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18 Abstract Materials informatics is increasingly finding ways to exploit ma-
19 chine learning algorithms. Techniques such as decision trees, ensemble meth-
20 ods, support vector machines, and a variety of neural network architectures
21 are used to predict likely material characteristics and property values. Supple-
22 mented with laboratory synthesis, applications of machine learning to com-
23 pound discovery and characterization represent one of the most promising
24 research directions in materials informatics. A shortcoming of this trend, in
25 its current form, is a lack of standardized materials data sets on which to train,
26 validate, and test model effectiveness. Applied machine learning research de-
27 pends on benchmark data to make sense of its results. Fixed, predetermined
28 data sets allow for rigorous model assessment and comparison. Machine learn-
29 ing publications that don’t refer to benchmarks are often hard to contextualize
30 and reproduce. In this data descriptor article, we present a collection of data
31 sets of different material properties taken from the AFLOW database. We de-
32 scribe them, the procedures that generated them, and their use as potential
;31 benchmarks. We provide a compressed ZIP file containing the data sets, and a
35 GitHub repository of associated Python code. Finally, we discuss opportunities
36 for future work incorporating the data sets and creating similar benchmark
37 collections.
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39 informatics
40
41
42 1 Introduction
43
44 The previous decade saw widespread interest in machine learning, affecting
3‘2 and sometimes transforming fields and industries. Machine learning has ex-
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Fig. 1 A histogram of the distribution of R? measures for 150 ridge regressions predict-
ing compound shear moduli. Each regression model was trained on 75% of the available
composition-based data and tested on 25%, each using a unique random_state input to the
train_test_split function.

isted for more than half a century as an area of research [1]. The swell of
attention to it, in recent years, has been driven largely by advances in neural
network algorithms, and deep neural networks in particular. However, algo-
rithm development is only part of the story. Other key factors that have made
machine learning so useful include special purpose GPU chips, the general
increase in computing power associated with Moore’s Law, and the unprece-
dented availability of training data.
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Successfully applying machine learning tools to a scientific or industrial
domain depends on access to large, high-quality data sets [2], together with the
software infrastructure needed to process them. In the case of materials science
and informatics, sources of training data include shared research databases
such as AFLOW [3], the Materials Project [4], the Inorganic Crystal Structure
Database (ICSD) [5], and the Open Quantum Materials Database (OQMD) [6].
A more comprehensive list of materials databases can be found in Hill et al. [7]
Examples of software specifically designed for materials data analysis include
the matminer [8] and pymatgen [9] Python libraries, Quantum ESPRESSO
[10], and the proprietary data platform available through Citrine Informatics
[11].

A good overview of the kinds of problems in materials science to which ma-
chine learning is applicable and which could benefit from having benchmarks
can be found in Schmidt et al. [12]. However, the need for standard benchmarks
isn’t unique to materials science. The motivation and push toward establishing
them exists in any field where machine learning interacts with real-world data.
Benchmark development can be seen in mining biological data to address a
similar set of problems as materials informatics, as in Olson et al. [13] Widely
used benchmark data sets are often driven by and coevolve with advances
in algorithm development. Some notable cases of this in image processing
and computer vision include the MNIST data set of handwritten digits [14],
widely used for training character recognition systems, as well the CIFAR-10
and CIFAR-100 data sets [15]. In the case of MNIST, character recognition
represents a well-defined task amenable to different algorithms, and so is an
excellent problem for benchmarking. One such candidate in materials science
is the prediction of band gap values, for which there are many disparate ap-
proaches including ensemble methods [16] and mixed classification-regression
models [17]. Therefore, benchmarking band gap predictions could serve as a
leading example of reproducible machine learning work in materials science.
Cataloging benchmark model performance won’t be insightful in every case,
such as with formation energy; this is because formation energy can often
be calculated to “chemical accuracy” using density functional methods [18].
However, in general, we believe that benchmark data sets can contribute sig-
nificantly to the use of machine learning in materials science.

It’s important to note the reason that partitioned data sets themselves
are provided with this article, rather than simply publishing the procedures
and code needed to create them. A different instance of the training/testing
data set partitions, being randomly generated with the scikit-learn function
model_selection.train_test_split, will almost certainly be different than
those provided. The importance of this can be seen in Figure 1, in which ridge
regressions are trained using the 0liynyk composition-based feature vector
(CBFV) [19] to predict values for the shear modulus data included with this
article. The train/test split was determined randomly and independently for
each instance of the regression model, resulting in a 0.18 spread of measured
R? values. Without reference to fixed training and testing sets, a researcher
using the same methods might honestly report an R? value anywhere along
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this distribution. Here it’s clear that the shared data sets themselves represent
the standard for comparison, and not just their relative proportions.

2 Data Description

Our data sets were created from aflowlib.org, using the website’s provided
API for structuring database queries. The list of available material properties
for which one can query AFLOW is provided in the file valid_targets.csv.
valid_targets.csv contains 180 distinct properties in total, though it should
be noted that many of them have no physical meaning. Rather, those proper-
ties provide information about the computational environment used to calcu-
late the physical properties.

Responses from AFLOW were then returned from the queries as JavaScript
Object Notation (JSON) files, in the directory property_files. Each JSON
file encodes numerical property information for a distinct material compound.
Using a Python script, we then iterated through the JSON files according to a
property of interest (e.g. shear modulus), and collected the associated values
for each property into a single comma-separated value (CSV) file. These files
all take the form of property_name.csv, and are stored in the directory simply
labeled data.

Following this, the script process_data.py was called to partition the single
data set for each property into three subsets, for model training, validation,
and testing, in proportions of 70%, 15%, and 15% of the original property file,
respectively. These smaller CSV files are grouped by property name in the
processed_data folder, ready for use. Duplicate values were dropped prior to
splitting, and properties with fewer than 1,000 data points were not split or
included in processed_data.

Not included with this article are the Crystallographic Information Struc-
ture (CIF) files [20] which encode structural information for each compound.
However, these can be retrieved with the download_cif_files function in
process_data.py. Examples of work in which structural information has been
exploited as a feature for training machine learning models include [21] and
[22].

2.1 Supporting Data and Citations

The collected data sets, representing the essential contribution of this work,
can be accessed at https://doi.org/10.6084/m9.figshare.11954742 together
in a single supplementary ZIP file. The code used to create them is available
at https://github.com/oconradh/benchmark_aflow. When using them as ma-
chine learning benchmarks, please cite this article in addition to the AFLOW
database from which the data sets were originally accessed. Please also take
care to respect the non-commercial license with which AFLOW provides its
data.
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2.2 Data Utility

The goal of this work is to supply and contextualize standardized training, val-
idation, and testing data sets for the 180 properties available via the AFLOW
API, for use in materials informatics research. Additionally, we provide the
exact procedure by which the data was retrieved and transformed, in the form
of a publicly available GitHub repository. In doing this, we aim to support
further work in materials informatics by providing baseline standards for ma-
chine learning model evaluation against these data sets. By using them as
fixed reference points for model validation and performance, one can guar-
antee meaningful comparison across classes of machine learning algorithms,
parameterizations of a particular model, and model featurization schemes.

Proper use of the data sets as benchmarks will involve training one’s ma-
chine learning model on the 70% training set, tuning hyperparameters on the
15% validation set, and assessing overall model performance on the 15% test
set. Importantly, the model must not be exposed to the test set at any point
prior to final performance evaluation [23]. It’s possible to encounter a situa-
tion in which model validation is of little or no importance, and the validation
data better used in testing. In this case, it would reasonable to combine the
provided validation and test sets into one larger, 30%, test set. This would
need to be discussed, however, and could no longer be compared against the
original three set scheme.

We make no claims to the empirical or theoretical accuracy of the data,
having not produced it ourselves. Importantly, no data cleaning or other trans-
formations were applied. Successful use in machine learning may require first
filtering out missing or physically impossible values, or transforming a data
set’s distribution. Examples here might include the removal of compounds
with an electronic energy band gap (Egap) of zero, or extreme atomic energy
(energy_atom) outliers. It’s beyond our scope to discuss each kind of property
being provided; more information for interpreting them and their derivations
can be found at the AFLOW website, www.aflow.org.

2.3 Future Work

A natural continuation of this project would be to extend it to more properties
and additional sources of data. Promising and useful sources here include (but
are certainly not exhausted by) those mentioned above: the Materials Project,
the ICSD, and potentially new databases derived from Quantum ESPRESSO
calculations.

Additionally, in the spirit of establishing informatics benchmarks, one could
publish and maintain a comprehensive survey of learning algorithm perfor-
mance for given data sets and featurizations. In this sense the metric being
standardized would be the optimal, fully-validated implementation of a ma-
chine learning algorithm with respect to a particular materials data set. Scores
could then be determined by conventional measures of performance, such as
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coefficient of determination (R?), root-mean-square-error (RMSE), etc. and
represent the best observed performance for an entire class of algorithms.

Finally, another project would be to establish qualitative standards for
materials informatics data sets based on existing domain knowledge. These
would be shared heuristics and constraints that particular materials data sets
(and especially benchmark sets) ought to satisfy in order to be both physically
meaningful and useful in a machine learning context.

While these additional directions could help to establish more benchmarks,
the standard data sets themselves are only as good as the work that uses
them. Any research project that systematically incorporates our benchmarks
as a means of evaluating machine learning methods would build on the work
presented here, and further illustrate the importance of benchmarking.
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