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ARTICLE INFO ABSTRACT

Tree crown detection is a fundamental task in remote sensing for forestry and ecosystem ecology. While many
individual tree segmentation algorithms have been proposed, the development and testing of these algorithms is
typically site specific, with few methods evaluated against data from multiple forest types simultaneously. This
makes it difficult to determine the generalization of proposed approaches, and limits tree detection at broad
scales. Using data from the National Ecological Observatory Network, we extend a recently developed deep
learning approach to include data from a range of forest types to determine whether information from one forest
can be used for tree detection in other forests, and explore the potential for building a universal tree detection
algorithm. We find that the deep learning approach works well for overstory tree detection across forest con-
ditions. Performance was best in open oak woodlands and worst in alpine forests. When models were fit to one
forest type and used to predict another, performance generally decreased, with better performance when forests
were more similar in structure. However, when models were pretrained on data from other sites and then fine-
tuned using a relatively small amount of hand-labeled data from the evaluation site, they performed similarly to
local site models. Most importantly, a model fit to data from all sites performed as well or better than individual

Keywords:

Tree crown detection
RGB deep learning
Object detection
Airborne LiDAR

models trained for each local site.

1. Introduction

Tree detection is a critical step in remote sensing of forested land-
scapes. Identifying individual crowns in airborne imagery allows ecol-
ogists, foresters, and land managers to increase the extent of sampling
compared to terrestrial surveys. While many LIDAR-based tree seg-
mentation algorithms have been proposed (Aubry-Kientz et al., 2019),
the field has been slow to adopt automated methods due to concerns
over accuracy, transferability and transparency (Vaglio Laurin et al.,
2019). As a result, existing methods are rarely evaluated on multiple
forests simultaneously, making it unclear how they will perform in the
novel contexts required for large scale application. This is critical since
the vast majority of future users will want to take methods designed for
one site and apply them to a broad range of geographic areas. These
areas are likely to include diverse forest characteristics, such as dif-
ferences in crown structure, species diversity, canopy openness. A lack
of knowledge about the flexibility of algorithms to new forest condi-
tions is a major impediment to widespread adoption.

Current tree segmentation approaches are primarily based on user-
defined algorithms that describe the appearance of trees in a hier-
archical sequence of rules. These rule-based approaches rely on
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combinations of shape features (Gomes et al., 2018), template matching
(Dai et al., 2018), network analysis (Williams et al., 2019), and wa-
tershed routines (Silva et al., 2016) that are applied to either LIDAR
point clouds or RGB photogrammetric imagery (Brieger et al., 2019). By
describing the parameters that define an individual tree, these algo-
rithms attempt to match these rules when predicting unlabeled data.
The algorithms are largely unsupervised, as they often contain just a
handful of important parameters for tuning to local data. These para-
meters can often have large effects on results. The combination of few
parameters of large effect makes it challenging to apply these algo-
rithms to large areas, and often leads to overfitting during visual cali-
bration to a test dataset. For example, some methods use allometric
relationships between crown area and tree height to improve algorithm
performance (Coomes et al., 2017; Williams et al., 2019), but these
relationships vary with forest type and species. Recent attempts to
mitigate this variation have used approaches that choose from a pool of
potential tree shapes (Gomes et al., 2018). However, the need to define
the full pool of possible tree shapes before analyzing each new site will
be prohibitive over large geographic areas that incorporate diverse
assemblages. As a result of these limitations, most tree detection algo-
rithms have been applied and tested on similar forest types with little
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exploration of how the algorithms generalize to other natural settings.
Therefore, despite the intense work in airborne tree detection over the
last decade (Coomes et al., 2017; Heinzel and Huber, 2018; Jakubowski
et al., 2013; Li et al., 2012; Williams et al., 2019), there remains no
clear consensus on best practices (Aubry-Kientz et al., 2019).

Within the field of computer vision, there has been a broad shift
away from user-designed features toward approaches that learn fea-
tures from data using neural networks (Agarwal et al., 2018). There
have been few attempts to use learned features in tree detection (Dai
et al., 2018) due to the need for large amounts of labeled training data,
which is often difficult or impossible to collect in ecological contexts.
Overall, generalization of deep learning algorithms across applications
in airborne remote sensing remains a challenging task (Zhu et al.,
2017). A typical neural network has millions of parameters and is
therefore at risk of overfitting when using the small datasets usually
available for training. Given the diversity of trees, finding general
features will require a combination of large training datasets and al-
gorithmic approaches that allow the neural networks to learn the
combination of features that characterize trees across forest types.

Weinstein et al. (2019) recently developed a deep learning approach
for tree detection using RGB (red-green-blue) data, which was applied
at one site, but has the potential to address these requirements for
identifying trees across forest types (Fig. 1). The method uses un-
supervised LiDAR-based tree detection (e.g., Silva et al., 2016) to
generate millions of labeled trees. These low to moderate quality an-
notations are used to pretrain the neural network. This pretraining
stage is followed by retraining based on a small number of high-quality
hand-annotations. Whether this method can learn general features
across forest types is unknown. This challenge represents an important
step from demonstrating the utility of the algorithm as a proof-of-con-
cept to creating a flexible approach that can adapt to the tremendous
geographic diversity in tree shapes, appearance and landscape struc-
ture. More generally, this problem reflects the ongoing synthesis be-
tween data science and ecology. Ecological imagery is often more
complex than other computer vision applications due to variability in
image acquisition environments and extreme intra-class variation.
Finding solutions in ecological machine learning that perform well at
large geographic scales is a key factor in delivering reliable results.

Here we explore the potential of this tree detection method to
generalize across sites by evaluating its performance on a range of
forest types, assessing the transferability of tree features across forest
types, and exploring the possibility of building a single unified tree
detection model. Our aim is to test a deep learning approach 1) for
identifying trees in four different forest types when trained on that
forest type (‘within-site’); 2) for identifying trees when trained on data
from other forest types (‘cross-site’); 3) for combining pretraining data
from other sites with hand-annotated data from a new site (‘transfer
learning’); and 4) for comparing the performance of a within-site model
to a universal model fit to data on all forest types simultaneously
(‘universal’). By universal we mean training single model with data
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from all geographic locations. We also explore the sensitivity of the
approach to the number of hand annotations, to determine the amount
of time-intensive work needed to produce accurate results. By an-
swering these questions, we will improve our understanding of the
potential for universal tree detection methods and potentially advance
RGB-based tree detection from algorithm development to large scale
application for better understanding forests at scale.

2. Methods

Data collection and site descriptions

The aerial remote sensing data products were provided by the
National Ecology Observation Network (NEON) Airborne Observation
Platform. We used the NEON 2018 “classified LiDAR point cloud” data
product (NEON ID: DP1.30003.001) and the “orthorectified camera
mosaic” (NEON ID: DP1.30010.001). The LiDAR data consist of 3D
spatial point coordinates with an average of 4-6 points/m?. These data
provide high resolution information about crown shape and height. The
RGB data are a 1 km x 1 km mosaic of individual images with a cell
size of 0.1 m. All data are publicly available on the NEON Data Portal
(http://data.neonscience.org/). For hand-annotations, we selected two
1 km x 1 km RGB tiles and used the program RectLabel (https://
rectlabel.com/) to draw bounding boxes around each visible tree. For a
count of tree annotations per site, see Table 1. All code for this project is
available on GitHub (https://github.com/weecology/DeepLiDAR) and
archived on Zenodo, and all annotations are available as part of the
forthcoming NEON Tree Benchmark (https://github.com/weecology/
NeonTreeEvaluation).

We selected four sites from the NEON network to capture a range of
crown shapes, canopy complexity and forest types. The ‘Oak Woodland’
is the San Joaquin Experimental Range, California. The site contains
live oak (Quercus agrifolia), blue oak (Quercus douglasii) and foothill
pine (Pinus sabiniana) forest. The majority of the site is relatively open,
has a single-story canopy, rounded crowns with mixed understory of
herbaceous vegetation. The “Mixed Pine” site is Lower Teakettle,
California (37.00583, —119.00602) which contains red fir (Abies
magnifica) and white fir (Abies concolor), Jeffrey pine (Pinus jeffreyi) and
lodgepole Pine (Pinus contorta). This site has a closed canopy of coni-
cally shaped conifers crowns. The “Alpine” site is Niwot Ridge
Mountain Research Station, Colorado (40.05425, —105.58237). This
high elevation site (3000 m) is near treeline with clusters of subalpine
fir (Abies lasciocarpa) and Englemann spruce (Picea engelmanii). This site
is very open with small, conically shaped crowns often occurring in
tight clumps. Finally, the “Eastern Deciduous” site is the Mountain Lake
Biological Station, Virginia (37.37828, —80.52484). Here the dense
canopy is dominated by red maple (Acer rubrum) and white oak
(Quercus alba). The canopy is closed with rounded to flat-topped
abutting crowns and often a developed understory. Each site presents
its own challenges, with broad flat-topped trees in the Oak Woodland,
tight clusters of trees in the Mixed Pine forest, thin conifers in the

Fig. 1. Conceptual workflow of proposed approach for airborne de-
tection of individual tree crowns. Pretraining data is generated by
overlaying predicted trees from a LiDAR-based unsupervised algorithm
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Table 1

The number of tree annotations used for pretraining, retraining and evaluation.
Pretraining annotations are generated automatically using a LiDAR-based un-
supervised algorithm. Training and evaluation annotations were hand-drawn.

Forest type Pretraining Training Evaluation
annotations annotations annotations

Oak Woodland 550,905 2533 293

Mixed Pine 2,522,855 3405 747

Alpine 3,121,036 9730 1699

Eastern Deciduous 3,131,283 1231 489

Alpine forest, and completely connected crowns in the Eastern
Deciduous forest.

For each site, we manually annotated training tiles using the pro-
gram RectLabel (Table 1). Training tiles were selected at random from
the NEON data portal. At higher tree density sites, we cropped the 1km?
tiles to create more tractable sizes for hand-annotation. To enforce a
minimum size threshold for tree annotations, we compared the hand-
annotations to a LiDAR canopy height model and removed any trees
less than 3 m in height. The resulting annotations were compared to the
LiDAR point cloud for further assessment. No attempt was made to
delineate understory trees that were not visible in the RGB imagery.
Since these annotations were made using only remotely sensed ima-
gery, there is some uncertainty in the bounding box extents. While
methods exist for combining imagery and field-collected labels (e.g.
Aubry-Kientz et al., 2019; Graves et al., 2018), these are difficult to
implement at large scales. Associated uncertainty should be considered
when interpreting our results and future efforts to quantify label un-
certainty produced by both field and remote-sensing based methods is
an important research direction.

For model evaluation, we used the NEON “tower” plots, which are a
set of 40x40m plots placed throughout each site. For the Eastern
Deciduous site, it was difficult to determine tree boundaries in both the
RGB and LiDAR images. For this site, we overlaid a 1 m resolution
three-band hyperspectral composite image to highlight differences
among co-occurring tree species in the area. The composite image came
from NEON's orthorectified surface reflectance (ID: DP1.30006.001)
and contained bands in the infrared (940 nm), red (650 nm), and blue
(430 nm) spectrum. This allowed us to more accurately annotate the
training and evaluation data in closed canopy conditions.

2.1. LiDAR tree detection

We tested three existing unsupervised LiDAR algorithms (Dalponte
and Coomes, 2016; Li et al., 2012; Silva et al., 2016), as implemented in
the lidR R package (Roussel and Auty, 2019), as both a comparison to
the deep learning approach, and as potential algorithms to generate
tree labels for model pretraining. We selected the best performing
method (Silva et al., 2016) to create initial tree predictions in the LiDAR
point cloud. This approach uses a canopy height model and an allo-
metry of tree height to crown width to cluster the LiDAR cloud into
individual trees. We used a canopy height model of 0.5 m horizontal
resolution to generate local treetops and an allometry of 90% of crown
diameter to height for deciduous forests (Oak Woodland and Eastern
Deciduous) and 20% of crown diameter to height for the coniferous
forests (Mixed Pine and Alpine). These parameters were based on visual
testing on algorithm performance. LiDAR algorithms perform segmen-
tation on a per-point basis, so we converted the output to a bounding
box that covered the entire set of LIDAR points assigned to each tree to
create training data equivalent to the hand-annotated bounding boxes.

2.2. Deep learning

We used our previously developed algorithm for RGB-based tree
identification, which was used at a single site (Weinstein et al., 2019).
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This method uses the Retinanet one-stage object detector (Gaiser et al.,
2018) with a Resnet-50 classification backbone, which allows pixel
information to be shared at multiple scales, from individual pixels to
groups of connected objects. We used a Resnet-50 classification back-
bone pretrained on the ImageNet dataset (He et al., 2016). Since the
entire 1 km RGB tile cannot fit into GPU memory, we cut each tile into
40 m by 40 m windows with an overlap of 5% (n = 729). The
40mx40m window size was adopted since this is the spatial extent of
the NEON tower plots. The order of tiles and windows were randomized
before training to minimize overfitting among epochs. To reduce po-
tential spatial autocorrelation in tree appearance between evaluation
plots and pretraining data, we removed any training tiles within 1 km of
an evaluation tile. Using the pool of unsupervised LiDAR-based tree
predictions, we pretrained the network with a batch size of 20 on 2
Tesla K80 GPU for 5 epochs. To align these unsupervised classifications
with the ImageNet pretraining weights, we normalized the RGB chan-
nels by subtracting the ImageNet mean from each channel. We then
retrained the network using the hand-annotated data for 40 epochs. For
more details of this approach see Weinstein et al. (2019). Data aug-
mentation of random flips and translations was tested and found to
have little effect on the final score.

2.3. Model evaluation

Using the evaluation plots, we chose two metrics to assess model
performance. For comparison with the existing LiDAR-only im-
plementations, we used precision and recall statistics with a bounding
box marked as true positive if it had an intersection-over-union (IoU) of
greater than 0.5. Intersection-over-union is the ratio of the area of
bounding box overlap to the area of bounding box union between the
predicted tree crown and the visually annotated crowns in the eva-
luation data. For each bounding box prediction, the deep learning
model reports a confidence score between 0 and 1. To transform these
scores into precision and recall statistics, we need to define a threshold
of box scores to accept. As we lower the threshold for acceptance, a
greater number of trees will be captured, but at the expense of de-
creased precision. To highlight this relationship, we showed the per-
formance of the deep learning approach across all bounding box
probability thresholds between 0 and 1 with an interval of 0.1. IoU
precision and recall are reported separately and do not capture differ-
ences in bounding box confidence scores. When comparing the different
generalization approaches, it is useful to have a single metric to com-
pare. We used the Average Precision (AP) metric commonly used for
object detection tasks in computer vision, which is the area under the
precision-recall curve computed at the 11 fixed 0.1 intervals between 0
and 1 (Lin et al., 2017).

2.4. Assessing generalization, transferability, and universal model fit

To assess generalization among sites, we performed three types of
experiments that used different combinations for hand-annotations and
pretraining data (Fig. 2). The first experiment is to use pretraining and
hand-annotated data to predict the evaluation data from the same site
(‘within-site’). The next setup is to use the pretraining data and hand-
annotated from the same site to predict the evaluation data from a
different site (‘cross-site’). For example, using each of the within-site
models, we can test the ability for a model to predict tree conditions in
each of the other geographic sites, creating a matrix of cross-site pre-
dictions. To assess generalization without local pretraining data, we
tested a model training using pretraining data from all other sites, but
hand annotations from the same site as the evaluation data (‘transfer-
learning’). For example, the transfer learning model for Oak Woodland
used the hand-annotations from Oak Woodland, but the pretraining
data for Alpine, Mixed Pine, and Eastern Deciduous. Finally, to test the
potential for a universal model, we tested a model pretrained on all
sites, followed by retraining on all hand-annotations. We then
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Fig. 2. Approaches to geographic generalization in model training: 1) ‘Within-
site’ training in which training data from site 1 is used to predict site 1; 2)
‘Cross-site’ training in which training data from site 1 is used to predict site 2; 2)
‘Transfer learning’ in which a model is first trained on site 1 data, followed by
finetuning on site 2 training data, and 3) ‘Universal’ model in which training
data from both site 1 and site 2 are used to predict evaluation data from site 2.

compared this model with each of the within-site model to test whether
the addition of data from other sites improved predictions of trees from
the same site.

2.5. Sensitivity to the number of hand-annotations

Collecting a sufficient number of training samples will often be a
bottleneck in developing supervised methods in airborne imagery. It is
therefore useful to test the number of local training samples needed to
achieve maximum performance. We performed a sensitivity study by
training models using different proportions of training data. We se-
lected 5%, 25%, 50% and 75% of the total hand-annotations to com-
pare to the full dataset for the within-site results for each site. We reran
this experiment five times to account for the random subsampling of
annotations. In addition, we ran the evaluation plots for the pretraining
model only (i.e. 0% hand-annotated data) to assess whether the addi-
tion of hand-annotated data improved the within-site pretraining.

3. Results

Within-site predictions ranged from 0.60 recall and 0.75 precision
in Mixed Pine to 0.34 recall and 0.55 precision in Alpine. The Oak
Woodland and Mixed Pine sites consistently performed better than the
Eastern Deciduous and Alpine sites. Visual inspection of the results
showed that the majority of false positives were positively identified
trees, but whose crown boundaries were either too large or too small for
the intersection-over-union score of 0.5. Repeated training runs for
each model showed relatively little variance, despite heterogeneity in
tree types at all sites (Fig. 3).

When qualitatively comparing model performance with the LiDAR-
based algorithms used to generate the pretraining data (Fig. 3), the
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deep learning model was more successful at delineating boxes around
complex crown boundaries and avoiding clumping together small trees
with narrow gaps (Fig. 4). For the Oak Woodland site, the deep learning
model was better able to capture crown area for the flat-topped canopy
and avoided erroneously labeling bushes as trees (defined as woody
vegetation > 3 m in height). For the Eastern Deciduous site, the deep
learning model more accurately found trees in the closed canopies,
despite strong overlap in bounding box predictions and similarity in
neighboring tree appearance. To view predictions overlaid on each of
the plots for the within-site models, see supplemental dataset S1. Note
that the comparison with the LiDAR methods is complicated by dif-
ferences in data types (RGB versus LiDAR), and the uncertainty in hand-
annotations when viewing the RGB image. However, it is important to
note that the majority of errors in the LiDAR methods was not in the
extent of the bounding boxes, but in joining multiple trees together or
splitting trees apart (Fig. 4). Therefore, while we would need sig-
nificantly more data and analysis to state that a hybrid RGB-based
method was superior to LiDAR-only methods, the types of errors made
by the LiDAR algorithms cannot be attributed solely to the hand-an-
notation process.

When applying a model fit at one site to make predictions at other
sites, we found generalization of the single-site models to be weak
(Fig. 5). Tree stems were often correctly identified among sites with
similar forest crown structures (Coniferous versus Deciduous), but the
resulting crown boundaries were rarely accurate (Fig. 5 — “Cross-Site”).
The one exception was the prediction of Alpine evaluation plots using a
model built from the Mixed Pine site. This model outperformed all
other cross-site experiments and was superior even to the Alpine
within-site model.

Combining local hand-annotated data with unsupervised pre-
training data from the other three sites demonstrated good transfer-
ability, with performance almost as good as using local pretraining data
(Fig. 5). The transfer learning experiments performed better than cross-
site predictions for every site. This suggests that the pretraining model
allows for generalized features that can be fine-tuned to local condi-
tions.

Fitting a single universal model using data from all sites resulted in
the best predictions for every individual site (Fig. 5), except the Alpine
site, which was best predicted by the Mixed Pine site. Compared to a
model trained at the target site, the average precision of the universal
model for the Eastern Deciduous site improved from 0.44 to 0.54
(22%), Mixed Pine from 0.56 to 0.59 (5.4%), Alpine from 0.24 to 0.26
(8.3%) and Oak Woodland from 0.6 to 0.61 (1.6%). Fig. 6 shows a
concrete example of the universal model can performance compared to
within site models. In Fig. 6B, the within-site model (Mixed Pine) er-
roneously labels a large boulder in the bottom right hand corner of the
image as a tree. This error was made in all other cross-site models,
except for Oak Woodland. In the Universal model, this error was not
made, suggesting that either the universal model learned information
about the background from other sites to improve predictions, or that
more data, regardless of locality, led to higher performance.

Assessment of the number of hand-annotations needed to improve
model performance indicated that while some hand-annotated data was
important at all sites, the number of hand-annotated trees needed to
improve model performance was typically relatively small. For ex-
ample, the recall in the Mixed Pine site was < 0.2 with no hand-an-
notated data and was over 0.6 using approximately 2000 hand labeled
crowns. Only minimal gains in performance occurred using up to an
additional 2000 hand-annotated crowns. Overall, the shape of the ab-
lation curves suggest that the model is fairly robust and needs only
approximately 1000 crowns in most cases to create a model close to full
performance. The exception is the Alpine model, which improved by
more than 30% after 3000 crowns. In general, the precision was more
robust than recall, suggesting that the hand annotations mostly improve
the predictions of crown boundaries rather than additional tree loca-
tions.
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Fig. 3. For each site, results of our proposed workflow for the evaluation data. The proposed model is compared to three existing LiDAR-only implementations from
the commonly used lidR package. The proposed approach was evaluated at each of the 0.1 probability score intervals between 0 and 1. The probability threshold of
the best performing model in our approach, calculated by f-score, is shown in black. Error bars show the variance in recall and precision based on five runs of hand-

annotation training for each probability cutoff at each site.

4. Discussion

Airborne tree detection can unlock ecological and forestry data at
unprecedented spatial extents. When combined with traditional ground
surveys, these data will inform forest dynamics, ecosystem services, and
natural resource management at broad scales. To turn remote sensing
data into ecological information, there is a need for a unified tree de-
tection model that can be applied to a broad array of forest conditions.
Using a deep learning approach (Weinstein et al., 2019), we trained
individual tree detection models for four geographic sites and studied
the transferability of learned features among four forest types that en-
compass a wide range of the variability encountered in temperate for-
ests. Despite large variation in forest structure from open to closed,
overlapping canopies, different tree shapes and allometries, and dif-
ferent levels of tree clumping the proposed approach holds promise for
automated tree location and size detection at scale. On average across
sites, a universal model trained on all sites together correctly identified
crown bounding boxes with 65% recall and 70% precision. The re-
maining false positives were almost always detected as individual trees,
but with crown boundaries that did not meet the specified intersection
over union threshold of of > 0.5. The success of this algorithm over
unsupervised methods highlights the power of supervised approaches
for addressing the large geographic diversity of tree forms. Using small
amounts of hand-annotated data from the target site, in combination
with large amounts of pretraining data from unsupervised LiDAR im-
plementations, is a promising approach for addressing the challenge of
tree detection at scale.

One goal was to assess the proposed crown detection approach in
variety of canopy conditions to better understand which factors limit
performance. We find performance is best in open canopy forests with
large, well-spaced, trees as in the Oak Woodland site. We had antici-
pated the performance of the algorithm would be worst at the closed
canopy Eastern Deciduous site. However, it was at the Alpine site that
the algorithm had the poorest performance, suggesting that short
clusters of trees, rather than complex, interconnected tree boundaries

are the biggest challenge among the four forest types. One possible
explanation is that the trees in the Alpine site are more sensitive to the
resolution of the RGB image due to their small size. Since we use an
evaluation metric of intersection-over-union of 0.5, a difference of one
pixel is inconsequential for large trees but may push small trees under
the threshold for being predicted positively.

One of the advantages of deep learning approaches to tree detection
is the potential to learn cross-site features simultaneously. We con-
ducted three types of generalization experiments to assess the trans-
ferability among forest types. The first was to use models trained from
one site to predict an unseen site. Prediction to unseen conditions is a
challenging task in computer vision, especially when the sites were
specifically chosen to represent distinct forest types. Overall, we saw a
significant decrease in performance between cross-site and within-site
models. This means that fitting to a single forest type and applying the
model to predict a distinct forest type without local training data re-
mains unlikely to provide acceptable results. The one exception was the
prediction of the Alpine site, which had superior performance when
predicted by the Mixed Pine site, rather than using the Alpine hand
annotations. This may stem from the difficulty of hand annotating the
small trees that are common in the Alpine site. It is possible that the
model was better at transferring the features from the large conifers in
Mixed Pine to the smaller conifers in Alpine than a human was in an-
notating the crown boundaries in Alpine. A second possibility is that the
significant heterogeneity in the pretraining data for the Alpine site led
to poor results. The LiDAR-based pretraining algorithm did not perform
well at this site, with consistent under-segmentation among small trees.
It is possible that the superior quality of the pretraining data at the
Mixed Pine site allowed for better predictions in the Alpine site, com-
pared to using lower quality data from the same site. This suggests that
improvement in the pretraining algorithm may yield increased perfor-
mance when combined with hand-annotated data.

To provide the cross-site model with more information on local tree
conditions, we conducted transfer learning experiments to assess whe-
ther models pretrained at other sites could be used with training data
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Fig. 4. Example predictions for the LiDAR-only pretraining algorithm, and the
deep learning detection network trained within-site.

from a local to site to fine tune the model to that site. We find that
building from existing models of tree detection is a promising avenue
toward cross-site generalization. Adding only a small amount of local
training data (typically < 1000 trees requiring ~3-5 h to label; Fig. 7)
greatly increased performance and nearly recovered performance of the
within-site model. This opens up the possibility of tree detection models
that connect forest types based on their dominant canopy structure and
species.

The ultimate goal of the proposed approach is to move toward a
single unified model that can produce individual tree predictions in a
variety of ecosystems. Our analysis shows promising results for a uni-
versal model trained from all pretraining and hand annotations from
every site. In all sites, a universal model was equivalent or better than a
model train on data from the same site, with improvements of up to
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Cross-Site

Mixed Pine -

Oak Woodland -

Training

Alpine -

Eastern Decidious -

Mixed Pine

Oak Woodland

Eastern Decidious Alpine

Transfer-learning

All-

Eastern Decidious Oak Woodland Mixed Pine

Universal

All-

Eastern Decidious Alpine
Evaluation

Oak Woodland Mixed Pine

Fig. 5. Comparison single-site, cross-site, transfer, and universal model per-
formance based on Average Precision (AP). Single site predictions are on the
bolded diagonal of the cross-site section and represent fitting and predicting on
the same site. Cross-site predictions are for models trained on the one site
(listed on the left side of the results matrix) and evaluated on a second site
(listed across the bottom of the results matrix). Transfer learning takes a model
pretrained on all sites except the focal site and retrained using the hand-an-
notations of the evaluation site. The universal model uses pretraining and hand-
annotation data from all sites.

20%. Given that the sites were selected to be as different as possible,
and encompass a range of tree canopy conditions, this result under-
scores the ability of convolutional neural networks to learn flexible
deep features. We expect that as more sites are included, the universal
model will continue to improve. This means that a way forward is to
combine pretraining from as many sites as possible. Given that each
NEON site has millions of trees, and there are dozens of sites with trees
collected annually, there is a possibility of pretraining on continental
scale. Because NEON sites are intended to represent all of the major
biogeographic regions in the United States, this broad scale pre-training
(in combination with existing local training data) has the potential to
reduce the need for new local training data by giving the model the
potential to learn the general suite of features characterizing trees (at
least those within the United States).

While our results point toward a general strategy for RGB tree de-
tection using LiDAR derived pretraining labels, there are many re-
maining questions to explore. At broad scales, it is unclear whether
hand annotations from every site are needed to generate robust con-
tinental scales models, or whether a representative sample of sites,
combined with extensive pretraining, will yield adequate results.
Furthermore, connecting computer vision measures of uncertainty into
more familiar ecological metrics, such as tree height and biomass es-
timation, will be important for determining the level of precision
needed to answer ecological questions. In addition, our evaluation
methods deal exclusively with tree crowns that can be annotated by
hand, and therefore ignore subcanopy trees. Finally, it is necessary to
understand the influence of both hand-annotation accuracy and the use
of rectangular bounding boxes instead of convex hulls. Given the degree
of inaccuracy in current algorithms these details are secondary to the
overall need for broad improvement in tree detection and segmentation
performance. Once an algorithm is found that performs well across a
broad array of forest types, this method can be refined by incorporating
uncertainty in labeled trees and refining bounding box predictions
using methods like raster-based segmentations (e.g. Mask RCNN (He
et al., 2017)) or (when LiDAR data is available) draping predictions
over point cloud data.

In addition to universal model development, transferring knowledge



B.G. Weinstein, et al.

beyond the NEON sites may be useful for many applied problems. It is
currently unknown to what extent features learned from the 0.1 m re-
solution data used here can be applied to lower resolution satellite data
(Karlson et al., 2014) or higher resolution UAV data (Brieger et al.,
2019). Cross resolution training has not been fully explored in en-
vironmental remote sensing, but Li et al. (2018) recently showed that
deep learning networks can learn scale invariant land classifications
that can be matched among data sources. Given the ability to collect
virtually unlimited pretraining data using our data generation ap-
proach, NEON sites can be seen as an ideal training sources for RGB tree
models that could then be applied to other data types.

Our deep learning approach uses LiDAR-based pretraining and RGB
deep learning to perform individual tree segmentation (Weinstein et al.,
2019). The NEON Airborne platform also collects hyperspectral in-
formation that may improve generalization across sites with similar
species composition. Due to foliar and structural properties, tree species
often have distinct spectral signatures which may facilitate distin-
guishing adjacent tree crowns. Hyperspectral features for tree species
classification are relatively common (e.g. Maschler et al., 2018), but
few papers have focused on integrating hyperspectral data into tree
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Fig. 6. A sample evaluation plots from the Mixed Pine site predicted by
a model built from training data from the same site, from each other
site, and a universal model. Ground truth boxes are shown in green (A).
Individual trees with a predicted probability greater than 15% are
shown in black. B) Predictions from the model trained on mixed-pine
annotations. C) Predictions from the model trained Oak Woodland
annotations. D) Predictions from the model trained on Eastern
Deciduous annotations. E) Predictions from the model trained on
Alpine annotations. F) Predicted from the model trained on annota-
tions from all sites. The universal model (F) built from all annotations
slightly outperformed all other models, including the model trained
only from the Mixed Pine site. For example, the boulder in the bottom
right corner is incorrectly classified as a tree by the models trained
from Mixed Pine, Alpine, and Eastern Deciduous sites, but is correctly
ignored in the Oak Woodland and Universal models.

detection alongside data from other sensors. Hyperspectral data is
available for all NEON sites, and we utilized a three-band composite
image to assist in annotating the Eastern Deciduous site (Fig. 8), illus-
trating the usefulness of hyperspectral data to distinguish adjacent tree
crowns with human vision. Choosing the best way to represent high-
dimensional hyperspectral data in conjunction with the LiDAR and RGB
data is non-trivial and will be important for improvements in individual
tree detection at broad scales.

Methods to extract ecological information from airborne sensors are
maturing due to advancements in computer vision, data availability and
sensor quality. Given our results, what are the strengths and limitations
ecologists should consider when adding airborne-derived data to their
analyses of ecological questions? Remote sensing methods have limited
ability to quantify small and subcanopy trees (Aubry-Kientz et al.,
2019), and RGB only methods are particularly susceptible to this lim-
itation because they cannot see trees below the sun-exposed canopy. We
therefore expect that ecological questions that are strongly determined
by canopy trees will benefit the most from remote sensing at broad
scales. For example, the total amount of biomass in most forests de-
pends strongly on the largest trees and will be less sensitive to potential
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Fig. 7. Ablation curves of the proportion of hand-annotation training data for each site. Values indicate the number of trees in the training dataset for each cutoff.
Shaded area is the range of results from rerunning the analysis five times for each site. Note that due to the random sampling among runs, the exact number of trees
will vary slightly. For simplicity, we show the mean number of training trees for each threshold.

Fig. 8. Composite hyperspectral image and corresponding RGB image for the
Eastern Deciduous site. The composite image contained near infrared (940 nm),
red (650 nm), and blue (430 nm) bands. Forests that are difficult to segment in
RGB imagery may be more separable in hyperspectral imagery due to the dif-
fering foliar chemical properties of co-occurring trees.

non-detections of smaller subcanopy trees (Asner et al., 2012; Bastin
et al., 2018; Stegen et al., 2011). The inclusion of RGB data may benefit
existing large-scale LiDAR-based studies of tree growth since improved
individual segmentation will lead to a more accurate matching of in-
dividual trees to metadata on taxonomy and health status. Studies of
post-landscape disturbance, such as after fires, may be aided by the
broader perspective of airborne data (Meng et al., 2018). Most dis-
turbances, such as fire and windstorms, alter the size distribution of
forests, including large trees, and thus our approach can provide va-
luable, detailed landscape scale information about disturbance intensity
and impacts (Knapp et al., 2018). To address these questions, we en-
vision a future in which airborne data on tree locations and sizes are a
complement to local field surveys in broadening the scale of sampling in
complex landscapes.

Data availability

All data and code are made available through a github repo
(https://github.com/weecology/DeepLidar/) and archived in Zenodo
(doi:https://doi.org/10.5281/zenodo.3347164). We are also actively

building a larger dataset as part of a publicly available
NeonTreeEvaluation = benchmark (https://github.com/weecology/
NeonTreeEvaluation).
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