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Abstract—In this paper, we investigate new methods for
improving the accuracy of outdoor temperature prediction
using small, low-cost, single board computers (SBCs) used in
Internet-of-Things (IoT) deployments. Predicting temperature
without dedicated temperature sensors frees up space on these
systems for other sensors and reduces the cost of microclimate
sensing (e.g. as used in IoT-based, agricultural applications).
Our approach uses multiple linear regression and combines
measurements of on-board processor temperature from multi-
ple SBCs with remote weather stations. In addition, it accounts
for SBC computational load through the use of smoothing
techniques that filter out noise in the measurement time series.
We empirically evaluate our approach using multiple IoT
deployment scenarios, compare it against prior work, and find
that it reduces prediction error significantly for these scenarios.
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I. INTRODUCTION

The Internet of Things (IoT) is quickly expanding to in-
clude every “thing” from simple Internet-connected objects,
to collections of intelligent devices capable of everything
from the acquisition, processing, and analysis of data, to
data-driven actuation, automation, and control. Since these
devices are located “in the wild”, they are typically small,
resource-constrained and battery powered. At the same time,
low latency requirements of many applications mean that
processing and the analysis must be performed near where
data is collected. This tension requires new techniques that
equip IoT devices with more capabilities.

One way to enable IoT devices to do more is to use
integrated sensors to est imate the measurements of other
sensors, a technique that we call sensor synthesis. Since the
number of sensors per device is generally bounded by design
constraints (e.g. space or power limitations), sensor synthesis
makes it possible to free up resources in IoT devices for
other sensors, particularly those that are less amenable to
synthesis, and to reduce the monetary cost of sensing.

Since sensor synthesis is based on computed estimates
rather than actual measurement, it also introduces the pos-
sibility of additional error beyond measurement error. In
this paper, we show how the overall error (measurement
error convolved with error propagation due to composition)
can be reduced compared to prior work. The authors of [1]
present a technique for estimating outdoor temperature from
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CPU temperature for IoT applications in agriculture. They
use a simple regression technique to “synthesize” (in our
parlance) and lower the cost of microclimate temperature
monitoring on farms. They estimate outdoor the temperature
from the processor temperature sensor built into board com-
puters (SBCs), e.g Raspberry Pi devices [2]. This past work
relies on data cleaning (both pre and post regression) that
employs computationally expensive methodologies that must
be performed on full-featured resources (e.g. in a cloud).

In this paper, we examine how a larger ensemble of mea-
surements improves the accuracy of “synthetic” temperature
measurement (beyond the 1 — 2° Fahrenheit errors reported
in [1]) while, at the same time, not requiring the use of
powerful computational resources. Specifically, we propose
new methods for estimating outdoor temperature from SBC
processor temperature.

Reducing the prediction error is not only academically
interesting, rather, precision has a direct impact on the cost
and efficiency of what has become known as precision
agriculture or precision farming. In precision agriculture,
farmers use technology to increase the efficiency of farming
techniques increasing crop yields and reducing costs. Having
more precise temperate data reduces the cost of frost pre-
vention (by avoiding the unnecessary use of frost mitigation
systems (e.g. fans)) and prevents excessive resource use
without negatively impacting crop production. Consequently,
we believe that our approach can contribute to improved
farming outcomes, enable water and energy savings, and
help reduce carbon emissions, by providing high-quality data
to data-driven, IoT-based agricultural applications.

Key to our approach is the combined use of processor
temperatures from multiple devices with outdoor tempera-
ture from high-quality, remote weather stations used to train
a multiple linear regression model. We use this model to
predict the future outdoor temperature at a particular device
location that is not part of the model. We also investigate
the efficacy of computationally simple smoothing techniques
(based on sliding window reductions) to reduce noise.

Moreover, we investigate how well our approach performs
when the processors on the devices experience load. Load
may affect processor temperature and thus negatively im-
pact the accuracy of our outdoor temperature estimates. To
address this, we develop techniques that successfully deal
with the perturbations caused by load variability, which is an



important requirement to make our sensor synthesis practical
in the field (and which went uninvestigated in prior work).

Finally, to evaluate the practical effectiveness of our
approach, we deploy multiple Raspberry Pi Zero devices
in an agricultural setting where citrus trees are grown.
To compare the values of our synthesized sensors with
measured temperature values, we equip the devices with
temperature sensors, which we use to establish ground
truth. We evaluate different combinations of explanatory
variables! with and without smoothing, and with and without
a computational load on the processor, as part of our multiple
linear regression models. Our results show that our approach
reduces mean absolute prediction error (MAE) over past
work and is robust to processor load. We next detail our
approach and its empirical evaluation.

II. PREDICTING OUTDOOR TEMPERATURE FROM
PROCESSOR TEMPERATURE

The goal of our work is to reduce the prediction error
associated with sensor synthesis of outdoor temperature
from the processor temperature by single board computers
(SBCs), for IoT-based agricultural applications. Because
temperature is used to guide water use, greenhouse control,
and frost mitigation strategies, it is critical that we be able to
estimate temperature with very high accuracy. If we are able
to do so, we can reduce the number of sensors required and
lower the cost of sensing in agricultural settings, while using
temperature estimates to automate, actuate, and control farm
operations.

Past work [1] on this topic uses a combination of single
spectrum analysis [3] (to filter noise) and simple linear
regression (Ch.3 of [4]) to model the relationship between
the response variable (outdoor temperature) and the explana-
tory variable or predictor (the processor temperature). The
authors use the model to predict outdoor temperature using
different IoT devices and settings, and report a MAE of
1 — 2°F for the best case and 14°F for the worst case.

Our approach applies multiple linear regression to reduce
this error. In particular, we consider processor temperature
measurements from multiple SBCs (deployed in other on-
farm microclimates), and outdoor temperature from a remote
weather station, as possible predictors. We use the term
processor and CPU interchangeably throughout.

A. Deployment and Datasets

We deploy four Raspberry Pi (RPi) Zero [2] devices
(named Pil, Pi2, Pi3, and Pi4) equipped with temperature

'In linear regression, an explanatory variable is an independent variable
that is used to predict a value. In our context, the independent variables
are the CPU temperatures and weather station temperature (gathered from
a weather station that is in the area of the SBCs but not necessarily co-
located), which we use in the model to predict the synthesized sensor.
Explanatory variables are also called predictors in the literature. Since we
use multiple regression, we use more than one predictor in our synthesis.
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sensors, at different locations (microclimates) in an agricul-
tural setting (citrus trees). We place a pair of RPis within 3
feet of each other, in two different trees, spaced 10 feet apart.
Pil and Pi2 monitor tree #1 and Pi3 and Pi4 monitor tree
#2. Each device is housed in an inexpensive plastic enclosure
and has an on-board processor temperature sensor that is part
of its hardware/software interface.

The devices read their processor temperature sensor value
every 5 minutes and can process, store, or wirelessly transmit
their measurements. We label the measurements CPU-1,
CPU-2, CPU-3, and CPU-4, for the CPUs of Pil through
Pi4, respectively. The RPi devices then transmit the measure-
ments to an on-farm computer for aggregation and analysis.

Each RPi is additionally equipped with an AM2302
DHT?22 digital temperature and humidity sensor [5], which
we use to measure ground truth. The devices read and
transmit these values every 5 minutes (labeled DHT-1, DHT-
2, DHT-3, and DHT-4, with temperature value DHT-{i}
representing the temperature measured by the DHT22 sensor
attached to the Pi{i}) along with their CPU temperature
readings to a remote analysis system. We only use this
DHT?22 data as ground truth (to compute prediction error),
i.e., it is not used as part of modeling or prediction.

Finally, we also consider the use of freely available,
high-end weather station data from the Internet weather
service WeatherUnderground [6]. The closest weather station
is 2640 feet (800m) away from our field deployment. We
collect the temperature reported by the WeatherUnderground
station closest to the deployment site every five minutes
(labeled WU-T). We align the measurements (CPU, DHT22,
and WU) using the nearest timestamp. If there is data
dropout, i.e, if one of the three temperature values is missing,
we skip all measurements for that five-minute interval.

B. Linear Regression Models

We model the outdoor temperature that surrounds a single
RPi, using one or more predictors. Predictors can include
the CPU temperature of RPi itself, the CPU temperature of
neighboring RPis, and the outdoor temperature reported by
a high-quality, remote weather station. We estimate model
parameters 6 € R"™ by minimizing the residual sum of
squares:

RSS(0) = (y — X0)" (y — X0)

where y; € R,i € {1,..., N} represents the ground truth
outdoor temperature and X € RN*™ represents the entire
training set, where each row x; € R" represents the values
that predictors take, and n is the number of predictors.

In Section III, we analyze models with testing windows
of size one hour to two weeks, which correspond to 12 and
4032 data points respectively. To measure error, we compute
the mean absolute error (MAE) (versus R-squared) because
of its direct utility in our IoT agriculture applications. In



particular, we are interested in using the models to make
predictions and not in their explanatory power. We compute
MAE as the average absolute distance between estimated
temperatures and their corresponding ground truth values.

Finally, we evaluate the efficacy of smoothing the training
data prior to performing regression. We investigate rolling
mean, minimum, and median smoothing methods. In our
experiments, rolling mean produces the smallest error for
the datasets we investigate. We thus report results using only
this smoothing technique, for brevity. To implement rolling
mean, we use a window of size w and replace each element
with the mean value of the previous w elements including
the current element. More formally, we replace X in the
RSS equation with .S where
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For all the experiments presented in Section III we use a
window size w = 6, which corresponds to 30 minutes.
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III. EMPIRICAL EVALUATION

In our experiments, we use four RPi-based, single board
computers (SBCs) deployed outdoors as described in Sec-
tion II-A. We denote the processor temperature measure-
ments from each as CPU-1, CPU-2, CPU-3, CPU-4. We refer
to the outdoor temperature measurements from a nearby
WeatherUnderground stations as WU-T.

The goal of this evaluation is to illustrate the degree
to which it is possible to make an accurate prediction
of outdoor temperature based on a combination of CPU
temperature measurements and temperature measurements
from the WeatherUnderground station. In this study, “ground
truth” — the true outdoor temperature — comes from DHT22
sensors connected externally to each RPi. We do not use the
measurements from the DHT22 sensors in any prediction.
However, we use them to determine the mean absolute error
(MAE) between a prediction based on CPU and WU-T
values and ground truth as established by the DHT value
and thereby determine our prediction accuracy. Our RPis are
equipped with a 1IGHz ARMv7 processor, 512MB memory,
32GB of SSD storage, and Wifi communication. All the
temperature readings in the experiments are reported in
degrees Fahrenheit.

A. Experimental Results

As a baseline, the upper triangle of the matrix in Ta-
ble I shows the average difference in temperature, pairwise,
between all pairs of temperature measurement traces we
include in our study. Thus, for example, the average differ-
ence in temperature between CPU-1 and DHT-1 (the DHT
connected directly to the RPi hosting CPU-1) is given in
row 2, column 6 of the table as 29.23°F marked in bold
in the table (assuming the header and row labels are row
1 and column 1 respectively). This data spans 72 hours
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beginning August 27th, 2018 and includes 864 temperature
measurements gathered at 5-minute intervals.

Overall, this baseline illustration shows that

¢ CPU and external DHT measurements differ by approx-
imately 30°F;
average differences among DHT22 sensors (ground
truth) vary from 1° F to 2.6° F (despite their proximity);
and
the differences in local temperature from the one re-
ported by the nearby weather station vary from 3.61° F
to 4.31°F.

Since the matrix of comparisons is symmetric, we only show
values in the upper triangle.

For frost prevention, the application is attempting to
determine when a small difference in temperature between
warm air aloft and colder air near the ground will result
in frost avoidance if the air is mixed. Specifically, large
wind machines move the warm air downwards to raise the
temperature enough near the ground to prevent frost from
forming. The temperature differences are on the order of
a few degrees Fahrenheit putting a premium on accurate
measurement. The baseline in Table I shows the errors that
result when each temperature sensor is used directly to
predict another. That is, it is the “worst case” prediction
in the sense that it includes no prediction mechanism — only
the raw data.

In order to provide a more accurate prediction of local
temperature based solely on the devices’ CPU tempera-
tures and the nearby weather station, we combine multiple
linear regression with smoothing. We hypothesize that the
relationship between outdoor temperature and nearby CPU
temperatures measured at the same time is linear. Further,
particularly if one or more of the CPUs are loaded, we use
one-dimensional smoothing of the CPU temperature series
to improve the “signal” from the CPU temperature sensor.

For the regressions, the explanatory variables are a subset
of CPU and a weather station temperature (CPU-1, CPU-
2, CPU-3, CPU-4, WU-T), as indicated at the top of each
results tables. Also, when smoothing is performed, we
indicate this in the table header.

In each case, we separate the experimental period under
study into a “training” period followed immediately by a
“testing” period. The regression coefficients are computed
only from data in the training period. We then use the
coefficients for the entire duration of the testing period.

Table II shows the MAE between the temperature that
our method predicts and the outdoor temperature for two
“ground truth” sensors — DHT-1 and DHT-3 — using two
separate subsets of explanatory variables for each. On the
lefthand side of the table, we show the MAE (both with and
without smoothing) when predicting DHT-1 using CPU-1
alone (a univariate regression) and also when using all CPUs
and WU-T (a multiple linear regression, denoted as All). On
the righthand side of the table, we show the same results for



Device CPU-1 CPU-2 CPU-3 CPU-4 DHT-1 DHT-2 DHT-3 DHT4 WU-T
CPU-1 0.00 4.78 7.15 3.20 29.23 30.12 30.78 29.84 32.26
CPU-2 - 0.00 4.07 3.40 2451 25.37 26.06 25.12 27.55
CPU-3 - - 0.00 4.86 23.09 23.99 24.68 23.71 26.16
CpPU-4 - - - 0.00 27.87 28.76 29.45 28.50 30.95
DHT-1 - - - - 0.00 2.07 2.60 2.15 3.61
DHT-2 - - - - - 0.00 1.32 1.23 431
DHT-3 - - - - - - 0.00 1.00 3.75
DHT-4 - - - - - - - 0.00 4.01
WU-T - - - - - - - 0.00

Table I: Average absolute difference in temperature measurements among CPU and DHT22 sensors from four RPi’s (Pil,
Pi2, Pi3, and Pi4) measured during the 72 hours period on August 25th, 26th, and 27th, 2018.

DHT-1 DHT-3

Original  Smoothed  Original Smoothed
TE |CPU-1| All ||CPU-1| All ||CPU-3| All ||CPU-3| All
1 0.55 10.39(| 0.38 [0.40|| 0.32 |0.32]| 0.37 [0.2]
3 0.45 |0.34|| 0.38 [0.33|| 0.50 |0.32|| 0.47 |0.20
6 0.46 (0.32|| 0.41 |0.28|| 0.78 |0.41|| 0.83 [0.28
12 | 0.48 |0.46|| 0.44 |0.43|| 0.70 |0.48|| 0.74 |0.37
24 | 0.55 |0.43|| 0.55 |0.44|| 0.95 [0.57|| 0.99 |0.46
48 | 0.62 |0.47|| 0.62 |0.46|| 1.04 |0.63|| 1.04 [0.51
72 | 0.70 [0.49|| 0.70 |0.49|| 1.28 |0.69|| 1.21 |0.55
96 | 0.75 |0.52|| 0.78 |0.53|| 1.36 [0.72|| 1.31 |0.62
168 | 0.85 |0.72]| 0.92 [0.69|| 1.68 |0.83|| 1.64 |0.80
336 | 0.79 [0.81|| 0.77 |0.66|| 1.54 |1.26|| 1.56 |1.24

Table II: MAE for different sets of smoothed and non-
smoothed explanatory variables and lengths of Test Window
(TE) when predicting DHT-1 and DHT-3 temperature based
on a 72h train window and a test start day on Aug. 25th.

DHT-3 using CPU-3 in the univariate case. The experiment
(testing period) start date is Aug. 25th. For all experiments,
we use a training window of 72 hours (864 readings). As
mentioned in section II-B, we use MAE as our measure
of accuracy since it captures the “distance” between the
predicted temperature and the DHT-measured temperature.
It is this distance that concerns farmers who are deciding on
whether to trust their crops to the methodology.

Note that columns CPU-1 and CPU-3 under the Original
column show values corresponding to results based on the
method proposed in prior work [1]. Note also that we
highlight the minimum and maximum MAE in each column
using boldface type.

When predicting DHT-1, we see that errors from univari-
ate regression using only the CPU temperature from Pil
(CPU-1) are in the range from 0.45°F to 0.85°F. MAE
for multiple linear regression with CPU temperatures from
all four devices and a nearby weather station data range
from 0.32°F to 0.81°F. When predicting DHT-3 from its
Pi3’s CPU sensor deployed in a similar manner we see MAE
values between 0.32°F to 1.68°F (listed in the left DHT-
3 sub-table as CPU-3 column). MAE decreases to a range
from 0.32°F to 1.26°F when we introduce multiple linear
regression (Al column). Note that even though the setup is
similar (the same set of devices and outdoor conditions), the
readings are influenced by other environmental factors (tree
coverage, sun exposure, etc.).

We find that multiple linear regression which includes
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CPU and nearby weather station temperatures as its pre-
dictors reduces prediction error. For DHT-1, the minimum
error decreases from 0.45°F (minimum error in CPU-1
column) to 0.32° F' (minimum error in A/l column) while the
maximum error decreases from 0.85° F' (maximum error in
CPU-1 column) to 0.81°F" (maximum error in A/l column).
For DHT-3 the minimum error is 0.32°F for both columns
(CPU-3 and All) while the maximum error decreases from
1.68°F for CPU-3 to 1.26°F for All. If we compare errors
per test window length, we note that for DHT-1 all errors
but for the 2 weeks test window were reduced (where
0.79 < 0.81) and for DHT-3 all errors but for 1h test window
were reduced (1h row had the same error of 0.32°F' in both
columns).

These results indicate that it is possible to make pre-
dictions with an average absolute error of under 1°F' that
require infrequent model refitting (e.g. once per several
days) using a combination of CPU and weather station data.
Indeed, the accuracy of DHT22 sensors is approximately
0.5°F'. Thus this methodology is approaching the limit of
accuracy that is possible using DHT22 sensors as ground
truth. Under 1°F' is acceptable for frost prevention where
current manual methods use measurements in the 3° F' range.

For the smoothing results in Table II, each value (except
the first 6) in the training period is replaced by the average of
the 6 preceding it in the period (i.e. we use a sliding window
average to smooth the data in the training period). When
comparing the A/l column from Original and Smoothed
columns, we see that the smoothing decreases the mean
absolute error (MAE) from the range of 0.32°F to 0.81°F
(original) to the range of 0.28°F to 0.69°F (smoothed).
Similarly, for DHT-3 prediction, the MAE goes from the
range 0.32°F to 1.26°F (original) to the range 0.20°F to
1.24° F' (smoothed).

B. Computational Load: the Effect of Smoothing and Mul-
tiple Linear Regression

CPU temperatures are correlated with the CPU load [7],
[8] and while the CPUs are idle for much of the time in
our setting temporary computational load at the time of
temperature recording might influence the prediction error
(e.g. if the CPU were performing encryption as part of
transmitting the data over the network). We next analyze
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Figure 1: CPU-1 temperature under load and DHT-1 tem-
perature in °F

DHT-1 DHT-3

Original  Smoothed  Original Smoothed
TE |CPU-1| All ||CPU-1| All ||CPU-3| All ||CPU-3| All
1 | 0.85 [0.54]| 0.19 [0.46]| 0.75 |0.39]| 0.23 [0.32
3 | 0.71 |0.49]] 0.42 |0.36|| 0.78 |0.53|| 0.30 (0.34
6 | 0.73 |0.55|| 0.47 |0.37|| 0.70 |0.44|| 0.27 (0.34
12 | 0.73 |0.53|| 0.60 [0.42|| 0.74 |0.53|| 0.42 |0.50
24 | 0.85 |0.57|| 0.76 |0.54|| 0.70 |0.52|| 0.57 |0.49
48 | 0.84 0.58|| 0.69 |0.51|| 0.67 [0.50|| 0.62 |0.48
72 | 0.82 |0.55]| 0.66 |0.50|| 0.66 [0.50|| 0.61 (0.48
96 | 0.80 |0.54|| 0.66 |0.53|| 0.66 [0.52|| 0.61 [0.49
168| 0.80 [0.53|| 0.62 |0.51|| 0.66 |0.53|| 0.62 |0.50
336/ 0.85 |0.53|| 0.60 |0.51|| 0.65 |0.51|| 0.61 |0.50

Table III: Prediction error when CPU-1 and CPU-3 expe-
rience periodic load. The data shows MAE for different
sets of smoothed and non-smoothed explanatory variables
and lengths of Test Window (TE) when predicting outdoor
temperature for DHT-1 and DHT-3 based on a train window
of 72h and with a test start day on Sep 20th.

the effect of the CPU load on the temperature prediction
error.

Out of the four devices that we consider, we keep Pi2
and Pi4 unloaded and add hourly jobs to Pil and Pi3, which
increase the CPU load by encrypting and copying a 1GB file
on Pil and a 512MB file on Pi3. Figure 1 illustrates CPU
temperature measurements from Pil with hourly spikes due
to the load. The load testing for Pil and Pi3 started mid
September and we use September 20th as a test start date.
Note that Pi2 and Pi4 have no artificial load and are kept idle
for comparison. We observe that, compared to the August
test, all four Pi’s show smaller errors on average, however,
we omit these averages for brevity.

Table III shows the MAE for predicting DHT-1 and DHT-
3 based on different sets of explanatory variables (listed
on the top of the table) for different duration of the test
window (TE), while both Pil and Pi3 are loaded. For
predicting DHT-1 based on CPU-1, we see MAE in the
range of 0.71°F to 0.85° F and for the DHT-3 of 0.65°F" to
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0.78°F'. The effect of the CPU load is more pronounced in
univariate prediction. Moreover, this effect is mitigated when
we include nearby devices’ CPU temperature measurements.
Including nearby devices in the DHT-1 prediction (All)
results in MAE in the range of 0.49° F' to 0.58° F' for DHT-1
and in the range of 0.39°F' to 0.53°F for DHT-3.

Similar to the results for the unloaded experiments, when
the CPUs are loaded we also see improvement in prediction
error when we apply smoothing, as shown in Table III. The
two columns show MAE for DHT-1 and DHT-3 temperature
prediction with the same smoothing technique explained
earlier (rolling mean with a window size of 30 minutes or 6
readings). Note that this type of smoothing is computation-
ally simple enough to be performed on each device (rather
than as a remote computation requiring a more powerful
computational resource (used in past work)).

We see that for any length of test window the error
when all the predictors are used (All column) is smaller
than when any single predictor counterpart is used: CPU-
1 for DHT-1, and CPU-3 for DHT-3. With smoothing,
the prediction MAE decreases from the range of 0.71°F
to 0.85°F to the range of 0.36°F to 0.54°F for DHT-
1, and from the range 0.65°F to 0.78°F to a range of
0.32°F to 0.50°F for DHT-3. While not strictly lower or
higher, these results are similar (in terms of accuracy) to
the results for the unloaded case. We conclude that, using
a combination of multivariate regression and smoothing, it
is possible to obtain high degrees of prediction accuracy
(relative to measurement error) regardless of whether the
CPU is loaded or not.

To account for the possibility that the specific timeframe
may have influenced the results (i.e. outdoor conditions
might have been more dynamic in late August than late
September), we show comparative results for the September
timeframe for loaded and unloaded experiments in Figure 2.
The data shown in this figure is taken during the same period
as the results shown in Table III. That is, we use the 72-hour
period ending on September 20th, 2018 as a training period
and the remaining time as a test period (ranging from 1h
to 2 weeks). The bars in the figure corresponding to CPU-
1 and CPU-3 show the same data as in Table III from the
Smoothed All columns. For comparison, we show data for
two other CPUs — CPU-2 and CPU-4 — taken at the same
time, again using smoothing and all explanatory variables in
each regression (i.e. Smoothed All).

Figure 2a shows the comparison when only the CPU
directly attached to the DHT is used as a single explanatory
variable (i.e. the “nearest” CPU). In Figure 2b, we show the
the results when all explanatory variables are used to predict
each DHT.

In Figure 2b, the maximum MAE observed in any exper-
iment does not exceed 0.54°F" across all CPUs, DHTSs, and
load patterns. These results indicate that the methodology
is robust with respect to typical loads that the CPUs might
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Figure 3: Comparison of MAE when predicting DHT-1
values for five different dates from April 20th to Dec. 7th.

experience in our IoT setting. Comparing Figure 2a to Fig-
ure 2b shows that multivariate regression improves accuracy
across all DHTs and load patterns.

C. Effects of Seasons and Precipitation

In addition to the two dates in August and September,
we observed very similar error rates when testing during
different seasons (Summer, Fall, and Winter). This is il-
lustrated in Figure 3 where we predict DHT-1 temperature
for different days from April to December. April 20th (04-
20) has a higher error because Pi3 and Pi4 were not yet
deployed and thus their CPU values were not available
as features. December 7th had variable weather conditions
with alternating rainy and sunny days, which may have
contributed to a somewhat higher MAE. However, even so,
the MAE for most of the days it was less than 1.25°F'.

We also tested the accuracy of the model when there
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were changes in precipitation. From a time series perspec-
tive, precipitation could constitute a change-point in each
temperature series (due to the sudden onset of evaporative
cooling effects). Table IV shows the comparison of errors
when training and testing periods had different levels of
precipitation. For each column, the training period was 3
days and the test periods listed go from 1h to 3 days. In the
first column, both training and testing days were without any
precipitation (this data is the same data that is represented
graphically in Figure 2b as DHT-1-ALL). In the second
column, we show the effects of training using rainy days
to predict the temperatures during sunny days. December
4th, 5th, and 6th were rainy days with 2.54, 1.27, and 1.27
inches of rain respectively followed by three days without
precipitation that were used for testing the model. In the
third column, we show results for training during sunny
days followed by prediction during rainy periods. January
2nd, 3rd, and 4th were days without precipitation followed
by three days with 1.29, 1.06, and 1.0 inches of precipitation
respectively.

The results show that the model trained only on three
rainy days had errors slightly higher than when tested
on sunny days, while the model trained on sunny days
behaved similarly to the models we discussed before, even
when tested on rainy days. Part of our future work is to
expand test cases to more variable weather conditions (e.g.,
including changes in wind, solar radiance, etc.). However
these results indicate that the prediction errors are robust
to what are essentially “shocks” to the temperature time
series in the explanatory weather data (WU-T) and the
predicted variables (DHT values). Because the CPUs were in
sealed containers (and the DHT sensors were exposed to the
atmosphere) the effects of precipitation on the CPU series
is less pronounced. Still, the errors are largely unaffected by
precipitation.



TE | Sep. 20th | Dec. 7th | Jan. 5th
1 0.46 0.24 0.22
3 0.36 0.27 0.40
6 0.37 0.29 0.57
12 0.42 0.42 0.76
24 0.54 1.26 0.56
48 0.51 1.41 0.54
72 0.50 1.09 0.46

Table IV: MAE for models trained and tested during dry
periods (Sep. 20), training during a rainy period and testing
during a dry period (Dec. 7th) and training during a dry
period and tested during a rainy period (Jan. 5th). Models
are trained on 3 days to predict DHT-1 temperature based
on all five explanatory variables using smoothing.
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Figure 4: Comparison of MAE when predicting DHT-1
values for different sets of features for Sep. 20th.

Figure 4 illustrates the errors when predicting DHT-1
temperature with different subsets of explanatory variables.
We see that if we only rely on the nearby weather station
(which is approximately 800m from the nearest DHT) the
error (WU-T) is much higher (2—3° F’) than for a subset that
includes at least one of the CPU temperatures (< 1.15°F).
Farmers, today, often use only a weather station temperature
reading when implementing manual frost prevention prac-
tices. Often, though, the weather station they choose to use
for the outdoor temperature is even farther away from the
target growing block than the station we use in this study.

Notice, also, that when the CPU that is directly connected
to the DHT is not included (denoted CPU-234W in the
figure), the errors are higher than when it is included (all
other bars in the figure except for W). Thus, as one might
expect, proximity plays a role in determining the error.
However using only the attached CPU (CPU-1 in the figure
which is necessarily physically closest to DHT-1) generates a
higher MAE than all CPUs and the weather station (denoted
CPU-1234W in the figure). Indeed, the best performing
model is this one that uses all four CPU temperatures and
WU-T measurements as explanatory variables, yielding an
MAE < 0.5°F across all time frames. Thus using the
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nearest CPU improves accuracy, but using only the nearest
CPU does not yield the most accurate prediction. Finally,
while the weather station data does not generate an accurate
prediction by itself, including it does improve the accuracy
(slightly) over leaving it out.

In summary, our methodology is capable of automatically
synthesizing a ‘“virtual” temperature sensor from a set of
CPU measurements and externally available weather data.
By including all of the available temperature time series, it
automatically “tunes” itself to generate the most accurate
predictions even when one of the explanatory variables
(WU-T in Figure 4) is, by itself, a poor predictor. These pre-
dictions are durable (lasting up to 2 weeks without refitting
the regression coefficients), with errors often at the threshold
of measurement error (for DHT sensors), on average, and
relatively insensitive to seasonal and meteorological effects,
as well as typical CPU loads in the frost-prevention setting
where we have deployed it as part of an IoT system.

IV. RELATED WORK

The proliferation of sensor network technologies enabled
more granular sensing of the environment and in turn
improved our abilities to model and predict future weather
events with greater accuracy. In recent years, we have
seen proposals of precision farming end-to-end edge cloud
systems that provide sensor integration, data analysis, and
actuation [9], [10], [11], [12], [13], [14]. In this work,
we focus on temperature prediction since it (together with
other weather parameters like humidity, wind speed, solar
radiation, cloud cover) influences some of the most energy
consuming practices: frost prevention and irrigation [15],
[16], [17], [18], [19], [20]. Moreover, our work does so at
no additional cost for sensors and frees up SBC ports for
use by other sensors.

The authors of the work most related to our own [1]
use univariate linear regression to estimate the outdoor
temperature based on the CPU temperature of a single co-
located SBC. In two experiments tested (non-smoothed and
smoothed with the single spectrum analysis [3]), the model
does not perform as well when the training window is
smaller than 6h (4.5 — 14.6°F") or larger than one week
(1.3 — 4.8°F). We overcame this limitation with multiple
linear regression that uses nearby devices’ CPU temperature
readings as well as the temperature of a close weather
station. This yielded more stable models and the error for
two weeks tests did not exceed 1.25° F under similar training
and testing weather conditions. Even in the case of models
trained on consecutive rainy days and tested on sunny days,
the MAE did not exceed 1.25° F'. Our work also investigates
alternative smoothing techniques and the impact of processor
load on prediction.

More generally, linear regression [4] is used in sensor
networks for modeling, summarizing, and data analysis [21].
The work described in [21] was deployed indoors, where



there was no need to consider seasonal or sudden weather
changes, or where such had a smaller impact on the regres-
sion coefficients. Our work differs in that it does not measure
the temperature directly but it estimates it from the CPU
temperatures of nearby devices, while considering different
smoothing techniques and sets of explanatory variables.

V. CONCLUSION

We have presented a new approach for predicting outdoor
temperature from the processor temperature of SBCs in
outdoor IoT settings. To enable this, we employ multiple
linear regression using nearby SBC processors and weather
stations. We use these models to predict microclimate tem-
peratures, which can be used (if sufficiently accurate) in agri-
cultural settings to guide irrigation, frost control, and other
IoT applications. We deploy our system in a citrus grove and
perform an extensive empirical study using the devices and
methodology. In addition, we consider the impact of loaded
and unloaded processors as well as alternative smoothing
techniques. We train our models for up to three days and
evaluate their accuracy for a duration of up to two weeks.
We find that our approach enables a prediction error that is
less than 1.50F, while past work resulted in errors of 1-14
degrees Fahrenheit for similar datasets.
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