSH(z) = 275G (2) + (1 - 2)75Gh(1 - 2)

_e (6.62)
= [2%2(1 = 2)] 7 [\ a(r(2)) + 3% a(-1/7(2))]
where we should take ¢ = 4. More precisely, we find
1
h(r) = —2BF ). (6.:63)
15 27
This follows from the identity
3270 (1) 404 (7)4 1 _
i) = - 2D B @ - Ao SO, (664)
1565(T) 3

where H (1) is described in section 3.3.1 and Q€+(z) is given in equation (5.47). Incidentally,
2
this identity gives a simple proof of the fact

H(r) <0 for 7€ iRy, (6.65)

which is useful in proving positivity properties of the magic functions. Finally, we can
combine h(r) and g(r) into the magic function f(r)

f(r) = h(r) —g(r). (6.66)

~

Using (6.50) and (6.63), we can express f(r) and its Fourier transform f(r) in terms of
actions of the extremal functionals
16
1) = -3 {611EEe + syl
(6.67)

Fir) = -3 {s11r1 - 9
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These are the right linear combinations of f1 and 87 with the required structure of zeros
2 3

and positivity properties.'3

The magic functions for the sphere packing problem R?* can be recovered from the
extremal functionals for Ay = % in exactly the same way as we did for R® and Ay = %

This time, we find the following proportionality constants'

2048

(r) = — 2058 B11FE")
20‘20895 (6.68)
g(r) = 1005 P2 [F3].

7 Bounds at large central charge

7.1 Upper bounds for ¢ # 4,12

Having understood the exact bounds Ay (c) and Ay (c) for ¢ = 4,12, we will now analyze
them away from these special points — first for general ¢, and then focussing on the regime
of large c.

It is natural to apply the extremal functional B to the modular bootstrap equations for
general c¢. We have seen from equation (6.40) that for any ¢ > 1, ﬁ [F34] is non-negative
for A > C+4 and vanishes at!®

c+4

A, = +n for n=0,1,.... (7.1)

Therefore, C§4 1s a valid upper bound on the gap whenever 6 [

the sign of f¢ [FA
of dlmensmns 2,4,6,...

> 0. In order to study
we can first expand it in terms of actlon of B¢ on the si(2,R) blocks

vac ]

vac ]

vac ZbAﬁ FQn ) (72)

where b2 > 0 and we used Be[Fp] = 0. We can immediately conclude B¢ [Fa

vac

] > 0 for
¢ € (1,4) since then all terms in the sum over n are positive. In this way we recover the
bound (6.29), derived here in a different way.

What is the sign of B [Fad] for ¢ > 4?7 We already know that 6 [
c=4,12 and it is a reasonable guess that these are the only zeros of B [

Vac] vanishes at
| and thus

vac ]

vac
Be[Fad <0 for ce (4,12) 73
6§[F\2c] >0 for ce (12,00).

This guess turns out to be correct, which can be established beyond reasonable doubt for
example by numerically evaluating the contour integrals defining ﬁg. Figure 6 illustrates

~

*The prefactor 1¢ sets the normalization to f(0) = f(0) = 1, while the functionals are normalized by
aA,B%[FA] = aA,BJI[FA] =1at A=2.
2 .
"“The functions a(r) and b(r) of reference [2] are related to h(r) and g(r) as follows: h(r) = —gme=ssa(r),

9(r) = 5535507 0(7)-
15The symbol A is a placeholder for U or V, but many results in this section hold also for general chiral
algebra A.
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Figure 6. Action of the functional S¢ on the vacuum modular bootstrap vectors FUV

curve corresponds to the U(1)¢ vacuum and the blue one to the Vir. vacuum. The action on both
kinds of vacuum characters vanishes at ¢ = 4 and ¢ = 12, where < becomes the optimal functional.
The plot also illustrates that the vacuum action is positive for ¢ € (1,4) U (12, 00). For ¢ > 12, the

. The orange

vacuum action increases exponentially with c.

this fact in the range ¢ € (1, 15). We will also soon give a rigorous argument for the second
inequality at large c. It follows that the existence of ﬂg implies the rigorous inequality
c+4

Apyv(c) < 5 for ce€ (12,00). (7.4)

That is, every unitary 2D CFT of central charge ¢ > 12 contains a Virasoro primary other
than identity of scaling dimension at most ¢/8 4+ 1/2.

7.2 Saddle-point evaluation of the functional actions

Let us consider the regime of large central charge. The key insight is that the action
of functionals /Bg and &g can be evaluated using the saddle-point approximation. The
discussion of this subsection is analogous to the computation of the action of S, on
sl(2,R) conformal blocks in the limit of a large external dimension, explained in appendix
B of [14]. We will first derive the saddle-point approximation and use it to show that
B[F\ZCV | > 0 for large enough c. This will establish Ay (¢) > ¢/8 +1/2 for large enough
c. In the next subsection, we will improve the asymptotic bound by considering a suitable
linear combination of functionals 5§ and &5'

Let us analyze the functional action on operators whose dimension is proportional to
c. We set A = pc, keep p fixed and look at

B [Fil (7.5)

for ¢ — oo. We will focus on the regime p € [0,1/8). In this range, the contour deformation
leading to (6.40) is invalid and we need to resort to the contour prescription (5.24)

1

1 3-ioo
silffl = [ QI@FLG) 4 [ R BL). (7.6)

2

47 —



As we will now explain, the contour integrals localize to a saddle point when ¢ — co. We
will need the large-¢ behaviour of the functional kernels. It turns out to be very simple:

2z -1
R () 75— VC
g(z) 273/2 [2(z — 1)]3/2 (7.7)
: PRV (e P
To proceed, let us first use the definition of Fﬁw(z) in terms of modular characters:
1
BelFfl = [ 2 QL)1 2 [h(r(2) ~ xhlr(L = )] +
2
| phice ) (7.8)
+5 dzR2(2)[2%2(1 = 2)] 7% [xe(7(2)) = Xjiel(r(1 = 2))] -
2 /1 8 1% 1

2
Let us change coordinates from z to 1 — z in the terms involving the crossed-channel
character to arrive at
1 0 1. 1_;

1 5 200 5 1 5 100 5

Bc[FQAC]:[/ sz'ff(z)—l—/ szé(l—z)%—/ dch(z)—i—/ dzR:(z)
8 K 1 8 1 8 2 /1 8 2 /1 8

2 2 2

2

x [2%2(1 = 2)] 2 x4 (7(2)) (7.9)
where the square bracket is meant to be distributed on the term on the second line and we
used R () = R%(1 — z). Now, we use the following trick. Since the double discontinuity

8 8
of Q% (z) vanishes (see (5.27)), we can simultaneously shift the starting point of all four
8

integrals in the square bracket from z = 1/2 to an arbitrary zp € (0,1):

1

1 0 1+ico 1 —ico
Be[F3,] :[ / szg (2) + / szg (1—z)+% / dzRg(z)—i—% / dzRg(z)

20 20 20

x [282(1 — 2)] B (r(2)). (7.10)

The idea is to choose zy to be the ¢ — 0o saddle-point of the integrals involving R’g (2).
8
Let us isolate the exponential dependence of the integrand at large ¢ by writing

[282(1 — 2)] 12X (7(2)) = ho(2)e ™) (7.11)

where hg1(z) are independent of ¢. The saddle point of the integrals involving R? (2) is
8
located at the stationary point of hy(z). For A = U(1)¢, one finds

ho(Z) =1
1 (7.12)
hi(z) = D log[282(1 — 2)] — 2log[n(7(2))] + 2miT(2)p
and for A = Vir., we have
) B eiTrT(z)/ﬁ
RTGE -
1 , 1
hi(z) = —Elog[Q 2(1 — z)] + 2mit(2) ( — 12> .

48 —



Let zo(x) be the minimum of h;(z) in the interval z € (0,1). z¢(u) depends on both p and
algebra A. One can check that zp(1/8) = 0 for both algebras of interest. Furthermore,
zo(p) is monotonic decreasing. As we decrease p from 1/8 to 0, zo(u) increases to

2(0) = 0.826115... for A=U(1)°

(7.14)
2(0) = 0.887578... for A= Vir,.

Going back to the expression for the functional action (7.10), we see that the path of
the steepest descent of the integrals including Rg (z) is parallel to the imaginary axis at
8

z = zo(p). At the same time, the integrals involving Qg (z) are exponentially subleading
8
in the ¢ — oo limit because Q7 (2) includes the extra (exponentially small) factor (1 — z)7
8
with respect to Rg (z). In order to evaluate the integrals involving Rg (2), let us expand
8 8

hi(z) around z = zo(u)

mi(z) = (o) + 1 (z0(0)(z — 20()” + . (7.15)

The saddle-point evaluation then leads to

R (o) + i0°) .
[FL 197° —Im ho(z echi(zo(n)) .
Bg [FQ,uc] I \/E 2h/1l(20(ﬂ)) 0( 0(“)) (7 16)

ol ™

If we insert the explicit form of the large-c limit of R (z) from (7.7), we arrive at
8

(A 1 e 2z0(p) — 1 ho(20(1)  emi(zo(wy)
Bg [FQMC] [ZO(M)(l _ ZO(M))P/Q 87r2h’1’(20(u)) . (717)

We are interested in the sign of the above expression. All terms except for 2zp(p) — 1 in
the numerator are manifestly positive, and thus the sign of 5§ [FQ“LC] at large c agrees with
the sign of 2zp(u) — 1. We can see from (7.14) that

220(0) —1>0

220(1/8) —1<0. (7-18)

In particular, the action of 5% on F(f‘(z) is positive at large c¢. Thus we immediately
conclude
Be[FU]>0 (7.19)

8
for sufficiently large ¢. For A = Vir,, the vacuum block differs from the p = 0 block by
factor (1 — e2™7(2))2 which is positive for z = 2zy(0), so the same conclusion follows in this
case too:

v
BelF,

vac

]>0 (7.20)

for sufficiently large c¢. As p rises from 0 to 1/8, the expression 2zp(1) — 1 monotonically
decreases, showing that at large c, 5% [FQ“LC] has a single zero as a function of u in the region
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p € (0,1/8), located at the solution of equation zo(ug) = 1/2. In fact, the value of py can
be found analytically:
1
po = -— for A=TU(1)°
4n (7.21)

1
=15 for A = Vir..

Note that when we study the action ag[ngw} at large ¢, equation (7.16) still applies, with

Ho

the appropriate replacement 8 — @, i.e. the only difference is in the asymptotic form of
R(z), given in (7.7).

7.3 Improved bound at large c

We have seen that § implies upper bounds with asymptotic form Ay y(c) < ¢/8 + O(1)
as ¢ — 0o. Now we will obtain a better bound from an appropriate linear combination of
B and a. The underlying idea is that (§ is not the optimal functional at large ¢ because
its action on vacuum is positive. On the other hand, the action of & on the vacuum is
negative. By taking a linear combination of 8 and a which annihilates the vacuum at large
¢, we get a functional which is non-negative from A, (c) < %, thus obtaining a stronger
bound than when using only 5.

In order to get an interesting answer, the linear combination of 5 and & should be such
that as ¢ — oo, B¢ [FQ“LC] and ae [FQ“}M] contribute at the same order in the ¢~! expansion.
Looking at (7.7) and (7.16), it follows we want

¢ =fetacae, (7.22)

where ¢ is the central charge and a is a constant which we want to fix. We can see
from (7.16) that if 1 € (0,1/8), then the sign of ¢ [F{}w] at large c agrees with the sign of

RE (zo(p1) +07)

NG

—Im

- a\/ERg(ZO(,u) +i0™) (7.23)

so let us define for z € (0,1)

R% (2 +i0%) )
K(e) = =m0 = 2 fig i | =+ aeRE (= 4 40°)

=2z—-1)[-2(z—1)+4a(z+ 1)(z — 2)] ,

(7.24)

so that the sign of Eg [F{}w] at large ¢ agrees with the sign of K (zo(u)). Now, functional E
will imply an asymptotic upper bound of the form A,(c) < p«c+ O(1) for some p, < 1/8
only if

K(Z()(O)) >0

K(zo(p)) >0 forall p€ (u,1/8).

It will be more convenient to parametrize the undetermined constant a using x as follows

(1—2)x
42 —xz)(z+1)

(7.25)

(7.26)

a
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so that
22z —1)(x—2)(x+2—1)

2—-2)(x+1)

For x = 0, we recover the original extremal functional 8. Now, let us deform § by increasing

K(z) = (7.27)

z to some value = € (0,1/2). We find the following signs for K(z) in the unit interval:

K(z)>0 for 0<z<uz
K(z) <0 for z<2<1/2
(2) / (7.28)
K(z)>0 for 1/2<z<1l-z
K(z) <0 for 1—-z<z<1.

Recall from equation (7.14) that 1/2 < 2¢(0) < 1. It then follows from the third line
of (7.28) that the first line of (7.25) will be satisfied provided x < 1 — 2¢(0). Since zo(u) is
monotonic decreasing, it follows from the first line of (7.28) that the second line of (7.25)
will be satisfied provided zp(u«) < z. Since we want to minimize p,, we must maximize
subject to x < 1 —20(0). In the optimal case, we get © = 1 —20(0) and 2z¢(p«) = z. In other

words, the slope u, of the best upper bound that can be derived using (5 is the solution of
2o(ps) =1 — 20(0) . (7.29)

There exists precisely one solution since z¢(0) > 1/2, 20(1/8) = 0 and zo(p) is decreasing.
The solution can be found to an arbitrary precision starting from the expressions for h1(z)
in (7.12) and (7.13). We find

1
L= 01129140...= ——— for A=TU(1)°
8 8.856205... (1) (7,30
1 ) .

Finally, we should check that 55 [Féﬁw] > 0 for g > 1/8. This follows from the inequality
Qg(z) +acQf(z) >0 for 0 < z < 1, which indeed holds for the optimal choice of a.
8 8

7.4 Comments on the optimal solution for general c

It is natural to ask what are the optimal partition functions ZY(7), ZY(7) saturating the
upper bounds on the gap for general ¢. One can find an approximation to the optimal
solution using numerical bootstrap. In the limit of a large number of derivatives, this
approximate spectrum approaches the true optimal spectrum. The following observations
will be based on the results of the numerical bootstrap analysis of [7], which were obtained
for the Virasoro case. We expect similar comments apply also in the U(1)¢ case.

ZCV (1) can be expanded in the appropriate characters as follows

ZY () = Xuae(T) + Z Pn(C)XXn(C) (), (7.31)
n=0
where A, (c) for n = 0,1,... is the optimal spectrum and p,(c) are the corresponding

degeneracies. If we were expanding instead in sl(2,RR) blocks and asking for the maximal
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gap above identity, the spectrum of the optimal solution would be that coming from the

free fermion OPE
c+4

8
This is not be the optimal spectrum for the U(1)¢ and Vir. problems unless ¢ = 4,12,

Afe(c) =

+n. (7.32)

which follows immediately from applying 5% to the optimal solution and noting that the
action of Bg on the vacuum is non-vanishing.

Nevertheless, there is a sense in which the optimal solutions are close to the free
fermion solution for any ¢ > 12. Indeed, we find that for any fixed ¢ the optimal spectrum
asymptotes to the free spectrum (7.32) as n — oo. Define the anomalous dimensions by

Yn(€) = An(c) — Alree () (7.33)

Based on the numerics, we conjecture that for fixed ¢ > 12, 7,(c) is negative for all
n, and approaches zero exponentially fast as n — oo. More precisely, we find v, (c) ~
—exp{—ty/n[l 4+ o(1)]} as n — oo with ¢ fixed, where ¢ is a c-dependent coefficient.

Since —7,(c) is monotonic decreasing, the gaps between consecutive primaries
Api1(c) — Ay(c) are bigger than 1 and approach 1 as n — oo. It was recently proven
in [67] that the gap between consecutive Virasoro primaries is asymptotically bounded by

2\/7fj2 ~ 1.1, which is consistent with this behavior of ZY (7). Since the optimal spec-
trum is asymptotically free at high energy, one can try to bootstrap it in perturbation
theory at large n. There may also exist a perturbative expansion at large ¢ with n/c fixed,
which would help us derive the true asymptotic slope of the optimal bounds. We leave this
interesting direction for future work.

Finally, note that the optimal partition functions Z(Y ’U(T) presumably do not corre-
spond to physical CFTs for ¢ > 4 since the bootstrap bound on the gap coming from
modular invariance of the full 7, 7-dependent partition function is expected to be strictly
stronger than the spinless bound discussed in the present paper (for ¢ > 4).

8 Complete sets of functionals and Fourier interpolation in any
dimension

8.1 A complete set for the sl(2,R) problem

It is natural to ask whether the functional 3, which played a central role in this work, is
a part of a more general framework. An affirmative answer was provided in [15], where
it was explained that there is a distinguished basis for the space of functionals, and g is
simply one element of this basis. Remarkably, the analogous basis was recently constructed
independently in the literature related to the sphere-packing problem [19], where it was
shown to lead, among other impressive results, to Fourier interpolation formulas in d =
8,24. The purpose of this section is to explain the connection between these sets of results,
and sketch how to generalize them to arbitrary d.

We start by recalling some of the results of [15]. There, a basis of functionals acting on
crossing-antisymmetric functions was constructed. We will find it useful to generalize the
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discussion to include functionals acting on crossing-symmetric functions too. Thus, define

F{(2) = 27229GA(2) + (1 — 2) 22¢GA(1 — 2),

Fi(z) =2 2%Ga(z) — (1 — 2) 22Ga(l - 2), (®.1)

where Ga(z) is the si(2,R) block (5.10). Set A,, = 2A4 + 2n + 1. The claim is that there
exist linear functionals a;f, B for n € N acting on functions satisfying F(z) = F(1 — z)

and functionals o, , 8, acting on functions satisfying F(z) = —F(1 — 2), such that'6
QHFL,) =0 all0aFY,) =0 .
B; [FXm] =0 BJ [aAFXm] = Omn '
and

o, [Fx, 1= 0mn o, [OaF L ]

Bl =0 B [0aFL ]

for all m,n € N. The functionals used earlier in this paper are specific elements of the

(8.3)

5mn

basis. In particular: 8 = 5, a = ag, T = BOJ“ . The functionals for higher values
of n are constructed in a similar way as the n = 0 functionals. They always take the
form (5.24), (5.43), and the kernels satisfy essentially the same constraints discussed in
sections 5.2, 5.3 and 5.4 for all n € N. Indeed, the functionals af, ﬁ,jf can be thought of
as a complete set of solutions of these constraints.

This basis of functionals can be used for example to prove interesting theorems about
the distribution of primary operators in unitary solutions to crossing and for perturbative
calculations around mean field theory. The existence of the basis is closely connected to a
Lorentzian inversion formula for sl(2,R) [16].

It follows from the completeness of the functional basis that the functions Fi (z) with
general A can be expanded in the basis consisting of functions FAin (z) and aAan (2)

F{(2) = [af [FAIFL (2) + BYFA10aF (2)]
0 (8.4)
Fy(2) =Y [on[FAIFL, (2) + B, [FAl0aFx (2)] -

Il
=)

n

For most practical purposes, we need some control over the functional actions aﬁ [FAi],
Bff[FiE] For that and other reasons, it is useful to package these functions of A into
generating functions, dubbed the Polyakov blocks

[e. 9]

PX(z) = Ga(z) — Z [ [FX1G A, (2) + B FX10aGA, (2)]

" (8.5)
Py(2) = Ga(2) = > [07[F5]Ga,(2) + B7 [F10aGa, ()] -

n=0

15N stands for the set of non-negative integers. To avoid cluttered notation, we drop the A, label from
all functionals.
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The Polyakov blocks contain the single-trace contribution Ga(z) as well as an infinite
tower of double-trace contributions, whose coefficients are computed precisely by the basis
functionals. The advantage of this presentation is that there is a constructive way to
compute PAi(z) without knowing the integral kernels defining the individual functionals.
Indeed, Pi(z) are computed by sums of appropriate exchange Witten diagrams in AdSs
in the s-, t- and u-channel with fermionic external legs and exchange dimension A. The
functional actions can then be read off by expanding PAi(z) in conformal blocks.

Finally, note that equations (8.4) are equivalent to saying that PX(z) and Py (z) are

respectively antisymmetric and symmetric under crossing
2o Pl(2) + (1 —2) 22 P{(1—-2) =0

272 Pr(2) — (1—2) 22 Py (1-2)=0. (8.6)

8.2 A complete set for the U(1)¢ problem

It is relatively straightforward to adjust the above discussion to the context of the modular

¢ characters. In order to

bootstrap. We will focus on the modular bootstrap with U(1)
emphasize the connection to the sphere-packing literature, we will set ¢ = d/2 and A =
2 /2, where d is the dimension of space and r is the distance in RY. We start by defining

the analogue of the functions'” Ff(z)

eiﬂrz‘r e*iﬂ"l"z/T
f (1) = + :
" n(r)  n(=1/7)4
2 ) (8'7)
B et efmr/r
P, (1) =

S (=17

Note that & (7) and <I>|;‘ (1) are respectively even and odd under the d-dimensional Fourier

||
transform in x. Recall from (6.19) that the characters can be expanded in the si(2, R) blocks
imr?r

va(T) =g = 3 85(d, 1)AT) "G (A7), (8.8)
j=0

where v.(1) = [28A(7)(1 — )\(7'))]_ﬁ and s;(d,r) are computable rational functions. It
follows that ®(7) can be expanded in FK()\(T))

14

ZSj(dvT)F;gwj()‘(T))

J

()2 (7)

[NIISW
|
o

(8.9)

o

Ve (1)@, (1) $5(d, ) F 2o, (A(T)) .-

<.
Il
o

Recall that Fi[n (z) and 8AF§n (z) form a basis for the space of functions of z. Equa-
tions (8.9) then give a change of basis to ®£ (1) and 0,9 (1), where r, is the set of radii
given by

d
7“2:An:§+2n+1 for neN, (8.10)

n

1"We change notation slightly with respect to (2.11) and label the ®(7) functions by r rather than by
A=17r2/2.
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where we used A, = d/16. Explicitly, we find

;. (1) = va(r)™! > sildr) P, (A(7))
o (8.11)
8,1137%[n (1) = va (r)~t [@Sj(dﬂ‘n)anH (A(T)) + 2rps;(d, rn)aAanH()\(T))} .
=0

Analogously to the previous section, we can now define a set of linear functionals A
and B as the dual basis of ®7 (1) and 8,®% (7). Thus A} and B, act on functions 7
satisfying F(7) = F(—1/7) and A,, and B,, act on functions satisfying F(7) = —F(—1/7),
and we have

A:[ j]zémn A:L_{aréj]zo
" " (8.12)
B ]=0  BI[o.9f,] =0
and
A, [q)r ] = Omn A, [8,11); ] =0
" i (8.13)

B, [®,,]=0 B, [0:®,, ] = dmn -
It follows from (8.11) that A and B are finite linear combinations of the s/(2,R) func-
tionals ;" and B;-.'® More precisely, B is a computable linear combination of 3, with
0 <m <n and A} is a linear combination of o}, and 8}, with 0 < m < n (and similarly
for A, B,).
Analogously to (8.4), we can expand ®F(7) for general r in the basis as follows
o0
ef (1) =) [AF[®]]9] (7) + By [2]10,9; (7)]
n=0

o0

o (1) =) [4,[®,]2, (1) + B, [®,]0:®,. ()] .

n=0

(8.14)

Again by analogy with (8.5), we can define the Polyakov blocks for the U(l)g problem as
the generating functions for the functional actions

o0
I (7) = ™7 = 37 [AF [0 16747 4 2, By [0 )74

n=0
| - . . (8.15)

I, () = ™7 =Y [A; (@)™ + 2mir, T By [@;]ewm] .
n=0

It follows from the completeness of the two functional bases that the Polyakov blocks
for U(l)% can be decomposed into the Polyakov blocks for s/(2,R) with exactly the same
terms and coeflicients that appear in the decomposition of U(l)% characters into conformal

blocks, i.e. (8.8)

I (1) = n(7)?\(7) *%y% ) si(dor)PE L, (M) (8.16)
7=0

8Here and in the following, we will use the tacit convention that when aF and ﬂff act on a function of
7, we first need to multiply the function by the conversion factor v4 (7) and then act with the functional.
2
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In particular, H;—L(T) is still computed by exchange Witten diagrams in AdS3, where the
usual bulk to bulk propagator is replaced with an exchange of infinitely many particles of
dimensions 72 + 2j. Note that equations (8.14) are equivalent to

11
(8.17)
11 :

8.3 Fourier interpolation in any d

The functionals AF and B can be used to generalize the Fourier interpolation formula
of [19] to any d. It will be convenient to introduce shorthand notation for the actions of
the basis functionals on the functions ®*(7) for general r

ay(r)=A7[®f]  bi(r)= By [‘D{ ] (8.18)

a,(r) = A, @] b, (r) =B, [®].

n

+
n

b (z) really means a:(|z|) and b (|z]). a}f(z) and b} (x) are even under the Fourier
transform in RY, while a, (z) and b, (z) are Fourier-odd. Equations (8.12) and (8.13)
translate into a specific structure of double zeros of the functions a;=(r), b (r) on the radii

a;(x) and bi(x) are radial Schwartz functions on R?. Here and in the following a;(z),

Tm = g d 4 9m + 1. Let us also introduce the functions

ai (r) +a; (r) _ b (r) + b5 (r)

an(r) = bn(r) =
GO a) b (519
Un(r) = 2t _—ni’ bp(r) = 2t/
2 2
These functions have the following structure of double zeros
an(rm) = Omn a, (rm) =0
bn(rm) =0 b (1m) = Omn
b (rm) ~/( ) (8.20)
an(rm) =0 ay(rm) =0
b (7m) = 0 b, (rm) =0

where the prime denotes the radial derivative. Furthermore, @, (z) and by, (z) are the Fourier
transforms of a,(z) and b, (z) respectively.

The key observation is that by taking the average of the two lines in (8.14), we can
write ™7 for an arbitrary r and 7 as the linear combination

00
2 . 2
mr T _ § :an lﬂ'TnT +2miT § :T’nbn(T)GWT"T

n=0
'LTrrn/T 2i 00 . e*iﬂ"f‘%/T (821)
+ > ap(r —— ) rpbp(r)—.
Z (it TS (—ir)?

Consider now a linear functional w acting on holomorphic functions of 7 in the upper
half-plane. Set

2

f(z) = w[e™ . (8.22)
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f(z) is a radial function on R? and (under a suitable restriction on w) is in the Schwartz
space.'? Furthermore, every radial Schwartz function on R? arises in this way from some w.
Let us apply w to (8.21). If f(x) is Schwartz then w can be chosen such that it commutes
with the infinite sums on the r.h.s. . We find

f(x) =Y f(ra)an(@) + Y f'(ra)ba()
n=0

=0 (8.23)

+ Z f(rn)ﬁn(x) + Z J?/(Tn)gn(fv) )
n=0 n=0

~

where f(x) is the Fourier transform of f(z). This is the Fourier interpolation theorem,
proven rigorously in [19] for d = 8 and d = 24. The theorem reconstructs an arbitrary
radial Schwartz function f(z) from the values f(ry), f'(rn), f(rn) and f’(rn) using the
interpolating functions an(z), by (z), @n(x) and by (z). Furthermore, the existence of the
individual interpolating functions shows that there is no universal linear relation among
f(rn), f'(rn), f(rn) and f’(rn) valid for all radial Schwartz functions.

We sketched how to generalize the theorem to arbitrary d. One of the main remaining
technical challenges is a more explicit construction of the interpolating functions. As men-
tioned after equation (8.15), the interpolating functions in any d are in principle computed
by infinite sums of exchange Witten diagrams in AdSy. It will be important to study and
simplify this prescription further, and fill in the remaining details of our sketch.

9 Discussion

We have described a connection between sphere packing in R% and modular bootstrap. The
bootstrap problem with chiral algebra U(1)¢ maps to the Cohn-Elkies linear programming
method for sphere packing in d = 2¢ dimensions. The bootstrap upper bound on the first
primary operator, A (c), is related to the linear programming bound on the sphere packing
density by equation (4.8).

More accurately, the usual modular bootstrap problem maps to the Fourier-odd part
of the sphere packing method. According to a conjecture of Cohn and Elkies, supported
by numerics and for which we have supplied new analytical examples, the bounds on the
Fourier-odd part are identical to the full bounds.

It is worth emphasizing that our result is not exactly a map between CFTs and sphere
packings, or even between the modular bootstrap and sphere packings. Rather it is a map
between the modular bootstrap and the linear programming bounds on sphere packing.
There are known to be additional constraints on sphere packings, and away from d =
1,2,8,24, the linear programming bounds are not believed to be saturated or even close to
saturated by actual packings (see for example [58]). The situation with CFTs is similar;
the spinless modular bootstrap is just one of an infinite family of consistency conditions,
including also the spinning modular bootstrap and the crossing equations for correlation
functions. We do not know whether the additional constraints on CFTs, beyond the spinless

19For example, if w is a finite linear combination of derivatives at 7 = 4, then f() is a Schwartz function.
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modular bootstrap, have any relationship to the additional constraints on sphere packings
that go beyond the Cohn-Elkies method. It would clearly be of great interest, for example,
to find a version of the modular bootstrap that maps to sphere packing in d = 3, i.e. the
Kepler problem.

The magic functions of sphere packing are related to the extremal functionals of the
bootstrap. Acting with the extremal functional on the U(1)¢ characters for ¢ = 4 and
¢ = 12 produces the magic functions for sphere packing in 8 and 24 dimensions, which were
found numerically by Cohn and Elkies [11] and analytically by Viazovska [1] and Cohn
et al. [2]. The optimality of the Eg lattice for sphere packing in 8 dimensions maps to
the statement that a CFT consisting of 8 free fermions with a diagonal GSO projection
saturates the modular bootstrap bound, Ay(4) = 1. In 24 dimensions, the optimality of
sphere packing on the Leech lattice maps to the statement that the modular j-function, up
to a constant, saturates the modular bootstrap bound Ag(12) = 2. In this case, although
this function satisfies all the requirements of the spinless modular bootstrap, it does not
correspond to a full-fledged ¢ = 12 CFT. For both ¢ = 4 and ¢ = 12, the bootstrap bounds
for the U(1)¢ algebra are identical to the bounds obtained using just the Virasoro algebra,
appropriate to general 2D CFTs.

The extremal functionals for the spinless modular bootstrap at central charge ¢ = 4,12

are essentially the same as those for the four-point function bootstrap on a line, with
13
202"
functionals appeared in the conformal bootstrap literature independently in the same year

external scaling dimension Ay = Remarkably, an analytic construction of these
when Viazovska constructed the magic functions [13]. We have explained the equivalence
of the two approaches in the main text.

The generalization of the four-point bootstrap functionals to arbitrary Ay > 0 found
in [13, 14] can be applied to the modular bootstrap equation for any ¢ > 1. This gives
bounds on sphere packing in higher dimensions, generalizing Viazovska’s construction to
all d > 2. In bootstrap language, this proves the upper bounds Ay y(c) < % for ¢ €
(1,4) U (12,00). However, for these values of ¢ the functional is positive rather than zero
on the vacuum term, so this bound is suboptimal. We constructed an improved functional
that leads to a better bound at large ¢, but it is still suboptimal.

In the modular bootstrap, the limit of large central charge ¢ — oo is the regime
relevant to quantum gravity in macroscopic AdS3 space. The asymptotics of the sphere
packing problem as d — oo are also of interest to mathematicians. This limit may even
have practical applications: dense sphere packings in high dimensions correspond to highly
effective classical error-correcting codes, with a large number of codewords [46]. To make
the connection, we can view each codeword in a message as a vector in R%. If we send
this message through a noisy channel, the receiver has the best chance of decoding it if the
allowed codewords are spaced sufficiently far apart in R%. Thus the problem of constructing
effective codes maps to the problem of packing non-overlapping spheres.

Codes are, in fact, the origin of the best known upper bounds on the sphere packing
density as d — oco. The starting point is a linear programming bound on spherical codes.
A spherical code of minimal angle @ is a set of points on the unit sphere in R¢, with no
two points closer than 6. An upper bound on the size of a spherical code also places an
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Figure 7. A dense sphere packing (solid gray) can be used to construct a large spherical code
(dashed blue) by surrounding some of the centers with an auxiliary sphere, then projecting the
enclosed centers onto that sphere.

upper bound on the density of a sphere packing, by a geometric argument illustrated in
figure 7 [8, 52, 53, 68]. The result, which can also be obtained directly from the Cohn-
Elkies linear program [53], is the Kabatiansky-Levenshtein bound reviewed in section 4. It
implies the analytic bootstrap bound Ay < ¢/9.796 as ¢ — oo, significantly better than
our bound from the four-point extremal functionals, Ay < ¢/8.856.

This leaves open two very interesting questions. The first is whether the Kabatiansky-
Levenshtein bound is the best asymptotic bound that can be obtained from linear pro-
gramming. The second is whether something similar can be achieved for the Virasoro

modular bootstrap, where the numerics suggest it should be possible to improve the bound
to Ay <

~

¢/9.08 [7]. For the Virasoro bootstrap, we do not know of any analogue of
spherical codes or the geometric argument above.

Another approach that leads to strong but suboptimal bounds on sphere packing, or
U(1)¢ bootstrap, uses functionals with compact support in Fourier space [11, 69]. This could
be another route to improving the Virasoro bound at large c¢. There are some intriguing
similarities between this approach and the very recent modular bootstrap results of [67].

Parisi and Zamponi have also described a connection between large-d sphere packing
and the physics of glassy systems [70, 71].

It would also be interesting to explore whether our results can be extended to the full,
spinning modular bootstrap. It is not clear whether this generalization has an analogue
in sphere packing. Little is known about analytic extremal functionals for problems with
spin. One rather trivial exception is the scalar gap maximization in the spinning modular
bootstrap at ¢ = 4. In this case, the optimal bound and optimal theory are the same
as for the spinlees modular bootstrap, i.e. eight free fermions, with scalar gap A= = 1.
The optimal functional for the spinning problem is identical to the one for the spinless
problem i.e. 81 acting on modular characters specialized to T = —7, so its action is spin-
independent. ]2:n particular, the simple zero of 51 at A = 1 sits at the scalar gap in the
scalar sector, at the unitarity bound in the spin—ofle sector, and below the unitarity bound
for all higher spins, so this is indeed the correct extremal functional.
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It would be interesting to translate the recent advances in understanding of CFTs
in Lorentzian signature to the context of the torus partition function and the modular
bootstrap [63, 64, 72]. Our work suggests a clear candidate for the analogue of the dou-
ble discontinuity of the torus partition function, namely the double commutator of twist
operators in the Zo symmetric product orbifold.

Finally, returning to the question of whether sphere packings are related to interact-
ing CFTs beyond the linear programming constraints discussed here, let us point out one
more similarity. Free bosons compactified on a lattice have a perfectly regular spectrum,
determined by the distances between pairs of lattice points. Interacting CFTs, on the
other hand, have a quasi-regular structure of spins and scaling dimensions. The low-lying
dimensions are irregular, depending strongly on the interactions, but regularity begins to
appear at high spin [73, 74] and scaling dimension [75]. This is due to the pattern of com-
posite operators, enforced by locality and the bootstrap constraints. These features have a
qualitative parallel in sphere packing. Lattice packings are perfectly regular, while general
packings can be well approximated by a periodic packing, in which the low-lying spectrum
is arbitrary — defining the unit cell — while eventually, the spectrum has regularities set
by the underlying lattice. Perhaps this suggests a more complete, quantitative mapping
between sphere packing and CFT.
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A Modular forms

For an introduction to modular forms, see [76]. H. denotes the upper half complex plane.
The modular group I'(1) = PSL(2,7Z) acts on 7 € H as

at+b ab
It is generated by
T:T—7+1, S:7—-1/7. (A.2)

The level N principal congruence subgroup is defined
I'(N)={yel'(1l) | y=1 mod N} . (A.3)

For example, I'(2) is generated by 72 and ST2S.
A modular form of weight k£ and congruence subgroup I' is a holomorphic function
f(7) that for v € T" transforms as

() = e atse, (A1)
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and for any v € I'(1) has a Fourier expansion

f <a7'+b> _ (CT—l-d)kin <’Y, :) eQm’m’/nW (A5)

ct +d y

n=0
with n, € N. There are no negative Fourier modes, so f is holomorphic at 7 = ic0. If this
condition is relaxed so negative modes n < 0 are allowed, f is called weakly holomorphic.
A quasimodular form of weight k and depth s transforms as

f (Z:iZ) = (CT—I—d)k;fj(T) <c7'j—d>j : (A.6)

These arise naturally by taking derivatives of modular forms.

The FEisenstein series, for even k > 2, is

Be(r)=57r Y, (crtad)F. (A7)
2(k) oz
c,d)€Z2\(0,0)
For k > 4, this is a modular form of weight k for I'(1). These are useful for building a basis
for the finite-dimensional space of weight-p modular forms for I'(1).
The case k = 2 is special, because the sum does not converge absolutely. This leads to
the anomalous transformation law
6i
Ey(~1/7) = 72Ea(r) — =, (A.8)
0
so it is a weight-2, depth-1 quasimodular form.

Any modular form for I'(1) can be written as a polynomial in Ey and Eg. Similarly,
any quasimodular form for I'(1) is a polynomial in Es, Ey, Fg, with degree in E equal to
its depth.

An important example of a weakly holomorphic modular form for I'(1) is the modular

j-function,
. 1728E3 1
=== 744 4+ 196884q + - - - A9
I=Eogm + 744 + q+ (A.9)
with ¢ = €?™7. Both numerator and denominator have weight 12, so j has weight zero.
The denominator is proportional to the modular discriminant,
64 12
A = T (B} - B}) = (2m)n(r)*, (A.10)

with n = ¢"/24T[2°_,(1 — ¢™) the Dedekind 7, which satisfies n(r + 1) = ™/12(r) and
n(—=1/7) = (—=i7)?5(7). A is the unique weight-12 form which vanishes at ¢ = 0.
We will also make use of the theta functions

by=061p=) emnta)r (A.11)
nez
imn?T
03 = 900 = Z (& (A.l?)
nez
Oy =01 =Y (—1)"e™T . (A.13)
neL
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These satisfy the Jacobi identity
03 = 0] + 05 (A.14)

and transform as
-1 -1 -1
iy (i E— 04 =) = —7204 01 — ) = 7205 . A.15
3( - > T U3, 2\ 7 T U4, 4\ T Uy ( )
03(t+1) =03, 03(7 + 1) = 01(7), Oi(t+1) =103 . (A.16)
9?‘:1’273 are modular forms of weight 2 for I'(2). In particular, they are periodic under

T—=>T7+2.

B Details of analytic extremal functionals

Let us explain in more detail how we used the constraints 1-4 after equation (5.43) to arrive
at the solution for the weight-function Rii(z), shown in equation (5.46). Our discussion
parallels section 4.2 and appendix A.2 of reference [14], which can be consulted for more
details. The first step is to note that when Ay € N, the constraints admit a solution of

the form
. Ag+1 Ay
Rit(z) =3 Z apw” log(zzl) + (22 -1) Zbkwk , (B.1)
k=1 k=0

where w = z(z — 1). In fact, the constraints uniquely fix the coefficients a; and bg. For
example for Ay = 1, we find

og (Z=L z — 22— 2
R() = = gw(z = + 22 7r2(1z) (_ 1)222+ oy (B.2)

A general formula for RZZ(;:) and all Ay can be found by first performing the following
Mellin transform

1

1
Ma,(s) = (71'5)/0 dz[z2(1 —2)]°(2z — 1)Re[R’iZ(z)] . (B.3)

2 cos

By computing M (s) for many low-lying values of A, € N, we find experimentally that it
always takes the form

27280 (Ay +3)0 (3 — s) T(s — 1)I'(s + 1)L (244 + s + 2)
T2 (Ag+ 3)T(Ap+ s+ DI(Ay + 5+ 2) '

It is natural to conjecture that this is the correct Mellin transform for general Ay > 0.

Ma,(s) = — (B.4)

The transform can be inverted using the formula

Bty [ 48 1—
REHE) = [ 5o [o(e = 01" M (), (B.5)
where the contour I' goes from s = —ioco to s = icc passing to the left of the poles of Ma,(s)

at s = 1/2+n with n = 0,1,... and to the right of all other poles, including s = 1. We
arrive at the general formula (5.46) by inserting (B.4) into (B.5). The integral becomes a
sum over residues at positive half-integer s. We checked that the resulting Ri: (z) satisfies
the constraints 1-4 for general Ay, and not just Ay € N.
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