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Neutrino oscillations in supernovae: Angular moments and fast instabilities
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Recent theoretical work indicates that the neutrino radiation in core-collapse supernovae may be
susceptible to flavor instabilities that set in far behind the shock, grow extremely rapidly, and have the
potential to profoundly affect supernova dynamics and composition. Here we analyze the nonlinear
collective oscillations that are prefigured by these instabilities. We demonstrate that a zero crossing in
n,, — n; as a function of propagation angle is not sufficient to generate instability. Our analysis accounts
for this fact and allows us to formulate complementary criteria. Using FORNAX simulation data, we show
that fast collective oscillations qualitatively depend on how forward peaked the neutrino angular

distributions are.
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In this paper we address a key aspect of neutrino physics
in core-collapse supernovae. The stakes are high, as
supernova explosions are central to our understanding of
the origin of elements and the history of galaxies.

Recently it has been realized that the neutrino flavor field
in core-collapse supernovae is prone to a host of insta-
bilities [I-11] that were artificially concealed by the
symmetries adopted in older studies [12—-18]. Of particular
urgency is the subclass known as fast instabilities, so
named because they exhibit growth rates proportional to
the self-coupling potential 4 = v/2Grn, and are not sup-
pressed by the typically much smaller vacuum oscillation
frequency @ = m?/2E [19-34]. They are commonly, if
not always, associated with zero crossings of the electron
lepton number carried by neutrinos (VELN) as a function of
propagation angle. Global variations in n;_/n, , possibly
related to lepton-number emission self-sustained asymme-
try [35-41], and coherent neutrino-nucleus scattering [42]
independently make this condition a live possibility in core-
collapse supernovae [42-47]. If fast flavor conversion
(FFC) does occur, it could substantially alter our current
view of supernova dynamics and nucleosynthesis [48,49].

The aim of the present study is to gain some degree of
understanding of the nonlinear collective effects heralded
by fast flavor instabilities. Our basic approach is to study
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the evolution of the neutrino flavor field in terms of its
momentum-space angular moments. Three considerations
motivate this choice. The first is realism: Neutrino angular
distributions within ~100 km are quite unlike the forms
they are given in bulb or beam models. In point of fact, they
transition—very gradually relative to the y~' scale—from
nearly isotropic to narrowly forward peaked [5S0-53]. The
second consideration is computational: As it is, many state-
of-the-art supernova simulations only track the first few
angular moments, and cohesion between hydrodynamic
and oscillation calculations is clearly desirable [54-61].
The last is theoretical: In multipole space, the factor (1 —
P - q) that couples neutrinos of momenta p and q becomes
a sum of monopole and dipole couplings [62,63]. Angular
moments are consequently a natural lens through which to
examine collective oscillations.

This last observation is especially true of fast modes,
which can be isolated by taking y > . Because neutrino
energy drops out of the coherent evolution, we can work
with polarization vectors that are integrated over the
spectrum. Neutrinos propagating in a homogeneous envi-
ronment at angle v = cos@ (axial symmetry is assumed
throughout) then obey the hybrid multipole/momentum
equation

Pv:ﬂ(DO_UDI)Xpi:' (1)

Here Dy and D, are the monopole and dipole difference
vectors (D, =P, —P;,) and the matter potential 1=
V2Gpn, has been rotated out. It is immediately apparent
that the only way for the flavor content P,, to change
significantly on a fast time scale is for Dy — vD; to swing
away from the flavor axis.
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In terms of the difference vectors and their counterpart
sum vectors S; = P; 4+ P,, the multipole equations of
motion are [62]

- I
S;=uDy xS, - EDI X (@;Si-1 + b;Sy1),

: p

D; = uDy x D; - EDI x (D +bDpyy),  (2)

where a; = 21/(2l+ 1) and b; = 2(1 +1)/(21 + 1). Dy is
constant on x~! timescales, implying that fast collective
modes must be driven by D,. It is helpful at this point to
switch to a frame rotating about D, at frequency uD,
where Dy = |Dy|. Using primes to denote vectors in the
rotating frame and introducing L’ = (Df, +2D})/3 and
G’ =2D}/5, we then have

D) = uL/ x D,
3
D’zzi,uG’xD’l. (3)

Computing D} x D/ leads to a pendulum equation, which
can be written in a form comparable to that of the bipolar
pendulum [Eq. (39) of Ref. [13]] by defining ¢’ = D} /D,
and ¢ = ¢ - L. The result is

& xé

+ 66 =uD,G' x§'. (4)

One critical distinction with respect to the bipolar pendu-
lum is that in this case “gravity” is not a fixed external
potential. In fact, G’ couples directly to D, making this a
sort of nonlinear gyroscopic pendulum. Nevertheless, the
possibility for collective pendulum motion is built into the
structure of Eq. (2). Numerical realizations of it are shown
in Figs. 1 and 2.

The dynamics of the system is also restricted by a tower
of conservation laws, which can be constructed by differ-
entiating D/, - D} and recursively reducing the right-hand
side until it is expressed as a total derivative. The first three
conserved quantities are D, o, and

Ep = uG -D, + gw, (5)

which respectively denote the length of the pendulum, its
spin, and its total energy. In a foundational study, Raffelt
and Sigl [62] showed that the dipole term is the driving
force behind kinematic decoherence. This remains true on
short timescales, and it is clear from Eq. (1) that D, causes
dephasing of neutrinos with different values of v. But the
constraints on the motion of D; mean that the dephasing
can give rise to persistent collective oscillations rather than
effectively irreversible relaxation, at least until the effects of
finite @ become important. The additional fact that some of
these constraints involve only the first four angular
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FIG. 1. Angular coordinates over four periods of fast flavor
conversion. Two values of v = cos @ are shown in each panel.
The one that experiences more significant flavor conversion is
distinguished by the use of darker shades: purple for cos 8,, blue
for sin (¢, — ¢, ). The thick black curve depicts cos ;. Time is in
units of [\/EGF(nyy —ny, )7 ~14 ps (154 ps) for the upper
(lower) panel. See the text for discussion and Fig. 2 for more
information on the choice of parameters.

moments gives us some hope of capturing the important
features of FFC without having fine-grained information
about the distributions in momentum space. Indeed, the
higher conservation laws, which encode the fact that all
angular moments are dynamically linked, may have utility
for closing the moment hierarchy in a sensible way.

We can be more specific about the connection to
kinematic decoherence by recalling that S, obeys a
pendulum equation as well [13,62,68,69], with energy

ES:wB.SOJrg(Dg—D%). (6)

Kinematic decoherence arises because D} and D7 are able
to evolve at the cost of S, shrinking [62]. But if u > w,
then the S, pendulum generally has very little sway over
the D; pendulum. The opposite is not true, however: D,
steers the evolution of S;. Relaxation occurs through the
mutual interaction of the two pendula; the fact that the
influence is one way in the @ — 0 limit enables sustained
collective motion.
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FIG. 2. Left: n, (red) and n; (blue and black) as functions of propagation angle ¢, with arbitrary normalization. The angular
distributions are drawn at 200 ms postbounce from a spherically symmetric FORNAX simulation [64,65] of the 16 M, progenitor from
Ref. [66]. M1 closure is used to provide the radiative pressures and radiative heat fluxes [67], and a = n;_/n,_is treated as a free

parameter in order to trigger instability. Middle and right: Snapshots of P,

color-coded by time (going from blue to red) and spanning

2

the descent phase of a single dip in D, ,. The normalization is such that P,_, , = 1. To isolate the fast mode, w is assigned an artificially

small value.

It remains for us to understand how the predilection of
D/ for pendulum motion is expressed through the individ-
ual polarization vectors. Ultimately our interest is in the
projection onto the flavor axis,

Pv,z = _/”)(Dl X Pv)z‘ (7)

Writing the vectors in terms of their angular coordinates (6,
and ¢, being the polar and azimuthal angles of P,, 8, and
¢, being the same of D), Eq. (7) becomes

0, = uvD; sin 0y sin (¢, — ;). (8)

Approximating ¢, and ¢, as developing under the influ-
ence of their initial Hamiltonians, the phase difference
accumulates at a rate

2

o= 1= =u(3000) + 1010 +3D:0)). 9

Suppose that P,(0) « z. If the phase difference develops
slowly enough that the right-hand side of Eq. (8) is positive

over many cycles of ¢, then 8, can grow to a size
unsuppressed by the vacuum mixing angle.

As the instability grows, Eq. (9) breaks down and is
replaced by the collective motion seen in Fig. 1. P, . dips in
proportion to wvsin(¢p, —¢;) and is reflected in—and
driven by—peaks in D, (which are imperceptibly small
in the upper panel because the angular distributions are very
nearly isotropic). As Fig. 2 illustrates, there are two
qualitatively different outcomes as a function of wv.
Setting Eq. (9) equal to 0, we find the trajectory which
in this approximation has constant phase with respect to Dy,

(10)

with R; = D,;,(0)/D,.(0). The quantity 7 serves as a
control parameter that shapes the v dependence of the
collective oscillations. When # is comfortably inside the
range [—1, 1] (as in the test cases at r = 33 km), it indicates
the presence of narrow resonances. When o =~ £1 (as at
r =70 km), the resonances fuse. Going one step further,
we can use this parameter as the basis for a simple stability
criterion: If |#| > 1, FFC cannot occur.
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Regions of instability. Each point represents a family of angular distributions [Eq. (13)]. Left: The (R;, R,) parameter space,

with Rj»3 = 0. Center: (R, R3), with R, = R;»4 = 0. Right: (R,, R3), with R = —1 and R», = 0. The color map shows the instability
growth rate obtained from the linear analysis [Eq. (11)] in units of v2G r(n,, = ny,); the blue region indicates parameters for which no
zero crossing occurs in the electron lepton number carried by neutrinos; and the magenta, cyan, and red curves border the unstable
regions according to Egs. (10), (15), and (16), respectively. Arrows point into the unstable regions. For reference, the Fig. 1 angular
distributions at 33 km have R; = —0.35 (—1.11), R, = —0.02 (—0.05), and R3 = 0 (0) for & = 0.97 (0.99). The angular distributions at
70 km have R; = —0.17 (—0.87), R, = —0.24 (—0.71), and R3 = —0.12 (-0.34) for a = 0.90 (0.95).

Conducting a linear stability analysis in terms of angular
moments is revealing as well. Following the usual pro-
cedure [70], we take the flavor coherence to be of the
collective form Sg, = Qp,exp(—iQ¢) and search for
growing solutions (Im€ > 0) to the dispersion relation

(14+1)(1 —1,) + 1} =0, (11)

where
> 1
1; = V2Gg(n, —n;) Z (I+ E)Rllj,lv
=0

1 Il
I/‘,l:/ v v/ Ly(v) .
M )T Q= V26 (n,, —n; )(1 - Ryv)

We continue to set A =w =0, and we assume that
n, =ng . In these expressions L; is the /th Legendre
polynomial and R, is the ratio of the /th Legendre moment
of the vELN to the total vELN [i.e., R, is the same
parameter that appears in Eq. (10)],

(12)

(nvg - nl?e )[

n,, —ng,

Rl:

(13)

As the pendulum analysis suggests, it is possible to have
instability with n, =n;, but for the convenience of
working with dimensionless ratios whose meanings are
fairly transparent, we assume that the number densities are
not extremely close in value. Since \/EGF(nDe — ng,) only
serves to set the timescale, stability is entirely controlled by
the parameters R;s;.

One virtue of assessing stability in terms of angular
moments is that any /;; (or the equivalent when @ # 0) can
be evaluated analytically, thereby preserving the singularity

structure. The singular feature in this case is a branch cut
along the real axis of the complex-Q plane; it spans the
values for which the integrand of [;; diverges for some
v € [-1, 1]. By retaining the logarithms in Eq. (11), one
avoids the unwelcome appearance of spurious instabilities
[71]. We suspect that this advantage carries over to nonlinear
calculations that directly evolve the angular moments.

As for what the stability analysis reveals, we find that it
qualitatively bears out the D; pendulum dynamics. The
primary features of Fig. 3, which presents the regions of
instability in three different ways, are all accounted for by
Egs. (4) and (5). In brief, the main takeaway is that the
system is destabilized if the / = 2 moment of the vELN has
the opposite sign to the [ = 0 moment (because the spin o is
thereby diminished, up to a point) orif the / = 3 moment has
the same sign as the [ = 0 moment [because then G’(0) -
6'(0) > 0 and the pendulum is initially inverted]. The
liminal case R, =0 in the leftmost color map is also
necessarily stable, because D3 never becomes nonzero:
no gravity, no instability. A related observation can be made
about the numerical solution of the nonlinear equations,
where we have confirmed that FFC occurs when the system
is truncated at [ =3 but disappears when the system is
truncated at [ = 2.

While a vELN crossing is commonly believed to be a
necessary condition for FFC [21,23,24,28], Fig. 3 shows
that it is not a sufficient one. An alternative estimate of the
unstable region can be obtained by supposing that Dj is
constant. Using conservation of energy and conservation of
angular momentum along D5, we can solve for the south-
ernmost deviation 6 ., reached by an initially inverted
pendulum [13],

962
D, D;

€08 O] max = —1. (14)
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Solutions disappear in the stable region of parameter space.
In terms of vELN ratios, the system is unstable if

R R; zi(l +2R,)%. (15)

72
In Fig. 3 we compare Eq. (15) to the exact results from linear
stability analysis and to the || < 1 criterion [Eq. (10)].

A different stability test was recently proposed in
Ref. [25], one that (like #) involves only the [ <2
VELN angular moments. To make contact with that work,
we allow for spatially inhomogeneous collective modes:
Sgo = Qp,exp(—iQr + iKr). In the linear regime, the
only change to the foregoing results is that a term —Kwv is
added to the denominator of ;. A central insight of

Ref. [25] is that K = \/iGF(nyﬂ —ny )R, cancels the other
term proportional to v, turning a transcendental dispersion
relation into a quadratic equation. In our notation, they find
the instability criterion

(2+R,)?
RZ > =
1 > 9

(16)
We plot this result in Fig. 3 as well, bearing in mind that it is
being compared to the K =0 mode. The comparison
should therefore be interpreted with suitable caution. In
our view, all of these criteria are complementary, and they
are bound to have more or less diagnostic power depending
on factors such as the neutrino angular distributions and the
spectrum of inhomogeneities.

Continuing in the same vein, we now show that spatially
growing, steady-state fast modes have pendulumlike
behavior built into their equations of motion as well.
The replacement for Eq. (1) is

. 1
Pv_ﬂ<;Do—D1> xP,, (17)

where v # 0 and the overdot now denotes a spatial deriva-
tive. (Homogeneity along the transverse directions requires
that » = 0 trajectories exhibit no flavor transformation.) It is
again possible to rotate out 4, and we have done so, provided
that we work in the nearly homogeneous limit. More
precisely, we ignore small-scale fluctuations and assume
that the scale heights of A and y are much greater than any
fast oscillation length, so that the two parameters are
approximately constant over the region we consider.

Dividing through by v leads, after taking angular
moments, to equations that each contain a derivative of
a single /,

. o0 1
P = —uD; X P+ Dy x ) <l/ +§> cuPp,  (18)
=0

where

Cy _/_ld’UM. (19)

1 v

To make sure the integrals converge, we interpret them as
denoting their principal values, or equivalently assert that
P, = 0 at v = 0. We presume that the collective modes of
the system are not particularly sensitive to the flavor
distribution of neutrinos traveling precisely transverse to
the symmetry axis. From the orthogonality and recursion
relations of Legendre polynomials, it follows that

%H(‘l)tgﬂé odd/ > evenl
HI(=1) zfiﬁf] evenl <odd! (20)

0 otherwise.

Cir =

The product in both cases is from n =1 up to n = (|/ -
I'| —1)/2 and is equal to 1 if [ =1V'| = 1.

An immediate consequence of Egs. (18) and (20) is that
D, is constant. It is therefore possible to shift to a rotating
frame in which the —uD; x D; terms drop out. Letting
primes denote the new frame, we introduce (or, rather,
repurpose) the vectors

1
L' = —Z(” +2> or D}
ll

1 1
G” — Z <l/ —+ E) (l// 4 5) CO[’Cl/l”D;”’
o

_ Dy

§ =0
D,

c=6" L (1)

Calculating &’ x & , we find ourselves back at Eq. (4), but
with D replaced by D,. Once again the pendulum’s length,
spin, and mechanical energy [given by Eq. (5) after sending
D} — D] are all conserved. Besides this replacement,
there is another fundamental difference between the tem-
poral and spatial flavor development: Eq. (20) tells us
that L.’ is a superposition of a/l odd moments, whereas G’ is
a superposition of all even moments. Inhomogeneity
brings a host of complications with it, and so we leave
for future work the task of exploring numerically how the
pendulumlike tendency manifests in spatially evolving
collective modes.

The aim of this study has been to extract analytic insights
into FFC from the nonlinear equations of motion. The
central finding is that the angular-moment equations exhibit
a certain pendulumlike structure in the two limits that are
most analytically tractable (viz., when the neutrino density
is high, the matter background is homogeneous, and the
neutrino flavor field is either homogeneous or stationary).
In general, of course, a flavor field develops both spatially
and temporally. More work must be done to understand
what our finding implies for the full PDE problem.
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The analysis presented here opens new paths toward
understanding collective oscillations and incorporating
their effects into frontline supernova simulations.
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