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Abstract

The overwhelming maijority of research on the role of gonadal hormones in behavioral
development has focused on perinatal, pubertal, or adult life stages. The juvenile period has
been overlooked because it is thought to be a time of gonadal quiescence. In the present study,
we tested whether prepubertal gonadectomy impacts the behavior of male and female juvenile
hamsters on the Light/Dark Box, Novel Object, and Social Approach tests (Experiment 1) and
compared these findings to those obtained after adult gonadectomy (Experiment 2).

Prepubertal ovariectomy increased exploration (i.e. time spent in the light zone of the Light/Dark
Box) and novel object investigation of juveniles indicating an inhibitory role for the juvenile
ovary; social approach was unaffected. In contrast, adult ovariectomy and castration (both
prepubertal and adult) had no effect on any behavioral measure. Experiment 3 tested whether
rearing hamsters in a short day length (SD), which delays puberty in this species, extends the
interval of juvenile ovarian inhibition on exploration and novelty seeking. We also tested
whether provision of estradiol reverses the effects of prepubertal ovariectomy. Hormonal
manipulations and behavioral tests of Experiment 3 were conducted at ages when long day-
reared hamsters are adult (as in Experiment 2), but SD-reared hamsters remain reproductively
immature. Ovariectomy again increased exploration in the SD-reared juveniles despite the
older age of surgery and testing. Estradiol treatment had no effect. These findings reveal a
novel role for the juvenile ovary in exploration and novelty seeking that is unlikely to be

mediated exclusively by estradiol.

Keywords: juvenile, adult, gonadectomy, prepubertal ovary, affective behavior, novelty seeking,

social approach, estradiol
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Introduction

Gonadal hormones play critical and far-reaching roles in behavioral development. Effects of
gonadal hormones are typically characterized as either long-term, “organizational” actions that
persist long after hormonal exposure or short-term, “activational” actions that wane shortly after
the hormone is removed (Arnold, 2017; De Vries et al., 2014; McCarthy et al., 2018; Schulz and
Sisk, 2016). Most research in behavioral endocrinology has focused on perinatal, pubertal, and
adult periods. Organizational actions of gonadal steroids are thought to organize neural circuits
during the perinatal and pubertal periods, which are later ‘activated’ when gonadal steroid
secretion increases at puberty and into adulthood. The juvenile period is typically overlooked
because it is considered a time of gonadal quiescence. However, the gonads of juveniles
secrete measurable amounts of hormones in many species including rats, mice, Siberian
hamsters, Syrian hamsters, rhesus monkeys, and humans (Courant et al., 2010; Dionyssiou-
Asteriou and Zachari, 1992; Dohler and Wuttke, 1975; Janfaza et al., 2006; Mannan and
O’Shaughnessy, 1991; Phalen et al., 2010; Sisk and Turek, 1983; Vesper et al., 2015; Winter et
al., 1987; Yellon and Goldman, 1984). Furthermore, juvenile steroids have physiological actions
as they provide negative feedback to the hypothalamic-pituitary-gonadal axis even during the
juvenile period (Andrews and Ojeda, 1981; Dubois et al., 2016; Meijs-Roelofs and Kramer,
1979; Plant, 1986; Ramirez and Mccann, 1965; Sisk and Turek, 1983; Winter and Faiman,

1972). Hence, it is reasonable to ask whether juvenile gonadal hormones impact behavior.

There is a small, but growing body of literature implicating juvenile gonadal hormones in the
regulation of behavior. Ages of developmental stages vary across species, sexes and
environmental conditions, but a general timeline for many rodents approximates the following:
perinatal and neonatal periods = embryonic day 18 to postnatal day [P]10; juvenile period = P14
to P30; pubertal period = P30 to P55; young adulthood > P55. Neonatal and prepubertal

ovariectomy diminish sex differences in several adult reproductive and non-reproductive traits
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(Hendricks, 1992; Fitch and Denenberg, 1998). Because measures were taken in adulthood,
however, it is difficult to determine whether these effects are due to the absence of ovarian
hormones during the juvenile or pubertal period. Nevertheless, behavioral effects of prepubertal
ovariectomy can be greater when surgery is performed before versus after the juvenile period
(Field et al., 2004; Gerall et al., 1973). Furthermore, deficits in female sex behavior of
aromatase knockout female mice can be ameliorated by daily estradiol injections administered
during the juvenile period (Brock et al., 2011). Collectively, these findings suggest that the
ovaries potentiate feminization of the brain and behavior through organizational actions of
estradiol during the juvenile period (Bakker and Brock, 2010). Analogous mechanisms may be
in place for juvenile males. Male Syrian hamsters remain sensitive to the organizational actions
of adult levels of testosterone administered during the juvenile period (Schulz et al., 2009), but it
is not known whether endogenous, prepubertal levels of testicular hormones can similarly
impact behavior. We have recently found that the gonads of juveniles also support more
immediate, likely activational actions on juvenile behavior. Gonadectomy at 15 days of age
increases social play behavior in male and female juvenile Siberian hamsters indicating an
inhibitory role for the juvenile gonads on play in this species (Paul et al., 2018). These findings
counter the notion of quiescent juvenile gonads, and raise the question as to the extent to which
gonadal hormones influence behavior during the juvenile period. To begin to address this
question, the present study assessed the role of the juvenile gonads in tests of affective,

novelty-seeking, and social approach behaviors.

Siberian hamsters provide unique opportunities to test the role of gonadal hormones across
development because the timing of their puberty is plastic. Siberian hamsters use day length to
coordinate reproductive maturation with summer breeding conditions (Paul et al., 2008;
Stevenson et al., 2017). Hamsters reared in long, summer-like day lengths (LDs) undergo rapid

pubertal development that begins around 20 days of age for males and between 35-50 days of
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age for females; adulthood is reached by 60 to 80 days of age (Adam et al., 2000; Yellon and
Goldman, 1984). When reared in short, winter-like day lengths (SDs), however, puberty is
delayed by several months in order to prevent breeding during the winter. Under these
conditions, reproductive development is initiated around 100 days of age or later (Adam et al.,
2000; Hoffmann, 1978; Paul et al., 2006). Hence, with this model gonadal manipulations can be
performed on animals that are the same age, but in different pubertal phases — around 80-100
days of age, when LD-reared hamsters are adult, but SD-reared hamsters remain reproductively
immature. This provides a model to test whether developmental changes in the role of gonadal
hormones across adolescence are due to pubertal status or some other age-related process

(reviewed in Walker et al., 2017).

The present study used the Siberian hamster model to test the impact of prepubertal
(Experiment 1) and adult (Experiment 2) gonadectomy on exploration/anxiety-like behavior
(Light/Dark Box Test), novelty seeking (Novel Object Test), and social approach (Social
Approach Test) of juvenile and adult LD-reared hamsters. These experiments uncovered an
inhibitory role for the juvenile ovary in exploration and novelty seeking that was not present in
adult females; castration did not affect behavioral measures of juvenile or adult males in these
experiments. Hence, in Experiment 3 we tested the impact of prepubertal ovariectomy on 80
day-old “juvenile” SD-reared hamsters to test whether the loss of juvenile ovarian behavioral
inhibition is due to age or pubertal status. We further tested whether provision of estradiol
implants would reverse the effects of gonadectomy in SD-reared, ovariectomized juvenile
hamsters. As for LD-reared juveniles, ovariectomy increased exploratory behaviors in SD-
reared juvenile females, but this effect was not reversed by estradiol implants. Collectively,
these findings reveal a novel role for the prepubertal ovary in the regulation of affective and/or

novelty-seeking behaviors that is unlikely to be regulated exclusively by estradiol.
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Materials and Methods

Animals and Housing Conditions

Siberian hamsters (Phodopus sungorus) were obtained from our breeding colony, which was
derived from animals provided by Dr. Brian Prendergast, University of Chicago. Hamsters were
kept in well-ventilated, light-proof environmental housing units that provided either a long day
photoperiod (LD; 15:9-hr light:dark cycle) or short day photoperiod (SD; 10:14-hr light:dark
cycle); dim red light was present during the dark phase. Within these units, hamsters were
housed in clear, polysulfone cages (18.4cm x 29.2cm x 12.7cm) furnished with lab grade
shredded aspen bedding (LADS Pet Supplies). All hamsters were weaned on postnatal day
(P)18, at which point hamsters were housed in same-sex groups of 2-3 hamsters per cage. Tap
water and rodent chow (2016 Teklad global 16% protein rodent diet, Envigo; isoflavone content
undetectable to 20 mg/kg) were available ad libitum. Ambient temperature was maintained at
22 + 2°C. Hamsters were fitted with ear tags for individual identification at surgery (Experiment
1) or at weaning (Experiments 2 and 3). All procedures were approved by the University at
Buffalo, SUNY Institutional Animal Care and Use Committee and were in accordance with the

Guide for Care and Use of Laboratory Animals.

Experiment Timelines

Experiment 1, LD prepubertal gonadectomy. Forty-eight male and 43 female hamsters were
gestated and reared in an LD. Hamsters underwent gonadectomy or sham-operation
procedures on P15 £ 1, and behavioral tests were conducted between P29-P32. To assess
whether early life surgery impacts behaviors measured in this study, another group of hamsters
was not operated upon and served as non-surgical controls (NSCs). NSCs were otherwise
treated identically to gonadectomized (GNX) and sham-operated (Sham) hamsters. Within 2
days of behavioral testing, hamsters were sacrificed, at which point uterine weights, testes

weights, and body mass were recorded. One female GNX hamster was excluded from
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analyses because of extremely low body mass at the time of testing (11g). Two female Sham
hamsters were excluded because genetic malformations were noted in siblings within the same

litter.

Experiment 2, LD adult gonadectomy. Thirty-three male and 28 female hamsters were gestated
and reared in an LD. Hamsters underwent gonadectomy or sham-operation procedures
between P81-P89, and behavioral tests were conducted between P102-P111. Within 2 days of
behavioral testing, hamsters were sacrificed, at which point uterine weights, testes weights, and
body mass were recorded. Two male GNX and 2 female Sham hamsters were excluded from

analyses because of post-surgical complications.

Experiment 3, SD prepubertal ovariectomy: age versus pubertal status. Fifty-seven female
hamsters were gestated and reared in an SD; males were not tested in this experiment because
castration did not impact behavior in experiments 1 and 2. Hamsters underwent ovariectomy or
sham-operation procedures between P80-P85 and behavioral testing between P101-P111. At
surgery, ovariectomized (OVX) hamsters received an estradiol implant (E2; estradiol diluted in
cholesterol), a cholesterol implant (Ch; vehicle control), or a blank implant (B; empty control).
All Sham hamsters received a B implant. The effect of ovariectomy was tested by comparing
the behavior of OVX+B hamsters to that of Sham+B hamsters. The effect of estradiol was
tested by comparing the behavior of OVX+E2 hamsters to that of OVX+Ch and OVX+B
hamsters. Within 2 days of behavioral testing, hamsters were sacrificed, at which point uterine
weights and body mass were recorded. Vaginal opening is often used as a marker of pubertal
onset in several rodent species, including Siberian hamsters (Haigh et al., 1988; Place et al.,
2004; Place and Cruickshank, 2009). To ensure prepubertal status at the time of hormone

manipulations, vaginal patency was assessed at surgery. Hamsters that had undergone vaginal
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opening were excluded from analyses; number of animals excluded within each group was 1

Sham+B, 1 OVX+Ch, and 3 OVX+E2.

Surgical Procedures.

For all surgical procedures, hamsters were administered Metacam (0.5mg/kg, SC) prior to the
start of surgery. Hamsters were anesthetized with isoflurane vapors, and body temperature was
maintained using a heating pad. After surgery, hamsters were administered sterile saline (1ml
for juveniles, 2.5ml for adults, SC) and placed under a heat lamp to aid thermoregulation until
they were ambulatory. Metacam was administered (0.5mg/kg, SC) daily for 2 days following

surgery as a postoperative analgesic.

Castrations. The lower ventrum was shaved and then disinfected with soap, alcohol, and
Betadine solution. A single incision was made through the skin and abdominal wall, and one
testis and epididymis were externalized using forceps. The testicular vein was ligated with
sterile vicryl sutures, and the testis and epididymis were removed by cutting the tissue just
above the suture. Remaining tissue was replaced inside the animal. The contralateral testis
and epididymis were then externalized and removed through the same incision. The abdominal
wall and skin were then closed sequentially using sterile vicryl sutures. Sham castrations were
conducted in the same manner except that the testicular vein was not ligated or cut, and the

testes and epididymides were replaced inside the animal following externalization.

Ovariectomy. The dorsal left and right flanks were shaved and disinfected with soap, alcohol,
and Betadine solution. An incision was made through the skin and abdominal wall on one flank,
and the ipsilateral ovary was externalized using forceps. The ovarian vein was ligated with
sterile vicryl sutures, and the ovary was removed by cutting the tissue just above the suture.

Remaining tissue was then replaced inside the animal. The abdominal wall was closed using
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sterile vicryl sutures, and the skin closed using surgical wound clips or sutures. The
contralateral ovary was then removed using the same procedures. Sham ovariectomies were
conducted in a similar manner except that the ovarian vein was not ligated or cut, and the

ovaries were replaced inside the animal following externalization.

Subcutaneous capsule preparation and implantation. For estradiol implants, crystalline estradiol
benzoate (catalog #E8875-1G, MilliporeSigma, St. Louis, MO) was diluted with crystalline
cholesterol (catalog #C8667-5G, MilliporeSigma, St. Louis, MO) to provide a 10% (wt/wt) final
concentration of estradiol. For cholesterol implants, only the crystalline cholesterol was used.
The estradiol:cholesterol mixture or cholesterol was then packed into Silastic tubing (catalog
#508-009, internal diameter = 1.98mm; outside diameter = 3.18mm, Dow Corning, Midland, MI)
to a length of 4mm and sealed with ~3mm of sealant on both sides. This capsule length and
estradiol:cholesterol ratio have previously been shown to provide adult-like levels of estradiol in
Siberian hamsters (Bartness, 1995). A 4mm space was left empty for the blank capsules. Each
end was sealed with GE Silicone 2+ Clear caulk. Caulk was given a minimum of 24 hours to
cure before the sealed ends were trimmed to precisely 3mm and stored at -20°C. Prior to the
surgery, capsules were sterilized in a bath of Wavicide (Medical Chemical Corporation,
Torrance, CA) for 4-8 hours and then washed in sterile saline. Capsules were then submerged

in sterile saline at 37°C for 24 hours before surgery to allow hormone release to equilibrate.

Capsule implantations were conducted in Experiment 3 during ovariectomy or sham-surgery
procedures. The upper dorsal surface was shaved and disinfected with soap, alcohol, and
Betadine solution. An SC incision was made just below the nape, and the sterile capsule was

inserted. The incision was then closed with surgical wound clips.
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Behavioral Testing:

Behavioral testing occurred during the mid-light phase (7.5 and 5 £ 1.5 h after lights-on for LD
and SD, respectively) to minimize circadian differences across experiments conducted in
different photoperiods (as in Prendergast and Nelson, 2005). Hamsters were subjected to a
Light/Dark Box Test, Novel Object Test, and Social Approach Test. Behavioral tests were
conducted sequentially in the above-mentioned order with Novel Object and Social Approach

tests beginning immediately upon the completion of the prior test.

Light/Dark Box Test. The hamster was placed inside a dark box (38.9cm x 12.7cm x 15.2cm)
with a single entrance to an illuminated open arena (40.0cm x 39.9cm x 31.2cm). The entrance
was initially blocked by a metal door. At the start of the test, the metal door was removed, and
the hamster was allowed to explore the light and dark zones of the apparatus for 10 minutes.

The amount of time spent in the light zone was used as a measure of anxiety/exploratory drive.

Novel Object Test. The Light/Dark Box test served as an acclimation phase for the Novel
Object Test, which was conducted in the same apparatus. Immediately following the Light/Dark
Box Test, the hamster was removed, and a novel, empty, polycarbonate cage (14.6cm x 11.2cm
x 17.8cm) was placed inside the illuminated open field against the wall opposite the dark
chamber. The walls of the cage were constructed of plastic bars that allowed the subject to look
into, but not enter the cage. The hamster was again placed in the dark box. At the start of the
test, the metal door was removed, and the hamster was allowed to explore the apparatus for 5
minutes. The amount of time spent in the investigation zone surrounding the empty cage was

used as a measure of novel object investigation.

Social Approach Test. Immediately following the Novel Object Test, the hamster was removed,

and the novel cage was replaced with an identical polycarbonate cage containing a novel same-

10
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sex, same-age conspecific. The test hamster was again placed in the dark box, the metal door
removed, and the test hamster allowed to explore the apparatus for 5 minutes. The subject and
stimulus hamsters were able to interact by touching noses, but could not pass through the bars
to enter or leave the cage. The amount of time spent in the investigation zone surrounding the

caged conspecific was used as a measure of social approach.

Behavior was recorded by a camera mounted above the arena using Media Recorder 4
software (Noldus Information Technology Inc., Wageningen, The Netherlands). Time spent in
the light zone, novel object investigation, and social approach were scored automatically using
EthoVision XT10 software (Noldus Information Technology Inc., Wageningen, The

Netherlands).

Reproductive Measures

In Experiment 3, vaginal opening was recorded at surgery to confirm prepubertal status and
uterine weight measures were recorded at sacrifice to confirm effectiveness of hormone
treatments. At sacrifice, hamsters were perfused intracardially with physiological saline followed
by 4% paraformaldehyde, and brains were removed for other experiments. Following perfusion,
the uterus was removed and weighed on a digital balance (Mettler Toledo™ NewClassic ML
104 /03). Because ovariectomy cuts the upper portion of the uterine horns, a modified uterine
weight was used in which the 15t cm from the base of the uterus was dissected out and
weighed. If the uterus was less than 1 cm in length, the entire uterus was weighed and the
length was recorded. A correction factor was then applied to provide the weight/1 cm. This
uterine weight measure was also recorded for a subset of LD-reared, Sham adult female
hamsters from Experiment 2 to provide a reference for adult uterine weights using this method.
Estrous cycle was not monitored, and therefore UWs of Sham animals were not collected at the

same stage of the estrous cycle.

11
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Statistical Analyses

In Experiment 1, the effect of early life surgery was assessed by comparing the behavior of
Sham and NSC hamsters using a t-Test. Effects of gonadectomy and sex in Experiments 1 and
2 were assessed using ANOVA. In Experiment 3, the effect of ovariectomy was assessed by
comparing the behavior of Sham+B and OVX+B groups using a t-Test, whereas the effect of
hormone treatment was assessed by comparing the behavior of OVX+B, OVX+Ch, and
OVX+E2 using one-way ANOVA. Differences in uterine weight measures of all groups in
Experiment 3 plus the subset LD adult Sham females were assessed using a one-way ANOVA.
Where significant main effects or interactions were detected in the overall ANOVA, post hoc
comparisons were conducted using Fisher's PLSD. Significance was assumed when P<0.05.

All statistical analyses were conducted using SPSS Statistics Version 23 (IBM, Armonk, NY).

Results

Experiment 1. Prepubertal gonadal influences on exploration, novelty seeking, and social

approach

Effects of Early Life Surgery. Early life sham surgery did not impact any behavioral measure of
female juvenile hamsters (female Sham vs. female NSC t-Tests: time in light zone of the
Light/Dark Box, t24=0.80, P=0.43; novel object investigation, t,4=0.37, P=0.72; social
approach, t3=1.41, P=0.17). For males, early life sham surgery increased novel object
investigation (ts6=2.50, P<0.05, Cohen’s d=0.86, male Sham vs. male NSC, t-Test), but did
not alter other behavioral measures (male Sham vs. male NSC t-Tests: time in light zone of the
Light/Dark Box, t31=0.66, P=0.51; social approach, t7=1.36, P=0.19). Hence, for Light/Dark
Box and Social Approach tests, NSC and Sham juvenile hamsters were combined into a single
Intact group, and subsequent analyses were conducted using a 2 x 2 ANOVA with Sex

(male/female) and Gonadal Status (Intact/GNX) as independent variables. For the Novel Object

12
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Test, only female NSC and Sham groups were combined into an Intact group. Given that this
resulted in unequal numbers of groups between the sexes, male and female novel object data
were analyzed in separate one-way ANOVAs with Gonadal Status (Intact/GNX) as the

independent variable for females and Surgery (NSC/Sham/GNX) as the independent variable

for males.

Light/Dark Box Test. Prepubertal GNX had a sex-specific effect on performance in the
Light/Dark Box Test (Fig. 1A). There was a significant interaction between Sex and Gonadal
Status on the time juvenile hamsters spent in the light (F (1 s4=4.02, P<0.05, partial eta?=0.05,
two-way ANOVA). Prepubertal GNX increased time spent in the light for female juveniles
(P<0.05, Cohen’s d=0.82, female GNX vs. female Intact, Fisher's PLSD), but had no effect on

male juveniles (P=0.61, male GNX vs. male Intact, Fisher's PLSD).

Novel Object Test. As seen for the Light/Dark Box Test, prepubertal GNX affected novel object
investigation of female, but not male, juveniles (Fig. 1B). Prepubertal GNX increased the time
female juveniles spent investigating the novel object (F 1 35=4.16, P<0.05, partial eta?=0.10,
one-way ANOVA). For juvenile males, there was a main effect of Surgery (F 1 44=3.94, P<0.03,
partial eta®=0.15, one-way ANOVA) due to the early life surgery effect stated above (P<0.01,
Cohen’s d=0.86, male NSC vs. male Sham, Fisher's PLSD). There were no significant
differences in the time spent investigating the novel object between GNX and Sham (P=0.24,

Fisher's PLSD) or GNX and NSC (P=0.14, Fisher's PLSD) male juveniles.

Social Approach Test. Neither Sex nor prepubertal GNX impacted social approach (Fig. 1C;

F(1.76=0.714, P=0.40, main effect of Sex; F 76)=1.87, P=0.18, main effect of Gonadal Status;

F176=0.52, P=0.47, interaction, two-way ANOVA).
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Experiment 2. Absence of postpubertal gonadal influences on exploration, novelty seeking, and

social approach

Adult GNX did not impact any behavioral measure (Fig. 2; main effect of Surgery and the

interaction, two-way ANOVA statistics: time in the light zone of the Light/Dark Box, F1 53<0.56,
P>0.45; novel object investigation, F (4 52<0.59, P>0.44; social approach, F 4<1.91, P>0.17).
The main effect of Sex approached significance for social approach (F 45=3.80, P=0.06, two-
way ANOVA), but not for time in the light zone of the Light/Dark Box (F(145=0.21, P=0.64, two-

way ANOVA) or novel object investigation (F(145=0.14, P=0.71, two-way ANOVA).

Experiment 3. Developmental loss of ovarian inhibition on exploration and novelty seeking: age

versus pubertal status

Light/Dark Box Test. As seen for LD-reared female juveniles, prepubertal OVX increased time
spent in the light zone for SD-reared female juveniles even though surgery and testing occurred
at ~P85 and ~P106, respectively (Fig. 3A; t19=2.70, P<0.02, Cohen’s d=1.21, Sham+B vs.
OVX+B, t-Test). There were no significant effects of estradiol treatment on time spent in the

light zone of OVX females (Fig. 3B; F(;34=1.18, P=0.32, one-way ANOVA).

Novel Object and Social Approach Tests. Unlike time in the light zone of the Light/Dark Box,
prepubertal OVX did not significantly alter novel object investigation (Fig. 3C; t1=1.55, P=0.14,
Sham+B vs. OVX+B, t-Test) or social approach (Fig. 3E; t20=0.75, P=0.46, Sham+B vs.
OVX+B, t-Test) of SD-reared female juveniles. In addition, estradiol treatment did not alter
novel object investigation (Fig. 3D; F(234=1.61, P=0.22, one-way ANOVA) or social approach

(Fig. 3F; F(235=1.51, P=0.24, one-way ANOVA) of OVX SD-reared females.

Verification of Estradiol Capsules. The overall ANOVA indicated significant differences in 1cm

uterine weight measures (1cm UWSs) between groups (Fig. 4; F456=56.51, P<0.001, partial

14



785
786
787

788 361 eta?=0.82, one-way ANOVA). Variability was high in the LD-Sham adult females, likely due to

;gg 362  varying estrous cycle stage in these animals. Mean 1cm UWs of SD-OVX+E2 females was

;3; 363 significantly greater than that of LD-Sham adult females (P<0.001, Cohen’s d=1.45, Fisher’'s

;gi 364  PLSD), because values of all SD-OVX+E2 animals were in the upper range of LD-Sham adults.

;gg 365 Mean 1cm UWs of SD-OVX+E2 was also greater than those of all other SD-reared groups

797 366  (P<0.001, Cohen’s d>5.08, Fisher's PLSD). Mean 1cm UWs of SD-Sham+B, SD-OVX+B, and
798

;gg 367  SD-OVX+Ch were significantly lower than that of LD-Sham adult females (P<0.001, Cohen’s

801 368 d>1.28, Fisher's PLSD) and did not differ from each other (P>0.19, Fisher's PLSD). One SD-
285 369 Sham+B female and 1 SD-OVX+B female had 1cm UWSs that were outliers (1.5 times the

ggg 370 interquartile range, SPSS Box and Whiskers Plot). These animals were included in behavioral
283 371 analyses above because they met the criteria of absence of vaginal opening at the time of

282 372  surgical and hormonal manipulations (surgery/hormone manipulations at P80-P85, 1cm UWs

21? 373  recorded at P102-P113). Inclusion of these 2 animals did not affect the outcome of any

812
g13 374  statistical comparison.

814

816 ] ]
817 376 Discussion
818

819 377  The present findings argue for an active role for the ovary in the regulation of juvenile behavior.

820 378  Prepubertal ovariectomy increased time spent in the light zone of the Light/Dark Box Test and

821
g;g 379 novel object investigation in the Novel Object Test in juvenile female hamsters. To our
Z;g 380 knowledge, this is the first demonstration that the ovary inhibits Light/Dark Box ‘exploration’ or

223 381 novelty seeking during the juvenile period. Inclusion of non-surgical controls in LD-reared

g;g 382  juvenile hamsters allowed us to rule out potential procedural confounds of surgery (e.g.,

Zg? 383  anesthesia, early life surgical stress). These data support previous studies implicating the

832 384 juvenile ovary in both organizational and activational actions on behavior (see Introduction).
833

834 385  Juvenile gonadal hormones also contribute to physiological regulation of the hypothalamic-
835

836 386 pituitary-gonadal axes (i.e. negative feedback on pituitary gonadotropin secretion; Andrews and
837
838
839 15
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Ojeda, 1981; Dubois et al., 2016; Meijs-Roelofs and Kramer, 1979; Plant, 1986; Ramirez and
Mccann, 1965; Sisk and Turek, 1983; Winter and Faiman, 1972). Clearly, the juvenile gonads

should not be considered functionally quiescent, neither physiologically nor behaviorally.

There was no effect of ovariectomy in adulthood, suggesting that the influence of the ovary on
Light/Dark Box exploration and novelty object investigation changes across adolescence with
the prepubertal ovary having a greater influence than that of the adult ovary. Notably, the
response to ovariectomy of SD-reared female hamsters was more similar to LD-reared juveniles
than LD-reared adults, even though SD-reared hamsters underwent surgery and testing at the
same ages as the latter. Ovariectomy increased Light/Dark Box exploration in SD-reared
hamsters; differences in novel object investigation were not significant (P=0.14), but were in the
same direction as that seen in LD-reared juveniles (OVX > Sham). These data indicate that
SD-rearing extends the period during which the ovary inhibits Light/Dark Box exploration and
perhaps novel object investigation. Hence, an age-specific process is unlikely to be responsible
for the loss of ovarian inhibition across adolescence. Instead, given that SD-reared females
were reproductively immature at the time of surgery and testing, the present findings suggest
that activation of the reproductive axis at puberty may be responsible for the developmental
decrease in ovarian inhibition of Light/Dark Box exploration. The finding that ovariectomy
increases Light/Dark Box exploration in both LD-reared, P30 juveniles and SD-reared, P105
‘juveniles’ is remarkable given that these two juvenile states are not equivalent. While SD-
rearing delays reproductive maturation of the ovary (e.g., emergence of antral follicles, corpora
lutea, and elevated gonadal steroids), it does not simply pause development (Park et al., 2014).
Rather, a distinct developmental path is taken that is characterized by changes in gene
expression and the emergence of hypertrophied granulosa cells that are likely capable of
producing both steroid and peptide hormones (Kabithe and Place, 2008; Park et al., 2014; Van

den Hurk et al., 2002). In addition, SD-reared juveniles exhibit several winter adaptations that
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are absent in LD-reared juveniles (Paul et al., 2008; Stevenson et al., 2017). Hence
investigations into the commonalities and differences between these two ‘juvenile’ phases may

reveal the underlying mechanism through which the ovary influences juvenile behavior.

Castration in males did not impact Light/Dark Box exploration or novel object investigation in
juveniles or adults, suggesting a sex-specific role for gonadal hormones in juvenile exploration
and novelty seeking. Caution is warranted, however, as the timing of gonadectomy in the
present study may not have been optimal for males. Pubertal development appears to begin
earlier in male than female Siberian hamsters. Increases in testes weights and circulating
gonadotropins occur as early as 20 days of age in LD-reared males (Yellon and Goldman,
1984), whereas in LD-reared females, uterine weights increase around 45 days of age (Adam et
al., 2000). Hence, behavioral testing was conducted prior to puberty in females, but likely
during early puberty in males. If the effect of gonadectomy is restricted to the juvenile phase,
earlier time points may be needed to reveal an effect of castration. Notably, suppression of
testicular hormones using a GnRH antagonist decreases preference for novelty in mid-pubertal
male rats (Cyrenne and Brown, 2011). At present, it is not clear whether the different findings in
these studies are due to the species tested (hamsters versus rats), age of subjects (early versus
mid puberty), testing procedures (novel object investigation versus novel object recognition), or
method of gonadal hormone suppression (castration versus GnRH antagonist). Other studies
have also implicated a role for the peripubertal testis in behavioral development. In a design
similar to the present study, prepubertal castration increased social play in 30-day-old LD-
reared male and female hamsters (Paul et al., 2018). Experiments in Syrian hamsters have
shown that the brain remains sensitive to the organizational actions of testosterone on adult
reproductive behavior during the juvenile and pubertal periods (Schulz et al., 2009).
Furthermore, 19 days of testosterone treatment during the juvenile period increased volumes of

several sexually dimorphic brain regions to adult male-typical levels (Schulz et al., 2009). More
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studies are needed to assess behaviors impacted by juvenile and early adolescent gonadal

hormones as well as potential sex differences and windows of sensitivity for these actions.

Early life surgery can impact adult behavior, including decreases in novelty seeking of rats
(Vetter-O’Hagen and Spear, 2012). In the present experiment, early life surgery also impacted
novel seeking of juvenile hamsters, but in the opposite direction and only in males. The
difference in the direction of the effect may be due to species or procedural differences — e.g.,
timing of surgery, timing of testing, or behavioral testing paradigm. Early life surgery effects are
likely due to the stress of surgery during sensitive periods early in postnatal development
(Boersma et al., 2014; Horovitz et al., 2012; Varlinskaya et al., 2013). Similar to the present
experiment, early life stress often impacts males and females to different degrees (Bilbo and
Schwarz, 2012; Nelson and Lenz, 2017), and male-specific effects of early life surgery have
also been reported for ethanol intake (Vetter-O’Hagen and Spear, 2011). These findings
emphasize the importance of studying both sexes and including non-surgical controls in studies

using surgical manipulations during early postnatal development.

The physiological mechanism through which the ovary modulates juvenile behavior is not clear.
Findings from previous studies suggest estradiol as a prime candidate. Circulating estradiol is
elevated from around P10 to P25 in rats (Dohler and Wuttke, 1975; Konkle and McCarthy, 2011;
Walker et al., 2012), with some studies reporting higher values during these ages than in
adulthood (Ddhler and Wuttke, 1975; Walker et al., 2012). Furthermore, studies in aromatase
knockout mice suggest that estradiol has long-term, organizational actions during the juvenile
period in females. Aromatase knockout mice, which cannot produce estrogens, exhibit deficits
in female sex behavior, even when hormonally primed with exogenous estradiol and
progesterone prior to behavioral testing (Bakker et al., 2002). These deficits are ameliorated by

daily estradiol injections administered from P15 to P25 (Brock et al., 2011). In the present
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1009

1010
181; 465  study, we tested whether prepubertal estradiol also has more immediate actions on juvenile
1812 466  behavior. Counter to our hypothesis, however, provision of estradiol to SD-reared,

1812 467  ovariectomized prepubertal hamsters did not affect their Light/Dark Box exploration or novel

181; 468  object investigation. Hence, the prepubertal ovary does not appear to act through estradiol

18;2 469  alone to inhibit juvenile exploration and novelty seeking. Other ovarian hormones may act alone

1021 470  orin concert with estradiol to mediate these effects. Developmental hormone profiles in rats
1022

1023 471  point toward progesterone and testosterone as possible candidates. Circulating progesterone
1024

1025 472  begins to increase around the third week of life, and circulating testosterone exhibits a transient
1026

1027 473  increase around 15 days of age in female rats (Doéhler and Wuttke, 1975; Walker et al., 2012).
1028

1029 474  Although a detailed developmental profile of gonadotropins and androgens is available for male
1030

1031 475  Siberian hamsters (Yellon and Goldman, 1984), a similar detailed profile is not available for
1032

1033 476  female Siberian hamsters or for estrogens and progestins in either sex.

1034

1035 477

1036
1037 478  While our data do not support a role for estradiol in juvenile Light/Dark Box exploration and

1038
1039 479  novel object investigation, there are a few caveats to this conclusion. It is possible that low to

1040
1041 480  moderate, rather than high, estradiol levels are needed to modulate juvenile behavior, as has

1835 481  been proposed for estradiol’s organizational actions on female sex behavior (Déhler et al.,
1044
1045
1046
1047
1048
1049

182? 485  upper-adult range. While this hormone treatment may mimic elevated estradiol levels seen in

1822 486 juvenile female rats, it is not known whether Siberian hamsters exhibit a similar juvenile

1822 487  elevation in circulating estradiol. Future studies are needed to characterize the developmental

1056 488  profile of estradiol in hamsters and to determine whether differing “doses” of estradiol have
1057

1058 489 different effects on juvenile exploration and novelty seeking. Polycarbonate cages can contain
1059

1060 490  bisphenols, including bisphenol A, which is a weak estrogen receptor agonist (Patisaul, 2019).
1061

1062

1063 19
1064

482  1984). In the present study, we implanted estradiol capsules that have previously been shown
483  to mimic adult levels of estradiol (Bartness, 1995). Uterine weight measures in the current

484  experiment further indicated that estradiol levels of hormone-treated hamsters were in the
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Hence, bisphenol contamination is a possible confound in the present experiments. Another
caveat is that estradiol was only administered to SD-reared females. In addition to the ovarian
and seasonal differences discussed above, SD-housing decreases estradiol secretion and
alters the sensitivity of the brain to circulating steroids in adult Syrian and Siberian hamsters
(Bittman et al., 1996; Ellis and Turek, 1983; Rendon et al., 2017; Tamarkin et al., 1976).
Whether similar actions of photoperiod occur in juveniles is not known, but this raises the
possibility that different results may be obtained if estradiol is administered to ovariectomized,

LD-reared juveniles.

Gonadal steroids have been shown to impact anxiety, novelty seeking, and social behavior in
rodents (Adkins-Regan, 2005; Cyrenne and Brown, 2011; Walf and Frye, 2006). Hence, it is
surprising that gonadectomy had no impact on behavioral measures of adult hamsters in the
present study. Although species differences may be responsible, a close inspection of the
literature suggests other possibilities as well. Steroid manipulations impact anxiety-like behavior
in several affective behavioral tests (e.g. Aikey et al., 2002; Frye and Seliga, 2001; Mora et al.,
1996; Morgan and Pfaff, 2002), but null results are occasionally reported (Hodosy et al., 2012;
Nomikos and Spyraki, 1988), including for the Light/Dark Box Test (Domonkos et al., 2017).
Time of behavioral testing can modulate steroid influences on Light/Dark Box behavior. Male
Tfm mice that have a mutation in the androgen receptor exhibit decreased exploration in the
Light/Dark Box test compared to wild type mice when tested in the dark phase of the light/dark
cycle but not when tested during the light phase (Chen et al., 2014); present experiments were
conducted during the light phase. Steroid influences on novelty seeking may depend upon
testing procedures. Testosterone promotes novelty seeking in the novel object recognition test
(Cyrenne and Brown, 2011). In a test that lacks a learning or memory component, however,
Vetter-O’Hagen and Spear (2012) failed to find effects of castration or ovariectomy in the Novel

Object Test. Gonadal steroids modulate many aspects of social behavior (Choleris et al., 2009;
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Ervin et al., 2015), but few studies test their impact on social approach. Castration decreases
social interactions in male rats, but this effect manifests between 2 and 4 weeks post-surgery
(Primus and Kellogg, 1990). Hence, the 3-week interval between surgery and behavioral testing
in the present experiment may not have been long enough to detect effects of gonadectomy on

social behavior of adults.

It is difficult to tease apart contributions of anxiety, exploratory drive, learning, memory, and
locomotor activity to behavioral measures in rodent affective and novelty-seeking tests. The
Light/Dark Box Test is typically used to measure anxiety, but the paradigm is also based on
natural motivation of rodents to explore novel environments (Bourin et al., 2007; Bourin and
Hascoét, 2003). In the present experiment, the Novel Object Test included the dark refuge of
the Light/Dark Box Test. Hence, rodents’ natural anxiety toward light may have influenced the
amount of time they investigated the novel object in the well-lit portion of the testing arena.
Novel Object Recognition Tests are often used as a test of learning and memory (Antunes and
Biala, 2012). In these tests, the procedure includes two phases: 1) a sampling phase in which
the animal is exposed to an object and 2) a testing phase in which the animal is provided with
the now familiar object along with a novel object (or the familiar object in a new location).
Because we did not include a sampling phase in our Novel Object Test, effects of recognition
learning and memory were minimized. Nevertheless, hamsters were exposed to the apparatus
during the Light/Dark Box Test just prior to the Novel Object Test. Hence other forms of
learning (e.g., acclimation/habituation to the testing apparatus) could have impacted
performance in the present study. Changes in locomotor activity, which are modulated by
gonadal steroids in adults (Ellis and Turek, 1983; Morgan and Pfaff, 2002), can also impact
behavioral measures in affective and novelty-seeking tests. Because activity was not recorded
in the dark zone of the arena, it is difficult to assess potential contributions from locomotor

activity in the present tests. However, given that steroids typically increase general locomotor
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activity (Ellis and Turek, 1983; Morgan and Pfaff, 2002), it is unlikely that this mechanism is
responsible for the increase in Light/Dark Box exploration and novelty seeking seen in the
present study after prepubertal ovariectomy. Regardless of mechanism, the present findings
demonstrate that the juvenile ovary modulates Light/Dark Box exploration and novelty object
investigation. Whether this is due to ovarian regulation of anxiety, motivation to explore novelty,

learning, memory, and/or locomotor activity remains to be elucidated.

Conclusions

Previous findings in rats, mice, and hamsters suggest that the juvenile gonads can have long-
term organizational actions on female sex behaviors as well as immediate, likely activational,
actions on juvenile play behavior (Brock et al., 2011; Field et al., 2004; Gerall et al., 1973; Paul
et al., 2018). The present experiments extend the category of behaviors impacted to
exploration and novelty seeking in female juveniles. These findings suggest that juvenile
gonadal hormones regulate a wide-range of social, emotional, and reward-associated
behaviors. Although the present effects are likely activational in nature, they could have long-
term consequences by affecting the developmental trajectory of an individual. Circulating
steroid levels are low, not absent, in prepubertal boys and girls, with sex differences also
present prior to puberty (Courant et al., 2010; Janfaza et al., 2006). Hence, similar behavioral
actions are possible in humans. If so, it will be essential to determine whether juvenile gonadal
hormones contribute to behavioral disorders that arise before puberty. Future studies are
needed to assess possible mechanisms, species differences, and sex differences. This
research will provide a better understanding of the extent to which juvenile gonads are active

regulators of behavioral development.
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Figure Legends

Figure 1. Prepubertal ovariectomy increases exploration and novelty seeking. Amount of time

juvenile hamsters spent investigating the light zone (A), novel empty cage (B), and novel same-
sex conspecific (C) during Light/Dark Box, Novel Object, and Social Approach tests,
respectively. Hamsters were gonadectomized (GNX), sham-operated (Sham), or left un-
operated (non-surgical controls; NSC) at ~P15 and tested at ~P30. NSC and Sham measures
only differed for novel object investigation of males, t-Test, P<0.05; denoted by #. For all other
measures, NSC and Sham groups were combined into a single gonadal intact group (Intact).
*Indicates significant difference between GNX and Intact groups (Fisher's PLSD [Light/Dark Box

test] or t-Test [Novel Object test], P<0.05). Sample sizes indicated within bars.
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Figure 2. Postpubertal gonadectomy does not impact exploration, novelty seeking, or social

approach. Amount of time adult hamsters spent investigating the light zone (A), novel empty
cage (B), and novel same-sex conspecific (C) during Light/Dark Box, Novel Object, and Social
Approach tests, respectively. Hamsters were gonadectomized (GNX) or sham-operated (Sham)

at ~P85 and tested at ~P106. Sample sizes indicated within bars.

Figure 3. SD-rearing extends behavioral sensitivity of exploration to prepubertal ovariectomy.

Amount of time SD-reared juvenile female hamsters spent investigating the light zone (A), novel
empty cage (B), and novel same-sex conspecific (C) during Light/Dark Box, Novel Object, and
Social Approach tests, respectively. Hamsters were sham-operated and implanted with a blank
capsule (Sham+B) or ovariectomized and implanted with a blank (OVX+B), cholesterol-filled
(OVX+Ch), or estradiol-filled (OVX+E) capsule at ~P83. Behavioral tests were conducted at
~P106. Note that puberty begins later than P105 in SD-reared female Siberian hamsters (Adam
et al., 2000). *Indicates significant difference between Sham+B and GNX+B groups (Fisher’s

PLSD, P<0.05). Sample sizes indicated within bars.

Figure 4. Estradiol capsules increased uterine weights to the upper range of adult LD-reared

hamsters. Box and Whiskers plot showing the median (horizontal bar within each box), 1.5-
interquartile range (ends of each box), and full range (whiskers) for 1cm uterine weight
measures (1cm UWSs) of SD-reared hamsters in Experiment 3 as well as a subset of LD-reared
Sham adult females from Experiment 2. SD-reared hamsters were sham-operated and
implanted with a blank capsule (SD-Sham+B) or ovariectomized and implanted with a blank
(SD-OVX+B), cholesterol-filled (SD-OVX+Ch), or estradiol-filled (SD-OVX+E2) capsule at ~P83.
LD-reared hamsters were sham-operated at ~P86, but did not receive a capsule implant (LD-

Sham). 1cm UWs were recorded at sacrifice at ~P108. Differences in mean 1cm UWs are
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indicated by letters above each box; groups with differing letters differ significantly from each

other (P<0.001, Fisher's PLSD).
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