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ABSTRACT: Biology takes place in crowded, heterogeneous environments, and it is therefore
essential to account for crowding effects in our understanding of biophysical processes at the
molecular level. Comparable to the cytosol, proteins occupy approximately 30% of the plasma
membrane surface; thus, crowding should have an effect on the local structure and dynamics at
the lipid—water interface. Using a combination of ultrafast two-dimensional infrared
spectroscopy and molecular dynamics simulations, we quantify the effects of membrane
peptide concentration on the picosecond interfacial H-bond dynamics. The measurements
reveal a nonmonotonic dependence of water orientation and dynamics as a function of
transmembrane peptide:lipid ratio. We observe three dynamical regimes: a “pure lipid-like”
regime at low peptide concentrations, a bulk-like region at intermediate peptide concentrations
where dynamics are faster by ~20% compared to those of the pure lipid bilayer, and a crowded

Pure lipid

regime where high peptide concentrations slow dynamics by ~50%.

iological processes such as protein folding, signaling, and

diffusion take place in crowded heterogeneous environ-
ments. Much of the current focus of macromolecular crowding
is oriented toward cytosolic crowding with a specific emphasis
on its implications for folding stability and hydration of the
protein environment in bulk aqueous environments."”
Membrane models used in biophysical studies are often
simplified, containing few lipid species and dilute concen-
trations of membrane proteins or peptides’ such as the model
shown in Figure 1A. In cells, plasma membranes are crowded
and complex, containing high concentrations of transmem-
brane proteins such as ion channels and sensors.”® Within this
two-dimensional environment, the protein concentration is
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Figure 1. Representative model membranes used in MD simulations.
(A) DMPC lipid bilayer without proteins. (B) Including trans-
membrane peptides in a 1:10 lipid:peptide ratio. Lipids are colored
gray with the ester C=0 oxygen atoms colored red. Peptide atoms
are colored green.
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comparable to that of the cytosol, approximately 30% by area
(compared to 30% by volume in the cytosol).” ® The average
separation between membrane proteins can be as small as one
or two lipid molecules.”® Because cytosolic properties are
significantly modulated by macromolecular crowding, mem-
brane environments are also dictated by the structural and
dynamical consequences of crowding.”’ ™’

Recent studies have explored this hypothesis, providing
evidence of structural interruptions, domain formation, and
diffusive motion as a consequence of membrane protein
encounters approaching biological concentrations.”””*'*!!
Key biological processes take place in interfacial environments,
and thus, it is crucial to characterize the effect of crowding on
the local environment at the interface between the hydro-
phobic and hydrophilic regions of the membrane from an
atomistic gerspective, including H-bond populations and
dynamics.'

Two-dimensional infrared (2D IR) spectroscopy is an ideal
tool for probing ultrafast dynamics at the lipid—water interface.
The lipid ester C=O is precisely located at the ~1 nm
interface between hydrophobic and hydrophilic regions of the
membrane, and their vibrational frequency is highly sensitive
to its local electrostatic environment.">~'” In short, 2D IR
spectroscopy in the ester carbonyl region measures H-bond
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dynamics at the lipid—water interface on subpicosecond time
scales.”' ¥

Where 2D IR offers direct dynamical information, computa-
tional tools, which map frequencies to atomic positions,
provide a molecular interpretation of the underlying effects
driving spectral dynamics. Expanding upon theoretical models
developed over the past decade,”*>* our group has recently
developed a structure-based electrostatic map to accurately
predict infrared spectra of ester C=O probes from classical
molecular dynamics (MD) simulations."* Nearly quantitative
agreement between time scales of computed and experimental
frequency fluctuations shows that the simulations capture the
essential interactions that lead to dynamics, and in these
models, therefore the atomistic information contained in the
simulation can be used to interpret experimental data.*

In this paper, we directly characterize the picosecond H-
bond dynamics at the lipid—water interface in dimyristoyl-sn-
glycero-3-phosphocholine (DMPC) bilayers using a range of
concentrations of pH (low) insertion peptide (pHLIP), an
amphiphilic helical transmembrane peptide that serves as a
“crowder” in the membrane. Through the combined
spectroscopic and computational approach, we characterize
the water H-bond structure and dynamics at the lipid—water
interface, providing an atomistic basis for understanding the
specific effects of membrane crowding on interfacial processes
in cells.

The pHLIP peptide is incorporated into ~150 nm diameter
DMPC lipid vesicles in solution. The peptide:lipid ratio is
varied from pure DMPC to a 1:10 (crowded) ratio. The
peptide is confirmed to remain in a helical conformation at
different concentrations using circular dichroism (section S1).
Control experiments indicate that the vesicles and the peptide
structure are unperturbed with an increase in the pHLIP
concentration in the membrane. The sample preparation and
characterization protocols are provided in sections S1 and S2.
The vesicles are prepared in a buffer at pH 8 and then spiked
with a peptide solution, followed by a decrease in the pH.
Because the insertion coordinate determines the final
orientation, the helices are oriented in the same direction
across the bilayer.”* Considering that pHLIP contains a higher
proportion of polar residues on the C-terminus, the dynamics
of the two leaflets may be different. Experiments and
simulations track the average dynamics over both leaflets.

We focus our analysis on the dynamics extracted from 2D IR
experiments, which describe frequency correlations over
vibrational time scales. We use molecular dynamics simulations
to further interpret these dynamics from a structural
perspective.

H-Bond Dynamics: 2D IR Spectroscopy. 2D IR spectra for
DMPC, 1:50 lipid/peptide, and 1:10 lipid/peptide samples at
selected waiting times are given in Figure 2. Each 2D IR
spectrum consists of an excitation axis (horizontal) and a
detection axis (vertical). Each peak appears as a positive/
negative (red/blue) doublet where the positive peak on the
diagonal originates from the ground state bleach and the
negative, below-diagonal peak stems from excited state
absorption. The ester C=O stretching mode is centered
around 1730 cm ™" and is the focus of our analysis as this mode
is sensitive to the interfacial H-bond dynamics.

Dynamics in 2D IR spectra are contained within the
diagonal elongation of the ester peak. Diagonally elongated
peaks are a result of a high degree of correlation between the
excitation and detection frequencies. Over longer waiting
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Figure 2. (A—C) Ester C=0 2D IR spectra of DMPC, 1:50 lipid/
peptide, and 1:10 lipid/peptide samples, respectively, at waiting times
of 150, 1200, and 2500 fs. Blue data points denote the maximum 2D
IR intensities at each excitation frequency; light blue lines are the
linear fits to these points from which the center-line slope is extracted.
(D) CLS decays and exponential fits for the DMPC (black), 1:50
(green), and 1:10 (red) spectra. Decay y-axes are offset for the sake of
clarity. Error bars represent the 95% confidence interval of the linear
CLS fit. The center-line slope value is unitless.

times, oscillators sample a range of environments, leading to a
rounder peak as the excitation-detection frequency correlation
is lost; this is known as “spectral diffusion”.>® This loss of
correlation can be quantified by a center-line slope (CLS)
analysis, a widely used 2D IR analysis method that measures
the diagonal elongation of the peak in each 2D IR
spectrum.’®”** Briefly, to compute the CLS, we identify the
detection frequency at which the 2D IR intensity is maximized
for each excitation frequency (blue points in Figure 2A—C). A
linear fit to these points reveals the center-line slope (light blue
lines, Figure 2A—C). Center-line slopes are plotted as a
function of the excitation-detection delay and are fit to a
monoexponential (Figure 2D and Figure S6). This CLS decay
is exactly equivalent to measuring the ensemble-averaged
frequency—frequency correlation function (FFCF) of the
carbonyls. Faster relaxation rates are associated with more
dynamic, bulk-like environments, whereas slower relaxation
rates are consistent with more static environments.

The ~1 ps decay captured by the CLS is commonly
associated with H-bonding dynamics, which occur on this time
scale.””™*' These picosecond-scale dynamics account for
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~20% of the overall spectral diffusion; also present are rapid,
femtosecond-scale fluctuations, which cannot be captured by
this experiment as they occur on time scales comparable to the
laser pulse length (<100 fs), and long-time-scale (S ps)
fluctuations, which are represented by the constant offset in the
CLS decay. The latter, known as static inhomogeneity,">** is
attributed to slow dynamics such as lateral diffusion, H-bond
network reorganization, and transient peptide foldin§ and
insertion that occur over a wide range of time scales.*”* The
remainder of this analysis focuses on the picosecond
fluctuations, which reveal the H-bond dynamics. Full 2D IR
data sets and associated CLS fits are given in the Supporting
Information (section S2 and Figures S15—522).

Figure 4A shows the CLS lifetimes for peptide:lipid ratios
from 1:10 to pure lipid. Surprisingly, the relaxation rates do not
exhibit a monotonic trend. The relaxation rate for the pure
lipid bilayer is 1.19 ps, in agreement with previous measure-
ments."> An increasing peptide concentration initially produces
a slight slowing of dynamics, as observed in the 1:70 sample,
although the relaxation rates are similar within experimental
uncertainty. In the 1:50 peptide/lipid membrane, the dynamics
are observed to be faster than in the pure lipid membrane.
While changes between the low and intermediate regimes are
small, the dynamics are different within the uncertainty of the
2D IR measurements. At peptide concentrations approaching
highly crowded (near-biological) environments, dynamics are
significantly slowed, with the 1:10 peptide/lipid mixture
exhibiting a 1.75 ps relaxation rate, nearly 50% slower than
the pure lipid membrane.

The “slow—fast—slow” dynamics observed with an increas-
ing peptide concentration suggest the existence of three
regimes: (1) a “pure lipid-like” regime at low peptide
concentrations, (2) a “bulk-like” regime at intermediate
concentrations, and (3) a “crowded” regime, where the high
peptide concentration drives slow dynamics.” Next we evaluate
these structural hypotheses through MD simulations.

H-Bond Dynamics: MD Simulations. Frequency—frequency
correlation function (FFCF) decays of the lipid ester C=0
probes are computed from MD simulations (Figure 3B) using
a vibrational map that converts the electric field at each of the
O—-C=0 atomic positions into a frequency shift."* MD
snapshots stored every 20 fs are used to generate a frequency
trajectory for each carbonyl, and each autocorrelation (Figure
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Figure 3. (A) Experimental decay constants of the frequency
fluctuations extracted from a single-exponential fit of the center-line
slope (CLS) for a range of lipid:peptide ratios (Figure S6). Error bars
are generated by the bootstrap standard deviation with 1000 samples.
(B) Frequency—frequency correlation function (FFCF) decay
constants extracted by exponential fits of the FFCF from the MD
simulations (Figure S9). Error bars represent the 95% confidence
interval of the exponential fit.
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S9) is then fit to a triple-exponential function as described in
Figure S3a. Three time scales are observed, a fast inertial decay
of <0.1 ps, an ~1 ps decay, and a long ~8 ps decay. Our
experiments are sensitive to only the ~1 ps relaxation time
scales. Indeed, these picosecond decay constants can be
directly compared to the experimental CLS time constants.
Experiment and simulation are in nearly quantitative agree-
ment (Figure 3). In the pure lipid membrane, the decay time is
0.97 ps compared to 1.19 ps for the 2D IR experiment. Similar
to experiment, we observe nonmonotonic trends in relaxation
rates. A low peptide concentration results in slowed dynamics
compared to those of the pure lipid; intermediate concen-
trations result in fast, bulk-like dynamics compared to the pure
lipid, and at high (1:10 peptide:lipid ratio) peptide
concentrations, we observe dynamics approximately 30%
slower than in the pure lipid membrane. Differences in
dynamics at different concentrations are less pronounced in
the MD, and the peptide:lipid ratio at which the fastest
dynamics are observed is 1:70 in MD compared to 1:50 in
experiment. Given that the MD simulations reproduce the
experimental trend in C=O dynamics, we then use the MD
trajectories to explore the contribution of different compo-
nents to the C=0 dynamics.

Because frequency fluctuations result from the rapidly
evolving electrostatic environment at the carbonyl positions,
we can disentangle the origin of these fluctuations by
computing the individual contributions to the frequency shifts
separately. These include contributions from lipid, peptide, and
water. This is accomplished by ignoring the contribution from
the charges of individual components in the electrostatic
computation prior to applying the frequency map. These
analyses (Figure S8) indicate that the motions of the peptide
molecules are not directly responsible for the observed
frequency fluctuation trends, and the motions of the lipid
molecules have only a minor effect. Rather, we determine the
water component to be the origin of the frequency fluctuations
given that the trend becomes inconsistent with experiment
once the water charges are ignored. Thus, we focus our analysis
on the water structure and dynamics at the membrane interface
in relation to the bulk.

Considering that the interfacial dynamics at the C=O
positions are primarily driven by H-bond dynamics, we
computed the water—water solvent H-bond lifetimes. Geo-
metric criteria, which are well established in the literature, are
used to define H-bonds.***” In brief, an H-bond is defined as
an acceptor—donor pair within a 0.35 nm radius of one
another, where the acceptor—donor—H angle is <30°. It is
noteworthy that within this definition, H-bond populations are
unchanged over the range of peptide concentrations (Figure
S11). Water—water H-bond lifetimes are extracted from MD
trajectories for interfacial and bulk water, defined as waters <1
and >1 nm from the nearest lipid C=O oxygen atom,
respectively (Figure 4A). These cutoffs were selected as the
peptide extends approximately 1 nm past the lipid carbonyls.
Interfacial waters show overall longer lifetimes (>0.4 ps)
compared to those of bulk waters (~0.3 ps), as expected,
because the polarity of lipid headgroups orders the water
molecules at the surface.'”"® The interfacial H-bond lifetimes
reproduce the “slow—fast—slow” trends derived from experi-
ment (Figure 3A), wherein a low peptide:lipid ratio drives
slowed dynamics, an intermediate peptide:lipid ratio results in
rapid, near-bulk-like water dynamics, and the slowest water—
water hydrogen bond lifetimes are found at high peptide
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Figure 4. Water dynamics from simulation (gray, bulk water >1 nm
from a lipid; blue, interfacial waters <1 nm from a lipid). (A) Water—
water hydrogen bond lifetimes. (B) Self-diffusion coeficients.

concentrations. These results strongly indicate that the peptide
therefore disrupts the H-bond networks at the interface,
inducing faster, “bulk-like” dynamics at intermediate concen-
trations.

As further evidence, we computed the self-diffusion
coeflicients of interfacial and bulk water, shown Figure 4B,
to describe the behavior of water in crowded environments. In
this case, water diffusion expectedly follows the same trend as
H-bond lifetimes: diffusion is faster in bulk water than at the
interface, and interfacial water tracks the experimental trends in
dynamics. Slowed water diffusion in crowded environments is
a phenomenon that has been observed previously.” Feig et al.
assigned the origin of this slow diffusion to a confined water
environment compounded by interactions of water with
multiple nearby proteins.” Furthermore, we can deduce that
these altered water dynamics are projected onto the lipid—
water interface and can be experimentally tractable by ultrafast
spectroscopy.

To understand the structural origin of these trends, we next
explore the H-bond geometries and orientations of interfacial
waters.'” Briefly, we select a subset of lipids with ester C=0
oxygens within 1 nm of the nearest peptide C, atom and
analyze the water molecules within the 0.35 nm radius of the
C=0 oxygen atom, corresponding to the first solvation shell.
Within this 0.35 nm radius, we compute the H—donor—
acceptor (H—D—A) angle of the selected water molecules. H-
Bond angle histograms in Figure S (normalized and offset for

DMPC
1:128
1:70

Counts (Normalized)

0 20 40 60 80 100 120
H-Bond Angle (deg)

Figure 5. Histogram of A—D—H angles among lipid C=0 and water
molecules within an acceptor—donor radius of 0.35 nm. Dashed lines
indicate the distribution for a pure lipid membrane; solid colored lines
correspond to varied concentrations of the inserted peptide.
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the sake of clarity) show a population between 0° and 30° that
represents the water molecules forming hydrogen bonds to the
lipids as both conditions of the H-bond definition are met.
Beyond the 30° angle cutoff, these distributions deviate from
the pure membrane system; upon introduction of the peptides,
a second population emerges in a non-hydrogen bonding
regime, suggesting the existence of water molecules that are
present at the interface but unavailable for direct hydrogen
bond interaction with the lipids.

The rapid water dynamics in the 1:70 peptide/lipid
simulation system imply the existence of bulk-like water
structure near the lipid—water interface, a phenomenon that
has been reported previously.'> These dynamics are corrobo-
rated by the distribution of water orientations given in Figure
S: unlike a pure lipid interface, where the water dipoles tend to
be oriented antiparallel to the membrane normal,'” which we
will term “pure lipid-like” water, we observe a second discrete
population of H-D—A angles within the C=0 first solvation
shell. In the 1:128 peptide/lipid membrane, we observe a
smaller population with a similar 100—120° angle distribution.
The bulk-like effect is diluted as the greater distance between
peptides allows a larger fraction of the membrane surface to
support pure lipid-like water. Reordering of the lipids as a
consequence of peptide insertion is not captured by the water
dynamics but likely drives the slowed dynamics of the FFCF
decay observed in this regime.

On the contrary, C=0 frequency fluctuations, water H-
bond dynamics, and water diffusion rates are consistently
slowed at crowded peptide concentrations (1:40 and 1:10
peptide:lipid regime). The high density of the transmembrane
peptide interrupts H-bond networks, confining water to
specific orientations. The 1:40 membrane shows an angle
distribution distinct from the pure lipid-like and the bulk-like
ensembles. In contrast, the 1:10 membrane has pure lipid-like
water (Figure S). Here, a greater fraction of the interfacial
water is peptide-bound,” as we have 4»previously demonstrated
in this membrane peptide system.” Peptide-bound water
exhibits slow dynamics compared to those of bulk water.”’
These two effects contribute to the slow FFCF decay we
observe in 1:10 peptide/lipid samples. Interestingly, the 1:40
membrane water structure suggests a unique structural regime
within this concentration range that cannot be described as a
combination of the other two neighboring regimes. In
conclusion, the combination of simulations and experiments
suggests a strong link between water structure and lipid
dynamics.

Our findings suggest three concurrent effects of an increased
level of lipid membrane crowding by transmembrane peptides.
(1) At low to intermediate peptide concentrations (up to 1:70
in simulation, up to 1:50 in experiment), interfacial water
molecules adopt a bulk-like structure and rapid dynamics
compared to those of a pure lipid system. (2) In a crowded,
high-peptide concentration regime approaching biologically
relevant transmembrane crowding, confined surface-like water
leads to 30—50% slower dynamics at the interface. (3) A
distinct set of water orientations exhibits moderately slowed
dynamics in the intermediate regime approaching crowded
lipid:peptide ratios, which cannot be described by the bulk-like
or pure lipid-like water ensembles.

This study connects ultrafast dynamics to specific structural
properties in the context of transmembrane crowding,
providing a basis for perturbed lipid dynamics as a function
of membrane peptide insertion. Our results indicate that there
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is another level to understanding biomolecular crowding to
fully comprehend the dense, complex domain that is the
cellular environment. We have demonstrated that crowding
affects membrane interfaces themselves and should be
considered as part of a complete description of biomolecular
environments in the cell.

B MATERIALS AND METHODS

Below is a summary of the methods. Full descriptions can be
found in the Supporting Information (section SI).

Sample Preparation. Unilamellar DMPC vesicles were
prepared by reconstituting dried DMPC to 50 mM with 10
mM MOPS [3-(N-morpholino)propanesulfonic acid] buffer
(pH 8.0) in D,O and the appropriate volume of a pHLIP stock
solution [S mM in MOPS (pH 8.0)] to reach the desired
DMPC:pHLIP mole ratio. After reconstitution, samples were
sonicated at 30 °C for 15 min and then extruded with a 200
nm membrane to control the vesicle diameter. Each sample
was adjusted to a final pH of 5.5 (uncorrected pH reading in
D,0).

2D IR Measurement. Two-dimensional IR spectra were
recorded at 32 °C with a custom-built pulse-shaper-based
spectrometer, which has been described in detail previously.’!
Spectra were recorded in the time domain at perpendicular
polarization with varied population times (t,) from 150 fs to 3
ps. Coherence times (t;) were scanned up to 3 ps in 15 fs
steps. Phase cycling was used to minimize contributions from
scatter. Each 2D IR spectrum was averaged for 0.4 to 2.4
million laser shots depending on signal strength at the given ¢,
value.

Molecular Dynamics. Classical MD simulations were run
using GROMACS.”> DMPC bilayers were prepared using the
Membrane Builder’** feature in CHARMM-GUL>>*® Fully
protonated pHLIP helices were inserted evenly spaced into
each bilayer to achieve the desired lipid:peptide ratio. Each
model was equilibrated for 375 ps using the standard
CHARMM-GUI protocol prior to production. Peptide-
containing systems were run for 600—1400 ns, and the
DMPC-only system was run for 200 ns, at 308.15 K in 2 fs
steps. For spectral analysis, these trajectories were extending 1
ns saving coordinates every 20 fs. Electrostatic calculations
were run using the final 300 ps of the simulation. Water MSD
and A—D—H angles used the final 20 ps (1000 frames) after
confirming convergence within this time frame. Water H-bond
lifetime calculations used an average of six 20 ps (1000 frames)
trajectories (see section S3).
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