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16
17 One of the most common criticisms of machine learning is an assumed inability for models to extrapolate,
18 i.e. to identify extraordinary materials with properties beyond those present in the training data set. To
19 investigate whether this is indeed the case, this work takes advantage of density functional theory calculated
22 properties (bulk modulus, shear modulus, thermal conductivity, thermal expansion, band gap, and Debye
2 temperature) to investigate whether machine learning is truly capable of predicting materials with proper-
53 ties that extend beyond previously seen values. We refer to these materials as extraordinary, meaning they
24 represent the top 1% of values in the available data set. Interestingly, we show that even when machine
o5 learning is trained on a fraction of the bottom 99% we can consistently identify % of the highest performing
26 compositions for all considered properties with a precision that is typically above 0.5. We explore model per-
27 formance as the extrapolation distance is increased in various ways including, introduction of a gap, removal
283 of certain elements, and removal of certain structure types. Moreover, we investigate a few different modeling
29 choices and demonstrate how a classification approach can identify an equivalent amount of extraordinary
30 compounds but with significantly fewer false positives than a regression approach. Finally, we discuss cau-
31 tions and potential limitations in implementing such an approach to discover new record-breaking materials.
32
33
34
35 1 Introduction set bias. For example, some compounds are easier to
36 synthesize and simulate or may be of more interest to
37 Materials science has embraced the idea of data-driven researchers due to cost, performance in applications,
38 research with consistent success [1, 2, 3, 4, 5, 6]. A~ or novelty. For this reason one must ask: do we have
39 though some research has focused on using experi- the information necessary, on a physical level, to even
40 mentally derived properties from literature 7, 8, 9, determine whether a material is extraordinary given
41 10], many researchers have also focused on predicting highly clustered and largely “run-of-the-mill” mate-
42 density functional theory (DFT) computed properties rials in the data set? With this in mind, questions
43 using a variety of different featurization schemes and  of the efficacy of machine learning for screening pur-
jé learning approaches [11, 12, 13, 14, 15, 16, 17, 18] poges are valid.
16 A large portion of these publications cite the ben- Disregarding the bias implicit in materials selec-
47 efits of machine learning for screening purposes, as tion, this work seeks to establish whether machine
48 experts have long recognized that it is impossible to  learning systems have the potential to predict the
49 manually traverse chemical space [19, 20]. This direc- most exceptional materials from existing data. As a
50 tion of query has, however, invoked a very appropri- hest case scenario, we consider identifying extraordi-
51 ate concern. Despite examples of success [4, 21, 22, 5], nary chemical compositions from a list of well-established
52 there is skepticism in the field [23] as to whether ma- DFT computed properties. The ability to complete
53 chine learning can truly find extraordinary materials this simplified screening task represents a minimum
54 from the overwhelming combinatorial complexity that requirement if we are to seriously consider machine
55 arises from chemical space. This concern is one that Jearning tools when screening for extraordinary ma-
56 lies in a fundamental assumption of many machine terjals. In this work we build upon recent publication
57 learning techniques, i.e., that data is independent and by Xjong et al. exploring the degree to which extrap-
o8 identically distributed (i.i.d.) [24]. olation may or may not be possible for materials in-
o9 For a materials scientist, the i.i.d. assumption im-  formatics [25]. We explore the performance of various
60 plies the training data fairly represents the full diver- machine learning algorithms for the task of predict-
2; sity of reality. This is clearly not the case due to data ing extraordinary materials. Using the Automatic-
63
64
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FLOW for Materials Discovery (AFLOW) database [26]
we are able to select compounds from a library which
contains structures obtained from the Inorganic Crys-
tal Structure Database (ICSD) [27]. With this data,
we quantify the potential performance one might ex-
pect when seeking to identify extraordinary materials
outside of the training set using a machine learning
system. Furthermore, we show the results of apply-
ing a trained model to the Pearson Crystal Database
(PCD) [28] and discuss the implications of the result-
ing predictions.

2 Methods

2.1 Featurizing the Data

The composition-based feature vector (CBFV) is a
simple way of featurizing chemical compositions by
performing mathematical operations on the element
properties. Typically, the result of these operations
are a set of unique vectors for each unique chemi-
cal composition. Using this approach, the CBFV can
then be mapped to a target material property using
various machine learning algorithms. This technique
has been popular and fits well into a materials screen-
ing narrative [29, 30, 2]. In this work we use a fea-
turization scheme (see supplemental code) that con-
siders the average, range and variance of the element
properties. The train and test data is also scaled via
scikit-learn’s StandardScaler and Normalizer us-
ing the training data statistics.

2.2 Defining Extrapolation

The traditional notion of extrapolation loses meaning
in the context of composition-space since elements are
both discrete and finite. In the case of fractional com-
positions, all materials can be thought of as an inter-
polation between the pure elements. This is analo-
gous to a ternary phase diagram with many regions
which are not thermodynamically stable. A true ex-
ample of extrapolation would be the ability to pre-
dict compounds featuring elements which are com-
pletely absent in the training data. Another definition
would be the identification of the material composi-
tions which have properties that extend beyond all
values in the training data. To capture this notion of
extrapolation, we operationally define extraordinary
materials as any material in the top 1% of our data
set in terms of their properties (see Figure 1).

In order to evaluate the extrapolation task it be-
comes necessary to quantify the degree of extrapola-
tion, i.e. the distance between the training data and
the materials labeled extraordinary. This can be done
in three different ways:
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Figure 1: The distribution of bulk modulus data
is separated into ordinary and extraordinary com-
pounds. The train test split ensures that the top 1%
is never trained on. 15% of the non-extraordinary
(ordinary) data are included in the test set so we can
see whether our model can successfully distinguish
between extraordinary and ordinary values.

1. All of the training data is present except for
those within an artificially defined “gap” area.
This is done by withholding top 4%, 8%, and
12% of the data below the extraordinary thresh-
old (See the gray cross-hatched region to the left
of the vertical dashed line in Figure2).

2. In addition to the gap area, we can also ex-
clude from the training data compounds con-
taining the most prevalent element from the
data labeled “extraordinary” (See the yellow
data points representing boron-containing struc-
tures when predicting shear modulus in Fig-
ure 2).

3. Alternatively, rather than excluding the most
prevalent element, we can exclude the most preva-
lent “structure type” in the extraordinary data
(See red data points representing space group
221 with 2 atoms per unit cell in Figure 2). Struc-
ture type is defined by taking the space group
plus the number of atoms in the unit cell. This
allows flexibility to find closely related entry
prototypes within structure space.
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Figure 2: Actual versus predicted for logarithmic
thermal expansion showing three ways of extrapola-
tions: gap, withheld element, and withheld structure.

2.3 Data and Property Procurement

In order to evaluate the performance of our machine
learning-based extrapolation task, we use data avail-
able from AFLOWlib.org [31] whose properties are
calculated using structures from the ICSD library.
The following properties were available and deemed
appropriate in preparation for our study: bulk mod-
ulus, shear modulus, thermal conductivity, thermal
expansion, band gap, and Debye temperature. In
the case of duplicates, we sorted by ICSD number
and kept the last entry. The data for these prop-
erties are available in a GitHub repository [32]. In
the case of Debye temperature, thermal conductivity,
shear modulus, and thermal expansion properties we
scale the target by applying a base 10 logarithm to
more closely match a normal distribution for learning
purposes. To test the efficacy of our learning mod-
els, we use the train-test scheme shown in Figure 1.
First, we isolate the top 1% of properties, label them
as extraordinary, and add them to the test set. Next,
we randomly sample 15% of the bottom 99%; these
15% are labeled as ‘ordinary’ and added to complete
the test set. The training set is represented by the re-
maining data, and the highest 6% of this data is then
assigned ‘extraordinary’ labels to match the same ra-
tio of ordinary and extraordinary labels in the test
set. For clarity’s sake, the code to generate the ordi-
nary/extraordinary data is available on GitHub.

We also obtained compositions corresponding to
156 421 unique measured structures in the PCD and a
list of 10 590 computed elpasolite compounds [33]. Af-
ter extracting the chemical compositions from these

data sets, we featurize and scale them using the same
steps as above. The resulting data is then input into
our best screening tool, a trained classification model,
to obtain probabilities which are then ranked to gen-
erate a list of interesting compositions to investigate.

2.4 Models and Performance Metrics

To investigate whether extrapolation is possible, we
apply two linear and non-linear models. These are
compared to nearest neighbor classification and re-
gression models. For the task of predicting compound
values we use a ridge regression and a support vec-
tor regression with a radial basis function (rbf) ker-
nel. We also approach the problem as a classification
task using a logistic regression and a support vec-
tor classification (rbf). For simplicity we employ the
scikit-learn [34] implementation of these models
and optimize parameters using grid search techniques
(see GitHub for details of the implementation). To as-
sess performance we use the classification metrics of
precision and recall, which are defined in equations 1
and 2 where tp, tn, fp, fn are true positive, true neg-
ative, false positive, and false negative, respectively.
Precision is an effective metric to determine how often
our predictions result in extraordinary compounds.
Recall is a metric used to determine what fraction of
extraordinary compounds are correctly identified by
those predictions.

sion = 7 1
precision =
tp+ fp
t
recall = —2 (2)
tp+ fn

The use of these metrics requires that some thresh-
old value be established from which a label “extraor-
dinary” or “ordinary” can be assigned. It is natural
to use the default threshold of 0.5 for a classifier. For
the regression models, we select these thresholds by
optimizing the F1 score on the training data. The F1
score represents the harmonic mean of precision and

recall: o I
Fl—o prec'zs'zon - reca 3)
precision + recall

Although optimization on the F1 represents a good
compromise between the two metrics, one could fa-
vor precision or recall when choosing the threshold in
practice. In addition to these performance metrics, it
is also possible to define threshold independent met-
rics such as the area under the precision-recall curve.
This has the added benefit of being robust to imbal-
anced data.
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3 Results & Discussion

The capability of machine learning to identify ex-
traordinary materials is tested for the following prop-
erties: bulk modulus, shear modulus, thermal expan-
sion, thermal conductivity, band gap and Debye tem-
perature. The regression and classification of these
properties seeks to optimize different loss functions.
Because of this, they each have their place for use as
screening tools. In this work, we are particularly in-
terested in materials discovery, or a model’s ability to
extrapolate to extraordinary materials and consider
the ability of both methods for this application.

3.1 Screening as a Regression Task

The ability to effectively train a regression model is
dependent on diverse data and a reasonable distribu-
tion of values. We demonstrate the ability to extrap-
olate to a majority of extraordinary materials for each
property. Figure 3a clearly shows the ability of a ridge
regressor to identify extraordinary compounds for the
property of bulk modulus. (Remaining property fig-
ures are available with the supplementary code.) The
threshold values in this figure are obtained from the
training data and used for generating classification
metrics. This performance is representative of all
properties tested.

3.2 Screening as a Classification Task

Classification is a great alternative to regression if one
is only interested in identifying extraordinary materi-
als. The trade off when using classification is that the
property value of extraordinary materials will not be
predicted. Additionally, as a real task, the process of
choosing how many true and false labels to use is un-
clear; a balance must be struck between precision and
recall. The performance of the logistic regression is vi-
sualized in Figure 3b for the same bulk modulus data.
In our implementation, classification is almost always
superior to the regression task, as demonstrated by a
consistently higher precision and a nearly equivalent
recall.

Moreover, classification does not depend on the
distribution of the data. However, the choice of thresh-
old for the training set will drastically affect how ag-
gressive the classifier is. If too few data are labeled
as extraordinary the model will fail to generate suf-
ficient labels to represent the test set. If too many
are labeled as extraordinary the model is susceptible
to very high false positive rates, and therefore low
precision scores.

3.3 Quantifying Extrapolation

The results of this work show that in principle, ex-
trapolation via both classification and regression-based
machine learning approaches should be able to iden-
tify and predict extraordinary materials with proper-
ties beyond those present in the training data. Al-
though there are no previously defined values that
might constitute “adequate extrapolation performance,”
it is clear that the non-naive models demonstrate the
ability to identify a large fraction of the compositions
labeled as extraordinary.

This outcome provides a positive response to the
persistent question of whether or not materials infor-
matics approaches will be able to identify new com-
pounds with exceptional properties. Does this re-
search suggest that extrapolative studies for materials
discovery will be useful or even transformative? To
answer this question we need to consider four scenar-
ios.

Scenario 1: Identifying extraordinary compounds
by random guessing. In our original data set we set
aside the top 1% as extraordinary and all of these
compounds were added to a mixture of 15% of the
lower 99% of ordinary compounds. Therefore, ran-
dom guessing would yield a 1/15 = 6% success rate
in classifying extraordinary compounds.

Scenario 2: Relying on chemical intuition. Re-
searchers almost never rely on random guessing when
screening for candidate materials. A researcher will
have a degree of domain expertise resulting from train-
ing as well as their ability to uptake information from
the published literature. However, a researcher will
also be impacted and biased by their “chemical intu-
ition” drawn from prior experience. Despite Scenario
2 being the modus operandi, the Materials Genome
Initiative [35] has urged the research community to
reconsider this approach. Not only is the outcome of
Scenario 2 highly variable and subjective, but history
has shown that this approach is slow and leads to lo-
cal optimization. Rather than exploring the breadth
of chemical whitespace, researchers have focused on
clusters of known chemistries and structures with pri-
marily minor elemental substitutions.

Scenario 3: A mnearest-neighbor approach. Hu-
mans approaching the task of extrapolation will nat-
urally identify extraordinary materials based on com-
position and operate under the assumption that sim-
ilar chemistries might have similar properties. For
example, if main group borides and carbides represent
superhard materials, perhaps borocarbides mixed with
transition metals would not be unreasonable as su-
perhard candidates. If scenario 2 relies on human
intuition, scenario 3 is our attempt to automate this
intuition. For any unknown compound, we can as-
sign it the same property value as its closest neighbor.
This is done by encoding composition into vectors and
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Figure 3: (a) The actual vs. predicted values for a ridge regression trained on bulk modulus. (b) The actual
values vs. the probability, obtained from a logistic regression, of being extraordinary. All data in the training
set has values lower than 300 GPa. Data to the right of the vertical line represent extraordinary compositions.

finding pairs with the smallest euclidean distance.

Scenario 4: Machine learning-based predictions of
benchmark materials combined with domain knowl-
edge and chemical intuition. Researchers seeking to
identify global optima in extraordinary materials will
probably benefit from this approach. Our research
shows that, depending on the property being pre-
dicted, models typically exhibit a precision of ~0.5.
In other words, every other compound suggested would
be extraordinary! In the subsequent section, we ex-
plain why this will likely have reduced efficacy. How-
ever, if true, this represents a dramatic breakthrough
for materials discovery far superseding even the most
optimistic outcomes of Scenario 1, 2, or 3. Moreover,
researchers could look at the list of candidate extraor-
dinary materials and then focus specifically on exam-
ples that fall outside of typically studied chemistries
or crystal structures in an attempt to identify globally
optimal extraordinary compounds. Finally, the recall
values are typically 0.75 or greater for all of the prop-
erties we predicted. Therefore, in a best case scenario
(where i.i.d. holds true), this work suggests an ability
to identify a new benchmark material on average ev-
ery other attempt while capturing the vast majority
of possible extraordinary compounds. Though there
are few corroborative examples of this degree of suc-
cess.

In comparing scenario 3 and 4, we can look at the
average performance across all properties. For these
predictions we compare regression, classification, and

nearest neighbor approaches. All approaches outper-
form random guessing, nevertheless, a naive nearest
neighbor approach is typically inferior to our ridge
regression and logistic regression. The discrepancy
between the nearest-neighbor and other approaches
only increases as we extend the extrapolation task
by increasing gap distance or excluding prevalent ele-
ments. Removing structure types has a negligible ef-
fect likely because the space group plus number of el-
ements in unit cell approach is inadequate to describe
structures. Indeed, structure featurization is an on-
going research area in materials informatics. Sur-
prisingly, introduction of a gap has minor impact on
the classification when all elements are present, but
improves classification performance when prevalent
elements are removed. This is likely because those
compounds near the ordinary-extraordinary bound-
ary have the highest probability of being mislabeled.

3.4 Limitations and Cautions

The precision and recall of the models we report here
suggest exciting avenues for discovering new record-
breaking materials. However, we caution that this ap-
proach will have fundamental limitations which sug-
gest a more wary optimism.

The first limitation has to do with the mechanisms
associated with different properties. If a researcher is
looking to discover a new composition which achieves
a record-breaking property and does so with the same
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Figure 4: All machine learning models are able to suc-
cessfully identify extraordinary compositions from the
test set. However, the classification models, shown
with dotted lines, also have the advantage of sig-
nificantly fewer false positives. Standard deviations
(shown via shading) were generated by assigning the
bottom 99% train-test split using 5 different random
seeds. The properties bulk modulus, thermal conduc-
tivity, shear modulus, band gap, Debye temperature
and thermal expansion are represented by their sym-
bols B, k, G, Eg, Tp, .

fundamental mechanism present in the training data
compositions, they will likely be successful. On the
other hand, if a researcher is seeking to discover a
record-breaking material which achieves its extraordi-
nary properties by leveraging a new mechanism, not
common in the training data, this will be unlikely.
Without numerous examples to train from, this ex-
trapolation approach is unlikely to yield new physics
and mechanistic insight. For example, given many
compounds exhibiting Bardeen-Cooper-Schrieffer su-
perconductivity to train from, it is very unlikely that
cuprate oxides would have been identified as extraor-
dinary candidates for high-T. superconductivity since
these operate on a completely different (and yet un-
explained) mechanism of superconductivity[36]. At
the same time, careful examination of poor predic-
tions in the training data set could lead to physical
insight into new mechanisms. For example, if a spe-
cific chemistry or class of material are consistently
poorly predicted despite sufficient training data then

a researcher could postulate that their descriptors are
simply not capturing the unique physics operating in
that chemistry and could therefore be investigated in
more detail [37].

A second limitation centers around the critical
i.i.d. assumption in materials data used for materials
informatics. Despite emerging efforts from Citrine In-
formatics [38], the Materials Data Facility (MDF) [39],
and others, materials science as a discipline is still
lacking robust data repositories for many properties
of interest. Additionally, even where data is avail-
able there exist challenges with data heterogeneity,
inherent error in measurement or calculation of ma-
terials properties, imbalanced classes, sparsity, bias
towards high performing materials, and more [40, 41,
42]. Models are truly only as good as the data avail-
able to train from. Or, as Charles Babbage [43] put
it:

“On two occasions I have been asked, ‘Pray,
Mr. Babbage, if you put into the machine
wrong figures, will the right answers come
out?’...I am not able rightly to appre-
hend the kind of confusion of ideas that
could provoke such a question.”

Inherent to the issue of data sampling is the way
in which a researcher chooses to generate a list of po-
tential candidates to screen over. In our setup, this
is trivial. However, an honest attempt to screen for
extraordinary properties must confront this in a rea-
sonable way. As a most simple approach, researchers
could use a database of known compounds. We demon-
strate this method by utilizing the Pearson Crystal
Database as a list of potential candidates to ensure
that predicted compositions are viable on a physical
level. An alternative approach may be to generate a
list of possible compositions and to screen these fic-
tional compositions similarly to the elpasolite work of
Faber et al [33]. One such list could then be taken
and an attempt to simulate or synthesize materials
from the given composition could be made in order
to validate the results. However, regardless of selec-
tion, one cannot be sure that the resulting data is
amenable to learning from the trained model.

We see evidence of this limitation when we com-
pare the compositions of the extraordinary bulk mod-
ulus materials predictions generated from the PCD vs
those top 1% that were assigned from the AFLOW
repository data. The ranked elemental prevalence of
identified extraordinary compounds shows that while
nearly all the same elements are present, the propor-
tion and ratio of these is highly variable suggesting a
lack of parity between training data and those com-
pounds which have been synthesized. This is further
highlighted by the fact less than 0.1% of composi-
tions from the PCD are predicted as extraordinary
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Figure 5: The precision-recall Area-under-curve (AUC) is computed as the average across all properties. The
three extrapolation cases are considered for all gap sizes using four different model types, ridge regression
(Ridge), logistic regression (Logistic), nearest-neighbor regression (nnr), and nearest-neighbor classification
(nnc). (left) The entire training data is used (except the gap), (center) the most prevalent element is removed
from training, and (right) the most prevalent structure is removed from training.

while the the top 1% of training data were labeled
as extraordinary for model generation. The dispar-
ity between the AFLOW data and the elpasolite data
could not even be evaluated as the model failed to
label a single composition as extraordinary.

Additional shortcomings in this approach are that
the input for the prediction is the chemical formula
for an individual compound, but many of the most
important materials are actually composite mixtures
of phases which synergistically produce a desired out-
come. For example, ductile ferrite and brittle cemen-
tite in steels or precipitate hardened aluminum alloys.
To our knowledge, there are not yet examples in the
materials informatics literature where authors make
predictions of a composite property by training a ma-
chine learning model on each individual phase using
a structure or composition-based feature vector.

A related problem is associated with rare events
such as doping where a few percent elemental substi-
tution can lead to drastic changes in properties due
to complicated defect chemistry. For instance, doping
silicon with phosphorus from 102 cm™3 (~ 0%) up
to 102! em=3 (~ 2%) is accompanied by a change of
electrical conductivity approximately eight orders of
magnitude [44]!

It is not that machine learning is fundamentally
incapable of modeling composite materials or the ef-
fect of rare events like doping. However, in order
to capture these effects it will be necessary to have
training data which includes these phase mixtures
and dopant compositions with sufficient granularity
to train models on their effect. Put plainly, a database
of stoichiometric compounds will not be able to pre-
dict the influence of doping, but rather, it will require

a database where many slight dopant compositions
are reported with an associated material property.
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Figure 6: The ranked elemental prevalence of com-
pounds labeled extraordinary in the original AFLOW
data versus those screened from the PCD.

4 Conclusion

The predictive power of machine learning is estab-
lished in the field of materials science. Researchers
have demonstrated many different models that can ef-
fectively map chemical compositions to material prop-
erties. One of the most promising aspects of this is
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the use of machine learning predictions for screening
materials. Unfortunately, many of these models start
with fundamental assumptions that would imply an
inability to extrapolate into unique and interesting
chemical species. For this reason it is natural to ques-
tion whether we should be using machine learning to
screen for high performance materials.

We show that, in a best case scenario—DFT data
with a large variety of compounds and with well-
distributed properties—machine learning is consistently
able to identify a significant portion (average recall~0.6)
of the top 1% of materials using both classification
and regression approaches. This approach is success-
ful across six diverse materials properties. Moreover,
we show that the classification-based approach iden-
tifies a near equivalent amount of extraordinary com-
positions while returning fewer false positives than
both nearest-neighbor and regression approaches.

Introducing a gap between the data available for
training and the extraordinary compounds has a rel-
atively minor impact on both precision and recall. In
fact, classification can slightly improve as the gap is
introduced since this removed compounds most sub-
ject to ambiguity. On the other hand, withholding
the most prevalent element among those compounds
labeled extraordinary leads to slight reductions in the

classification metrics. That said, the values still strongly

suggest extrapolation is possible in this dataset.

Overall, this work demonstrates promise in us-
ing machine learning models to facilitate the discov-
ery of record-breaking materials. Unfortunately, we
also show that predictions made on the PCD fail to
break into new or unexpected compositions in the
case of bulk modulus. Despite the inability to find
new chemistries, the models do a great job of identify-
ing the extraordinary compositions that are included
in the dataset we used.
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