

1 Prepubertal ovarian inhibition of Light/Dark Box exploration and novelty object investigation in 2 juvenile Siberian hamsters

4 Kyne R.F.^{a,b}, Barrett A.R.^a, Brown L.M. ^a, and Paul M.J. ^{a,b,c}

⁶ ^aDepartment of Psychology, ^bNeuroscience Program, and ^cEvolution, Ecology, and Behavior
⁷ Program, University at Buffalo SUNY, Buffalo, NY, USA

robertkv@buffalo.edu

10 abigalba@buffalo.edu

11 imbrown3@buffalo.edu

12 mijpaul@buffalo.edu

13

15 Robert E. Kuehne

16 Department of Psychology

17 204 Park Hall

18 University at Buffalo, SUNY

19 Buffalo, NY 14260, US

20

21 Short title: Prepubertal ovarian inhibition of exploration and novelty seeking

22

23 Figures: 4

24 Tables. 0

57
58
59 26 **Abstract**
60
61 27 The overwhelming majority of research on the role of gonadal hormones in behavioral
62
63 28 development has focused on perinatal, pubertal, or adult life stages. The juvenile period has
64
65 29 been overlooked because it is thought to be a time of gonadal quiescence. In the present study,
66
67 30 we tested whether prepubertal gonadectomy impacts the behavior of male and female juvenile
68
69 31 hamsters on the Light/Dark Box, Novel Object, and Social Approach tests (Experiment 1) and
70
71 32 compared these findings to those obtained after adult gonadectomy (Experiment 2).
72
73 33 Prepubertal ovariectomy increased exploration (i.e. time spent in the light zone of the Light/Dark
74
75 34 Box) and novel object investigation of juveniles indicating an inhibitory role for the juvenile
76
77 35 ovary; social approach was unaffected. In contrast, adult ovariectomy and castration (both
78
79 36 prepubertal and adult) had no effect on any behavioral measure. Experiment 3 tested whether
80
81 37 rearing hamsters in a short day length (SD), which delays puberty in this species, extends the
82
83 38 interval of juvenile ovarian inhibition on exploration and novelty seeking. We also tested
84
85 39 whether provision of estradiol reverses the effects of prepubertal ovariectomy. Hormonal
86
87 40 manipulations and behavioral tests of Experiment 3 were conducted at ages when long day-
88
89 41 reared hamsters are adult (as in Experiment 2), but SD-reared hamsters remain reproductively
90
91 42 immature. Ovariectomy again increased exploration in the SD-reared juveniles despite the
92
93 43 older age of surgery and testing. Estradiol treatment had no effect. These findings reveal a
94
95 44 novel role for the juvenile ovary in exploration and novelty seeking that is unlikely to be
96
97 45 mediated exclusively by estradiol.
98
99 46
100
101 47 Keywords: juvenile, adult, gonadectomy, prepubertal ovary, affective behavior, novelty seeking,
102
103 48 social approach, estradiol
104
105 49
106
107
108
109
110
111
112

113
114
115 50 **Introduction**
116
117

118 51 Gonadal hormones play critical and far-reaching roles in behavioral development. Effects of
119 52 gonadal hormones are typically characterized as either long-term, “organizational” actions that
120 53 persist long after hormonal exposure or short-term, “activational” actions that wane shortly after
121 54 the hormone is removed (Arnold, 2017; De Vries et al., 2014; McCarthy et al., 2018; Schulz and
122 55 Sisk, 2016). Most research in behavioral endocrinology has focused on perinatal, pubertal, and
123 56 adult periods. Organizational actions of gonadal steroids are thought to organize neural circuits
124 57 during the perinatal and pubertal periods, which are later ‘activated’ when gonadal steroid
125 58 secretion increases at puberty and into adulthood. The juvenile period is typically overlooked
126 59 because it is considered a time of gonadal quiescence. However, the gonads of juveniles
127 60 secrete measurable amounts of hormones in many species including rats, mice, Siberian
128 61 hamsters, Syrian hamsters, rhesus monkeys, and humans (Courant et al., 2010; Dionyssiou-
129 62 Asteriou and Zachari, 1992; Döhler and Wuttke, 1975; Janfaza et al., 2006; Mannan and
130 63 O’Shaughnessy, 1991; Phalen et al., 2010; Sisk and Turek, 1983; Vesper et al., 2015; Winter et
131 64 al., 1987; Yellon and Goldman, 1984). Furthermore, juvenile steroids have physiological actions
132 65 as they provide negative feedback to the hypothalamic-pituitary-gonadal axis even during the
133 66 juvenile period (Andrews and Ojeda, 1981; Dubois et al., 2016; Meijs-Roelofs and Kramer,
134 67 1979; Plant, 1986; Ramirez and Mccann, 1965; Sisk and Turek, 1983; Winter and Faiman,
135 68 1972). Hence, it is reasonable to ask whether juvenile gonadal hormones impact behavior.
136 69
137

138 70 There is a small, but growing body of literature implicating juvenile gonadal hormones in the
139 71 regulation of behavior. Ages of developmental stages vary across species, sexes and
140 72 environmental conditions, but a general timeline for many rodents approximates the following:
141 73 perinatal and neonatal periods = embryonic day 18 to postnatal day [P]10; juvenile period = P14
142 74 to P30; pubertal period = P30 to P55; young adulthood > P55. Neonatal and prepubertal
143 75 ovariectomy diminish sex differences in several adult reproductive and non-reproductive traits
144
145

169
170
171 76 (Hendricks, 1992; Fitch and Denenberg, 1998). Because measures were taken in adulthood,
172 77 however, it is difficult to determine whether these effects are due to the absence of ovarian
173 78 hormones during the juvenile or pubertal period. Nevertheless, behavioral effects of prepubertal
174 79 ovariectomy can be greater when surgery is performed before versus after the juvenile period
175 80 (Field et al., 2004; Gerall et al., 1973). Furthermore, deficits in female sex behavior of
176 81 aromatase knockout female mice can be ameliorated by daily estradiol injections administered
177 82 during the juvenile period (Brock et al., 2011). Collectively, these findings suggest that the
178 83 ovaries potentiate feminization of the brain and behavior through organizational actions of
179 84 estradiol during the juvenile period (Bakker and Brock, 2010). Analogous mechanisms may be
180 85 in place for juvenile males. Male Syrian hamsters remain sensitive to the organizational actions
181 86 of adult levels of testosterone administered during the juvenile period (Schulz et al., 2009), but it
182 87 is not known whether endogenous, prepubertal levels of testicular hormones can similarly
183 88 impact behavior. We have recently found that the gonads of juveniles also support more
184 89 immediate, likely activational actions on juvenile behavior. Gonadectomy at 15 days of age
185 90 increases social play behavior in male and female juvenile Siberian hamsters indicating an
186 91 inhibitory role for the juvenile gonads on play in this species (Paul et al., 2018). These findings
187 92 counter the notion of quiescent juvenile gonads, and raise the question as to the extent to which
188 93 gonadal hormones influence behavior during the juvenile period. To begin to address this
189 94 question, the present study assessed the role of the juvenile gonads in tests of affective,
190 95 novelty-seeking, and social approach behaviors.

210 96
211
212 97 Siberian hamsters provide unique opportunities to test the role of gonadal hormones across
213 98 development because the timing of their puberty is plastic. Siberian hamsters use day length to
214 99 coordinate reproductive maturation with summer breeding conditions (Paul et al., 2008;
215 100 Stevenson et al., 2017). Hamsters reared in long, summer-like day lengths (LDs) undergo rapid
216 101 pubertal development that begins around 20 days of age for males and between 35-50 days of

225
226
227 102 age for females; adulthood is reached by 60 to 80 days of age (Adam et al., 2000; Yellon and
228 103 Goldman, 1984). When reared in short, winter-like day lengths (SDs), however, puberty is
229 104 delayed by several months in order to prevent breeding during the winter. Under these
230 105 conditions, reproductive development is initiated around 100 days of age or later (Adam et al.,
231 106 2000; Hoffmann, 1978; Paul et al., 2006). Hence, with this model gonadal manipulations can be
232 107 performed on animals that are the same age, but in different pubertal phases – around 80-100
233 108 days of age, when LD-reared hamsters are adult, but SD-reared hamsters remain reproductively
234 109 immature. This provides a model to test whether developmental changes in the role of gonadal
235 110 hormones across adolescence are due to pubertal status or some other age-related process
236 111 (reviewed in Walker et al., 2017).
237
238 112
239
240 113 The present study used the Siberian hamster model to test the impact of prepubertal
241 114 (Experiment 1) and adult (Experiment 2) gonadectomy on exploration/anxiety-like behavior
242 115 (Light/Dark Box Test), novelty seeking (Novel Object Test), and social approach (Social
243 116 Approach Test) of juvenile and adult LD-reared hamsters. These experiments uncovered an
244 117 inhibitory role for the juvenile ovary in exploration and novelty seeking that was not present in
245 118 adult females; castration did not affect behavioral measures of juvenile or adult males in these
246 119 experiments. Hence, in Experiment 3 we tested the impact of prepubertal ovariectomy on 80
247 120 day-old “juvenile” SD-reared hamsters to test whether the loss of juvenile ovarian behavioral
248 121 inhibition is due to age or pubertal status. We further tested whether provision of estradiol
249 122 implants would reverse the effects of gonadectomy in SD-reared, ovariectomized juvenile
250 123 hamsters. As for LD-reared juveniles, ovariectomy increased exploratory behaviors in SD-
251 124 reared juvenile females, but this effect was not reversed by estradiol implants. Collectively,
252 125 these findings reveal a novel role for the prepubertal ovary in the regulation of affective and/or
253 126 novelty-seeking behaviors that is unlikely to be regulated exclusively by estradiol.
254
255 127
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

281
282
283 128 **Materials and Methods**
284

285 129 Animals and Housing Conditions
286

287 130 Siberian hamsters (*Phodopus sungorus*) were obtained from our breeding colony, which was
288
289 131 derived from animals provided by Dr. Brian Prendergast, University of Chicago. Hamsters were
290
291 132 kept in well-ventilated, light-proof environmental housing units that provided either a long day
292
293 133 photoperiod (LD; 15:9-hr light:dark cycle) or short day photoperiod (SD; 10:14-hr light:dark
294
295 134 cycle); dim red light was present during the dark phase. Within these units, hamsters were
296
297 135 housed in clear, polysulfone cages (18.4cm x 29.2cm x 12.7cm) furnished with lab grade
298
299 136 shredded aspen bedding (LADS Pet Supplies). All hamsters were weaned on postnatal day
300
301 137 (P)18, at which point hamsters were housed in same-sex groups of 2-3 hamsters per cage. Tap
302
303 138 water and rodent chow (2016 Teklad global 16% protein rodent diet, Envigo; isoflavone content
304
305 139 undetectable to 20 mg/kg) were available *ad libitum*. Ambient temperature was maintained at
306
307 140 22 ± 2°C. Hamsters were fitted with ear tags for individual identification at surgery (Experiment
308
309 141 1) or at weaning (Experiments 2 and 3). All procedures were approved by the University at
310
311 142 Buffalo, SUNY Institutional Animal Care and Use Committee and were in accordance with the
312
313 143 *Guide for Care and Use of Laboratory Animals*.
314
315 144
316
317 145 Experiment Timelines
318
319 146 *Experiment 1, LD prepubertal gonadectomy*. Forty-eight male and 43 female hamsters were
320
321 147 gestated and reared in an LD. Hamsters underwent gonadectomy or sham-operation
322
323 148 procedures on P15 ± 1, and behavioral tests were conducted between P29-P32. To assess
324
325 149 whether early life surgery impacts behaviors measured in this study, another group of hamsters
326
327 150 was not operated upon and served as non-surgical controls (NSCs). NSCs were otherwise
328
329 151 treated identically to gonadectomized (GNX) and sham-operated (Sham) hamsters. Within 2
330
331 152 days of behavioral testing, hamsters were sacrificed, at which point uterine weights, testes
332
333 153 weights, and body mass were recorded. One female GNX hamster was excluded from
334
335
336

337
338
339 154 analyses because of extremely low body mass at the time of testing (11g). Two female Sham
340
341 155 hamsters were excluded because genetic malformations were noted in siblings within the same
342
343 156 litter.
344
345 157
346
347 158 *Experiment 2, LD adult gonadectomy.* Thirty-three male and 28 female hamsters were gestated
348
349 159 and reared in an LD. Hamsters underwent gonadectomy or sham-operation procedures
350
351 160 between P81-P89, and behavioral tests were conducted between P102-P111. Within 2 days of
352
353 161 behavioral testing, hamsters were sacrificed, at which point uterine weights, testes weights, and
354
355 162 body mass were recorded. Two male GNX and 2 female Sham hamsters were excluded from
356
357 163 analyses because of post-surgical complications.

358
359 164
360
361 165 *Experiment 3, SD prepubertal ovariectomy: age versus pubertal status.* Fifty-seven female
362
363 166 hamsters were gestated and reared in an SD; males were not tested in this experiment because
364
365 167 castration did not impact behavior in experiments 1 and 2. Hamsters underwent ovariectomy or
366
367 168 sham-operation procedures between P80-P85 and behavioral testing between P101-P111. At
368
369 169 surgery, ovariectomized (OVX) hamsters received an estradiol implant (E2; estradiol diluted in
370
371 170 cholesterol), a cholesterol implant (Ch; vehicle control), or a blank implant (B; empty control).
372
373 171 All Sham hamsters received a B implant. The effect of ovariectomy was tested by comparing
374
375 172 the behavior of OVX+B hamsters to that of Sham+B hamsters. The effect of estradiol was
376
377 173 tested by comparing the behavior of OVX+E2 hamsters to that of OVX+Ch and OVX+B
378
379 174 hamsters. Within 2 days of behavioral testing, hamsters were sacrificed, at which point uterine
380
381 175 weights and body mass were recorded. Vaginal opening is often used as a marker of pubertal
382
383 176 onset in several rodent species, including Siberian hamsters (Haigh et al., 1988; Place et al.,
384
385 177 2004; Place and Cruickshank, 2009). To ensure prepubertal status at the time of hormone
386
387 178 manipulations, vaginal patency was assessed at surgery. Hamsters that had undergone vaginal
388
389
390
391
392

393
394
395 179 opening were excluded from analyses; number of animals excluded within each group was 1
396
397 180 Sham+B, 1 OVX+Ch, and 3 OVX+E2.
398
399 181
400
401 182 Surgical Procedures.
402
403 183 For all surgical procedures, hamsters were administered Metacam (0.5mg/kg, SC) prior to the
404
405 184 start of surgery. Hamsters were anesthetized with isoflurane vapors, and body temperature was
406
407 185 maintained using a heating pad. After surgery, hamsters were administered sterile saline (1ml
408
409 186 for juveniles, 2.5ml for adults, SC) and placed under a heat lamp to aid thermoregulation until
410
411 187 they were ambulatory. Metacam was administered (0.5mg/kg, SC) daily for 2 days following
412
413 188 surgery as a postoperative analgesic.
414
415 189
416
417 190 *Castrations.* The lower ventrum was shaved and then disinfected with soap, alcohol, and
418
419 191 Betadine solution. A single incision was made through the skin and abdominal wall, and one
420
421 192 testis and epididymis were externalized using forceps. The testicular vein was ligated with
422
423 193 sterile vicryl sutures, and the testis and epididymis were removed by cutting the tissue just
424
425 194 above the suture. Remaining tissue was replaced inside the animal. The contralateral testis
426
427 195 and epididymis were then externalized and removed through the same incision. The abdominal
428
429 196 wall and skin were then closed sequentially using sterile vicryl sutures. Sham castrations were
430
431 197 conducted in the same manner except that the testicular vein was not ligated or cut, and the
432
433 198 testes and epididymides were replaced inside the animal following externalization.
434
435 199
436
437 200 *Ovariectomy.* The dorsal left and right flanks were shaved and disinfected with soap, alcohol,
438
439 201 and Betadine solution. An incision was made through the skin and abdominal wall on one flank,
440
441 202 and the ipsilateral ovary was externalized using forceps. The ovarian vein was ligated with
442
443 203 sterile vicryl sutures, and the ovary was removed by cutting the tissue just above the suture.
444
445 204 Remaining tissue was then replaced inside the animal. The abdominal wall was closed using
446
447
448

449
450
451 205 sterile vicryl sutures, and the skin closed using surgical wound clips or sutures. The
452
453 206 contralateral ovary was then removed using the same procedures. Sham ovariectomies were
454
455 207 conducted in a similar manner except that the ovarian vein was not ligated or cut, and the
456
457 208 ovaries were replaced inside the animal following externalization.
458
459 209
460
461 210 *Subcutaneous capsule preparation and implantation.* For estradiol implants, crystalline estradiol
462
463 211 benzoate (catalog #E8875-1G, MilliporeSigma, St. Louis, MO) was diluted with crystalline
464
465 212 cholesterol (catalog #C8667-5G, MilliporeSigma, St. Louis, MO) to provide a 10% (wt/wt) final
466
467 213 concentration of estradiol. For cholesterol implants, only the crystalline cholesterol was used.
468
469 214 The estradiol:cholesterol mixture or cholesterol was then packed into Silastic tubing (catalog
470
471 215 #508-009, internal diameter = 1.98mm; outside diameter = 3.18mm, Dow Corning, Midland, MI)
472
473 216 to a length of 4mm and sealed with ~3mm of sealant on both sides. This capsule length and
474
475 217 estradiol:cholesterol ratio have previously been shown to provide adult-like levels of estradiol in
476
477 218 Siberian hamsters (Bartness, 1995). A 4mm space was left empty for the blank capsules. Each
478
479 219 end was sealed with GE Silicone 2+ Clear caulk. Caulk was given a minimum of 24 hours to
480
481 220 cure before the sealed ends were trimmed to precisely 3mm and stored at -20°C. Prior to the
482
483 221 surgery, capsules were sterilized in a bath of Wavicide (Medical Chemical Corporation,
484
485 222 Torrance, CA) for 4-8 hours and then washed in sterile saline. Capsules were then submerged
486
487 223 in sterile saline at 37°C for 24 hours before surgery to allow hormone release to equilibrate.
488
489 224
490
491 225 Capsule implantations were conducted in Experiment 3 during ovariectomy or sham-surgery
492
493 226 procedures. The upper dorsal surface was shaved and disinfected with soap, alcohol, and
494
495 227 Betadine solution. An SC incision was made just below the nape, and the sterile capsule was
496
497 228 inserted. The incision was then closed with surgical wound clips.
498
499 229
500
501 230
502
503
504

505
506
507 231 Behavioral Testing:

509 232 Behavioral testing occurred during the mid-light phase (7.5 and 5 ± 1.5 h after lights-on for LD
510 233 and SD, respectively) to minimize circadian differences across experiments conducted in
512 234 different photoperiods (as in Prendergast and Nelson, 2005). Hamsters were subjected to a
514 235 Light/Dark Box Test, Novel Object Test, and Social Approach Test. Behavioral tests were
516 236 conducted sequentially in the above-mentioned order with Novel Object and Social Approach
518 237 tests beginning immediately upon the completion of the prior test.
520

521 238

523 239 *Light/Dark Box Test.* The hamster was placed inside a dark box (38.9cm x 12.7cm x 15.2cm)
524 240 with a single entrance to an illuminated open arena (40.0cm x 39.9cm x 31.2cm). The entrance
526 241 was initially blocked by a metal door. At the start of the test, the metal door was removed, and
528 242 the hamster was allowed to explore the light and dark zones of the apparatus for 10 minutes.
530

531 243 The amount of time spent in the light zone was used as a measure of anxiety/exploratory drive.
532

533 244

534 245 *Novel Object Test.* The Light/Dark Box test served as an acclimation phase for the Novel
535 246 Object Test, which was conducted in the same apparatus. Immediately following the Light/Dark
537 247 Box Test, the hamster was removed, and a novel, empty, polycarbonate cage (14.6cm x 11.2cm
539 248 x 17.8cm) was placed inside the illuminated open field against the wall opposite the dark
541 249 chamber. The walls of the cage were constructed of plastic bars that allowed the subject to look
543 250 into, but not enter the cage. The hamster was again placed in the dark box. At the start of the
545 251 test, the metal door was removed, and the hamster was allowed to explore the apparatus for 5
547 252 minutes. The amount of time spent in the investigation zone surrounding the empty cage was
549 253 used as a measure of novel object investigation.
551

552 254

553 255 *Social Approach Test.* Immediately following the Novel Object Test, the hamster was removed,
555 256 and the novel cage was replaced with an identical polycarbonate cage containing a novel same-
557
558

561
562
563 257 sex, same-age conspecific. The test hamster was again placed in the dark box, the metal door
564
565 258 removed, and the test hamster allowed to explore the apparatus for 5 minutes. The subject and
566
567 259 stimulus hamsters were able to interact by touching noses, but could not pass through the bars
568
569 260 to enter or leave the cage. The amount of time spent in the investigation zone surrounding the
570
571 261 caged conspecific was used as a measure of social approach.

572 262
573
574 263 Behavior was recorded by a camera mounted above the arena using Media Recorder 4
575
576 264 software (Noldus Information Technology Inc., Wageningen, The Netherlands). Time spent in
577
578 265 the light zone, novel object investigation, and social approach were scored automatically using
579
580 266 EthoVision XT10 software (Noldus Information Technology Inc., Wageningen, The
581
582 267 Netherlands).

583 268
584
585 269 Reproductive Measures
586
587 270 In Experiment 3, vaginal opening was recorded at surgery to confirm prepubertal status and
588
589 271 uterine weight measures were recorded at sacrifice to confirm effectiveness of hormone
590
591 272 treatments. At sacrifice, hamsters were perfused intracardially with physiological saline followed
592
593 273 by 4% paraformaldehyde, and brains were removed for other experiments. Following perfusion,
594
595 274 the uterus was removed and weighed on a digital balance (Mettler Toledo™ NewClassic ML
596
597 275 104 /03). Because ovariectomy cuts the upper portion of the uterine horns, a modified uterine
598
599 276 weight was used in which the 1st cm from the base of the uterus was dissected out and
600
601 277 weighed. If the uterus was less than 1 cm in length, the entire uterus was weighed and the
602
603 278 length was recorded. A correction factor was then applied to provide the weight/1 cm. This
604
605 279 uterine weight measure was also recorded for a subset of LD-reared, Sham adult female
606
607 280 hamsters from Experiment 2 to provide a reference for adult uterine weights using this method.
608
609 281 Estrous cycle was not monitored, and therefore UWs of Sham animals were not collected at the
610
611 282 same stage of the estrous cycle.

617

618

619

620

621

283

622

Statistical Analyses

623

285 In Experiment 1, the effect of early life surgery was assessed by comparing the behavior of

624

286 Sham and NSC hamsters using a t-Test. Effects of gonadectomy and sex in Experiments 1 and

625

287 2 were assessed using ANOVA. In Experiment 3, the effect of ovariectomy was assessed by

626

288 comparing the behavior of Sham+B and OVX+B groups using a t-Test, whereas the effect of

627

289 hormone treatment was assessed by comparing the behavior of OVX+B, OVX+Ch, and

628

290 OVX+E2 using one-way ANOVA. Differences in uterine weight measures of all groups in

629

291 Experiment 3 plus the subset LD adult Sham females were assessed using a one-way ANOVA.

630

292 Where significant main effects or interactions were detected in the overall ANOVA, post hoc

631

293 comparisons were conducted using Fisher's PLSD. Significance was assumed when P<0.05.

632

294 All statistical analyses were conducted using SPSS Statistics Version 23 (IBM, Armonk, NY).

633

295

634

296

Results

635

297

Experiment 1. Prepubertal gonadal influences on exploration, novelty seeking, and social

636

298

approach

637

299

Effects of Early Life Surgery. Early life sham surgery did not impact any behavioral measure of

640

300

female juvenile hamsters (female Sham vs. female NSC t-Tests: time in light zone of the

641

301

Light/Dark Box, $t_{(24)}=0.80$, $P=0.43$; novel object investigation, $t_{(24)}=0.37$, $P=0.72$; social

642

302

approach, $t_{(23)}=1.41$, $P=0.17$). For males, early life sham surgery increased novel object

643

303

investigation ($t_{(26,6)}=2.50$, $P<0.05$, Cohen's $d=0.86$, male Sham vs. male NSC, t-Test), but did

644

304

not alter other behavioral measures (male Sham vs. male NSC t-Tests: time in light zone of the

645

305

Light/Dark Box, $t_{(31)}=0.66$, $P=0.51$; social approach, $t_{(27)}=1.36$, $P=0.19$). Hence, for Light/Dark

646

306

Box and Social Approach tests, NSC and Sham juvenile hamsters were combined into a single

647

307

Intact group, and subsequent analyses were conducted using a 2 x 2 ANOVA with Sex

648

308

(male/female) and Gonadal Status (Intact/GNX) as independent variables. For the Novel Object

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673
674
675 309 Test, only female NSC and Sham groups were combined into an Intact group. Given that this
676
677 310 resulted in unequal numbers of groups between the sexes, male and female novel object data
678
679 311 were analyzed in separate one-way ANOVAs with Gonadal Status (Intact/GNX) as the
680
681 312 independent variable for females and Surgery (NSC/Sham/GNX) as the independent variable
682
683 313 for males.
684
685 314
686

687 315 *Light/Dark Box Test.* Prepubertal GNX had a sex-specific effect on performance in the
688
689 316 Light/Dark Box Test (Fig. 1A). There was a significant interaction between Sex and Gonadal
690
691 317 Status on the time juvenile hamsters spent in the light ($F_{(1,84)}=4.02$, $P<0.05$, partial eta²=0.05,
692
693 318 two-way ANOVA). Prepubertal GNX increased time spent in the light for female juveniles
694
695 319 ($P<0.05$, Cohen's d=0.82, female GNX vs. female Intact, Fisher's PLSD), but had no effect on
696
697 320 male juveniles ($P=0.61$, male GNX vs. male Intact, Fisher's PLSD).
698
699 321
700

701 322 *Novel Object Test.* As seen for the Light/Dark Box Test, prepubertal GNX affected novel object
702
703 323 investigation of female, but not male, juveniles (Fig. 1B). Prepubertal GNX increased the time
704
705 324 female juveniles spent investigating the novel object ($F_{(1,38)}=4.16$, $P<0.05$, partial eta²=0.10,
706
707 325 one-way ANOVA). For juvenile males, there was a main effect of Surgery ($F_{(1,44)}=3.94$, $P<0.03$,
708
709 326 partial eta²=0.15, one-way ANOVA) due to the early life surgery effect stated above ($P<0.01$,
710
711 327 Cohen's d=0.86, male NSC vs. male Sham, Fisher's PLSD). There were no significant
712
713 328 differences in the time spent investigating the novel object between GNX and Sham ($P=0.24$,
714
715 329 Fisher's PLSD) or GNX and NSC ($P=0.14$, Fisher's PLSD) male juveniles.
716
717 330
718

719 331 *Social Approach Test.* Neither Sex nor prepubertal GNX impacted social approach (Fig. 1C;
720
721 332 $F_{(1,76)}=0.714$, $P=0.40$, main effect of Sex; $F_{(1,76)}=1.87$, $P=0.18$, main effect of Gonadal Status;
722
723 333 $F_{(1,76)}=0.52$, $P=0.47$, interaction, two-way ANOVA).
724
725
726
727
728 334

729
730
731 335 Experiment 2. Absence of postpubertal gonadal influences on exploration, novelty seeking, and
732 social approach

733 336
734 337 Adult GNX did not impact any behavioral measure (Fig. 2; main effect of Surgery and the
735 338 interaction, two-way ANOVA statistics: time in the light zone of the Light/Dark Box, $F_{(1,53)} < 0.56$,
736 339 $P > 0.45$; novel object investigation, $F_{(1,52)} < 0.59$, $P > 0.44$; social approach, $F_{(1,48)} < 1.91$, $P > 0.17$).
737 340 The main effect of Sex approached significance for social approach ($F_{(1,48)} = 3.80$, $P = 0.06$, two-
738 341 way ANOVA), but not for time in the light zone of the Light/Dark Box ($F_{(1,48)} = 0.21$, $P = 0.64$, two-
739 342 way ANOVA) or novel object investigation ($F_{(1,48)} = 0.14$, $P = 0.71$, two-way ANOVA).
740
741 343
742
743
744
745
746
747
748
749 344 Experiment 3. Developmental loss of ovarian inhibition on exploration and novelty seeking: age
750 versus pubertal status

751 345
752 346 *Light/Dark Box Test.* As seen for LD-reared female *juveniles*, prepubertal OVX increased time
753 347 spent in the light zone for SD-reared female juveniles even though surgery and testing occurred
754 348 at $\sim P85$ and $\sim P106$, respectively (Fig. 3A; $t_{(19)} = 2.70$, $P < 0.02$, Cohen's $d = 1.21$, Sham+B vs.
755 349 OVX+B, t-Test). There were no significant effects of estradiol treatment on time spent in the
756 350 light zone of OVX females (Fig. 3B; $F_{(2,34)} = 1.18$, $P = 0.32$, one-way ANOVA).
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

351
352 *Novel Object and Social Approach Tests.* Unlike time in the light zone of the Light/Dark Box,
353 prepubertal OVX did not significantly alter novel object investigation (Fig. 3C; $t_{(21)} = 1.55$, $P = 0.14$,
354 Sham+B vs. OVX+B, t-Test) or social approach (Fig. 3E; $t_{(20)} = 0.75$, $P = 0.46$, Sham+B vs.
355 OVX+B, t-Test) of SD-reared female juveniles. In addition, estradiol treatment did not alter
356 novel object investigation (Fig. 3D; $F_{(2,34)} = 1.61$, $P = 0.22$, one-way ANOVA) or social approach
357 (Fig. 3F; $F_{(2,35)} = 1.51$, $P = 0.24$, one-way ANOVA) of OVX SD-reared females.

358
359 *Verification of Estradiol Capsules.* The overall ANOVA indicated significant differences in 1cm
360 uterine weight measures (1cm UWs) between groups (Fig. 4; $F_{(4,56)} = 56.51$, $P < 0.001$, partial

785
786
787 361 eta²=0.82, one-way ANOVA). Variability was high in the LD-Sham adult females, likely due to
788 362 varying estrous cycle stage in these animals. Mean 1cm UWs of SD-OVX+E2 females was
789 363 significantly greater than that of LD-Sham adult females (P<0.001, Cohen's d=1.45, Fisher's
790 364 PLSD), because values of all SD-OVX+E2 animals were in the upper range of LD-Sham adults.
791 365 Mean 1cm UWs of SD-OVX+E2 was also greater than those of all other SD-reared groups
792 366 (P<0.001, Cohen's d>5.08, Fisher's PLSD). Mean 1cm UWs of SD-Sham+B, SD-OVX+B, and
793 367 SD-OVX+Ch were significantly lower than that of LD-Sham adult females (P<0.001, Cohen's
794 368 d>1.28, Fisher's PLSD) and did not differ from each other (P>0.19, Fisher's PLSD). One SD-
795 369 Sham+B female and 1 SD-OVX+B female had 1cm UWs that were outliers (1.5 times the
796 370 interquartile range, SPSS Box and Whiskers Plot). These animals were included in behavioral
797 371 analyses above because they met the criteria of absence of vaginal opening at the time of
798 372 surgical and hormonal manipulations (surgery/hormone manipulations at P80-P85, 1cm UWs
799 373 recorded at P102-P113). Inclusion of these 2 animals did not affect the outcome of any
800 374 statistical comparison.

801 375
802
803 376 **Discussion**
804 377 The present findings argue for an active role for the ovary in the regulation of juvenile behavior.
805 378 Prepubertal ovariectomy increased time spent in the light zone of the Light/Dark Box Test and
806 379 novel object investigation in the Novel Object Test in juvenile female hamsters. To our
807 380 knowledge, this is the first demonstration that the ovary inhibits Light/Dark Box 'exploration' or
808 381 novelty seeking during the juvenile period. Inclusion of non-surgical controls in LD-reared
809 382 juvenile hamsters allowed us to rule out potential procedural confounds of surgery (e.g.,
810 383 anesthesia, early life surgical stress). These data support previous studies implicating the
811 384 juvenile ovary in both organizational and activational actions on behavior (see Introduction).
812 385 Juvenile gonadal hormones also contribute to physiological regulation of the hypothalamic-
813 386 pituitary-gonadal axes (i.e. negative feedback on pituitary gonadotropin secretion; Andrews and
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

841
842
843 387 Ojeda, 1981; Dubois et al., 2016; Meijis-Roelofs and Kramer, 1979; Plant, 1986; Ramirez and
844 388 McCann, 1965; Sisk and Turek, 1983; Winter and Faiman, 1972). Clearly, the juvenile gonads
845 389 should not be considered functionally quiescent, neither physiologically nor behaviorally.
846
847 390
848
849 391 There was no effect of ovariectomy in adulthood, suggesting that the influence of the ovary on
850 392 Light/Dark Box exploration and novelty object investigation changes across adolescence with
851 393 the prepubertal ovary having a greater influence than that of the adult ovary. Notably, the
852 394 response to ovariectomy of SD-reared female hamsters was more similar to LD-reared juveniles
853 395 than LD-reared adults, even though SD-reared hamsters underwent surgery and testing at the
854 396 same ages as the latter. Ovariectomy increased Light/Dark Box exploration in SD-reared
855 397 hamsters; differences in novel object investigation were not significant ($P=0.14$), but were in the
856 398 same direction as that seen in LD-reared juveniles (OVX > Sham). These data indicate that
857 399 SD-rearing extends the period during which the ovary inhibits Light/Dark Box exploration and
858 400 perhaps novel object investigation. Hence, an age-specific process is unlikely to be responsible
859 401 for the loss of ovarian inhibition across adolescence. Instead, given that SD-reared females
860 402 were reproductively immature at the time of surgery and testing, the present findings suggest
861 403 that activation of the reproductive axis at puberty may be responsible for the developmental
862 404 decrease in ovarian inhibition of Light/Dark Box exploration. The finding that ovariectomy
863 405 increases Light/Dark Box exploration in both LD-reared, P30 juveniles and SD-reared, P105
864 406 'juveniles' is remarkable given that these two juvenile states are not equivalent. While SD-
865 407 rearing delays reproductive maturation of the ovary (e.g., emergence of antral follicles, corpora
866 408 lutea, and elevated gonadal steroids), it does not simply pause development (Park et al., 2014).
867 409 Rather, a distinct developmental path is taken that is characterized by changes in gene
868 410 expression and the emergence of hypertrophied granulosa cells that are likely capable of
869 411 producing both steroid and peptide hormones (Kabite and Place, 2008; Park et al., 2014; Van
870 412 den Hurk et al., 2002). In addition, SD-reared juveniles exhibit several winter adaptations that
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

897
898
899 413 are absent in LD-reared juveniles (Paul et al., 2008; Stevenson et al., 2017). Hence
900 414 investigations into the commonalities and differences between these two 'juvenile' phases may
901 415 reveal the underlying mechanism through which the ovary influences juvenile behavior.
902
903 416
904
905 417 Castration in males did not impact Light/Dark Box exploration or novel object investigation in
906 418 juveniles or adults, suggesting a sex-specific role for gonadal hormones in juvenile exploration
907 419 and novelty seeking. Caution is warranted, however, as the timing of gonadectomy in the
908 420 present study may not have been optimal for males. Pubertal development appears to begin
909 421 earlier in male than female Siberian hamsters. Increases in testes weights and circulating
910 422 gonadotropins occur as early as 20 days of age in LD-reared males (Yellon and Goldman,
911 423 1984), whereas in LD-reared females, uterine weights increase around 45 days of age (Adam et
912 424 al., 2000). Hence, behavioral testing was conducted prior to puberty in females, but likely
913 425 during early puberty in males. If the effect of gonadectomy is restricted to the juvenile phase,
914 426 earlier time points may be needed to reveal an effect of castration. Notably, suppression of
915 427 testicular hormones using a GnRH antagonist decreases preference for novelty in mid-pubertal
916 428 male rats (Cyrenne and Brown, 2011). At present, it is not clear whether the different findings in
917 429 these studies are due to the species tested (hamsters versus rats), age of subjects (early versus
918 430 mid puberty), testing procedures (novel object investigation versus novel object recognition), or
919 431 method of gonadal hormone suppression (castration versus GnRH antagonist). Other studies
920 432 have also implicated a role for the peripubertal testis in behavioral development. In a design
921 433 similar to the present study, prepubertal castration increased social play in 30-day-old LD-
922 434 reared male and female hamsters (Paul et al., 2018). Experiments in Syrian hamsters have
923 435 shown that the brain remains sensitive to the organizational actions of testosterone on adult
924 436 reproductive behavior during the juvenile and pubertal periods (Schulz et al., 2009).
925 437 Furthermore, 19 days of testosterone treatment during the juvenile period increased volumes of
926 438 several sexually dimorphic brain regions to adult male-typical levels (Schulz et al., 2009). More
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

953
954
955 439 studies are needed to assess behaviors impacted by juvenile and early adolescent gonadal
956
957 440 hormones as well as potential sex differences and windows of sensitivity for these actions.
958
959 441
960
961 442 Early life surgery can impact adult behavior, including decreases in novelty seeking of rats
962
963 443 (Vetter-O'Hagen and Spear, 2012). In the present experiment, early life surgery also impacted
964
965 444 novel seeking of juvenile hamsters, but in the opposite direction and only in males. The
966
967 445 difference in the direction of the effect may be due to species or procedural differences – e.g.,
968
969 446 timing of surgery, timing of testing, or behavioral testing paradigm. Early life surgery effects are
970
971 447 likely due to the stress of surgery during sensitive periods early in postnatal development
972
973 448 (Boersma et al., 2014; Horovitz et al., 2012; Varlinskaya et al., 2013). Similar to the present
974
975 449 experiment, early life stress often impacts males and females to different degrees (Bilbo and
976
977 450 Schwarz, 2012; Nelson and Lenz, 2017), and male-specific effects of early life surgery have
978
979 451 also been reported for ethanol intake (Vetter-O'Hagen and Spear, 2011). These findings
980
981 452 emphasize the importance of studying both sexes and including non-surgical controls in studies
982
983 453 using surgical manipulations during early postnatal development.

984 454
985
986 455 The physiological mechanism through which the ovary modulates juvenile behavior is not clear.
987
988 456 Findings from previous studies suggest estradiol as a prime candidate. Circulating estradiol is
989
990 457 elevated from around P10 to P25 in rats (Döhler and Wuttke, 1975; Konkle and McCarthy, 2011;
991
992 458 Walker et al., 2012), with some studies reporting higher values during these ages than in
993
994 459 adulthood (Döhler and Wuttke, 1975; Walker et al., 2012). Furthermore, studies in aromatase
995
996 460 knockout mice suggest that estradiol has long-term, organizational actions during the juvenile
997
998 461 period in females. Aromatase knockout mice, which cannot produce estrogens, exhibit deficits
999
1000 462 in female sex behavior, even when hormonally primed with exogenous estradiol and
1001
1002 463 progesterone prior to behavioral testing (Bakker et al., 2002). These deficits are ameliorated by
1003
1004 464 daily estradiol injections administered from P15 to P25 (Brock et al., 2011). In the present
1005
1006
1007
1008

1009
1010
1011 465 study, we tested whether prepubertal estradiol also has more immediate actions on juvenile
1012 behavior. Counter to our hypothesis, however, provision of estradiol to SD-reared,
1013 466 ovariectomized prepubertal hamsters did not affect their Light/Dark Box exploration or novel
1014 467 object investigation. Hence, the prepubertal ovary does not appear to act through estradiol
1015 468 alone to inhibit juvenile exploration and novelty seeking. Other ovarian hormones may act alone
1016 469 or in concert with estradiol to mediate these effects. Developmental hormone profiles in rats
1017 470 point toward progesterone and testosterone as possible candidates. Circulating progesterone
1018 471 begins to increase around the third week of life, and circulating testosterone exhibits a transient
1019 472 increase around 15 days of age in female rats (Döhler and Wuttke, 1975; Walker et al., 2012).
1020 473 Although a detailed developmental profile of gonadotropins and androgens is available for male
1021 474 Siberian hamsters (Yellon and Goldman, 1984), a similar detailed profile is not available for
1022 475 female Siberian hamsters or for estrogens and progestins in either sex.
1023 476
1024 477
1025 478 While our data do not support a role for estradiol in juvenile Light/Dark Box exploration and
1026 479 novel object investigation, there are a few caveats to this conclusion. It is possible that low to
1027 480 moderate, rather than high, estradiol levels are needed to modulate juvenile behavior, as has
1028 481 been proposed for estradiol's organizational actions on female sex behavior (Döhler et al.,
1029 482 1984). In the present study, we implanted estradiol capsules that have previously been shown
1030 483 to mimic adult levels of estradiol (Bartness, 1995). Uterine weight measures in the current
1031 484 experiment further indicated that estradiol levels of hormone-treated hamsters were in the
1032 485 upper-adult range. While this hormone treatment may mimic elevated estradiol levels seen in
1033 486 juvenile female rats, it is not known whether Siberian hamsters exhibit a similar juvenile
1034 487 elevation in circulating estradiol. Future studies are needed to characterize the developmental
1035 488 profile of estradiol in hamsters and to determine whether differing "doses" of estradiol have
1036 489 different effects on juvenile exploration and novelty seeking. Polycarbonate cages can contain
1037 490 bisphenols, including bisphenol A, which is a weak estrogen receptor agonist (Patisaul, 2019).
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

1065
1066
1067 491 Hence, bisphenol contamination is a possible confound in the present experiments. Another
1068 492 caveat is that estradiol was only administered to SD-reared females. In addition to the ovarian
1069 493 and seasonal differences discussed above, SD-housing decreases estradiol secretion and
1070 494 alters the sensitivity of the brain to circulating steroids in adult Syrian and Siberian hamsters
1071 495 (Bittman et al., 1996; Ellis and Turek, 1983; Rendon et al., 2017; Tamarkin et al., 1976).
1072
1073 496 Whether similar actions of photoperiod occur in juveniles is not known, but this raises the
1074 497 possibility that different results may be obtained if estradiol is administered to ovariectomized,
1075 498 LD-reared juveniles.
1076
1077 499
1078
1079 500 Gonadal steroids have been shown to impact anxiety, novelty seeking, and social behavior in
1080 501 rodents (Adkins-Regan, 2005; Cyrenne and Brown, 2011; Walf and Frye, 2006). Hence, it is
1081 502 surprising that gonadectomy had no impact on behavioral measures of adult hamsters in the
1082 503 present study. Although species differences may be responsible, a close inspection of the
1083 504 literature suggests other possibilities as well. Steroid manipulations impact anxiety-like behavior
1084 505 in several affective behavioral tests (e.g. Aikey et al., 2002; Frye and Seliga, 2001; Mora et al.,
1085 506 1996; Morgan and Pfaff, 2002), but null results are occasionally reported (Hodosy et al., 2012;
1086 507 Nomikos and Spyraki, 1988), including for the Light/Dark Box Test (Domonkos et al., 2017).
1087
1088 508 Time of behavioral testing can modulate steroid influences on Light/Dark Box behavior. Male
1089 509 Tfm mice that have a mutation in the androgen receptor exhibit decreased exploration in the
1090 510 Light/Dark Box test compared to wild type mice when tested in the dark phase of the light/dark
1091 511 cycle but not when tested during the light phase (Chen et al., 2014); present experiments were
1092 512 conducted during the light phase. Steroid influences on novelty seeking may depend upon
1093 513 testing procedures. Testosterone promotes novelty seeking in the novel object recognition test
1094 514 (Cyrenne and Brown, 2011). In a test that lacks a learning or memory component, however,
1095 515 Vetter-O'Hagen and Spear (2012) failed to find effects of castration or ovariectomy in the Novel
1096 516 Object Test. Gonadal steroids modulate many aspects of social behavior (Choleris et al., 2009;
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

1121
1122
1123 517 Ervin et al., 2015), but few studies test their impact on social approach. Castration decreases
1124 518 social interactions in male rats, but this effect manifests between 2 and 4 weeks post-surgery
1125 519 (Primus and Kellogg, 1990). Hence, the 3-week interval between surgery and behavioral testing
1126 520 in the present experiment may not have been long enough to detect effects of gonadectomy on
1127 521 social behavior of adults.

1128 522
1129 523 It is difficult to tease apart contributions of anxiety, exploratory drive, learning, memory, and
1130 524 locomotor activity to behavioral measures in rodent affective and novelty-seeking tests. The
1131 525 Light/Dark Box Test is typically used to measure anxiety, but the paradigm is also based on
1132 526 natural motivation of rodents to explore novel environments (Bourin et al., 2007; Bourin and
1133 527 Hascoët, 2003). In the present experiment, the Novel Object Test included the dark refuge of
1134 528 the Light/Dark Box Test. Hence, rodents' natural anxiety toward light may have influenced the
1135 529 amount of time they investigated the novel object in the well-lit portion of the testing arena.

1136 530 Novel Object Recognition Tests are often used as a test of learning and memory (Antunes and
1137 531 Biala, 2012). In these tests, the procedure includes two phases: 1) a sampling phase in which
1138 532 the animal is exposed to an object and 2) a testing phase in which the animal is provided with
1139 533 the now familiar object along with a novel object (or the familiar object in a new location).
1140 534 Because we did not include a sampling phase in our Novel Object Test, effects of recognition
1141 535 learning and memory were minimized. Nevertheless, hamsters were exposed to the apparatus
1142 536 during the Light/Dark Box Test just prior to the Novel Object Test. Hence other forms of
1143 537 learning (e.g., acclimation/habituation to the testing apparatus) could have impacted
1144 538 performance in the present study. Changes in locomotor activity, which are modulated by
1145 539 gonadal steroids in adults (Ellis and Turek, 1983; Morgan and Pfaff, 2002), can also impact
1146 540 behavioral measures in affective and novelty-seeking tests. Because activity was not recorded
1147 541 in the dark zone of the arena, it is difficult to assess potential contributions from locomotor
1148 542 activity in the present tests. However, given that steroids typically increase general locomotor

1177
1178
1179 543 activity (Ellis and Turek, 1983; Morgan and Pfaff, 2002), it is unlikely that this mechanism is
1180 544 responsible for the increase in Light/Dark Box exploration and novelty seeking seen in the
1181 545 present study after prepubertal ovariectomy. Regardless of mechanism, the present findings
1182 546 demonstrate that the juvenile ovary modulates Light/Dark Box exploration and novelty object
1183 547 investigation. Whether this is due to ovarian regulation of anxiety, motivation to explore novelty,
1184 548 learning, memory, and/or locomotor activity remains to be elucidated.
1185
1186
1187
1188
1189
1190
1191 549
1192
1193 550 **Conclusions**
1194
1195 551 Previous findings in rats, mice, and hamsters suggest that the juvenile gonads can have long-
1196 552 term organizational actions on female sex behaviors as well as immediate, likely activational,
1197 553 actions on juvenile play behavior (Brock et al., 2011; Field et al., 2004; Gerall et al., 1973; Paul
1198 554 et al., 2018). The present experiments extend the category of behaviors impacted to
1199 555 exploration and novelty seeking in female juveniles. These findings suggest that juvenile
1200 556 gonadal hormones regulate a wide-range of social, emotional, and reward-associated
1201 557 behaviors. Although the present effects are likely activational in nature, they could have long-
1202 558 term consequences by affecting the developmental trajectory of an individual. Circulating
1203 559 steroid levels are low, not absent, in prepubertal boys and girls, with sex differences also
1204 560 present prior to puberty (Courant et al., 2010; Janfaza et al., 2006). Hence, similar behavioral
1205 561 actions are possible in humans. If so, it will be essential to determine whether juvenile gonadal
1206 562 hormones contribute to behavioral disorders that arise before puberty. Future studies are
1207 563 needed to assess possible mechanisms, species differences, and sex differences. This
1208 564 research will provide a better understanding of the extent to which juvenile gonads are active
1209 565 regulators of behavioral development.
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

1233
1234
1235 568 **Acknowledgements**
1236

1237 569 The authors thank the University at Buffalo Laboratory Animal Facility personnel for providing
1238
1239 570 excellent care to the animals used in these studies and Stephanie Parmeter for technical
1240
1241 571 assistance.
1242

1243 572
1244

1245 573 **Funding**
1246

1247 574 This work was supported by the University at Buffalo Research Foundation (UBF; Award
1248
1249 575 #64755) and the National Science Foundation (NSF; IOS-1754878). UBF and NSF had no role
1250
1251 576 in study design; in the collection, analysis and interpretation of data; in the writing of the report;
1252
1253 577 and in the decision to submit the article for publication.
1254

1255 578
1256

1257 579 **Declarations of Interest**
1258

1259 580 None
1260

1261 581
1262

1263 582 **References**
1264

1265 583 Adam, C.L., Moar, K.M., Logie, T.J., Ross, A.W., Barrett, P., Morgan, P.J., Mercer, J.G., 2000.
1266 584 Photoperiod regulates growth, puberty and hypothalamic neuropeptide and
1267 585 receptor gene expression in female Siberian hamsters. *Endocrinology* 141, 4349–
1268 586 4356. <https://doi.org/10.1210/endo.141.12.7807>
1269 587 Adkins-Regan, E., 2005. *Hormones and Animal Social Behavior*: Princeton University Press.
1270 588 Aikey, J.L., Nyby, J.G., Anmuth, D.M., James, P.J., 2002. Testosterone rapidly reduces anxiety
1271 589 in male house mice (*Mus musculus*). *Horm. Behav.* 42, 448–460.
1272 590 Andrews, W.W., Ojeda, S.R., 1981. A quantitative analysis of the maturation of steroid
1273 591 negative feedbacks controlling gonadotropin release in the female rat: the infantile-
1274 592 juvenile periods, transition from an androgenic to a predominantly estrogenic
1275 593 control. *Endocrinology* 108, 1313–1320. <https://doi.org/10.1210/endo-108-4-1313>
1276 594 Antunes, M., Biala, G., 2012. The novel object recognition memory: neurobiology, test
1277 595 procedure, and its modifications. *Cogn. Process.* 13, 93–110.
1278 596 <https://doi.org/10.1007/s10339-011-0430-z>
1279 597 Arnold, A.P., 2017. A general theory of sexual differentiation. *J. Neurosci. Res.* 95, 291–300.
1280 598 <https://doi.org/10.1002/jnr.23884>
1281 599 Bakker, J., Brock, O., 2010. Early oestrogens in shaping reproductive networks: evidence for
1282 600 a potential organisational role of oestradiol in female brain development. *J.*
1283 601 *Neuroendocrinol.* 22, 728–735. <https://doi.org/10.1111/j.1365-2826.2010.02016.x>
1284
1285
1286
1287
1288

1289
1290
1291
1292 602 Bakker, J., Honda, S.-I., Harada, N., Balthazart, J., 2002. The aromatase knock-out mouse
1293 603 provides new evidence that estradiol is required during development in the female
1294 604 for the expression of sociosexual behaviors in adulthood. *J. Neurosci.* 22, 9104–
1295 605 9112.

1296 606 Bartness, T.J., 1995. Short day-induced depletion of lipid stores is fat pad- and gender-
1297 607 specific in Siberian hamsters. *Physiol. Behav.* 58, 539–550.

1298 608 Bilbo, S.D., Schwarz, J.M., 2012. The immune system and developmental programming of
1299 609 brain and behavior. *Front. Neuroendocrinol.* 33, 267–286.
1300 610 <https://doi.org/10.1016/j.yfrne.2012.08.006>

1301 611 Bittman, E.L., Jetton, A.E., Villalba, C., De Vries, G.J., 1996. Effects of photoperiod and
1302 612 androgen on pituitary function and neuropeptide staining in Siberian hamsters. *Am.*
1303 613 *J. Physiol.* 271, R64–72.

1304 614 Boersma, G.J., Bale, T.L., Casanello, P., Lara, H.E., Lucion, A.B., Sacheck, D., Tamashiro, K.L.,
1305 615 2014. Long-term impact of early life events on physiology and behaviour. *J.*
1306 616 *Neuroendocrinol.* 26, 587–602. <https://doi.org/10.1111/jne.12153>

1307 617 Bourin, M., Hascoët, M., 2003. The mouse light/dark box test. *Eur. J. Pharmacol.* 463, 55–65.

1308 618 Bourin, M., Petit-Demoulière, B., Dhonnchadha, B.N., Hascoët, M., 2007. Animal models of
1309 619 anxiety in mice. *Fundam. Clin. Pharmacol.* 21, 567–574.
1310 620 <https://doi.org/10.1111/j.1472-8206.2007.00526.x>

1311 621 Brock, O., Baum, M.J., Bakker, J., 2011. The development of female sexual behavior requires
1312 622 prepubertal estradiol. *J. Neurosci.* 31, 5574–5578.
1313 623 <https://doi.org/10.1523/JNEUROSCI.0209-11.2011>

1314 624 Chen, C.V., Brummet, J.L., Lonstein, J.S., Jordan, C.L., Breedlove, S.M., 2014. New knockout
1315 625 model confirms a role for androgen receptors in regulating anxiety-like behaviors
1316 626 and HPA response in mice. *Horm. Behav.* 65, 211–218.
1317 627 <https://doi.org/10.1016/j.yhbeh.2014.01.001>

1318 628 Choleris, E., Clipperton-Allen, A.E., Phan, A., Kavaliers, M., 2009. Neuroendocrinology of
1319 629 social information processing in rats and mice. *Front. Neuroendocrinol.* 30, 442–
1320 630 459. <https://doi.org/10.1016/j.yfrne.2009.05.003>

1321 631 Courant, F., Aksglaede, L., Antignac, J.-P., Monteau, F., Sorensen, K., Andersson, A.-M.,
1322 632 Skakkebaek, N.E., Juul, A., Bizec, B.L., 2010. Assessment of circulating sex steroid
1323 633 levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas
1324 634 chromatography-tandem mass spectrometry method. *J. Clin. Endocrinol. Metab.* 95,
1325 635 82–92. <https://doi.org/10.1210/jc.2009-1140>

1326 636 Cyrenne, D.-L.M., Brown, G.R., 2011. Effects of suppressing gonadal hormones on response
1327 637 to novel objects in adolescent rats. *Horm. Behav.* 60, 625–631.
1328 638 <https://doi.org/10.1016/j.yhbeh.2011.08.015>

1329 639 De Vries, G.J., Fields, C.T., Peters, N.V., Whylings, J., Paul, M.J., 2014. Sensitive periods for
1330 640 hormonal programming of the brain. *Curr. Top. Behav. Neurosci.* 16, 79–108.
1331 641 https://doi.org/10.1007/7854_2014_286

1332 642 Dionyssiou-Asteriou, A., Zachari, A., 1992. Serum sex hormone binding globulin in
1333 643 prepubertal girls and adult women. *Clin. Physiol. Biochem.* 9, 127–131.

1334 644 Döhler, K.D., Hancke, J.L., Srivastava, S.S., Hofmann, C., Shryne, J.E., Gorski, R.A., 1984.
1335 645 Participation of estrogens in female sexual differentiation of the brain;
1336 646 neuroanatomical, neuroendocrine and behavioral evidence. *Prog. Brain Res.* 61, 99–
1337 647 117. [https://doi.org/10.1016/S0079-6123\(08\)64430-1](https://doi.org/10.1016/S0079-6123(08)64430-1)

1345
1346
1347
1348 648 Döhler, K.D., Wuttke, W., 1975. Changes with age in levels of serum gonadotropins,
1349 649 prolactin and gonadal steroids in prepubertal male and female rats. *Endocrinology*
1350 650 97, 898–907. <https://doi.org/10.1210/endo-97-4-898>

1351 651 Domonkos, E., Borbélyová, V., Csengová, M., Bosý, M., Kačmárová, M., Ostatníková, D.,
1352 652 Hodosy, J., Celec, P., 2017. Sex differences and sex hormones in anxiety-like behavior
1353 653 of aging rats. *Horm. Behav.* 93, 159–165.
1354 654 <https://doi.org/10.1016/j.yhbeh.2017.05.019>

1355 655 Dubois, S.L., Wolfe, A., Radovick, S., Boehm, U., Levine, J.E., 2016. Estradiol restrains
1356 656 prepubertal gonadotropin secretion in female mice via activation of ER α in
1357 657 kisspeptin neurons. *Endocrinology* 157, 1546–1554.
1358 658 <https://doi.org/10.1210/en.2015-1923>

1359 659 Ellis, G.B., Turek, F.W., 1983. Testosterone and photoperiod interact to regulate locomotor
1360 660 activity in male hamsters. *Horm. Behav.* 17, 66–75.

1361 661 Ervin, K.S.J., Lymer, J.M., Matta, R., Clipperton-Allen, A.E., Kavaliers, M., Choleris, E., 2015.
1362 662 Estrogen involvement in social behavior in rodents: Rapid and long-term actions.
1363 663 *Horm. Behav.* 74, 53–76. <https://doi.org/10.1016/j.yhbeh.2015.05.023>

1364 664 Field, E.F., Whishaw, I.Q., Forgie, M.L., Pellis, S.M., 2004. Neonatal and pubertal, but not
1365 665 adult, ovarian steroids are necessary for the development of female-typical patterns
1366 666 of dodging to protect a food item. *Behav. Neurosci.* 118, 1293–1304.
1367 667 <https://doi.org/10.1037/0735-7044.118.6.1293>

1368 668 Fitch, R.H., Denenberg, V.H., 1998. A role for ovarian hormones in sexual differentiation of
1369 669 the brain. *Behav. Brain Sci.* 21, 311–327; Peer Commentary 327–352.

1370 670 Frye, C.A., Seliga, A.M., 2001. Testosterone increases analgesia, anxiolysis, and cognitive
1371 671 performance of male rats. *Cogn. Affect. Behav. Neurosci.* 1, 371–381.

1372 672 Gerall, A.A., Dunlap, J.L., Hendricks, S.E., 1973. Effect of ovarian secretions on female
1373 673 behavioral potentiality in the rat. *J. Comp. Physiol. Psychol.* 82, 449–465.

1374 674 Haigh, G.R., Cushing, B.S., Bronson, F.H., 1988. A novel postcopulatory block of reproduction
1375 675 in white-footed mice. *Biol. Reprod.* 38, 623–6.

1376 676 Hendricks, S.E., 1992. Role of estrogens and progestins in the development of female sexual
1377 677 behavior potential, in: Gerall, A.A., Moltz, H., Ward, I.L. (Eds.), *Sexual Differentiation, Handbooks of Behavioral Neurobiology*. Springer US, pp. 129–155.

1378 678 Hodosy, J., Zelmanová, D., Majzúnová, M., Filová, B., Malinová, M., Ostatníková, D., Celec, P.,
1379 679 2012. The anxiolytic effect of testosterone in the rat is mediated via the androgen
1380 680 receptor. *Pharmacol. Biochem. Behav.* 102, 191–195.
1381 681 <https://doi.org/10.1016/j.pbb.2012.04.005>

1382 682 Hoffmann, K., 1978. Effects of short photoperiods on puberty, growth and moult in the
1383 683 Djungarian hamster (*Phodopus sungorus*). *J. Reprod. Fertil.* 54, 29–35.

1384 684 Horovitz, O., Tsoory, M.M., Hall, J., Jacobson-Pick, S., Richter-Levin, G., 2012. Post-weaning
1385 685 to pre-pubertal ('juvenile') stress: a model of induced predisposition to stress-
1386 686 related disorders. *Neuroendocrinology* 95, 56–64.
1387 687 <https://doi.org/10.1159/000331393>

1388 688 Janfaza, M., Sherman, T.I., Larmore, K.A., Brown-Dawson, J., Klein, K.O., 2006. Estradiol
1389 689 levels and secretory dynamics in normal girls and boys as determined by an
1390 690 ultrasensitive bioassay: a 10 year experience. *J. Pediatr. Endocrinol. Metab.* 19, 901–
1391 691 909.

1392 692
1393 693
1394 694
1395 695
1396 696
1397 697
1398 698
1399 699
1400 700

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

693 Kabithe, E.W., Place, N.J., 2008. Photoperiod-dependent modulation of anti-Müllerian
694 hormone in female Siberian hamsters, *Phodopus sungorus*. Reproduction 135, 335–
695 342. <https://doi.org/10.1530/REP-07-0423>

696 Konkle, A.T.M., McCarthy, M.M., 2011. Developmental time course of estradiol, testosterone,
697 and dihydrotestosterone levels in discrete regions of male and female rat brain.
698 *Endocrinology* 152, 223–235. <https://doi.org/10.1210/en.2010-0607>

699 Mannan, M.A., O'Shaughnessy, P.J., 1991. Steroidogenesis during postnatal development in
700 the mouse ovary. *J. Endocrinol.* 130, 101–106.

701 McCarthy, M.M., Herold, K., Stockman, S.L., 2018. Fast, furious and enduring: Sensitive
702 versus critical periods in sexual differentiation of the brain. *Physiol. Behav.* 187, 13–
703 19. <https://doi.org/10.1016/j.physbeh.2017.10.030>

704 Meijs-Roelofs, H.M., Kramer, P., 1979. Maturation of the inhibitory feedback action of
705 oestrogen on follicle-stimulating hormone secretion in the immature female rat: a
706 role for alpha-foetoprotein. *J. Endocrinol.* 81, 199–208.

707 Mora, S., Dussaubat, N., Díaz-Véliz, G., 1996. Effects of the estrous cycle and ovarian
708 hormones on behavioral indices of anxiety in female rats.
709 *Psychoneuroendocrinology* 21, 609–620.

710 Morgan, M.A., Pfaff, D.W., 2002. Estrogen's effects on activity, anxiety, and fear in two
711 mouse strains. *Behav. Brain Res.* 132, 85–93.

712 Nelson, L.H., Lenz, K.M., 2017. The immune system as a novel regulator of sex differences in
713 brain and behavioral development. *J. Neurosci. Res.* 95, 447–461.
714 <https://doi.org/10.1002/jnr.23821>

715 Nomikos, G.G., Spyraki, C., 1988. Influence of oestrogen on spontaneous and diazepam-
716 induced exploration of rats in an elevated plus maze. *Neuropharmacology* 27, 691–
717 696.

718 Park, S.-U., Bernstein, A.N., Place, N.J., 2014. Complementary histological and genomic
719 analyses reveal marked differences in the developmental trajectories of ovaries in
720 Siberian hamsters raised in long- and short-day lengths. *Mol. Reprod. Dev.* 81, 248–
721 256. <https://doi.org/10.1002/mrd.22292>

722 Patisaul, H.B., 2019. Achieving CLARITY on bisphenol A, brain and behaviour. *J.*
723 *Neuroendocrinol.* e12730. <https://doi.org/10.1111/jne.12730>

724 Paul, M.J., Park, J.H., Horton, T.H., Alvarez, M.I., Burke, M.K., Place, N.J., Zucker, I., 2006.
725 Photoperiodic regulation of compensatory testicular hypertrophy in hamsters. *Biol.*
726 *Reprod.* 75, 261–269. <https://doi.org/10.1095/biolreprod.106.050781>

727 Paul, M.J., Probst, C.K., Brown, L.M., de Vries, G.J., 2018. Dissociation of puberty and
728 adolescent social development in a seasonally breeding species. *Curr. Biol.* 28, 1116–
729 1123.e2. <https://doi.org/10.1016/j.cub.2018.02.030>

730 Paul, M.J., Zucker, I., Schwartz, W.J., 2008. Tracking the seasons: the internal calendars of
731 vertebrates. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 363, 341–61.

732 Phalen, A.N., Wexler, R., Cruickshank, J., Park, S.-U., Place, N.J., 2010. Photoperiod-induced
733 differences in uterine growth in *Phodopus sungorus* are evident at an early age
734 when serum estradiol and uterine estrogen receptor levels are not different. *Comp.*
735 *Biochem. Physiol. A Mol. Integr. Physiol.* 155, 115–121.
736 <https://doi.org/10.1016/j.cbpa.2009.10.024>

737 Place, N.J., Cruickshank, J., 2009. Graded response to short photoperiod during
738 development and early adulthood in Siberian hamsters and the effects on

1457
1458
1459
1460 739 reproduction as females age. *Horm. Behav.* 55, 390–397.
1461 740 <https://doi.org/10.1016/j.yhbeh.2009.01.005>
1462 741 Place, N.J., Tuthill, C.R., Schoomer, E.E., Tramontin, A.D., Zucker, I., 2004. Short day lengths
1463 742 delay reproductive aging. *Biol. Reprod.* 71, 987–92.
1464 743 Plant, T.M., 1986. A striking sex difference in the gonadotropin response to gonadectomy
1465 744 during infantile development in the rhesus monkey (*Macaca mulatta*).
1466 745 *Endocrinology* 119, 539–545. <https://doi.org/10.1210/endo-119-2-539>
1467 746 Prendergast, B.J., Nelson, R.J., 2005. Affective responses to changes in day length in Siberian
1468 747 hamsters (*Phodopus sungorus*). *Psychoneuroendocrinology* 30, 438–452.
1469 748 <https://doi.org/10.1016/j.psyneuen.2004.08.008>
1470 749 Primus, R.J., Kellogg, C.K., 1990. Gonadal hormones during puberty organize environment-
1471 750 related social interaction in the male rat. *Horm. Behav.* 24, 311–323.
1472 751 Ramirez, V.D., Mccann, S.M., 1965. Inhibitory effect of testosterone on luteinizing hormone
1473 752 secretion in immature and adult rats. *Endocrinology* 76, 412–417.
1474 753 <https://doi.org/10.1210/endo-76-3-412>
1475 754 Rendon, N.M., Amez, A.C., Proffitt, M.R., Bauserman, E.R., Demas, G.E., 2017. Aggressive
1476 755 behaviours track transitions in seasonal phenotypes of female Siberian hamsters.
1477 756 *Funct. Ecol.* 31, 1071–1081. <https://doi.org/10.1111/1365-2435.12816>
1478 757 Schulz, K.M., Sisk, C.L., 2016. The organizing actions of adolescent gonadal steroid
1479 758 hormones on brain and behavioral development. *Neurosci. Biobehav. Rev.* 70, 148–
1480 759 158. <https://doi.org/10.1016/j.neubiorev.2016.07.036>
1481 760 Schulz, K.M., Zehr, J.L., Salas-Ramirez, K.Y., Sisk, C.L., 2009. Testosterone programs adult
1482 761 social behavior before and during, but not after, adolescence. *Endocrinology* 150,
1483 762 3690–3698. <https://doi.org/10.1210/en.2008-1708>
1484 763 Sisk, C.L., Turek, F.W., 1983. Developmental time course of pubertal and photoperiodic
1485 764 changes in testosterone negative feedback on gonadotropin secretion in the golden
1486 765 hamster. *Endocrinology* 112, 1208–16.
1487 766 Stevenson, T.J., Prendergast, B.J., Nelson, R.J., 2017. Mammalian Seasonal Rhythms:
1488 767 Behavior and Neuroendocrine Substrates, in: Pfaff, D.W., Joëls, M. (Eds.), *Hormones,*
1489 768 *Brain and Behavior* (Third Edition). Academic Press, Oxford, pp. 371–398.
1490 769 <https://doi.org/10.1016/B978-0-12-803592-4.00013-4>
1491 770 Tamarkin, L., Hutchison, J.S., Goldman, B.D., 1976. Regulation of serum gonadotropins by
1492 771 photoperiod and testicular hormone in the Syrian hamster. *Endocrinology* 99,
1493 772 1528–1533. <https://doi.org/10.1210/endo-99-6-1528>
1494 773 Van den Hurk, R., Dijkstra, G., De Jong, F.H., 2002. Enhanced serum oestrogen levels and
1495 774 highly steroidogenic, luteinized atretic follicles in the ovaries of the Djungarian
1496 775 hamster (*Phodopus sungorus*) kept under a short photoperiod from birth. *Eur. J.*
1497 776 *Endocrinol.* 147, 701–710.
1498 777 Varlinskaya, E.I., Vetter-O'Hagen, C.S., Spear, L.P., 2013. Puberty and gonadal hormones:
1499 778 role in adolescent-typical behavioral alterations. *Horm. Behav.* 64, 343–349.
1500 779 <https://doi.org/10.1016/j.yhbeh.2012.11.012>
1501 780 Vesper, H.W., Wang, Y., Vidal, M., Botelho, J.C., Caudill, S.P., 2015. Serum total testosterone
1502 781 concentrations in the US household population from the NHANES 2011–2012 study
1503 782 population. *Clin. Chem.* 61, 1495–1504.
1504 783 <https://doi.org/10.1373/clinchem.2015.245969>
1505
1506
1507
1508
1509
1510
1511
1512

1513
1514
1515
1516 784 Vetter-O'Hagen, C.S., Spear, L.P., 2012. The effects of gonadectomy on sex- and age-typical
1517 785 responses to novelty and ethanol-induced social inhibition in adult male and female
1518 786 Sprague-Dawley rats. *Behav. Brain Res.* 227, 224–232.
1519 787 <https://doi.org/10.1016/j.bbr.2011.10.023>

1520 788 Vetter-O'Hagen, C.S., Spear, L.P., 2011. The effects of gonadectomy on age- and sex-typical
1521 789 patterns of ethanol consumption in Sprague-Dawley rats. *Alcohol. Clin. Exp. Res.* 35,
1522 790 2039–2049. <https://doi.org/10.1111/j.1530-0277.2011.01555.x>

1523 791 Walf, A.A., Frye, C.A., 2006. A review and update of mechanisms of estrogen in the
1524 792 hippocampus and amygdala for anxiety and depression behavior.
1525 793 *Neuropsychopharmacology* 31, 1097–1111.
1526 794 <https://doi.org/10.1038/sj.npp.1301067>

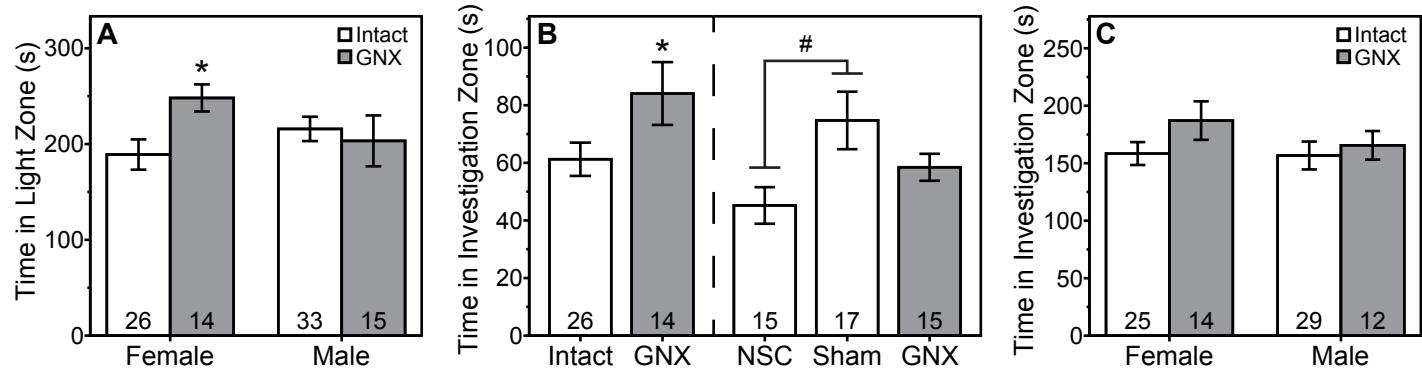
1527 795 Walker, D.M., Bell, M.R., Flores, C., Gulley, J.M., Willing, J., Paul, M.J., 2017. Adolescence and
1528 796 reward: making sense of neural and behavioral changes amid the chaos. *J. Neurosci.*
1529 797 37, 10855–10866. <https://doi.org/10.1523/JNEUROSCI.1834-17.2017>

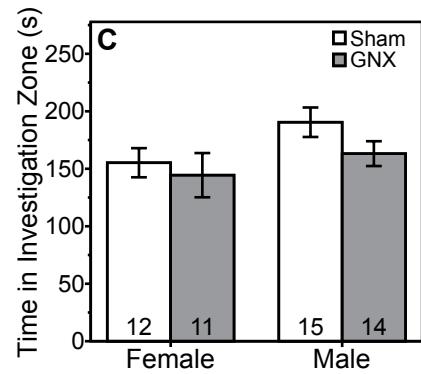
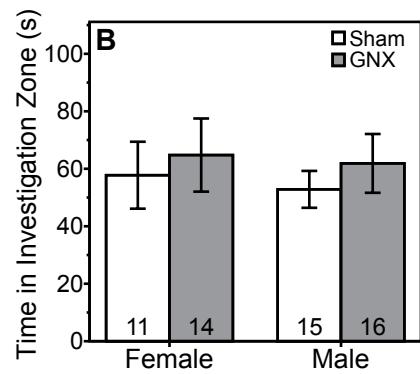
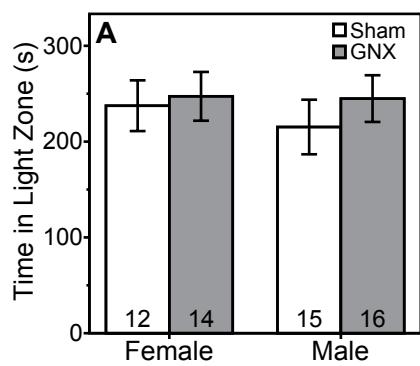
1530 798 Walker, D.M., Kirson, D., Perez, L.F., Gore, A.C., 2012. Molecular profiling of postnatal
1531 799 development of the hypothalamus in female and male rats. *Biol. Reprod.* 87, 129.
1532 800 <https://doi.org/10.1095/biolreprod.112.102798>

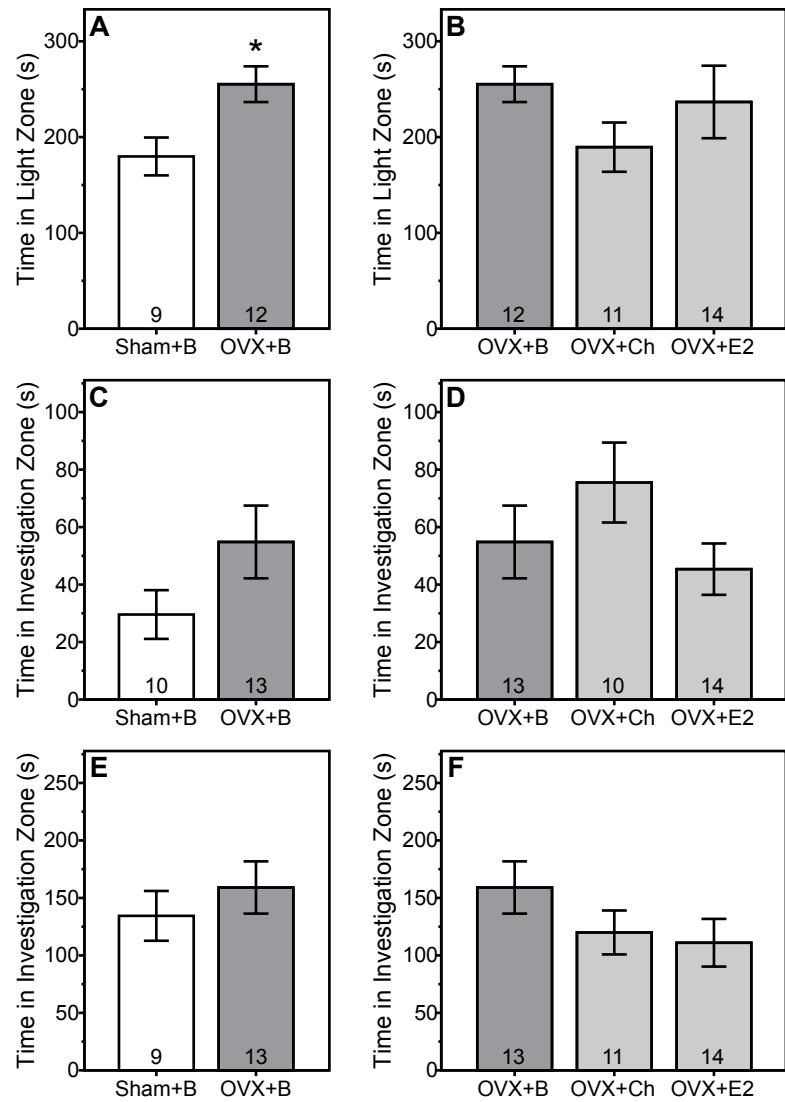
1533 801 Winter, J.S., Ellsworth, L., Fuller, G., Hobson, W.C., Reyes, F.I., Faiman, C., 1987. The role of
1534 802 gonadal steroids in feedback regulation of gonadotropin secretion at different stages
1535 803 of primate development. *Acta Endocrinol.* 114, 257–268.

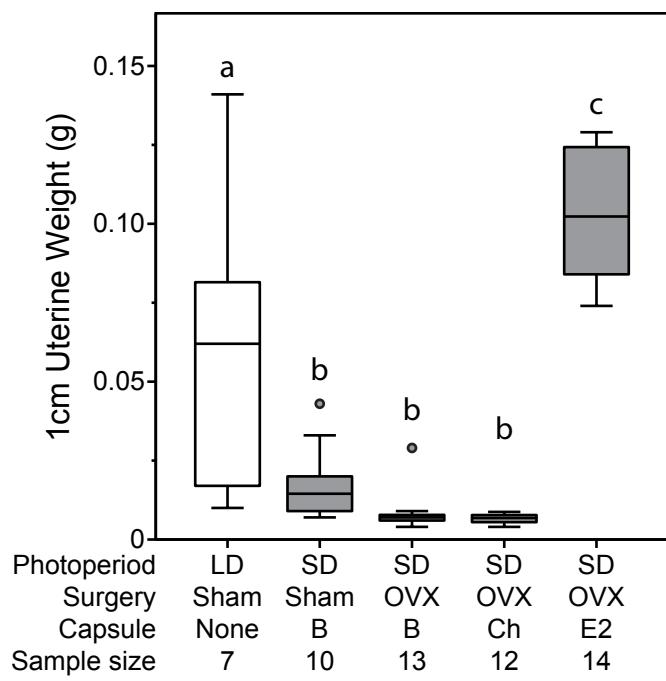
1536 804 Winter, J.S., Faiman, C., 1972. Serum gonadotropin in concentrations in gonadal children
1537 805 and adults. *J. Clin. Endocrinol. Metab.* 35, 561–564. <https://doi.org/10.1210/jcem-35-4-561>

1538 806 Yellon, S.M., Goldman, B.D., 1984. Photoperiod control of reproductive development in the
1539 807 male Djungarian hamster (*Phodopus sungorus*). *Endocrinology* 114, 664–70.


1540 808
1541 809
1542 810
1543 811




Figure Legends


1544 812 Figure 1. Prepubertal ovariectomy increases exploration and novelty seeking. Amount of time
1545 813 juvenile hamsters spent investigating the light zone (A), novel empty cage (B), and novel same-
1546 814 sex conspecific (C) during Light/Dark Box, Novel Object, and Social Approach tests,
1547 815 respectively. Hamsters were gonadectomized (GNX), sham-operated (Sham), or left un-
1548 816 operated (non-surgical controls; NSC) at ~P15 and tested at ~P30. NSC and Sham measures
1549 817 only differed for novel object investigation of males, t-Test, P<0.05; denoted by #. For all other
1550 818 measures, NSC and Sham groups were combined into a single gonadal intact group (Intact).
1551 819 *Indicates significant difference between GNX and Intact groups (Fisher's PLSD [Light/Dark Box
1552 820 test] or t-Test [Novel Object test], P<0.05). Sample sizes indicated within bars.


1569
1570
1571 821
1572
1573 822 Figure 2. Postpubertal gonadectomy does not impact exploration, novelty seeking, or social
1574 approach. Amount of time adult hamsters spent investigating the light zone (A), novel empty
1575 cage (B), and novel same-sex conspecific (C) during Light/Dark Box, Novel Object, and Social
1576 Approach tests, respectively. Hamsters were gonadectomized (GNX) or sham-operated (Sham)
1577 824 at ~P85 and tested at ~P106. Sample sizes indicated within bars.
1578
1581 826
1582
1583 827
1584
1585 828 Figure 3. SD-rearing extends behavioral sensitivity of exploration to prepubertal ovariectomy.
1586
1587 829 Amount of time SD-reared juvenile female hamsters spent investigating the light zone (A), novel
1588 empty cage (B), and novel same-sex conspecific (C) during Light/Dark Box, Novel Object, and
1589 Social Approach tests, respectively. Hamsters were sham-operated and implanted with a blank
1590 capsule (Sham+B) or ovariectomized and implanted with a blank (OVX+B), cholesterol-filled
1591 (OVX+Ch), or estradiol-filled (OVX+E) capsule at ~P83. Behavioral tests were conducted at
1592 ~P106. Note that puberty begins later than P105 in SD-reared female Siberian hamsters (Adam
1593 et al., 2000). *Indicates significant difference between Sham+B and GNX+B groups (Fisher's
1594 PLSD, P<0.05). Sample sizes indicated within bars.
1595
1596 831
1597 832
1598 833
1599 834
1600 835
1601 836
1602 837
1603
1604 838 Figure 4. Estradiol capsules increased uterine weights to the upper range of adult LD-reared
1605 hamsters. Box and Whiskers plot showing the median (horizontal bar within each box), 1.5-
1606 interquartile range (ends of each box), and full range (whiskers) for 1cm uterine weight
1607 measures (1cm UWs) of SD-reared hamsters in Experiment 3 as well as a subset of LD-reared
1608 Sham adult females from Experiment 2. SD-reared hamsters were sham-operated and
1609 implanted with a blank capsule (SD-Sham+B) or ovariectomized and implanted with a blank
1610 (SD-OVX+B), cholesterol-filled (SD-OVX+Ch), or estradiol-filled (SD-OVX+E2) capsule at ~P83.
1611
1612 842
1613 843
1614 844
1615 845
1616 846
1617
1618
1619
1620
1621
1622
1623
1624

1625
1626
1627 847 indicated by letters above each box; groups with differing letters differ significantly from each
1628
1629 848 other (P<0.001, Fisher's PLSD).
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680

