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Highlights
Machine learning (ML) has emerged as a
powerful tool for harnessing big biologi-
cal data. The complex structure underly-
ing ML models can potentially provide
insights into the problems they are used
to solve.

Because of model complexity, their inner
logic is not readily intelligible to a human,
hence the common critique of ML
models as black boxes.
Because of its ability to find complex patterns in high dimensional and heteroge-
neous data, machine learning (ML) has emerged as a critical tool for making
sense of the growing amount of genetic and genomic data available. While the
complexity of ML models is what makes them powerful, it also makes them diffi-
cult to interpret. Fortunately, efforts to develop approaches that make the inner
workings of ML models understandable to humans have improved our ability to
make novel biological insights. Here, we discuss the importance of interpretable
ML, different strategies for interpreting ML models, and examples of how these
strategies have been applied. Finally, we identify challenges and promising
future directions for interpretable ML in genetics and genomics.
However, advances in the field of inter-
pretable ML have made it possible to
identify important patterns and features
underlying an ML model using various
strategies.

These interpretation strategies have
been applied in genetics and genomics
to derive novel biological insights from
ML models.

This area of research is becoming in-
creasingly important as more complex
and difficult-to-interpret ML approaches
(i.e., deep learning) are being adopted
by biologists.
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Importance of Interpretable Machine Learning (ML) and Overview of Strategies
Biological big data [1,2] has driven progresses in fields ranging from population genetics [3] to
precision medicine [4]. Much of this progress is possible because of advances in ML (Box 1)
[5–10], ‘[a] field of study that gives computers the ability to learn without being explicitly programmed’
[11]. ML works by identifying patterns in data in the form of amodel (see Glossary) that can be used
to make predictions about new data. While powerful, a common criticism is that the ML models are
‘black boxes’, meaning their internal logic cannot be easily understood by a human [12]. Luckily,
strategies to demystify the inner working of ML models are already available and ever improving.

There are three major reasons, troubleshooting, novel insights, and trust, why interpretableML
model, or the ability to understand what logic is driving a model’s prediction, is important
(Figure 1A, Key Figure). First, ML models rarely perform well without tweaking or troubleshooting.
Understanding how predictions are made is essential for identifying mistakes or biases in the
input data and issues with how the model is trained. Second, an ML model with impressive
performance may have identified biologically novel patterns. However, such insights will only be
available if the model can be interpreted. Third, we are unlikely to trust a prediction if we do not
understand why it was made. For example, a doctor may not trust an ML-based diagnosis
with no supporting justification out of concern that the model may be capturing artifacts or
have unknown biases or limitations [13].

A wide range of strategies for interpretable ML have been developed [14–16] and applied to
problems in genetics and genomics. These strategies can be classified based on if they are
applicable to all ML algorithms (i.e., model-agnostic) or only to one or a subset of algorithms
(i.e., model-specific). They can also be classified based on whether they provide global or
local interpretations. Global interpretations involve explaining the overall relationship between
features and labels based on the entire model. While local interpretations focus on explaining
the prediction of an instance or a subset of instances. For example, imagine you train an ML
model to predict if a gene (an instance) is upregulated after some treatment (the label) based
on the presence or absence of a set of regulatory sequences (the features). A global interpretation
strategy will tell you how important regulatory sequence X is for predicting upregulation across all
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Glossary
Algorithm: the procedure taken to
solve a problem/build a model.
Decision tree: a model made up of a
hierarchical series of true/false
questions.
Deep learning: a subset of ML
algorithms inspired by the structure of
the brain that can find complex,
nonlinear patterns in data.
Feature: an explanatory
(i.e., independent) variable used to build
a model.
Global interpretation: a type of ML
interpretation that explains the overall
relationship between the features and
the label for all instances.
Instance: a single example from which
themodel will learn fromor be applied to.
Interpretable: capable of being
understood by a human.
Label: the variable to be predicted
(i.e., the dependent variable).
Local interpretation: an ML
interpretation that explains the
relationship between the features and
the label for one or a subset of instances.
Model: the set of patterns learned for a
specific problem, where given input
(i.e., instances and their features) the
model will generate an output
(i.e., prediction).
Model performance: a quantitative
evaluation of the model’s ability to
correctly predict labels.
Parameters: variables in an ML model
whose values are optimized during
training.
Perturbing strategies: a family of
interpretation strategies that measure
how changes in the input data impact
model predictions or performance.
Probing strategies: a family of
interpretation strategies that involve
inspecting the structure and parameters
in a trained model.
Surrogate strategies: a family of
interpretation strategies that involve
training an inherently interpretable model
(e.g., a linear model) using the samedata
as a black boxmodel to approximate the
predictions of the black box model.
Training: the process of identifying the
best parameters to make up a model:
the learning part in ML.

Box 1. A Crash Course in Machine Learning

ML is when a computer uses data to learn a model for predicting a value, where the relationship between the data and the
value is not explicitly provided. The data is composed of instances (i.e., samples) and feature (i.e., independent variables)
that describe those instances. For example, if our instances are genes, features describing those genes could be the GC
content, the presence or absence of a specific functional domain, or its level of conservation across species. If the values
being predicted are not known a priori for any instance, then unsupervisedML approaches (e.g., clustering) can be applied
to extract previously unknown patterns. If the values being predicted are known for some of the instances, these values are
referred to as labels and one can learn from these labels using a supervised ML approach. In this review, we focus on su-
pervisedML. Finally, if the known labels are categorical (e.g., is the gene upregulated or downregulated), it is a classification
problem, while if the labels are continuous (e.g., gene expression levels), it is a regression problem.

A common supervised ML workflow involves four steps: training, applying, scoring, and interpretation (Figure I). First, input
data made up of features and labels for many instances are divided into a training set and a testing set. The features and
labels from the training set are then used to train the ML model. During training, the ML model learns the combination of
internal parameters that minimize the error in the predictions of the labels. Second, the trained ML model is applied to
the testing set features to generate predicted labels. A trained ML model can also be applied to unlabeled instances to
make predictions. Third, the performance of the ML models is scored by comparing the predicted labels with the known
labels from the test set. Many different performancemetrics are used in the ML field, where the best metric depends on the
type of ML problem and the nature of the question being asked. A performance metric not only informs the quality of a
model, but also provides a quantitative measure of how much we known about the biological phenomenon in question
given the features used. Finally, the ML model is interpreted to provide a better, quantitative understanding on how the
input features contribute to the predictions.
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Figure I. A Supervised Machine Learning Workflow.
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genes in your dataset. While a local interpretation strategy will tell you how important regulatory
sequence X is for predicting gene Y as upregulated. This means that the type of interpretation
strategy you select will dictate what you will learn from your ML model, with different strategies
possibly telling different stories. We should emphasize that most ML models identify association
through correlation (with exceptions, see [17]). Thus, ML interpretation strategies mostly do not
identify causal relationships between input features and labels. Instead, interpretations should
be used to generate hypotheses of cause-effect relations that can be tested experimentally.
We will review three general ML interpretation strategies: probing, perturbing, and surrogate
strategies (Figure 1B–D) [14,16].

Probing Strategies Dissect the Inner Structure of ML Models
Training an ML model involves identifying the set of parameters best able to predict the label of
an instance (e.g., gene Y is upregulated). After training, these parameters can be ‘probed’
(i.e., inspected) to better understand what the model learned (Figure 1B). Probing strategies
Trends in Genetics, June 2020, Vol. 36, No. 6 443
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Key Figure

Overview of Machine Learning (ML) Model Interpretation Strategies
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Figure 1. (A) Understanding the inner logic of an MLmodel (i.e., model interpretability) is important for troubleshooting during
model training, generating biological insights, and instilling trust in the predictions made. (B) There are three general strategies
for interpreting an ML model: probing, perturbing, and surrogates. Probing strategies involve inspecting the structure and
parameters learned by a trained ML model (e.g., a deep learning model pictured here) in order to better understand what
features or combination of features are important for driving the model’s predictions. Perturbing strategies involve changing
values of one or more input features (e.g., setting all values to zero) and measuring the change in model performance
(sensitivity analysis) or on the predicted label of a specific instance (what-if analysis). Finally, an easily interpretable model
(e.g., linear regression or decision tree) can be trained to predict the predictions from ML models, acting as a surrogate.

Trends in Genetics
provide global interpretations with some exceptions (see later). Because the type of parameters
(e.g., coefficient weight, decision nodes) and how those parameters relate to each other
(e.g., linear combination, hierarchical network) varies by algorithm, probing strategies are
model-specific. Probing strategies for many classical ML algorithms [e.g., support vector
machine (SVM) and decision tree-based algorithms] have been around for decades and are
relatively straightforward to understand and implement. Probing strategies for more complex
ML algorithms (e.g., deep learning), while already available, are less well established, with new
strategies published each year and no consensus currently on a best approach.

Probing SVM models
SVM is an algorithm that finds the hyperplane that best separates instances by their label when
they are plotted in n-dimensional space (n = number of features; n = 2 in Figure 2A). Training
444 Trends in Genetics, June 2020, Vol. 36, No. 6
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an SVMmodel to predict gene upregulation using regulatory sequences as features means learn-
ing the combination of coefficient weights to apply to regulatory sequences in order to make the
best hyperplane. SVM models can be trained to learn either linear or nonlinear relationships
between features and labels.

A linear SVM model is probed by extracting the coefficient weights that define the hyperplane
(Figure 2A), where features assigned a higher absolute weight have a stronger relationship
with the label and thus are more important for driving the prediction. For example, a linear
SVM model was trained to classify simulated populations as being under positive or negative
selection using genetic markers as features [18]. Coefficient weights from the trained SVM
model were used to quantify the importance, where genetic markers with large, positive coef-
ficient weights were considered positively selected. Validating this approach, they found that
the SVM-based coefficient weights were highly similar to weights derived from a classical pop-
ulation genetics statistical test (Tajima’s D). Importantly, the above linear SVM probing strategy,
like other strategies discussed in this review, can provide an incomplete picture of feature
importance. For example, two highly correlated features will split the weight between them,
reducing their perceived importance. Therefore, understanding the limitations of any ML
interpretation strategy is critical.

In addition to the issue with correlated feature, a feature with a strong, nonlinear, relationship with
the label may not have large coefficient weight in a linear SVM model. Fortunately, SVM can also
be used to learn nonlinear relationships with what is called the ‘kernel trick’, where nonlinearly
separable data is projected into a higher-dimensional space where it can be separated by a linear
hyperplane [19]. Because different kernels project the data in different ways, probing strategies
for nonlinear SVM models tend to be kernel specific [20]. For example, string kernels
(e.g., [21–23]) are a family of kernels frequently used in genetics because they can project DNA
or protein sequences into a space where each dimension represents a subsequence of a defined
length (i.e., a motif) and the values in that dimension represent the number of occurrences of that
motif in each instance. Because each dimension represents a sequence motif, the trained coef-
ficient weights describe the relationship between sequence motifs and the label, where motifs
assigned large absolute coefficient weights are interpreted as more important for the prediction.
For example, Sonnenburg et al. trained an SVMmodel using a variant of the string kernel that also
considers positional information [22] to predict splice sites in Caenorhabditis elegans [24]. By vi-
sualizing the trained coefficient weights, they confirmed the well-established acceptor splice site
motif and discovered a novel donor splice site andmotif ~43 base pairs upstream of the acceptor
splice site. They also demonstrated the utility of perturbation-based interpretation strategies,
which we describe later.
Figure 2. Probing a Trained Machine Learning (ML) Model. An ML model that classifies upregulated (green) from
downregulated (yellow) genes using regulatory sequences (purple) as features can be probed to find what regulatory
sequences are most important for predicting differential expression. (A) A support vector machine model learns the
combination of coefficient weights (w; orange) forming the decision boundary (dotted line) best able to separate
upregulated from downregulated genes, where the features assigned the higher w are more important. The decision
boundary is a hyperplane represented by the equation shown. (B) A decision tree-based model learns the most predictive
series of true/false questions about the features. We zoom in on a node where the regulatory sequence ‘AACGT’ is used
as the feature. How well AACGT separates upregulated from downregulated genes is quantified by calculating the mean
decrease in node impurity after AACGT is used at a branch point. (C) Deep learning models train to learn what
combinations of connection weights (gray lines) across all nodes and layers result in the best network to classify
upregulated from downregulated genes. A trained deep learning model can be probed by inspecting the size of the
connection weights (gray line thickness), measuring the gradient of the output with respect to the input [i.e. ∂Out(in)/∂ (in)],
and quantifying the extent to which different features cause a node to activate (represented by the light switch).
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Probing Decision Tree-Based Models
A decision tree is a set of true/false questions nested in a hierarchical structure (Figure 2B). They
are inherently interpretable because the content and order of each question can be directly ob-
served. How well a true/false question separates instances by their label can also be quantified
using metrics such as the mean decrease in node impurity, where a node containing instances
with all the same labels has an impurity equal to zero and nodes containing instances with a
mixture of labels have an impurity greater than zero. For the example in Figure 2B, using the
presence/absence of regulatory sequence ‘AACGT’ to separate up- from downregulated
genes results in a decrease in the mean node impurity, meaning this feature was informative in
classifying up and downregulated genes. Because single decision trees tend to perform poorly
at predicting complex patterns, ensemble approaches (e.g., random forest [25], gradient tree
boosting [26,27]), where many decision trees are combined to generate one prediction, are
often used. Ensemble decision-tree models can be probed by calculating the mean decrease
in node impurity for each feature across all trees in the ensemble. This approach has been
used broadly in genetics applications using random forest-based models, including for identifica-
tion of important gene regulators from gene regulatory networks (e.g., integrative Random forest
for Gene Regulatory Network inference, iRafNet [28]) and DNA motifs for predicting differential
gene expression [29].

The hierarchical structure of decision tree-based models means that interactions between fea-
tures can also be readily probed. For example, using a tool for finding stable feature interactions
in random forest models [30], interactions between genomic, transcriptomic, and epigenomic
features were identified that were predictive of deleterious genetic variants [31]. Specifically, an
interaction between the local GC content and the distance to the nearest expression quantitative
trait loci was important for predicting deleterious variants.

As with coefficient weights from SVMmodels, mean decrease impurity scores can be misleading
when features are highly correlated. This score also tends to inflate continuous features
(e.g., expression level values) over categorical features (e.g., high, median, or low expression
levels), categorical features with a larger number of categories, and continuous features with a
larger numeric range and should therefore be interpreted with caution when the feature space
is not uniform [32].

Probing Deep Learning Networks
While the classical ML algorithms described above are useful and readily interpretable, deep
learning (Box 2) algorithms are being applied more and more in the ML community because
they frequently outperform classical ML algorithms at modeling complex systems when sufficient
training data is available [33–35] and they can learn from raw data (e.g., whole DNA sequence)
rather than user defined features (e.g., known regulatory sequences). However, in modeling
there is often a tradeoff between predictability and interpretability [36]. Fortunately, there has
been a substantial effort to develop new methods to probe these complex models. These
methods can be categorized into three types: connection weights-based, gradient-based, and
activation level-based approaches (Figure 2C) [15].

Connection weight-based feature importance scores quantify the global relationship between
each feature and the output (i.e., the label) by summing the learned weights assigned to connec-
tions between each input feature and the output layer [37,38]. Following the path through the ex-
ample artificial neural network (Figure 2C), the sum of connection weights (represented by line
widths) between the feature f1 and the output layer is larger than the sum of connection weights
between the feature f3 and the output layer, indicating f1 is more important than f3 for that model.
Trends in Genetics, June 2020, Vol. 36, No. 6 447



Box 2. A Crash Course in Deep Learning (DL)

ML algorithms inspired by the structure of the brainmake up a subfield ofML called DL. DL is promising for biology because DL
models can: (i) learn highly complex nonlinear patterns; (ii) continue to improve when given more training data (‘shallow’ ML
models tend to plateau); and (iii) they can learn from raw data without user defined features [60]. A DLmodel is made up of mul-
tiple layers of nodes connected by edges of different connectionweights (wx) (Figure IA). The nodes in the input layer contain the
feature values (fx) for an instance. The nodes in the hidden layers (hidden nodes) represent the sum of the nodes from the pre-
vious layer multiplied by their associated connection weights (∑wxfx). The node value from that summation is then passed
through an activation function (represented as a light switch), which determines the extent to which that node gets turned
on (i.e., activated). DL models can learn nonlinear relationships when the activation function used is nonlinear (e.g., the sigmoid
function). The output node (i.e., the predicted label) is the sum of the nodes from the last hidden layer and can be compared
with the true label to calculate the error in the model. A DL model is trained by propagating that error back through the model
and updating the learned connection weights (i.e., backpropagation of the error) until that error is minimized.

This type of DL algorithm, often referred to as a fully connected artificial neural network, is widely useful for modeling complex,
nonlinear relationships. Other DL algorithms many be useful for addressing specific types of biological questions (Figure IB).
For example, convolutional neural networks learn spatial patterns making them ideal for identifying sequence motifs and pat-
terns in images. Recurrent neural networks remember earlier predictions and are therefore ideal for sequential data or sequen-
tial sequence analysis. In adversarial learning, two DL models are trained in a sort of arms race, one learning to generate
synthetic data and the second learning to discern real from synthetic data, thus making them ideal for synthetic biology.

TrendsTrends inin GeneticsGenetics

Figure I. Graphical Explanations of Deep Learning Algorithms. (A) An example of a fully connected artificial neural
network. (B) Uses, graphical explanations, and example biological applications for three additional deep learning
algorithms: convolutional neural networks, recurrent neural networks, and adversarial learning. Abbreviations: TF,
Transcription factor.
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This approach was used to determine which microRNA features were the most important for
predicting the expression level of Smad7, a gene involved in disrupting a signaling process upreg-
ulated in patients with breast cancer [39]. Connection weight-based feature importance scores
can be misleading when features are on different scales, when positive and negative connection
weights cancel each other out, or when a connection has a large weight but is rarely activated
(i.e., the node is rarely turned on) [40].

The gradient-based feature importance scores (a.k.a. saliency) also quantify the global relation-
ship between a feature and the output, but do so by calculating the gradient, or the change in
the predicted output (e.g., the likelihood a gene is upregulated) as small changes are made to
the input feature (e.g., the frequency of regulatory sequence X). The gradient is calculated using
the partial derivative [41]. This approach was used to identify putative distal regulatory sequences
in genomic regions where positive and negative gradient-based importance score peaks repre-
sented enhancer and silencer regions, respectively [42]. This approach, however, is not useful
when small changes in the feature value do not change the output prediction [40].

The third type of approach probes the activation levels. The activation level refers to the output
value from a node after it has passed through the activation function (Figure 2C, Box 2). Acti-
vation level-based feature importance scores provide a local interpretation for an instance of
interest by comparing how much the value of a feature from that instance activates nodes in
the trained network compared with the feature values from a reference instance. A reference
instance for an image classification model could be one that is solid white, while a reference
for a model using a DNA sequence as instances could be an instance with the background
nucleotide frequency at every site. This approach, called DeepLIFT [40], has been used in mul-
tiple biological studies [43–45]. For example, Zuallaert et al. used DeepLIFT to find nucleotide
sequences important for predicting splice sites [44]. Because DeepLIFT probes activation
levels rather than connection weights, it avoids the pitfall of the connection weight-based
approach. Further, because it compares a specific instance with a reference, it also avoids
the pitfalls of the gradient-based approach.

In addition to these three approaches for determining feature importance, another way to
probe deep learning models is to learn what pattern each node in the network learned to iden-
tify. This can be done by finding real or simulated instances that maximally activate that node,
then the properties of those real or simulated instances can be used to interpret that node
(Figure 2C). For example, if the ten DNA sequences that cause node X to have the maximum
possible output value after passing through the activation function all contain the motif ACGG
TC, one could interpret that node X is trained to find the ACGGTC motif. Because probing
every node in every layer may produce results that are still too complex to interpret, dimension-
ality reduction techniques can be used to ease interpretation. For example, Esteva et al.
trained a deep convolutional neural network [46] (Box 2) to diagnose different types of skin
cancer from photos [47]. Because of the high level of complexity in their model (it contained
97 convolutional layers), visualizing the activation level at every node would be impossible.
Therefore, they used a dimensionality reduction technique to project, for each instance, the
output from the last hidden layer (containing 2048 nodes) into two dimensions. This allowed
them to visualize how their convolutional neural network learned to separate different types
of carcinomas.

Perturbing Strategies for Interpreting ML Models
Perturbing strategies involve modifying the input data and observing some change in the model
output (Figure 1C). Because modifications to the input data can be made regardless of the ML
Trends in Genetics, June 2020, Vol. 36, No. 6 449
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algorithm used, perturbing strategies are generally model agnostic. We discuss two general
perturbation-based strategies: sensitivity analysis and what-if methods (Figure 3).

Sensitivity Analysis
Sensitivity analysis involves modifying an input feature and measuring the impact on model
performance (Figure 3A). Feature modification typically means removing (i.e., leave-one-
feature-out) or permuting (e.g., set all values to the mean) one feature at a time. The decrease
in model performance after a feature is removed or permuted is an intuitive score for each feature
indicating its contribution to the predictions (Figure 3A). Because perturbing a feature not only
impacts that feature but also other features that interact with it, sensitivity analysis also captures
interaction effects for each feature. However, sensitivity analysis can miss important features if
correlation exists in the feature set. For example, if features X and Y are highly correlated, feature
Y could compensate when X is removed or permuted, masking its potential importance.

Che et al. used the leave-one-feature-out approach on their ensemble decision tree models to
find that genomic region length was the most important feature for identifying genomic regions
that contain clusters of genes acquired by horizontal gene transfer [48]. While the leave-one-fea-
ture-out approach provides an intuitive measure of importance, it is computationally expensive
because it typically requires training a new model for every perturbed dataset. Therefore, it is
not often used to interpret deep learning model (which are already computing intensive) except
when there are few input features. For example, leave-one-feature-out was used to determine
that, of five histone marks, removing H3K4me3 resulted in the largest decrease in a deep learning
model’s ability to predict transcription factor (TF) binding sites [49].

Permutation-based approaches determine feature importance scores by measuring how the per-
formance of an MLmodel changes when different features are randomly permuted. They are more
computationally efficient than leave-one-feature-out strategies because only one model needs to
be trained. This makes permutation a useful strategy when feature importance scores need to
be calculated iteratively. For example, a strategy called ‘gene shaving’ can be used to identify min-
imum sets of marker genes needed to predict a label (e.g., a disease state) by iteratively removing
the least important genes from the model until performance suffers. Deng et al. trained gene shav-
ing random forestmodels using permutation-based importance scores to identify aminimum set of
lung cancer marker genes [50]. Permutation-based importance scores are also particularly intrigu-
ing for genetic studies because the logic is similar to DNA mutagenesis experiments. It was dem-
onstrated that in silicomutagenesis (i.e., computationally permuting DNA sequences) could identify
which nucleotides impact tissue-specific gene expression the most [51]. Finally, the permutation-
based strategy can also be used in image analysis, where it is called occlusion sensitivity. Here, dif-
ferent regions in images are grayed out and the resulting change in performance is measured. For
example, occlusion of regions of blood smear images confirmed that a malaria classification model
performed worst when parasitized regions were grayed out [52].

What-if Analysis
The what-if approach (also referred to as counterfactuals [53]) measures how the prediction of a
particular instance changes (rather than the overall model performance) when the input value for
one or more features is changed. Thus, what-if analysis provides local interpretations while sen-
sitivity analysis provides global interpretations. Here, we focus on twowhat-if methods: partial de-
pendency plots (PDPs) and individual conditional expectation (ICE) plots (Figure 3B [16]).

PDPs show how a prediction changes when the input value for a feature of interest is changed,
marginalizing (i.e., ignoring) the effects of all other features [27]. Imagine we trained an ML
450 Trends in Genetics, June 2020, Vol. 36, No. 6
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Table 1. Platforms and Software Available for Interpretable Machine Learning

Name Strategy Use Scope Description Platform Refs

CamurWeb Probing Decision
tree-based
models

Global Interpret decision rules from classifier with alternative and
multiple rule models

Web-based tool [61]

DeepTRIAGE Probing Attention-based
deep learning

Local Deep learning for the tractable individualized analysis of gene
expression

Python package [62]

iml Probing,
perturbing

Model agnostic Global,
local

Interpretable machine learning: toolbox for implementing
multiple interpretation methods

R package [16]

iNNvestigate Probing Deep learning Global,
local

Toolbox for implementing multiple interpretation methods for
neural network (NN) models

Keras [63]

iRF Probing Random forest Global Iterative random forest: decision tree-based method to
identify significant feature interactions

R package [30]

LIME Surrogate Model agnostic Local Local interpretable model-agnostic explanations: a tool to
generate local surrogates for black box models

Python package [58]

Lucid Probing Deep learning Global,
local

Toolbox of methods for visualizing and interpreting neural
networks

Tensorflow i

NeuralNetTools Probing,
perturbing

Deep learning Global,
local

Toolbox for implementing multiple interpretation methods R package [64]

poim2motif Perturbing Nonlinear SVM Global Positional oligomer importance matrices. A framework for
extracting important sequence motifs from weighted degree
kernel SVM models

Python package [65]

SpliceRover Probing Deep learning Local Tool to interpret which nucleotides contribute most
predicting splice sites using DeepLIFT

Web-based tool [44]

The What-If
Tool

Probing,
perturbing

Model agnostic Global,
local

Code free toolbox for assessing, comparing, and interpreting
Tensorflow/python-based ML models

TensorBoard,
Jupyter,
Colaboratory
notebooks

i
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model that predicts the likelihood that a sequence will be bound by a TF. A PDP could show, for
example, how the TF-binding likelihood of the sequence in question would change if the nucleo-
tide at the position of interest is changed from C to A, G, or T (left panel, Figure 3B). For example,
this approach was used to demonstrate the impact of RNA sequence features (e.g., k-mer
abundance) on the predicted likelihood of ribosome recruitment to an mRNA [54]. However,
PDPs can miss important features when there are interactions between features. Imagine if a C
at position 3 increased TF binding affinity when position 2 contained a T, but decreased binding
affinity if position 2 contained an A. Because position 2 is marginalized in the PDP of position 3,
the interaction may mask the importance of position 3.

ICE plots were proposed to address this limitation of PDPs [55]. ICE plots are essentially PDPs
generated for every individual instance in the dataset. For example, an ICE plot for position 3
Figure 3. Perturbing the Input to a Machine Learning (ML) Model. An example ML model predicting if a transcription
factor (TF) may bind (i.e., the label) to a specific sequence (i.e., the features) can be interpreted with perturbing strategies
(A) Sensitivity analysis. Leave-one-feature-out means a new ML model is trained on the same input data with one feature
(e.g., position 3) removed. Then the overall performance of the original model and the newmodel are compared. Permutation
means the original model is applied to input data with the values permuted (e.g., shuffled) for one feature at a time. The per-
formance of the model applied to the original and the shuffled data are compared. Both sensitivity analyses on position 3
shown here resulted in a decrease in performance, leading to the interpretation that position 3 is important for TF binding
(B) What-if analysis. The partial dependency plot (left) shows the TF binding likelihood if position 3 was an A, C, G, or T, ig-
noring the effects of nucleotides at other positions. This plot shows that a C at position 3 increases the likelihood of TF bind-
ing. The individual conditional expectation plot (right) shows the TF binding likelihood score for every instance (dot) in the
dataset when position 3 is A, C, G, or T. This plot shows when position 3 is C, the binding likelihoods have a bimodal distri-
bution, which is due to interaction with position 2 in this hypothetical example.
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Outstanding Questions
How can we interpret ML models
trained on heterogeneous (e.g., multi-
omic) and high dimensional (number
of features NN number of instances)
data? ML algorithms are well suited to
take advantage of the large-scale
multi-omic data for generating predic-
tive models. However, interpreting ML
models trained on high dimensional
and heterogenous data remains
challenging. These challenges are ex-
asperated when features are highly
correlated, dependent, and of different
types (e.g., continuous, binary, or
categorical).

What ML modeling and interpretation
strategies are best for studying com-
plex biological systems? Given the im-
portance of nonlinear effects in biology
(e.g., epistatic interactions, feedback
loops, community dynamics, synergis-
tic/antagonistic effects), interpretation
strategies that can tease out these
complex, nonlinear relationships are
critical.

How can we benchmark existing
and new interpretation strategies for
applications in genetics and genomics?
Availability of high quality, benchmark
dataset will be crucial. In addition, the
strategies used to interpret an ML
modelmay identify similar or different un-
derlying logic and characteristics of the
model. How can we compare ML inter-
pretation strategies and results? Further,
how couldwe join the findings frommul-
tiple strategies into amore complete and
coherent interpretation of that model?

How can interpretable ML be accessible
for biologists? Using and implementing
ML interpretation strategies can require
significant computational knowledge.
What roles will interdisciplinary training in
computational and data science and
user-friendly software play in encourag-
ing the interpretation of ML models in
genetics and genomics?

How can biologists ensure that model
interpretability will continue to be an
area of development for folks working
in the artificial intelligence (AI) field? As
the power and precision of ML models
improves, more and more trust will
likely be placed in them. What role
can biologists play in shaping the
future of trustworthy AI, particularly in
the context of model interpretability?
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would show that the presence of a C at position 3 only increases the TF binding likelihood in a
subset of sequences, which, with further investigation, are the sequences with a T in position 2
(right panel, Figure 3B). Because they show how changing a feature value changes the prediction
of each instance, ICE plots can uncover interactions or group-specific effects that may be of bi-
ological importance. Because this strategy does not require model retraining, it is well suited for
interpreting deep learning models. For example, ICE plots were used to better understand
what patterns of gene expression an adversarial deep learning model (see Figure IB in Box 2)
learned were characteristic of single cell data (referred to as sensitivity plots [56]). By varying
the expression level of individual genes (the feature) within the single cell (the instance), they
found the genes with the biggest impact on the prediction (real or simulated) were genes
known to be markers for particular cell-type states.

What-if analyses can provide highly detailed and intuitive interpretations of ML models, including
the magnitude, direction, and nonlinearities in the relationships between features and the output
label. A limitation is that PDP and ICE plots can only be visualized for one or two features at a time,
so they are typically only generated for models with few features or for a subset of features
deemed important by another interpretation strategy or from domain knowledge [57].

Surrogate Strategies for Interpreting ML Models
Image you have an MLmodel that is truly a black box, meaning that it cannot be probed, and per-
turbation strategies do not provide useful information. In such a case, one can train a more inter-
pretable model to approximate the black box model. Examples of interpretable models include
linear models where coefficients reflect feature importance, or decision trees where mean de-
crease node impurity can be calculated. These inherently interpretable models are referred to
as surrogate models. For example, to generate a surrogate model for a black box model that
can predict gene upregulation using regulatory elements as features, we would first apply the
black box model to a set of genes,G, and extract the black box predicted label (i.e., up- or down-
regulated) for those genes (Figure 1B). Then we would use the same set of genes G as the in-
stances and the black box predicted labels as the labels to train a surrogate.

One major limitation of surrogate models is that black box models are often highly complex
(e.g., highly nonlinear, many higher order interactions) and, thus, cannot be fully learned by an
interpretable surrogate. To overcome this, one approach is to generate a surrogate to learn just
a portion of the black box model, known as a local interpretable model-agnostic explanation
(LIME) [58]. While the complex logic underlying the whole model may be too much for a surrogate
model to learn, the logic for one instance or a group of similar instances (e.g., coexpressed
genes), hence local, may be simple enough. For example, LIME was used to better understand
why some patients weremisclassified by a black boxmodel predicting survival after cardiac arrest
[59]. A LIME model for a patient that was mispredicted to survive showed that the black box
model was too heavily influenced by certain features (e.g., healthy neurologic status, lack of
chronic respiratory illness) and did not place sufficient weight on other features that are also
important (e.g., elevated creatinine, advanced age).

Concluding Remarks
Interpretability is critical for applications of ML in genetics and beyond and will therefore see sub-
stantial advances in the coming years. Just like there is no one universally best ML algorithm,
there will not likely be one ML interpretation strategy that works best on all data or for all ques-
tions. Rather, the interpretation strategy should be tailored to what one wants to learn from the
ML model and confidence in the interpretation will come when multiple approaches tell the
same story. Luckily, many user-friendly tools have already been developed to facilitate
Trends in Genetics, June 2020, Vol. 36, No. 6 453
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interpreting MLmodels using the strategies described in this review and more (Table 1). Critically,
the insights that can be learned from interpreting an ML model are constrained by the content,
quality, and quantity of the data used to generate themodel. Care should be takenwhen selecting
data and features to avoid introducing technical or biological artifacts into the models and, thus,
into the interpretations.

There are still many challenges to interpreting ML models in genetics and genomics (see
Outstanding Questions). These challenges, while not necessarily unique to genetics or genomics,
represent opportunities for computational biologists to innovate and contribute novel solutions.
They also highlight the importance of training the next generation of biologists able to work at
the intersection of computer and biological science.
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