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Recent theoretical work indicates that the neutrino radiation in core-collapse supernovae may be
susceptible to flavor instabilities that set in far behind the shock, grow extremely rapidly, and have the
potential to profoundly affect supernova dynamics and composition. Here we analyze the nonlinear
collective oscillations that are prefigured by these instabilities. We demonstrate that a zero crossing in
nνe − nν̄e as a function of propagation angle is not sufficient to generate instability. Our analysis accounts
for this fact and allows us to formulate complementary criteria. Using FORNAX simulation data, we show
that fast collective oscillations qualitatively depend on how forward peaked the neutrino angular
distributions are.
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In this paper we address a key aspect of neutrino physics
in core-collapse supernovae. The stakes are high, as
supernova explosions are central to our understanding of
the origin of elements and the history of galaxies.
Recently it has been realized that the neutrino flavor field

in core-collapse supernovae is prone to a host of insta-
bilities [1–11] that were artificially concealed by the
symmetries adopted in older studies [12–18]. Of particular
urgency is the subclass known as fast instabilities, so
named because they exhibit growth rates proportional to
the self-coupling potential μ ¼ ffiffiffi

2
p

GFnν and are not sup-
pressed by the typically much smaller vacuum oscillation
frequency ω ¼ δm2=2E [19–34]. They are commonly, if
not always, associated with zero crossings of the electron
lepton number carried by neutrinos (νELN) as a function of
propagation angle. Global variations in nν̄e=nνe , possibly
related to lepton-number emission self-sustained asymme-
try [35–41], and coherent neutrino-nucleus scattering [42]
independently make this condition a live possibility in core-
collapse supernovae [42–47]. If fast flavor conversion
(FFC) does occur, it could substantially alter our current
view of supernova dynamics and nucleosynthesis [48,49].
The aim of the present study is to gain some degree of

understanding of the nonlinear collective effects heralded
by fast flavor instabilities. Our basic approach is to study

the evolution of the neutrino flavor field in terms of its
momentum-space angular moments. Three considerations
motivate this choice. The first is realism: Neutrino angular
distributions within ∼100 km are quite unlike the forms
they are given in bulb or beam models. In point of fact, they
transition—very gradually relative to the μ−1 scale—from
nearly isotropic to narrowly forward peaked [50–53]. The
second consideration is computational: As it is, many state-
of-the-art supernova simulations only track the first few
angular moments, and cohesion between hydrodynamic
and oscillation calculations is clearly desirable [54–61].
The last is theoretical: In multipole space, the factor ð1 −
p̂ · q̂Þ that couples neutrinos of momenta p and q becomes
a sum of monopole and dipole couplings [62,63]. Angular
moments are consequently a natural lens through which to
examine collective oscillations.
This last observation is especially true of fast modes,

which can be isolated by taking μ ≫ ω. Because neutrino
energy drops out of the coherent evolution, we can work
with polarization vectors that are integrated over the
spectrum. Neutrinos propagating in a homogeneous envi-
ronment at angle v ¼ cos θ (axial symmetry is assumed
throughout) then obey the hybrid multipole/momentum
equation

_Pv ¼ μðD0 − vD1Þ × Pv: ð1Þ
Here D0 and D1 are the monopole and dipole difference
vectors (Dl ¼ Pl − P̄l) and the matter potential λ ¼ffiffiffi
2

p
GFne has been rotated out. It is immediately apparent

that the only way for the flavor content Pv;z to change
significantly on a fast time scale is for D0 − vD1 to swing
away from the flavor axis.
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In terms of the difference vectors and their counterpart
sum vectors Sl ¼ Pl þ P̄l, the multipole equations of
motion are [62]

_Sl ¼ μD0 × Sl −
μ

2
D1 × ðalSl−1 þ blSlþ1Þ;

_Dl ¼ μD0 ×Dl −
μ

2
D1 × ðalDl−1 þ blDlþ1Þ; ð2Þ

where al ¼ 2l=ð2lþ 1Þ and bl ¼ 2ðlþ 1Þ=ð2lþ 1Þ. D0 is
constant on μ−1 timescales, implying that fast collective
modes must be driven by D1. It is helpful at this point to
switch to a frame rotating about D̂0 at frequency μD0,
where D0 ¼ jD0j. Using primes to denote vectors in the
rotating frame and introducing L0 ¼ ðD0

0 þ 2D0
2Þ=3 and

G0 ¼ 2D0
3=5, we then have

_D0
1 ¼ μL0 × D0

1;

_D0
2 ¼

3

2
μG0 ×D0

1: ð3Þ

Computing D0
1 × D̈0

1 leads to a pendulum equation, which
can be written in a form comparable to that of the bipolar
pendulum [Eq. (39) of Ref. [13] ] by defining δ0 ¼ D0

1=D1

and σ ¼ δ0 ·L0. The result is

δ0 × δ̈0

μ
þ σ _δ0 ¼ μD1G0 × δ0: ð4Þ

One critical distinction with respect to the bipolar pendu-
lum is that in this case “gravity” is not a fixed external
potential. In fact, G0 couples directly to D0

1, making this a
sort of nonlinear gyroscopic pendulum. Nevertheless, the
possibility for collective pendulum motion is built into the
structure of Eq. (2). Numerical realizations of it are shown
in Figs. 1 and 2.
The dynamics of the system is also restricted by a tower

of conservation laws, which can be constructed by differ-
entiating D0

1 ·D
0
l and recursively reducing the right-hand

side until it is expressed as a total derivative. The first three
conserved quantities are D1, σ, and

ED ¼ μG0 ·D1
0 þ μ

2
L02; ð5Þ

which respectively denote the length of the pendulum, its
spin, and its total energy. In a foundational study, Raffelt
and Sigl [62] showed that the dipole term is the driving
force behind kinematic decoherence. This remains true on
short timescales, and it is clear from Eq. (1) that D1 causes
dephasing of neutrinos with different values of v. But the
constraints on the motion of D1 mean that the dephasing
can give rise to persistent collective oscillations rather than
effectively irreversible relaxation, at least until the effects of
finite ω become important. The additional fact that some of
these constraints involve only the first four angular

moments gives us some hope of capturing the important
features of FFC without having fine-grained information
about the distributions in momentum space. Indeed, the
higher conservation laws, which encode the fact that all
angular moments are dynamically linked, may have utility
for closing the moment hierarchy in a sensible way.
We can be more specific about the connection to

kinematic decoherence by recalling that S0 obeys a
pendulum equation as well [13,62,68,69], with energy

ES ¼ ωB · S0 þ
μ

2
ðD2

0 − D2
1Þ: ð6Þ

Kinematic decoherence arises because D2
0 and D2

1 are able
to evolve at the cost of S0 shrinking [62]. But if μ ≫ ω,
then the S0 pendulum generally has very little sway over
the D1 pendulum. The opposite is not true, however: D1

steers the evolution of S0. Relaxation occurs through the
mutual interaction of the two pendula; the fact that the
influence is one way in the ω → 0 limit enables sustained
collective motion.

FIG. 1. Angular coordinates over four periods of fast flavor
conversion. Two values of v ¼ cos θ are shown in each panel.
The one that experiences more significant flavor conversion is
distinguished by the use of darker shades: purple for cos θv, blue
for sin ðϕv − ϕ1Þ. The thick black curve depicts cos θ1. Time is in
units of ½ ffiffiffi

2
p

GFðnνe − nν̄eÞ�−1 ∼ 14 ps (154 ps) for the upper
(lower) panel. See the text for discussion and Fig. 2 for more
information on the choice of parameters.
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It remains for us to understand how the predilection of
D0

1 for pendulum motion is expressed through the individ-
ual polarization vectors. Ultimately our interest is in the
projection onto the flavor axis,

_Pv;z ¼ −μvðD1 × PvÞz: ð7Þ

Writing the vectors in terms of their angular coordinates (θv
and ϕv being the polar and azimuthal angles of Pv, θ1 and
ϕ1 being the same of D1), Eq. (7) becomes

_θv ¼ μvD1 sin θ1 sin ðϕv − ϕ1Þ: ð8Þ

Approximating ϕv and ϕ1 as developing under the influ-
ence of their initial Hamiltonians, the phase difference
accumulates at a rate

_ϕv − _ϕ1 ≃ −μ
�
1

3
D0;zð0Þ þ vD1;zð0Þ þ

2

3
D2;zð0Þ

�
: ð9Þ

Suppose that Pvð0Þ ∝ z. If the phase difference develops
slowly enough that the right-hand side of Eq. (8) is positive

over many cycles of ϕ1, then θv can grow to a size
unsuppressed by the vacuum mixing angle.
As the instability grows, Eq. (9) breaks down and is

replaced by the collective motion seen in Fig. 1. Pv;z dips in
proportion to v sinðϕv − ϕ1Þ and is reflected in—and
driven by—peaks in D1;z (which are imperceptibly small
in the upper panel because the angular distributions are very
nearly isotropic). As Fig. 2 illustrates, there are two
qualitatively different outcomes as a function of v.
Setting Eq. (9) equal to 0, we find the trajectory which
in this approximation has constant phase with respect toD1,

ṽ ¼ −
1

3R1

−
2R2

3R1

; ð10Þ

with Rl ¼ Dl;zð0Þ=D0;zð0Þ. The quantity ṽ serves as a
control parameter that shapes the v dependence of the
collective oscillations. When ṽ is comfortably inside the
range ½−1; 1� (as in the test cases at r ¼ 33 km), it indicates
the presence of narrow resonances. When ṽ ≈�1 (as at
r ¼ 70 km), the resonances fuse. Going one step further,
we can use this parameter as the basis for a simple stability
criterion: If jṽj > 1, FFC cannot occur.

FIG. 2. Left: nνe (red) and nν̄e (blue and black) as functions of propagation angle θ, with arbitrary normalization. The angular
distributions are drawn at 200 ms postbounce from a spherically symmetric FORNAX simulation [64,65] of the 16 M⊙ progenitor from
Ref. [66]. M1 closure is used to provide the radiative pressures and radiative heat fluxes [67], and α ¼ nν̄e=nνe is treated as a free
parameter in order to trigger instability. Middle and right: Snapshots of Pv;z color-coded by time (going from blue to red) and spanning
the descent phase of a single dip inD1;z. The normalization is such that Pv¼1;z ¼ 1. To isolate the fast mode, ω is assigned an artificially
small value.
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Conducting a linear stability analysis in terms of angular
moments is revealing as well. Following the usual pro-
cedure [70], we take the flavor coherence to be of the
collective form SE;v ¼ QE;v expð−iΩtÞ and search for
growing solutions (ImΩ > 0) to the dispersion relation

ð1þ I0Þð1 − I2Þ þ I21 ¼ 0; ð11Þ

where

Ij ¼
ffiffiffi
2

p
GFðnνe − nν̄eÞ

X∞
l¼0

ðlþ 1

2
ÞRlIj;l;

Ij;l ¼
Z

1

−1
dv

vjLlðvÞ
Ω −

ffiffiffi
2

p
GFðnνe − nν̄eÞð1 − R1vÞ

: ð12Þ

We continue to set λ ¼ ω ¼ 0, and we assume that
nνx ¼ nν̄x . In these expressions Ll is the lth Legendre
polynomial and Rl is the ratio of the lth Legendre moment
of the νELN to the total νELN [i.e., Rl is the same
parameter that appears in Eq. (10)],

Rl ¼
ðnνe − nν̄eÞl
nνe − nν̄e

: ð13Þ

As the pendulum analysis suggests, it is possible to have
instability with nνe ¼ nν̄e , but for the convenience of
working with dimensionless ratios whose meanings are
fairly transparent, we assume that the number densities are
not extremely close in value. Since

ffiffiffi
2

p
GFðnνe − nν̄eÞ only

serves to set the timescale, stability is entirely controlled by
the parameters Rl≥1.
One virtue of assessing stability in terms of angular

moments is that any Ij;l (or the equivalent when ω ≠ 0) can
be evaluated analytically, thereby preserving the singularity

structure. The singular feature in this case is a branch cut
along the real axis of the complex-Ω plane; it spans the
values for which the integrand of Ij;l diverges for some
v ∈ ½−1; 1�. By retaining the logarithms in Eq. (11), one
avoids the unwelcome appearance of spurious instabilities
[71].We suspect that this advantage carries over to nonlinear
calculations that directly evolve the angular moments.
As for what the stability analysis reveals, we find that it

qualitatively bears out the D1 pendulum dynamics. The
primary features of Fig. 3, which presents the regions of
instability in three different ways, are all accounted for by
Eqs. (4) and (5). In brief, the main takeaway is that the
system is destabilized if the l ¼ 2moment of the νELN has
the opposite sign to the l ¼ 0moment (because the spin σ is
thereby diminished, up to a point) or if the l ¼ 3moment has
the same sign as the l ¼ 0 moment [because then G0ð0Þ ·
δ0ð0Þ > 0 and the pendulum is initially inverted]. The
liminal case R2 ¼ 0 in the leftmost color map is also
necessarily stable, because D3 never becomes nonzero:
no gravity, no instability. A related observation can be made
about the numerical solution of the nonlinear equations,
where we have confirmed that FFC occurs when the system
is truncated at l ¼ 3 but disappears when the system is
truncated at l ¼ 2.
While a νELN crossing is commonly believed to be a

necessary condition for FFC [21,23,24,28], Fig. 3 shows
that it is not a sufficient one. An alternative estimate of the
unstable region can be obtained by supposing that D3 is
constant. Using conservation of energy and conservation of
angular momentum along D3, we can solve for the south-
ernmost deviation θ1;max reached by an initially inverted
pendulum [13],

cos θ1;max ¼
9σ2

D1D3

− 1: ð14Þ

FIG. 3. Regions of instability. Each point represents a family of angular distributions [Eq. (13)]. Left: The ðR1; R2Þ parameter space,
with Rl≥3 ¼ 0. Center: ðR1; R3Þ, with R2 ¼ Rl≥4 ¼ 0. Right: ðR2; R3Þ, with R1 ¼ −1 and Rl≥4 ¼ 0. The color map shows the instability
growth rate obtained from the linear analysis [Eq. (11)] in units of

ffiffiffi
2

p
GFðnνe − nν̄eÞ; the blue region indicates parameters for which no

zero crossing occurs in the electron lepton number carried by neutrinos; and the magenta, cyan, and red curves border the unstable
regions according to Eqs. (10), (15), and (16), respectively. Arrows point into the unstable regions. For reference, the Fig. 1 angular
distributions at 33 km have R1 ¼ −0.35 ð−1.11Þ, R2 ¼ −0.02 ð−0.05Þ, and R3 ¼ 0 ð0Þ for α ¼ 0.97 ð0.99Þ. The angular distributions at
70 km have R1 ¼ −0.17 ð−0.87Þ, R2 ¼ −0.24 ð−0.71Þ, and R3 ¼ −0.12 ð−0.34Þ for α ¼ 0.90 ð0.95Þ.
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Solutions disappear in the stable region of parameter space.
In terms of νELN ratios, the system is unstable if

R1R3 ≥
5

72
ð1þ 2R2Þ2: ð15Þ

In Fig. 3 we compare Eq. (15) to the exact results from linear
stability analysis and to the jṽj ≤ 1 criterion [Eq. (10)].
A different stability test was recently proposed in

Ref. [25], one that (like ṽ) involves only the l ≤ 2
νELN angular moments. To make contact with that work,
we allow for spatially inhomogeneous collective modes:
SE;v ¼ QE;v expð−iΩtþ iKrÞ. In the linear regime, the
only change to the foregoing results is that a term −Kv is
added to the denominator of Ij;l. A central insight of

Ref. [25] is that K ¼ ffiffiffi
2

p
GFðnνe − nν̄eÞR1 cancels the other

term proportional to v, turning a transcendental dispersion
relation into a quadratic equation. In our notation, they find
the instability criterion

R2
1 >

ð2þ R2Þ2
9

: ð16Þ

We plot this result in Fig. 3 as well, bearing in mind that it is
being compared to the K ¼ 0 mode. The comparison
should therefore be interpreted with suitable caution. In
our view, all of these criteria are complementary, and they
are bound to have more or less diagnostic power depending
on factors such as the neutrino angular distributions and the
spectrum of inhomogeneities.
Continuing in the same vein, we now show that spatially

growing, steady-state fast modes have pendulumlike
behavior built into their equations of motion as well.
The replacement for Eq. (1) is

_Pv ¼ μ

�
1

v
D0 −D1

�
× Pv; ð17Þ

where v ≠ 0 and the overdot now denotes a spatial deriva-
tive. (Homogeneity along the transverse directions requires
that v ¼ 0 trajectories exhibit no flavor transformation.) It is
again possible to rotate out λ, and we have done so, provided
that we work in the nearly homogeneous limit. More
precisely, we ignore small-scale fluctuations and assume
that the scale heights of λ and μ are much greater than any
fast oscillation length, so that the two parameters are
approximately constant over the region we consider.
Dividing through by v leads, after taking angular

moments, to equations that each contain a derivative of
a single l,

_Pl ¼ −μD1 × Pl þ μD0 ×
X∞
l0¼0

�
l0 þ 1

2

�
cll0Pl0 ; ð18Þ

where

cll0 ¼
Z

1

−1
dv

LlðvÞLl0 ðvÞ
v

: ð19Þ

To make sure the integrals converge, we interpret them as
denoting their principal values, or equivalently assert that
Pv ¼ 0 at v ¼ 0. We presume that the collective modes of
the system are not particularly sensitive to the flavor
distribution of neutrinos traveling precisely transverse to
the symmetry axis. From the orthogonality and recursion
relations of Legendre polynomials, it follows that

cll0 ¼

8>><
>>:

2
lþ1

Qð−1Þ l0−2nþ1
l0−2nþ2

odd l0 > even l
2
l

Qð−1Þ l0þ2n
l0þ2n−1 even l0 < odd l

0 otherwise:

ð20Þ

The product in both cases is from n ¼ 1 up to n ¼ ðjl −
l0j − 1Þ=2 and is equal to 1 if jl − l0j ¼ 1.

An immediate consequence of Eqs. (18) and (20) is that
D1 is constant. It is therefore possible to shift to a rotating
frame in which the −μD1 ×Dl terms drop out. Letting
primes denote the new frame, we introduce (or, rather,
repurpose) the vectors

L0 ¼ −
X
l0

�
l0 þ 1

2

�
c0l0D0

l0 ;

G0 ¼
X
l0;l00

�
l0 þ 1

2

��
l00 þ 1

2

�
c0l0cl0l00D0

l00 ;

δ0 ¼ D0
0

D0

; σ ¼ δ0 ·L0: ð21Þ

Calculating δ0 × δ̈0, we find ourselves back at Eq. (4), but
withD1 replaced byD0. Once again the pendulum’s length,
spin, and mechanical energy [given by Eq. (5) after sending
D0

1 → D0
0] are all conserved. Besides this replacement,

there is another fundamental difference between the tem-
poral and spatial flavor development: Eq. (20) tells us
thatL0 is a superposition of all odd moments, whereasG0 is
a superposition of all even moments. Inhomogeneity
brings a host of complications with it, and so we leave
for future work the task of exploring numerically how the
pendulumlike tendency manifests in spatially evolving
collective modes.
The aim of this study has been to extract analytic insights

into FFC from the nonlinear equations of motion. The
central finding is that the angular-moment equations exhibit
a certain pendulumlike structure in the two limits that are
most analytically tractable (viz., when the neutrino density
is high, the matter background is homogeneous, and the
neutrino flavor field is either homogeneous or stationary).
In general, of course, a flavor field develops both spatially
and temporally. More work must be done to understand
what our finding implies for the full PDE problem.
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The analysis presented here opens new paths toward
understanding collective oscillations and incorporating
their effects into frontline supernova simulations.
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