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Abstract
This paper presents a family of weak Galerkin finite element methods for elliptic boundary
value problems on convex quadrilateral meshes. These new methods use degree k ≥ 0 poly-
nomials separately in element interiors and on edges for approximating the primal variable.
The discrete weak gradients of these shape functions are established in the local Arbogast–
Correa ACk spaces. These discrete weak gradients are then used to approximate the classical
gradient in the variational formulation. These new methods do not use any nonphysical
penalty factor but produce optimal-order approximation to the primal variable, flux, normal
flux, and divergence of flux. Moreover, these new solvers are locally conservative and offer
continuous normal fluxes. Numerical experiments are presented to demonstrate the accuracy
of this family of new methods.
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1 Introduction

This paper concerns finite element methods for 2-dim elliptic boundary value problems
prototyped as ⎧

⎪⎨

⎪⎩

∇ · (−K∇ p) ≡ ∇ · u = f , x ∈ Ω,

p = pD, x ∈ �D,

u · n = uN , x ∈ �N ,

(1)

where Ω is a polygonal domain, p is the unknown primal variable, K a 2 × 2 coefficient
matrix that is uniformly symmetric positive-definite (SPD), f a known function, pD, uN

Dirichlet and Neumann boundary data, respectively, n the outward unit normal vector on ∂Ω

that has a nonoverlapping decomposition �D ∪ �N .
The above elliptic problems arise from many real-world applications, for example, flow

in porous media and heat or electrical conduction in composite materials. For ease of pre-
sentation, we adopt the terminology for flow in porous media to interpret p as the pressure in
a single-phase steady flow, K as the conductivity matrix (the ratio of permeability and fluid
viscosity), u = −K∇ p as the Darcy velocity, and f as a source term. Accordingly, u · n is
the normal flux on any edge in a given mesh, and ∇ ·u is the divergence (div) of the velocity.

For development of finite element methods for the elliptic problems in (1), here are some
main considerations:

(i) Preserving physical properties: Local conservation, flux normal continuity;
(ii) Optimal-order accuracy in pressure, velocity, normal flux, and divergence of velocity;
(iii) Easy implementation: SPD discrete linear systems.

For the continuous Galerkin (CG) FEMs in their original forms, it is well known that
they are not locally conservative and do not offer continuous normal fluxes. Postprocssing
[8] or enrichment by elementwise constants [23] renders CG FEMs these two important
physical properties. The discontinuous Galerkin (DG) FEMs are locally conservative by
design. Hybridization [12] provides continuous normal fluxes and reduces global degrees of
freedom to those on interelement boundaries. Themixed finite elementmethods (MFEMs) by
design are locally conservative and produce continuous normal fluxes. But the original forms
of MFEMs result in indefinite linear systems. Hybridization [6] converts such an indefinite
linear system into an SPD system that involves the flux unknowns, primal unknowns, and
Lagrange multipliers. Schur complement [1] or static condensation [10] can further reduce
the size of the discrete linear system and simplified it into an SPD system.

The hybridizable discontinuous Galerkin (HDG) FEMs form another large class, in addi-
tion to the classical mixed FEMs. It is not a surprise to see the connection and interaction
among these three classes of FEMs, especially, the similarities and differences between WG
and HDG finite element methods. In seeking approximate solutions to PDEs based on finite
elements, both HDG and WG consider quantities or variables in element interiors and on
mesh skeleton. These quantities could be primal variables, dual variables or fluxes, normal
traces, and multipliers. The HDG methodology, as of our understanding, relies mainly on
hybridization, see [10–13] and references therein. HDG FEMs are based on deep analysis
of the relationships among approximation subspaces for those quantities, which produce a
variety of choices for devising finite elements.

The WG methodology [25] relies mainly on integration by parts for reconstruction of
differential operators in the weak sense at the element level. Generally speaking, approxi-
mants to the primal variable are defined separately in element interiors and on inter-element
boundaries and then used to construct discrete weak gradients, curls, or divergences, which
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are then used to approximate the classical differential operators in the variational forms.
But these discrete weak gradients do not constitute degrees of freedom. WG finite element
methods have been developed for a wide range of problems, e.g., elliptic problems [20,21],
Darcy flow [17,19], elasticity [15,24,29], two-phase flow problems [14], Stokes flow [22],
and coupled Stokes–Darcy flow [9].

In this paper, we develop a family of any-order penalty-free weak Galerkin FEMs for
elliptic problems on general convex quadrilateral meshes. Compared to triangular meshes,
quadrilateral meshes can also accommodate complicated domain geometry while involving
less unknowns.

These new WG methods use degree k ≥ 0 polynomials inside elements and on interele-
ment boundaries separately for approximating the primal variable. The discrete weak
gradients of these shape functions are established in the elementwise Arbogast–Correa ACk

spaces [1]. These discrete weak gradients are then used to approximate the classical gradient
in the variational formulation for the elliptic problems (1). These new WG methods do not
involve any nonphysical penalization but produce optimal-order approximation to the primal
variable, flux, normal flux, and divergence of flux. Moreover, these new solvers are locally
conservative and offer continuous normal fluxes. The resulting discrete linear systems are
symmetric positive-definite.

The rest of this paper is organized as follows. Section 2 briefly discusses the Arbogast–
Correa spaces ACk(k ≥ 0). Section 3 discusses construction of weak Galerkin elements
(Pk, Pk; ACk). Section 4 develops a family of numerical schemes using these newWG finite
elements to solve the elliptic problems (1) on convex quadrilateral meshes. Section 5 presents
rigorous error analysis for these new WG FEMs. Section 6 briefly discusses implementa-
tion strategies and then presents numerical experiments to illustrate the theoretical results.
Section 7 concludes the paper with some remarks.

2 Local and Global Arbogast–Correa Spaces ACk(k ≥ 0)

Compared to the classical Raviart–Thomas elements [7] or the Arnold–Boffi–Falk elements
[5], the Arbogast–Correa elements constructed recently in [1] for convex quadrilaterals have
better approximation properties and less degrees of freedom. The ACk(k ≥ 0) spaces are
constructed using both unmapped vector-valued polynomials and rational functions obtained
via the Piola transformation.

Let E be a convex quadrilateral and k ≥ 0 be an integer. The local Arbogast–Correa space
on E is defined as

ACk(E) = P2
k (E) + x P̃k(E) + Sk(E), (2)

where P2
k (E) is the space of bivariate vector-valued polynomials defined on E with total

degree at most k, P̃k(E) is the space of bivariate homogeneous scalar-valued polynomials
with degree exactly k, and Sk(E) is a supplementary space of vector-valued rational functions
obtained via the Piola transformation.

Clearly,

dim(P2
k ) = (k + 1)(k + 2), dim(P̃k) = k + 1.

However,

dim(Sk) = 1 if k = 0, dim(Sk) = 2 if k > 0.
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If we set sk = dim(Sk), then

dim(ACk(E)) = (k + 1)(k + 3) + sk . (3)

Note that (k + 1)(k + 3) = dim(RTk), i.e., the dimension of the k-th order Raviart–Thomas
(RT) space on a triangle [7]. So sk is the additional degrees of freedom needed for augmenting
the RT space on a quadrilateral [1].

For convenience, we write Sk = PE Ŝk , where PE is the Piola transformation. Let (x̂, ŷ)
be the coordinates in the reference element [0, 1]2. According to [1], for k = 0,

Ŝ0 = Span{curl(x̂ ŷ)}. (4)

For k ≥ 1,
Ŝk = Span{curl((1 − x̂2)x̂ k−1 ŷ), curl(x̂ k−1 ŷ(1 − ŷ2))}. (5)

Roughly speaking, P2
k (E) takes care of approximation for a vector field on a convex

quadrilateral, x P̃k(E) takes care of approximation in its divergence, whereas Sk offers a
divergence-free supplement.

When the Arbogast–Correa elements are used in the mixed finite element setting [1] for
solving elliptic problems, global basis functions (especially those on the common edges)
need to be carefully constructed, to ensure that the velocity is being approximated from the
global ACk space on the whole mesh, which is a finite-dimensional subspace of H(div,Ω).

However, when the WG methods in this paper are applied to elliptic problems, only the
local basis functions for the ACk spaces on individual quadrilaterals are needed.Wewill show
later in Sect. 4 that the velocity obtained from the weak Galerkin methods (Pk, Pk; ACk) is
automatically in the global ACk space and hence in H(div,Ω).

3 WG (Pk,Pk;ACk)(k ≥ 0) Finite Elements on Quadrilaterals

Weak Galerkin finite elements use separate basis functions in element interiors and on
interelement boundaries. These basis functions are different than those basis functions used
in the continuous or discontinuous Galerkin methods. We call them discrete weak functions.

Let k ≥ 0 be an integer and E be a convex quadrilateral. Let Pk(E◦) be the space of
polynomials defined in E◦ with degree at most k, and similarly, Pk(E∂ ) be the space of
piecewise polynomials defined on E∂ with degree at most k. Let ACk(E) be the space of
vector-valued polynomials/rationals discussed in the previous section.

Let φ = {φ◦, φ∂ } be a discrete weak function such that φ◦ ∈ Pk(E◦) and φ∂ ∈ Pk(E∂ ).
Note that φ◦ is defined for the element interior only, whereas φ∂ is defined on the element
boundary only. We define ∇wφ ∈ ACk(E) by

∫

E
(∇wφ) · w =

∫

E∂

φ∂(w · n) −
∫

E◦
φ◦(∇ · w) ∀w ∈ ACk(E), (6)

or in slightly different notations,

(∇wφ,w)E = 〈φ∂,w · n〉E∂ − (φ◦,∇ · w)E◦ . (7)

For any such discrete weak function φ, we need to solve a small-size SPD linear system (7)
to find the linear combination coefficients for ∇wφ in the local basis functions of ACk(E).

As shown in the next section, the above discreteweak gradientswill be used to approximate
the classical gradient in the variational form for elliptic problems.
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4 WG Schemes for Elliptic Problems on Quadrilateral Meshes

Let Ω be a polygonal domain equipped with a shape-regular convex quadrilateral mesh Eh
[26]. Let �D

h be the set of all edges on the Dirichlet boundary �D and �N
h be the set of all

edges on the Neumann boundary �N . Let Sh be the space of discrete weak functions on Eh
that are degree k polynomials separately in element interiors and on edges, and S0h be the
subspace of functions in Sh that vanish on �D

h .
To proceed, we define an L2-projection Qh = {Q◦

h, Q
∂
h} such that for any quadrilateral

element E ∈ Eh , Q◦
h is a local L2-projection that maps L2(E◦) functions into the space of

degree k polynomials in E◦, and in the same spirit, Q∂
h maps L2(E∂ ) functions into the space

of piecewise degree k polynomials on E∂ . We also define a local L2-projectionQh that maps
L2(E)2 to ACk(E).

WG scheme for pressure on a quadrilateral mesh. Seek ph = {p◦
h, p

∂
h} ∈ Sh such that

p∂
h |�D

h
= Q∂

h(pD) and

Ah(ph, q) = Fh(q), ∀q = {q◦, q∂ } ∈ S0h , (8)

where

Ah(ph, q) =
∑

E∈Eh

∫

E
K∇w ph · ∇wq (9)

and

Fh(q) =
∑

E∈Eh

∫

E◦
f q◦ −

∑

e∈�N
h

∫

e
uNq

∂ . (10)

After the numerical pressure ph is solved from (8), an elementwise numerical velocity
is obtained by performing a local L2-projection back into the local subspace ACk :

uh = Qh(−K∇w ph). (11)

But this projection is not needed whenK is an elementwise constant scalar matrix. Then the
bulk normal flux on an edge e is defined as

∫

e⊂E∂

uh · ne. (12)

Regardless of mesh quality, these newWG finite element methods possess two important
properties: local mass conservation and normal flux continuity.

Theorem 1 (Local mass conservation) Let E ∈ Eh be a quadrilateral. There holds
∫

E
f =

∫

E∂

uh · n. (13)

Proof In the finite element scheme (8), we take a test function q so that q|E◦ = 1 but it
vanishes on all edges and inside all other elements. Then

∫

E
f =

∫

E
(K∇w ph) · ∇wq =

∫

E
Qh(K∇w ph) · ∇wq = −

∫

E
uh · ∇wq

= −
∫

E∂

q∂ (uh · n) +
∫

E◦
q◦(∇ · uh) =

∫

E◦
∇ · uh =

∫

E∂

uh · n.

It is interesting to note that

– The 1st “=” comes from the WG finite element scheme;
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– The 2nd “=” uses the definition of projection Qh ;
– The 3rd “=” uses the definition of numerical velocity;
– The 4th “=” uses the definition of discrete weak gradient;
– The 5th “=” uses the definition of this particular test function q;
– The 6th “=” uses Gauss Divergence Theorem on a function in ACk .

�

Theorem 2 (Continuity of bulk normal flux) Let e be an edge shared by two convex quadri-
laterals E1, E2 and n1,n2 be the outward unit normal vectors on e respectively for E1, E2.
There holds ∫

e
u(1)
h · n1 +

∫

e
u(2)
h · n2 = 0, (14)

where u( j)
h = uh |E j for j = 1, 2.

Proof In the FE scheme (8), we take a test function q = {q◦, q∂ } so that
– q∂ = 1 only on edge e but = 0 on all other edges;
– q◦ = 0 in the interior of any quadrilateral element.

The definitions of Qh and discrete weak gradient together with Gauss Divergence Theorem
imply that

0 =
∫

E1

(K∇w ph) · ∇wq +
∫

E2

(K∇w ph) · ∇wq

=
∫

E1

Qh(K∇w ph) · ∇wq +
∫

E2

Qh(K∇w ph) · ∇wq

=
∫

E1

(−u(1)
h ) · ∇wq +

∫

E2

(−u(2)
h ) · ∇wq

= −
∫

e
u(1)
h · n1q∂ +

∫

E◦
1

(∇ · u(1)
h )q◦ −

∫

e
u(2)
h · n2q∂ +

∫

E◦
2

(∇ · u(2)
h )q◦

= −
∫

e
u(1)
h · n1 −

∫

e
u(2)
h · n2,

which yields the desired result in the above theorem. �

Remark 1 A re-examination of the above proof yields

∫

e
u(1)
h · n1q∂ +

∫

e
u(2)
h · n2q∂ = 0 ∀q∂ ∈ Pk(e), (15)

which implies that uh ∈ H(div,Ω). This is related to (20) also.

Errors in pressure, velocity, and normal flux are measured in the following norms:

‖p − p◦
h‖2 =

∑

E∈Eh
‖p − p◦

h‖2L2(E◦), (16)

‖u − uh‖2 =
∑

E∈Eh
‖u − uh‖2L2(E)2

, (17)

‖(u − uh) · n‖2Fh
=

∑

E∈Eh

∑

e⊂E∂

|E |
|e| ‖u · n − uh · n‖2L2(e), (18)
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where Fh denotes the set of all edges, namely, the skeleton of a given mesh Eh . This helps us
distinguish the norm for errors in normal flux from the other norms for quantities in elements.
Here the norm for errors in normal flux is adopted from [27], which “gives an appropriate
scaling of size of |Ω| for a unit vector”.

Under the assumptions that quadrilaterals meshes are shape-regular or quasi-uniform, and
the exact solution and the coefficient matrixK are sufficiently smooth, we can show that the
accuracy in the primal variable, flux, normal flux, and divergence of flux are in the form

‖p − p◦
h‖ = O(hk+1), ‖u − uh‖ = O(hk+1),

‖u · n − uh · n‖Fh = O(hk+1), ‖∇ · u − ∇ · uh‖ = O(hk+1).

These results will be stated and proved rigorously in the next section.

5 Analysis

This section presents rigorous error analysis for the WG FEMs developed in the previous
section. For convenience, we use A � B to denote an inequality A ≤ CB, in which C is
an absolute constant that is independent of the mesh size h but may take different values in
different appearances. Similarly, A ≈ B means both A � B and B � A.

Similar to [19,25], the analysis relies on approximation properties of two operators that
map from spaces of vector-valued functions to the local or global ACk spaces. The first one
is the local L2-projection operatorQh introduced at the beginning of Sect. 4. The second one
is the global interpolation operator defined below (assuming ε > 0):

�h : H(div,Ω) ∩ L2+ε(Ω)2 −→ ACk(Eh), (19)

which is actually a gluing-together of the local interpolation operators �E defined in [1]. On
each E ∈ Eh , we have (�hv)|E = �Ev. Note that the global ACk(Eh) space is a subspace
of H(div,Ω).

Let E be a convex quadrilateral and e be any of its edge. It is known [1] that for any
v ∈ ACk(E),

∇ · v ∈ Pk(E), v · n ∈ Pk(e). (20)

It is also known from [1] that the following approximation properties hold.

‖v − Qhv‖L2(E)2 � h j
E‖v‖H j (E)2 , j = 0, 1, . . . , k + 1, (21)

‖v − �hv‖L2(E)2 � h j
E‖v‖H j (E)2 , j = 1, . . . , k + 1, (22)

‖∇ · (v − �hv)‖L2(E) � h j
E‖∇ · v‖H j (E), j = 0, 1, . . . , k + 1. (23)

Furthermore, �h satisfies the commuting property

Q◦
h(∇ · v) = ∇ · (�hv).

In other words, for any v ∈ H(div,Ω) ∩ L2+ε(Ω)2, there holds [1]

(∇ · v, φ◦)E◦ = (∇ · (�hv), φ◦)E◦ ∀φ◦ ∈ Pk(E
◦) ∀E ∈ Eh . (24)

Lemma 1 For any E ∈ Eh and any p ∈ H1(E), there holds

∇w(Qh p) = Qh(∇ p). (25)
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Proof For any v ∈ ACk(E), by the definitions of discrete weak gradient (7) and Qh , and
integration by parts, we have

(∇w(Qh p), v)E = −(Q◦
h p,∇ · v)E◦ + 〈Q∂

h p, v · n〉E∂

= −(p,∇ · v)E + 〈p, v · n〉E∂

= (∇ p, v)E = (Qh(∇ p), v)E ,

which proves (25). �

We continue to establish lemmas that are useful for error estimation.

Lemma 2 For any v ∈ H(div,Ω) ∩ L2+ε(Ω)2 and any φ = {φ◦, φ∂ } ∈ S0h , there holds
∑

E∈Eh
(∇ · v, φ◦)E◦ = −

∑

E∈Eh
(�hv,∇wφ)E +

∑

e∈�N
h

〈�hv · n, φ∂ 〉e. (26)

Proof By (24), the definitions of discrete weak gradient (7) and �h , we have
∑

E∈Eh
(∇ · v, φ◦)E◦ =

∑

E∈Eh
(∇ · (�hv), φ◦)E◦

= −
∑

E∈Eh
(�hv,∇wφ)E +

∑

E∈Eh
〈�hv · n, φ∂ 〉E∂

= −
∑

E∈Eh
(�hv,∇wφ)E +

∑

e∈�N
h

〈�hv · n, φ∂ 〉e,

which proves (26). �

Lemma 3 Assume that p ∈ Hk+1(Ω) and u ∈ H(div,Ω) ∩ L2+ε(Ω)2 ∩ Hk(Ω)2 for an
integer k ≥ 0. There holds

‖∇w(ph − Qh p)‖ � hk . (27)

Proof Let φ = {φ◦, φ∂ } ∈ S0h be arbitrary. By (1) and Lemma 2, we have
∑

E∈Eh
( f , φ◦)E◦ =

∑

E∈Eh
(∇ · (−K∇ p), φ◦)E◦

=
∑

E∈Eh
(�h(K∇ p),∇wφ)E −

∑

e∈γ N
h

〈�h(K∇ p) · n, φ∂ 〉e. (28)

Combining this with (8) and the definition of �h , we obtain

Ah(ph, φ) =
∑

E∈Eh
(�h(K∇ p),∇wφ)E −

∑

e∈�N
h

〈(u − �hu) · n, φ∂ 〉e

=
∑

E∈Eh
(�h(K∇ p),∇wφ)E . (29)

According to Lemma 1, we have

Ah(Qh p, φ) =
∑

E∈Eh
(K∇w(Qh p),∇wφ)E =

∑

E∈Eh
(KQh(∇ p),∇wφ)E . (30)

123



Journal of Scientific Computing            (2020) 83:47 Page 9 of 19    47 

Subtracting (30) from (29), we obtain the following error equation:

Ah(ph − Qh p, φ) =
∑

E∈Eh
(�h(K∇ p) − KQh(∇ p),∇wφ)E ∀φ ∈ S0h . (31)

Denoting eh = ph − Qh p ∈ S0h and taking φ = eh in (31), we obtain

Ah(eh, eh) = ∑
E∈Eh (�h(K∇ p) − K∇ p,∇weh)E

+∑
E∈Eh (K∇ p − KQh(∇ p),∇weh)E . (32)

The 1st term on the right-hand side of (32) can be estimated as follows [by applying (22)]
∑

E∈Eh
(�h(K∇ p) − K∇ p,∇weh)E ≤

∑

E∈Eh
‖�h(K∇ p) − K∇ p‖L2(E)2‖∇weh‖L2(E)2

≤
∑

E∈Eh
hkE‖u‖Hk (E)2‖∇weh‖L2(E)2

� hk‖∇weh‖. (33)

Similarly, the 2nd term on the right-hand side of (32) can be estimated as [by applying (21)]
∑

E∈Eh
(K∇ p − KQh(∇ p),∇weh)E �

∑

E∈Eh
‖∇ p − Qh(∇ p)‖L2(E)2‖∇weh‖L2(E)2

�
∑

E∈Eh
hkE‖p‖Hk+1(E)‖∇weh‖L2(E)2

� hk‖∇weh‖. (34)

Finally, by combining (32)–(34), we arrive at

‖∇weh‖2 � Ah(eh, eh) � hk‖∇weh‖,
which yields the estimate (27) in Lemma 3. �

Remark 2 Based on the techniques used in the proof of Lemma 3 [see (33)–(34)], we can
further show that

‖∇w(ph − Qh p)‖ � hk+1, (35)

provided that p ∈ Hk+2(Ω) and u ∈ Hk+1(Ω)2.

Corollary 1 Under the assumption of Lemma 3, there holds

‖∇ p − ∇w ph‖ � hk . (36)

Proof From Lemmas 1, 3, and (21), we have

‖∇ p − ∇w ph‖ ≤ ‖∇ p − Qh(∇ p)‖ + ‖Qh(∇ p) − ∇w ph‖
= ‖∇ p − Qh(∇ p)‖ + ‖∇w(Qh p) − ∇w ph‖
� hk,

after applying a triangle inequality. �

Remark 3 Roughly speaking, this corollary reveals that the discrete weak gradient of the
numerical pressure is an order k, or “nice”, approximation to the classical gradient of the
exact pressure.
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Theorem 3 (Convergence in velocity) Assume that u ∈ Hk+1(Ω)2. There holds

‖u − uh‖ � hk+1. (37)

Proof Note that the assumption in Theorem 3 implies that ∇ p ∈ Hk+1(Ω)2. We have, by
Lemma 1, (21), and Remark 2,

‖u − uh‖ = ‖K∇ p − Qh(K∇w ph)‖
≤ ‖K∇ p − KQh(∇ p)‖ + ‖KQh(∇ p) − Qh(K∇w ph)‖
= ‖K∇ p − KQh(∇ p)‖ + ‖KQh(∇ p) − KQh(∇w ph)‖
� ‖∇ p − Qh(∇ p)‖ + ‖∇ p − ∇w ph‖
� ‖∇ p − Qh(∇ p)‖ + ‖∇w(Qh p − ph)‖
� hk+1,

which yields the error estimate in the theorem. �

Theorem 4 (Convergence in bulk normal flux) Assume u ∈ Hk+1(Ω)2. There holds

‖(u − uh) · n‖Fh � hk+1. (38)

Proof By a triangle inequality, we have

‖(u − uh) · n‖Fh ≤ ‖(u − �hu) · n‖Fh + ‖(�hu − uh) · n‖Fh . (39)

Moreover, the mesh Eh being shape-regular or quasi-uniform implies that |E |/|e| � h for
any convex quadrilateral E ∈ Eh and any edge e of E .

Letw ∈ ACk(E) be arbitrary. The first term on the right-hand side of (39) can be estimated
by (22), (23), and the trace theorem with scaling:

‖(u − �hu) · n‖2Fh
=

∑

E∈Eh

∑

e∈E∂

|E |
|e| ‖(u − w − �h(u − w)) · n‖2L2(e)

�
∑

E∈Eh

∑

e∈E∂

|E |
|e|

(
h−1
E ‖u − w‖2L2(E)2

+ hE |u − w|2H1(E)2

)

� h2(k+1), (40)

where we have also used the following inverse inequality

|v|H1(E)2 � h−1
E ‖v‖L2(E)2 ∀ v ∈ ACk(E). (41)

This is similar to those stated in [16] Lemma 3.5 and [27] Lemma 3.6.
The second term on the right-hand side of (39) can be bounded by (22), (41), the trace

theorem with scaling, and Theorem 3:

‖(�hu − uh) · n‖2Fh
�

∑

E∈Eh

∑

e∈E∂

|E |
|e|

(
h−1
E ‖�hu − uh‖2L2(E)2

+ hE |�hu − uh |2H1(E)2

)

� ‖�hu − uh‖2
� ‖�hu − u‖2 + ‖u − uh‖2
� h2(k+1). (42)

Finally, the estimate (38) follows from (39), (40), and (42). �
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Theorem 5 (Convergence in div of velocity) Assume f ∈ Hk+1(Ω). There holds

‖∇ · u − ∇ · uh‖ � hk+1. (43)

Proof Let φ = {φ◦, φ∂ } ∈ S0h . By (1) and (24), we have
∑

E∈Eh
( f , φ◦)E◦ =

∑

E∈Eh
(∇ · (−K∇ p), φ◦)E◦ =

∑

E∈Eh
(∇ · u, φ◦)E◦ =

∑

E∈Eh
(∇ · (�hu), φ◦)E◦ .

(44)

From (7), (8), and (15), we have
∑

E∈Eh
( f , φ◦)E◦ =

∑

E∈Eh
(K∇w ph,∇wφ)E

=
∑

E∈Eh
(Qh(K∇w ph),∇wφ)E

=
∑

E∈Eh
(−uh,∇wφ)E

=
∑

E∈Eh
(∇ · uh, φ◦)E◦ −

∑

E∈Eh
〈uh · n, φ∂ 〉E∂

=
∑

E∈Eh
(∇ · uh, φ◦)E◦ . (45)

Therefore, we obtain from (44) and (45) that

(∇ · (�hu − uh), φ◦) = 0. (46)

It is clear from (46) that ∇ · uh = ∇ · (�hu), since φ◦ ∈ Pk(E◦) is arbitrary. Then (43)
follows from (23). �


In order to obtain an L2-error estimate for the pressure, we consider the following dual
problem with a homogeneous Dirichlet boundary condition: Seek 	 ∈ H2(Ω) such that

{∇ · (−K∇	) = e◦
h, x ∈ Ω,

	 = 0, x ∈ ∂Ω,
(47)

where eh = ph − Qh p. We assume the dual problem has full H2-regularity and

‖	‖H2(Ω) � ‖e◦
h‖. (48)

Theorem 6 (Convergence in pressure) Assume that p ∈ Hk+1(Ω), f ∈ Hk−1(Ω) for k ≥ 1
or f ∈ L2(Ω) for k = 0. Assume the dual problem (47) has H2-regularity as stated in (48).
There holds

‖p − p◦
h‖ � hk+1. (49)

Proof Testing the 1st equation in (47) with e◦
h , we have, by Lemma 2 and the homogeneous

boundary condition for 	 in (47),

‖e◦
h‖2 = (∇ · (−K∇	), e◦

h)

=
∑

E∈Eh
(�h(K∇	),∇weh)E
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=
∑

E∈Eh
(�h(K∇	),∇w(ph − Qh p))E

=
∑

E∈Eh
(�h(K∇	) − K∇	,∇w(ph − Qh p))E

+
∑

E∈Eh
(K∇	,∇w(ph − Qh p))E . (50)

By (22) and Lemma 3, the first term on the right-hand side of (50) can be estimated as
∑

E∈Eh (�h(K∇	) − K∇	,∇w(ph − Qh p))E

� ‖∇	 − �h(∇	)‖ ‖∇w(ph − Qh p)‖
� hk+1‖	‖H2(Ω) � hk+1‖e◦

h‖. (51)

Next we rewrite the second term on the right-hand side of (50) as follows
∑

E∈Eh
(K∇	,∇w(ph − Qh p))E

=
∑

E∈Eh
(K∇	 − Qh(K∇	),∇w ph − ∇ p)E +

∑

E∈Eh
(K∇	 − Qh(K∇	),∇ p)E

+
∑

E∈Eh
(Qh(K∇	),∇w ph)E −

∑

E∈Eh
(K∇	,∇w(Qh p))E

:= T1 + T2 + T3 + T4. (52)

Term T1 can be estimated as (by applying (21), (48), and Corollary 1)

T1 � hk+1‖	‖H2(Ω) � hk+1‖e◦
h‖. (53)

Term T2 can be estimated as (by applying (21) and (48))

T2 =
∑

E∈Eh
(K∇	 − Qh(K∇	),∇ p − Qh(∇ p))E

� hk+1‖	‖H2(Ω) � hk+1‖e◦
h‖. (54)

For term T3, we apply Lemma 1 and (8) to obtain

T3 =
∑

E∈Eh
(KQh(∇	),∇w ph)E

=
∑

E∈Eh
(K∇w(Qh	),∇w ph)E

=
∑

E∈Eh
( f , Q◦

h	)E◦ . (55)

For term T4, we apply Lemma 1, (21), (48), the orthogonality implied by Qh , and the self-
adjointness of K. This leads to

T4 = −
∑

E∈Eh
(K∇	,Qh(∇ p))E

=
∑

E∈Eh
(Qh(K∇	) − K∇	,Qh(∇ p) − ∇ p)E −

∑

E∈Eh
(K∇	,∇ p)E
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� hk+1‖e◦
h‖ −

∑

E∈Eh
( f ,	)E . (56)

By (55), (56), the approximation properties of Q◦
h and Q∂

h , (48), we have

T3 + T4 � hk+1‖e◦
h‖ +

∑

E∈Eh
( f − Q◦

h f , Q
◦
h	 − 	)E

� hk+1‖e◦
h‖ + hk−1h2‖	‖H2

� hk+1‖e◦
h‖. (57)

Finally, combining (50), (51), (53), (54), and (57), we obtain

‖e◦
h‖ � hk+1. (58)

The estimate (49) in Theorem 6 follows from (58), the approximation property of Q◦
h , and a

triangle inequality. �


6 Implementation and Numerical Experiments

For the WG (Pk, Pk; ACk) finite element methods, the unknowns constitute Pk-type poly-
nomials for element interiors and Pk-type polynomials for edges, but ACk is not a part of the
unknowns. More specifically, to approximate the scalar primal variable, we have two groups
of basis functions: degree k polynomials for element interiors and degree k polynomials for
edges. The two groups of local basis functions are completely separate. For the interior of
each individual quadrilateral, its basis functions can be chosen as monomials

1, X , Y , X2, XY , Y 2, . . . ,

where X = x − xc, Y = y − yc are the normalized coordinates [18] with (xc, yc) being the
element center. For each edge, we use basis functions 1, s, s2, . . ., where s ∈ [− 1

2 ,
1
2 ] is the

parameter for the line segment.
For the abovebasis functions, their discreteweakgradients are established in theArbogast–

Correa spaces using formula (6). For the ACk spaces, we need only their local basis functions
on each quadrilateral. Similarly, we use the normalized coordinates.

For k = 0, we have dim(AC0) = 4. A local basis can be chosen as
[
1
0

]

,

[
0
1

]

,

[
X
Y

]

, PE

[
x̂

−ŷ

]

,

where X , Y are the normalized coordinates as discussed before, (x̂, ŷ) are the reference
coordinates in the reference element [0, 1]2, and PE is the Piola transformation (matrix).

For k = 1, one has dim(AC1) = 10. A local basis can be chosen as
[
1
0

]

,

[
X
0

]

,

[
Y
0

]

,

[
0
1

]

,

[
0
X

]

,

[
0
Y

]

,

[
X2

XY

]

,

[
XY
Y 2

]

,

PE

[
1 − x̂2

2x̂ ŷ

]

, PE

[
2x̂ ŷ

1 − ŷ2

]

,

For higher order ACk(k ≥ 2) spaces, their local basis functions can be constructed in a
similar way.
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Fig. 1 Quadrilateral meshes used in numerical tests: Left: a trapezoidal mesh used in Example 1 (see [4]);
Right: a randomly h-perturbed quadrilateral mesh used in Example 3

Next we present three numerical examples to demonstrate the accuracy of this family
of new WG methods. These include tests on a low regularity case and rough quadrilateral
meshes, as shown in Fig. 1 right panel.

Example 1 For this example, the domain is Ω = (0, 1)2, the conductivity matrix is K =
I2 (the order 2 identity matrix). The exact solution is p(x, y) = sin(πx) sin(π y), which
is infinitely smooth. So is the right-hand side f (x, y) = 2π2 sin(πx) sin(π y). Dirichlet
boundary conditions are posed on all four sides.

We consider a sequence of trapezoidal meshes introduced in [4]. They are obtained by
modifying the corresponding square meshes. As shown in Fig. 1 left panel, the interior
nodes on the vertical lines are moved up or down by αh, where h is the mesh size of the
corresponding square mesh and α = 0.35 for this example.

As shown in Table 1, when the new methods WG (Pk, Pk; ACk)(k = 0, 1, 2) are applied
to this example, the convergence rates in pressure, velocity, normal flux, and div of velocity
are all close to order k + 1.

Example 2 (Low regularity) This example is adopted from [28]. One has Ω = (0, 1)2,

p(x, y) = x(1 − x)y(1 − y)
√
x2 + y2

(γ−2)
with γ ∈ (0, 1] being a regularity parameter.

The smoothness of p(x, y) is about 1 + γ , since

p ∈ H1+γ−ε(Ω) for any small ε > 0.

We choose γ = 0.4 for numerical tests. Shown in Table 2 are the results for Example 2
on rectangular meshes obtained from applying the WG (Pk, Pk; ACk) methods (k = 0, 1, 2
respectively). Here are some observations.

(i) For interior pressure approximation, close to first order accuracy is obtained for k = 0,
since only constant approximants are used. For k = 1, 2, higher order polynomial
approximants are used, but the accuracy is only about order 1.4, which is the regularity
order of the exact solution.

(ii) For approximations to the velocity and normal flux, convergence order is about 0.4,
again in agreement with the regularity parameter γ .
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Table 1 Example 1: results by WG(Pk , Pk ; ACk ) on trapezoidal meshes (α = 0.35)

1/h ‖p − p◦
h‖ ‖u − uh‖ ‖(u − uh) · n‖Fh

‖∇ · (u − uh)‖
WG (P0, P0; AC0)

8 8.3731E−2 2.7626E−1 3.5548E−1 1.6478E−0

16 4.1987E−2 1.3959E−1 1.7236E−1 8.2817E−1

32 2.1009E−2 7.0284E−2 8.4432E−2 4.1462E−1

64 1.0506E−2 3.5272E−2 4.1763E−2 2.0738E−1

Conv.rate 0.998 0.989 1.029 0.996

WG (P1, P1; AC1)

8 8.1312E−3 1.8538E−2 2.3320E−2 1.6046E−1

16 2.0440E−3 4.7109E−3 5.4636E−3 4.0345E−2

32 5.1171E−4 1.1860E−3 1.3361E−3 1.0101E−2

64 1.2797E−4 2.9746E−4 3.3138E−4 2.5260E−3

Conv.rate 1.996 1.987 2.045 1.996

WG (P2, P2; AC2)

8 5.6112e−04 1.7503e−03 3.5197e−03 1.1055e−02

16 7.0430e−05 2.2278e−04 4.5686e−04 1.3895e−03

32 8.8124e−06 2.7985e−05 5.7665e−05 1.7393e−04

64 1.1018e−06 3.5033e−06 7.2252e−06 2.1754e−05

Conv.rate 2.997 2.988 2.976 2.996

Table 2 Example 2: lower regularity captured by WG(Pk , Pk ; ACk ) on rectangular meshes

1/h ‖p − p◦
h‖ ‖u − uh‖ ‖(u − uh) · n‖Fh

‖∇ · (u − uh)‖
WG (P0, P0; AC0)

8 2.4146E−2 4.0407E−1 1.1459E−0 5.9433E+1

16 1.1492E−2 3.0671E−1 8.6487E−1 9.0508E+1

32 5.6244E−3 2.3289E−1 6.5431E−1 1.3751E+2

64 2.7883E−3 1.7678E-1 4.9552E−1 2.0868E+2

Rate 1.038 0.397 0.403 −0.603

WG (P1, P1; AC1)

8 1.1761E−2 3.5783E−1 9.9503E−1 5.5537E+1

16 4.6056E−3 2.7241E−1 7.5712E−1 8.4649E+1

32 1.7716E−3 2.0695E−1 5.7504E−1 1.2867E+2

64 6.7630E−4 1.5704E−1 4.3629E−1 1.9530E+2

Rate 1.373 0.396 0.396 −0.604

WG (P2, P2; AC2)

8 6.3140E−3 3.5651E−1 7.1432E−1 4.9062E+1

16 2.4094E−3 2.7117E−1 5.4320E−1 7.4811E+1

32 9.1629E−4 2.0589E−1 4.1239E−1 1.1373E+2

64 3.4785E−4 1.5618E−1 3.1281E−1 1.7265E+2

Rate 1.394 0.396 0.397 −0.605
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Table 3 Example 3: numerical results of WG(P1, P1; AC1) on rectangular and rough quadrilateral meshes

1/h ‖p − p◦
h‖ ‖u − uh‖ ‖(u − uh) · n‖Fh

‖∇ · (u − uh)‖
Uniform rectangular meshes

8 5.2258E−4 1.1521E-2 1.6859E-2 1.0180E-1

16 1.3166E-4 2.8673E-3 4.0922E−3 2.5449E−2

32 3.2980E−5 7.1601E−4 1.0151E−3 6.3622E−3

64 8.2489E−6 1.7894E−4 2.5324E−4 1.5906E−3

128 2.0625E−6 4.4731E−5 6.3272E−5 3.9764E−4

Conv.rate 1.996 2.002 2.014 2.000

Rough quadrilateral meshes

8 5.5264E−4 1.4563E−2 2.1653E−2 1.0672E−1

16 1.4409E−4 4.1841E−3 6.0144E−3 2.7205E−2

32 3.6310E−5 1.0103E−3 1.4843E−3 6.8362E−3

64 9.0886E−6 2.5930E−4 3.7590E−4 1.7173E−3

128 2.2727E−6 6.5301E−5 9.4417E−5 4.2845E−4

Conv.rate 1.981 1.950 1.960 1.990

(iii) Divergence of errors in velocity div is observed. This is not a surprise, since the exact
solution has low regularity. The error analysis shows that f ∈ H1(Ω) ensures conver-
gence of errors in velocity div. But for this example, we even do not have f ∈ L2(Ω).

Example 3 (Full permeability tensor, rough quadrilateral meshes) This example is adopted
from [3] (Example 2 therein). This was considered as a relative hard example, due to the
significant tangential fluxes on the element boundaries. Specifically, the domain is Ω =
(0, 1)2, the permeability or conductivity is a full 2 × 2 matrix

K =
[
11 9
9 13

]

,

whose two positive eigenvalues (λ1 = 21.0554, λ2 = 2.9446) are about one magnitude
apart. The eigenvector corresponding to λ1 is [0.6669, 0.7451]T , which is almost parallel to
the diagonal direction. This causes a large diagonal component to the flow ([3] Figure 6.1).
A known exact solution is given as

p(x, y) = x(1 − x)y(1 − y).

Dirichlet boundary conditions are posed on the left and right sides, whereas Neumann con-
ditions are posed on the bottom and top sides.

We testWG (P1, P1; AC1) on both rectangular and rough quadrilateral meshes. The rough
meshes are random perturbations of the rectangular meshes, which allow interior nodes to be
moved by a magnitude up to 0.25h. As shown in Table 3, the newWG (P1, P1; AC1)method
works well on these rough quadrilateral meshes, although these meshes are not nested.
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7 Concluding Remarks

In this paper, we have developed a family of new weak Galerkin finite element methods for
elliptic problems on general convex quadrilateral meshes. These newmethods are established
using the Arbogast–Correa spaces [1].

OurWGmethods share some features with the hybridizedmixed FEMs, but are developed
from a different viewpoint based on reconstruction of a discrete gradient for the primal
variable.

(i) Our methods are in the weak Galerkin framework based on the new concepts such as
discrete weak gradients.

(ii) WG methods and hybridized mixed FEMs both result in SPD linear systems, via dif-
ferent approaches though.

(iii) In our WG schemes, Dirichlet conditions are essential whereas Neumann conditions
are natural. It is the other way around in the mixed methods.

(iv) In termsof implementation, ourWGmethods need elementwise discreteweakgradients,
which involve the local basis functions of ACk . For the hybridized mixed methods [1],
global basis functions are used.

(v) For themixedmethods, local mass conservation and normal flux continuity are obtained
through the construction of finite element subspaces. For the WG methods, these prop-
erties are obtained through the bilinear forms, as shown in proofs of Theorems 1
and 2.

Compared to the simple WG methods in our previous work [19], the new WG methods
in this paper are more sophisticated and apply to general quadrilateral meshes. The WG
methods in [19] use the unmapped Raviart–Thomas (RT) spaces for discrete weak gradients.
For a quadrilateral, a basis for the unmapped RT[0] space can be chosen as

[
1
0

]

,

[
0
0

]

,

[
X
Y

]

,

[
X

−Y

]

.

These are all polynomials and hence easy to use. But an “asymptotically parallelogram”
condition needs to be assumed for convergence. For the new WG methods in this paper,
discrete weak gradients are established in the Arbogast–Correa (AC) spaces, which involve
rational functions. For example, in the above basis,

[
X

−Y

]

is replaced by PE

[
x̂

−ŷ

]

.

This allows quadrilaterals to be general.
Compared to the WG methods in [20,21], our WG methods have some additional nice

features.

(i) No penalization is needed for the new WG methods in this paper;
(ii) Full order accuracy in approximation of all four quantities (primal variable, flux, normal

flux, and div of flux) are attained.

As previously discussed, HDG is another class of finite element methods that have been
devised for all types of PDEproblems.Among the existingHDGmethods for the second order
elliptic problems, the work in [11,13] are noticeable. Both include designs of finite elements
for quadrilaterals. A novel approach M-decomposition was investigated in [11]. Roughly
speaking, the space for multipliers could be decomposed in a way that is related to the
normal traces of solenoidal fluxes and the traces of constants in the space for approximating
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the primal variable. The M-decomposition motivates design of finite elements with super-
convergence properties. It will be interesting to see whether the analysis of HDG finite
elements on quadrilaterals presented in [11] Table 10 could be borrowed for investigating
super-convergence of WG finite elements.

The new WG methods in this paper have been implemented in our Matlab code pack-
age DarcyLite. The methods extend naturally to cuboidal hexahedral meshes when the
Arbogast–Tao (AT) spaces [2] are utilized in lieu of the Arbogast–Correa spaces. An inter-
esting question is then how to unify implementations of the AT and AC spaces along with the
WG framework. This is currently under our investigation and will be reported in our future
work.
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