

# 1 Robust Superhydrophobic Membrane for Membrane Distillation

## 2 with Excellent Scaling Resistance

4 Chunlei Su <sup>a,b,c</sup>, Thomas Horseman <sup>d</sup>, Hongbin Cao <sup>b</sup>, Kofi Christie <sup>a</sup>, Yuping Li <sup>b\*</sup>, Shihong  
5 Lin <sup>a,d\*</sup>

<sup>6</sup> <sup>a</sup> Department of Civil and Environmental Engineering, Vanderbilt University, Nashville,  
<sup>7</sup> Tennessee 37235-1831, United States

<sup>8</sup> <sup>b</sup> Beijing Engineering Research Centre of Process Pollution Control, Institute of Process  
<sup>9</sup> Engineering, Chinese Academy of Sciences, Beijing 100190, China

10 <sup>c</sup>University of Chinese Academy of Sciences, Beijing 100049, China

11 <sup>d</sup> Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville,  
12 Tennessee 37235-1831, United States

13 \*Corresponding author.

14 E-mail:ypli@ipe.ac.cn Phone: + 86 1082544839. (Y. L.)

15 E-mail:shihong.lin@vanderbilt.edu. Phone: +1 (615) 322-7226. (S.L.)

16 **ABSTRACT**

17 We report in this study a scalable and controllable approach for fabricating robust and  
18 high-performance superhydrophobic membranes for membrane distillation (MD). This novel  
19 approach combines electro-co-spinning/spraying (ES<sup>2</sup>) with chemical vapor welding, and  
20 enables the formation of robust superhydrophobic (r-SH) membranes that are mechanically  
21 strong, highly porous, and robustly superhydrophobic. Compared with superhydrophobic  
22 membranes obtained using surface deposition of fluorinated nanoparticles, the r-SH  
23 membranes have more robust wetting properties and higher vapor permeability in MD. MD  
24 scaling experiments with NaCl and gypsum show that the r-SH membrane is highly effective  
25 in mitigating mineral scaling. Finally, we also discuss the mechanism of scaling resistance  
26 enabled by superhydrophobic membranes with a highlight on the roles of the surface-bound  
27 air layer in reducing the crystal-membrane contact area, nucleation propensity, and  
28 ion-membrane contact time.

29 **INTRODUCTION**

30 Membrane distillation (MD), which can harvest low-grade waste heat for desalinating  
31 high salinity brine, is potentially a promising solution for hypersaline brine management in  
32 oil and gas wastewater treatment and zero liquid discharge <sup>1, 2</sup>. In a typical MD process, the  
33 temperature difference between hot salty water (the feed solution) and cold deionized water  
34 (the distillate) results in a partial vapor pressure difference that drives the vapor to transport  
35 from the feed stream to the distillate stream, thereby producing distilled water <sup>3-7</sup>.

36 If MD is applied for hypersaline brine treatment, membrane scaling represents a major  
37 and unavoidable technical challenge as the feed streams will eventually become oversaturated  
38 <sup>8</sup>. The formation of mineral scales can induce both fouling, which reduces water vapor flux,  
39 and pore wetting, which reduces salt rejection, either of which will compromise the  
40 performance and eventual fail the MD process. Extensive research has been performed to  
41 explore strategies for scaling mitigation in MD, such as membrane cleaning and dosing of  
42 anti-scalants <sup>9-11</sup>. However, these strategies increase either the complexity or cost of MD  
43 operation <sup>12</sup>. Very recently, superhydrophobic MD membranes have been explored by several  
44 research groups as an effective material strategy for scaling mitigation <sup>13-15</sup>. While the  
45 detailed mechanism for scaling-resistance remains an active area of study, these studies  
46 collectively show the effectiveness of using superhydrophobic membranes for mitigating  
47 mineral scaling in MD <sup>16-18</sup>.

48 A superhydrophobic membrane is a membrane with a very high water contact angle  
49 (WCA) and very low contact angle hysteresis. The contact angle hysteresis can be quantified  
50 by measuring the sliding angle (SA) which is the minimum tilting angle (from the horizontal  
51 position) at which a water droplet starts to slide off the membrane surface. In the convention  
52 of material science, both very high WCA ( $>150^{\circ}$ ) and very low SA ( $<10^{\circ}$ ) are required for a  
53 surface to be classified as “superhydrophobic” <sup>19, 20</sup>. In other words, a surface with strong  
54 contact angle hysteresis (i.e., high SA) is not superhydrophobic, regardless of its WCA.

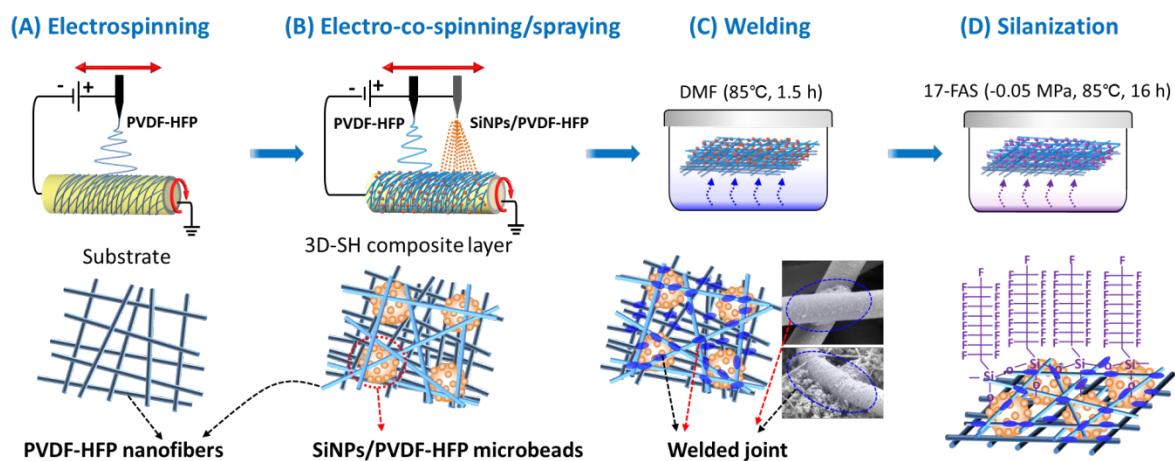
55 The two major requirements for fabricating a superhydrophobic membrane, or more

generally, a superhydrophobic surface, are that (1) the material has low surface energy <sup>21,22</sup>, and (2) the surface has a high degree of roughness <sup>23</sup>. Following this principle, most existing superhydrophobic MD membranes were obtained by decorating the surface of commercial hydrophobic membranes with fluorinated nano- or micron-sized particles <sup>24-26</sup>. However, this approach of surface decoration is of limited practical application because (1) the vapor permeability is often significantly compromised with this approach <sup>27-29</sup>, and (2) robust attachment of particles onto the membrane surface is challenging and often requires complex, multi-step modification procedure <sup>30, 31</sup>. Therefore, a new way is in need for scalable fabrication of robust superhydrophobic MD membranes without sacrificing the vapor permeability.

Herein, we report a method of fabricating a robust superhydrophobic (r-SH) membrane for MD with both outstanding vapor permeability and scaling resistance. This method is based on the principle of 3D printing, an additive manufacturing approach that creates object by bottom-up, layer-by-layer deposition of the constituting material <sup>32</sup>. This additive manufacturing approach has received increasing recent attention in fabricating membranes and module components. For example, recent studies have been reported to use electrospraying for fabrication of polyamide membranes with exceptional control of active layer thickness and composition <sup>33, 34</sup>. In fact, the many existing studies of using electrospinning to fabricate membranes can all be categorized as additive manufacturing in principle <sup>35</sup>. Notably, electro-co-spinning/spraying (ES<sup>2</sup>) has been explored for fabricating fiber/particle composite biomaterials <sup>36, 37</sup>.

In this study, we employ an ES<sup>2</sup> method to develop MD membranes with a r-SH layer with micron-sized clusters of silica nanoparticles (SiNPs) intercalated within a matrix of polymeric nanofibers. We characterize the morphological and wetting properties of the r-SH membranes, and also test the MD performance of such r-SH membranes and compare them with conventional hydrophobic membranes and superhydrophobic (SH) membranes obtained using conventional method of decorating surface with fluorinated particles. We also investigate the scaling resistance of the r-SH membranes in MD operation with NaCl and gypsum as the scalants.

85 **MATERIALS AND METHODS**


86 **Chemicals and membranes.** Polyvinylidenefluoride-co-hexafluoropropylene  
87 (PVDF-HFP) (PVDF-HFP, MW: 455 kDa), N,N-dimethylformamide (DMF, 99.8%), acetone  
88 (99.9%), sodium chloride (NaCl), 2-propanol (99.5%), 1H,1H,2H,2H  
89 -perfluorodecyltriethoxysilane (17-FAS, 97%) were purchased from Sigma-Aldrich (St. Louis,  
90 USA). Silica nanoparticles (SiNPs) with 40-60 nm diameter were purchased from SkySpring  
91 Nanomaterials (Houston, TX). A commercial polyvinylidene difluoride (PVDF) membrane  
92 with 0.45  $\mu$ m nominal pore size from GE Healthcare (Pittsburg, PA) was used as the  
93 reference in scaling experiments.

94 **Fabrication of the r-SH membrane and reference membranes.**

95 The dope solution for electrospinning was prepared by dissolving PVDF-HFP pellets at 20  
96 wt% using a 2:1 (by volume) mixture of DMF to acetone as solvent (mixed overnight at  
97 50°C). The dope solution for electrospraying, referred to as SiNPs/PVDF-HFP dope, was  
98 prepared by first dissolving PVDF-HFP pellets to prepare at 8 wt% using a 4:1 (by volume)  
99 mixture of DMF to acetone as solvent (mixed overnight at 50°C) and then adding SiNPs (15  
100 wt%) to this solution under vigorous stir-mixing at room temperature for 2 h. Acetone was  
101 used to accelerate solvent evaporation during electrospraying, as the already-spun  
102 nanofibrous substrate could easily dissolve if only DMF was used as the solvent for the dope  
103 solution.

104 The four-step procedure for fabricating the r-SH membrane is schematically depicted in  
105 Figure 1. In step 1, a nanofibrous substrate was electrospun using an electrospinning  
106 instrument (TL-01, Tongli Tech., China) by feeding the 20 wt % PVDF-HFP dope solution at  
107 1.0 mL h<sup>-1</sup>. In step 2, both PVDF-HFP electrospinning dope and SiNPs/PVDF-HFP  
108 electrospraying dope were deposited onto the PVDF-HFP fibrous substrate via the  
109 electro-co-spinning/spraying (ES<sup>2</sup>) technique for 20 min with the spinning and spraying  
110 needles facing the rotating collector drum from opposite directions (Figure S1). For the  
111 membrane under primary investigation in this paper, flow rate of the SiNPs/PVDF-HFP

112 electrospraying dope solution was fixed at 2.5 mL h<sup>-1</sup>, whereas the flow rate of the  
 113 PVDF-HFP electrospinning dope solution was 0.3 ml h<sup>-1</sup>. Other flow rates of the PVDF-HFP  
 114 electrospinning dope solution were also tested and will be discussed later. The low polymer  
 115 concentration in electrospraying dope solution facilitates the formation of SiNPs/PVDF-HFP  
 116 microbeads<sup>38,39</sup>. In both steps, a voltage of 13 kV was applied between the collecting drum  
 117 rotating at 250 rpm and the needles that reciprocated horizontally at 120 cm min<sup>-1</sup>.



118  
 119 **Figure 1.** Schematic illustration of the ES<sup>2</sup> procedure for fabricating r-SH membrane. **(A)** Fabrication of  
 120 the PVDF-HFP nanofibrous substrate by electrospinning. **(B)** Construction of a r-SH composite layer  
 121 with electrosprayed SiNPs/PVDF-HFP microbeads embedded in electrospun PVDF-HFP fibrous web.  
 122 **(C)** Structural reinforcement by chemical vapor “welding” using DMF solvent vapor. **(D)** Fluorination of  
 123 the SiNPs in the membrane structure using 17-FAS via vapor phase silanization.  
 124

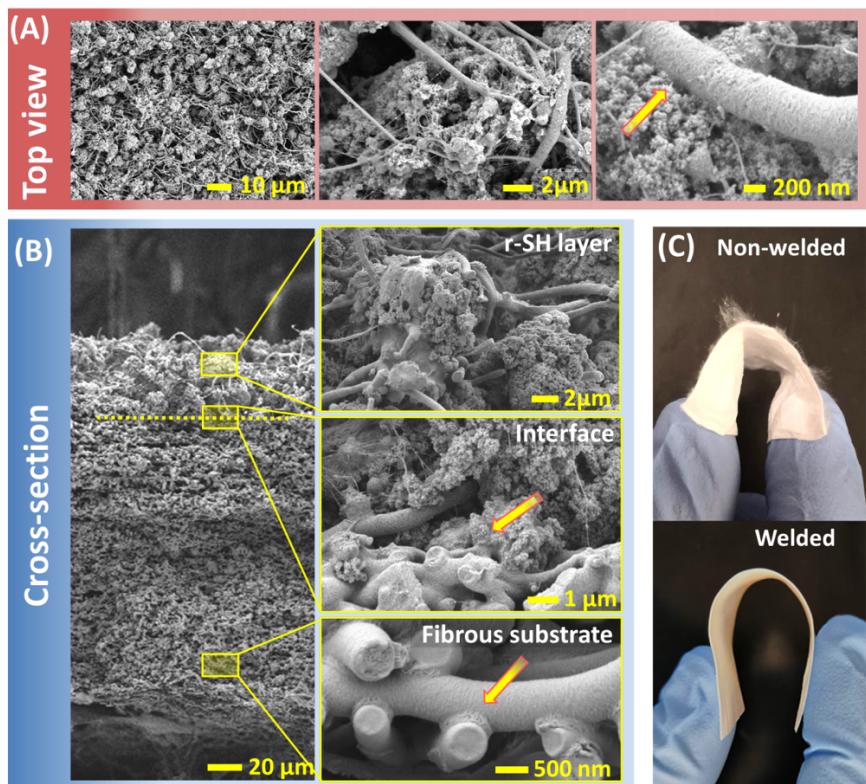
125 After the formation of nanofibrous network intercalated with SiNPs/PVDF-HFP  
 126 microbeads, the fibrous network was subject to DMF vapor phase “welding” at 85 °C for 1.5  
 127 h (step 3). The vaporized DMF solvent slightly dissolved the PVDF-HFP on the surface of  
 128 the fibers and the microbeads, resulting in “welding” of the contact points between fibers  
 129 themselves and between fibers and the microbeads. This step was performed with the  
 130 intention to enhance the mechanical integrity of the r-SH membrane. Finally, the welded  
 131 membrane was functionalized with fluoroalkylsilane (i.e., 17-FAS) to lower the membrane  
 132 surface energy via vapor phase silanization at 85 °C and -0.05 MPa for 16 h in an vacuum  
 133 oven (step 4)<sup>17</sup>. The superhydrophobic membrane formed following this stated procedure, as  
 134 described in Figure 1, is referred to r-SH membrane in the following discussion.

136 **Membrane characterization and performance test**

137 The surface morphology of each membrane was characterized using scanning electron  
138 microscopy (SEM, Zeiss Merlin, Thornwood, NY). After scaling experiments, elemental  
139 mapping of the species in the scale layers on the different membranes was conducted with the  
140 SEM equipped with energy dispersive X-ray detector, (EDS, Oxford Instruments,  
141 Oxfordshire, UK). Static WCA was measured with an optical goniometer (OneAttension,  
142 Biolin scientific instrument, Espoo, Finland). We also quantified the WCA hysteresis by  
143 measuring the sliding angle, SA. The membrane porosity was measured using a gravimetric  
144 method<sup>40</sup>. To quantify the robustness of the membrane wetting properties, the WCA and SA  
145 of the membrane samples were measured after the membranes were subjected to prolonged  
146 ultrasonic treatments (660 watts, Kendal, China) for 90, 180, 270 minutes.

147 We evaluated the performance of the membrane samples using a laboratory-scale direct  
148 contact membrane distillation (DCMD) system with membrane coupons (2.5 cm × 8 cm).  
149 The mass and conductivity of the distillate were measured continuously, from which the real  
150 time flux and salt rejection were calculated. For evaluating the intrinsic MD performance in  
151 the absence of scaling, we used 2.3 L of NaCl solution (3.5 wt%) as the feed water. The feed  
152 and distillate temperatures were 65 and 20 °C, respectively, whereas the cross-flow velocities  
153 in the feed and distillate channels were 8.6 and 4.3 cm s<sup>-1</sup>, respectively.

154 **Scaling resistance evaluation**


155 We performed two sets of experiments with two feed solutions of different chemistry to  
156 evaluate the scaling resistance of the different membranes. In the first set of experiments, we  
157 used 840 mL of highly concentrated NaCl solution (25 wt%) as the feed water. The feed and  
158 distillate temperatures were 60 and 20 °C, respectively, whereas the cross-flow velocities in  
159 the feed and distillate channels were 6.5 and 4.3 cm s<sup>-1</sup>, respectively. In the second set of  
160 experiments, the feed solution (initial volume of 840 mL) contained 14 mM CaCl<sub>2</sub> and 14  
161 mM Na<sub>2</sub>SO<sub>4</sub>. The feed and distillate temperatures were 75 and 20 °C, respectively, whereas  
162 the cross-flow velocity in the feed and distillate channels was 7.6 and 4.3 cm s<sup>-1</sup>, respectively.  
163 Scaling experiments were terminated when the volume of solution in the feed tank was

164 insufficient to keep the feed loop free of air bubbles.

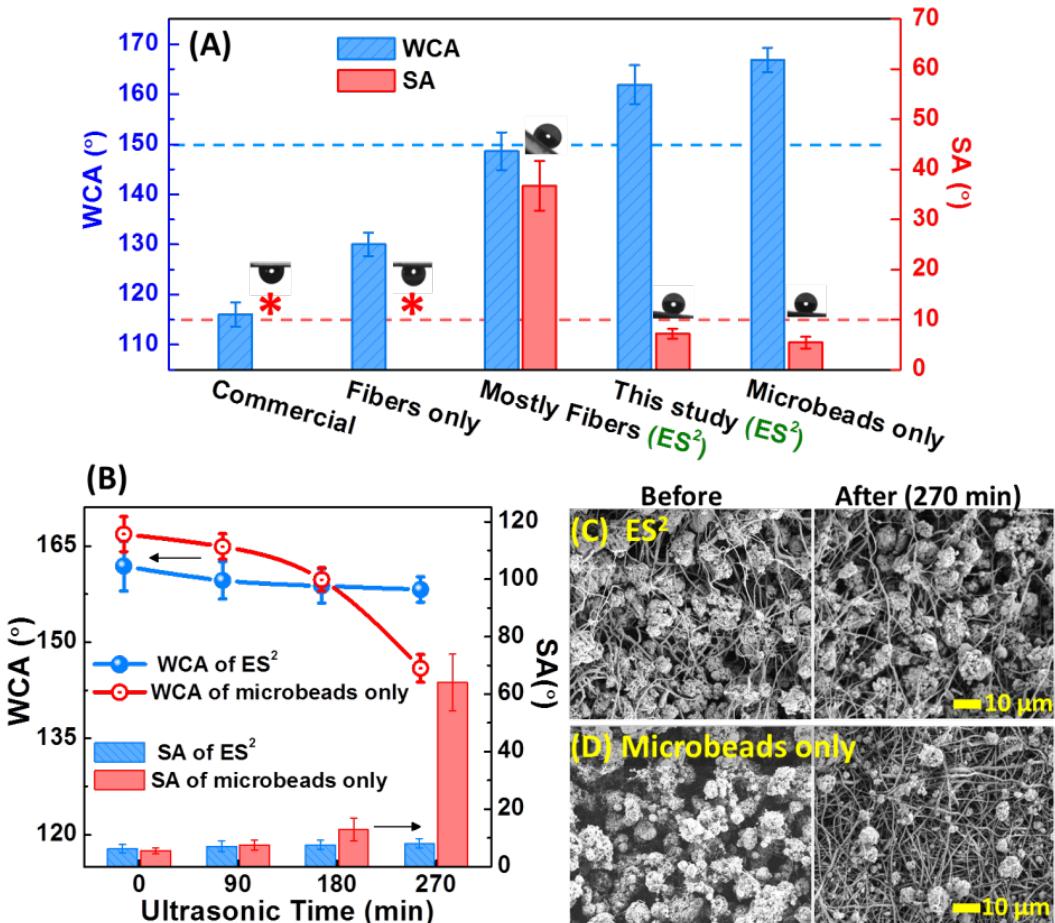
## 165 RESULTS AND DISCUSSIONS

### 166 Membrane morphology

167 The r-SH membrane displays a rough, porous morphology consisting of  
168 SiNPs/PVDF-HFP microbeads (with an average diameter of  $11.3 \pm 3.1 \mu\text{m}$ ) and intercrossing  
169 PVDF-HFP nanofibers (with an average diameter of  $420 \pm 180 \text{ nm}$ ) wrapping around the  
170 microbeads (Figure 2A). Welding does not only fuse the PVDF-HFP nanofibers at their  
171 intercrossing junctions but also fuses the fibers with the SiNPs/PVDF-HFP microbeads. The  
172 surface of the SiNPs/PVDF-HFP microbeads exhibits a secondary nanoscale roughness due  
173 to the presence of the SiNPs that are “glued” by the PVDF-HFP to become composite  
174 microbeads.



175


176 **Figure 2.** (A) SEM micrographs showing the surface of “welded” r-SH membrane at different  
177 magnifications: (left) 500 x, (center) 10,000 x, and (right) 50,000 x. (B) Cross-section morphologies of  
178 r-SH membrane. The composite layer (top), the fibrous substrate (bottom), and the boundary between  
179 the two layers (center) are highlighted with magnified images shown on the right. (C) Physical  
180 appearance of the r-SH membrane before welding (top) and after welding (bottom).

181 This composite layer with both fibers and microbeads, constructed via ES<sup>2</sup> onto a  
182 fibrous PVDF-HFP substrate, forms a robust superhydrophobic layer that is approximately 35  
183  $\mu\text{m}$  thick (Figure 2B left). Higher magnification of the cross-sectional SEM image of the  
184 r-SH layer (Figure 2B top right), the interface between the r-SH layer and the fibrous  
185 substrate (Figure 2B center right), and the fibrous substrate (Figure 2B bottom right) reveal  
186 welding-induced reinforcement within the two respective layers and at their interface. This  
187 welding reinforcement is also critical to the mechanical integrity of membranes, i.e., without  
188 welding the membranes were flimsy with loose fibers that can be easily peeled away from the  
189 substrate (Figure 2C top) because the fibers only physically stack without inter-fiber  
190 connection <sup>41-43</sup>; in contrast, the welding-reinforced membranes were significantly more  
191 robust (Figure 2C bottom), allowing them to be used in MD as self-supporting membranes  
192 without additional mechanical reinforcement. The SEM images of other prepared membranes  
193 were also shown in Figure S2 (before welding) and Figure S3 (after welding).

194 **Wetting properties and robustness of the membranes**

195 The membrane wetting properties were compared using WCA and SA with DI water as the  
196 testing liquid. All membranes fabricated in this study have higher WCA than that of a  
197 commercial PVDF membrane. The WCA increases systematically with a percentage of  
198 17-FAS fluorinated SiNPs/PVDF-HFP microbeads (Figure 3A). The abundance of  
199 microbeads was adjusted by controlling the flow rates of the dope solutions in the ES<sup>2</sup>  
200 process (Table S1). Both the membrane fabricated via the ES<sup>2</sup> procedure described in the  
201 Methods section and the membrane with electro-sprayed composite microbeads (microbeads  
202 only) are superhydrophobic, i.e., they both have WCA higher than 150° and SA lower than  
203 10°. In contrast, the SA was not measurable with commercial PVDF membrane and  
204 electrospun membranes without microbeads (fibers only), because the water droplet adhered  
205 onto the membrane surface even when the membranes were inverted. Expectably, the  
206 membrane fabricated using ES<sup>2</sup> with a lower percentage of microbeads (mostly fibers), has a  
207 relatively high SA, falling between that of the electrospun membrane (fibers only) and the  
208 r-SH membrane formed via ES<sup>2</sup>.

209        Although the membranes formed via ES<sup>2</sup> with both microbeads and fibers and that  
210      formed via electrospraying of microbeads (only) are both superhydrophobic right after  
211      synthesis, the superhydrophobicity is much more robust with the membrane formed via ES<sup>2</sup>.  
212      This difference was confirmed by subjecting both membranes to ultrasonication which can  
213      potentially “knock” the SiNPs/PVDF-HFP microbeads off the membrane surface. The WCA  
214      decreased, and the SA increased, as the membranes with only electrosprayed microbeads  
215      experienced longer ultrasonication (Figure 3B). Such a membrane was no longer  
216      superhydrophobic after 270 min of ultrasonication, yielding a WCA of only 145.9° and a SA  
217      up to 64.0°. In contrast, the ES<sup>2</sup>-formed r-SH membrane was only slightly affected by  
218      prolonged ultrasonication and remained superhydrophobic after 270 min of ultrasonication.  
219      The robustness of superhydrophobicity of ES<sup>2</sup> membrane was further demonstrated in a more  
220      practically relevant context where both the electrosprayed SH membrane and the ES<sup>2</sup>-derived  
221      r-SH membrane membrane was subject to a 30-hour MD experiment with DI water and a  
222      cross-flow velocity of 7.6 cm s<sup>-1</sup>. The WCA and SA of the originally SH membrane with  
223      electrosprayed microbeads became 144.8° and >90°, respectively; whereas the WCA and SA  
224      of the r-SH membrane were only subject to slight changes to 155.6 ° and 7.2 °, respectively.  
225      The comparison between these two membranes is qualitatively consistent in both the  
226      sonication and prolonged MD experiments.



227

228

**Figure 3. (A)** WCA and SA of different membrane samples. The SA of commercial PVDF membrane and the electrospun PVDF-HFP membrane (fibers only) cannot be measured because water droplets adhere even onto an inverted membrane surface. The membrane sample denoted as “mostly fibers” was fabricated also using  $ES^2$  but with a different composition (see Supplementary Information for details). The membrane sample denoted as “microbeads only” was fabricated by electrospraying SiNPs/PVDF-HFP composite beads, without simultaneous electrospinning of PVDF-HFP fibers, onto the already formed PVDF-HFP fibrous substrate. **(B)** WCA and SA of the r-SH membranes fabricated using  $ES^2$  and using electrospraying of SiNPs/PVDF-HFP microbeads after different durations of ultrasonication. **(C)** SEM surface morphology of  $ES^2$ -derived r-SH membrane before (left) and after (right) 270 mins of ultrasonication. **(D)** SEM surface morphology of superhydrophobic membrane fabricated by electrospraying SiNPs/PVDF-HFP composite beads before (left) and after (right) 270 mins of ultrasonication.

241

242

243

244

245

246

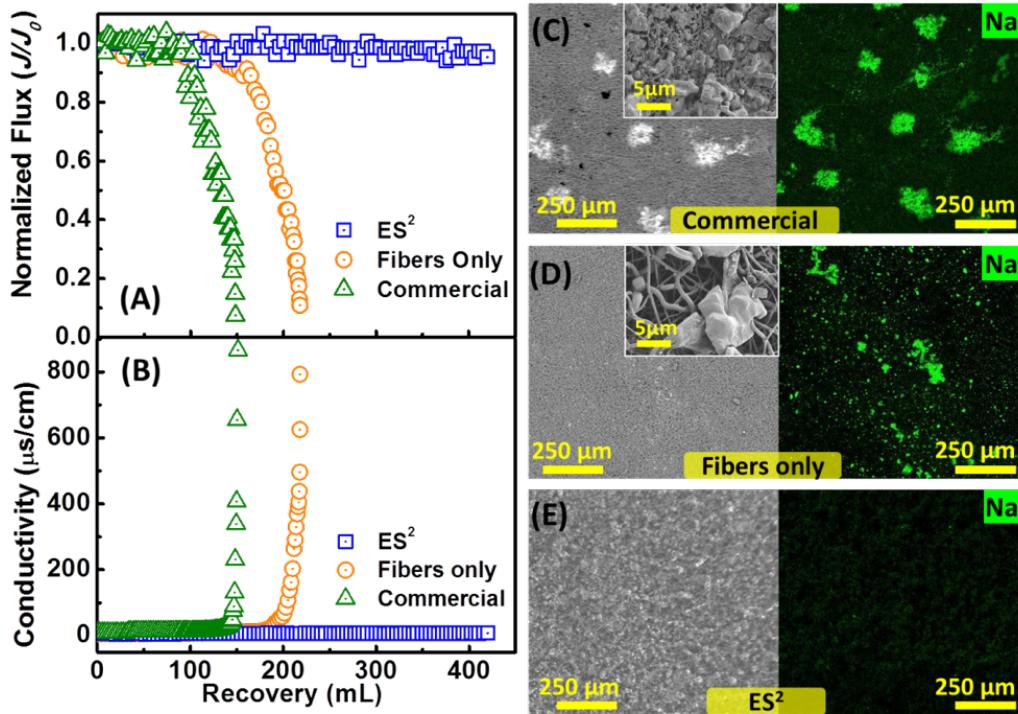
247

The robustness of the wetting properties for  $ES^2$ -formed r-SH membrane is attributable to the unique structure formed via  $ES^2$  in which composite SiNPs/PVDF-HFP microbeads are locked up in the interconnected network of PVDF-HFP fibers that was further reinforced by the “welding” process. Prolonged ultrasonication was not able to remove the microbeads from such an interconnected and welded network, as evidenced by the lack of change in surface morphology (Figure 3C). In contrast, the surface structure of the membranes with only electrosprayed microbeads is significantly more susceptible to degradation by

248 ultrasonication because of the weak connections between the microbeads. While the “welding”  
249 process may strengthen such connections by fusing the contacting PVDF-HFP portions  
250 between different microbeads, this reinforcement was still insufficient when the surface was  
251 subject to prolonged perturbation. The layer of SiNPs/PVDF-HFP microbeads was almost  
252 completely removed after 270 mins of ultrasonication, as clearly shown by comparing the  
253 surface morphology before and after ultrasonication (Figure 3D).

254 **MD performance (in the absence of scaling)**

255 Without the superhydrophobic layer, the electrospun fibrous membrane achieved a vapor flux  
256 of  $51.1 \text{ L m}^{-2} \text{ h}^{-1}$  (Figure S4) with the feed and distillate temperatures being 65 and 20 °C,  
257 respectively. With a superhydrophobic layer constructed by electrosprayed SiNPs/PVDF-HFP  
258 microbeads, however, the vapor flux declined to  $34.3 \text{ L m}^{-2} \text{ h}^{-1}$  which was similar to that of  
259 the commercial PVDF membrane ( $35.2 \text{ L m}^{-2} \text{ h}^{-1}$ ). This finding is qualitatively consistent  
260 with most previous studies that reported a decline in vapor permeability due to the use of a  
261 nanoparticle “cake layer” on the membrane surface to impart superhydrophobicity <sup>44-46</sup>.  
262 However, using the ES<sup>2</sup> method only led to a much smaller decline of vapor permeability,  
263 yielding a vapor flux of  $45.6 \text{ L m}^{-2} \text{ h}^{-1}$  with the same experimental conditions. The difference  
264 in MD performance between the ES<sup>2</sup>-derived r-SH membrane and the superhydrophobic  
265 membrane formed via electrospraying microbeads is even more dramatic considering the fact  
266 that the functional superhydrophobic layer was  $35 \mu\text{m}$  thick for the ES<sup>2</sup>-derived membrane  
267 but only  $16 \mu\text{m}$  thick for the membrane with electrosprayed microbeads.


268 The better MD performance with the thicker ES<sup>2</sup>-derived r-SH membrane is mainly  
269 attributable to its higher porosity. Compared to electrospun membrane which has the highest  
270 porosity of  $84.2 \pm 0.7 \%$  (Table S2), the ES<sup>2</sup>-derived r-SH membrane has a slightly lower  
271 overall porosity of  $80.7 \pm 1.2 \%$ , which is significantly higher than the porosity of membrane  
272 with electrosprayed microbeads ( $69.7 \pm 1.5 \%$ ). The presence of the co-spun fibers  
273 significantly reduces the packing density of the microbeads, preventing the formation of a  
274 low-porosity layer that forms with microbeads alone, but at the same time maintains  
275 superhydrophobicity. Therefore, both the long-term robustness of superhydrophobicity and

276 the MD performance suggest that r-SH membrane synthesized using ES<sup>2</sup> should be used in  
277 MD instead of the superhydrophobic membrane formed only via electrospraying.

278 **Resistance to scaling by NaCl**

279 Experiments with a high concentration NaCl feed solution (25 wt%) show that the  
280 electrospun fibrous PVDF-HFP membrane is more scaling resistant than the commercial  
281 PVDF membrane (Figure 4A). Specifically, the limiting recovery, defined as the water  
282 recovery at which precipitous flux decline occurred, was higher with the fibrous PVDF-HFP  
283 membrane (~141 mL,) than with the commercial PVDF membrane (~103 mL). Beyond the  
284 limiting recovery, a sharp increase in distillate conductivity was observed for both  
285 membranes (Figure 4A), indicating the occurrence of scaling-induced pore wetting <sup>15, 47</sup>. In  
286 contrast, the r-SH membrane is exceptionally resistant to scaling by NaCl as indicated by the  
287 absence of either flux decline or pore wetting even after around 420 mL of water was  
288 recovered, and the feed solution was concentrated approximately 2-fold.

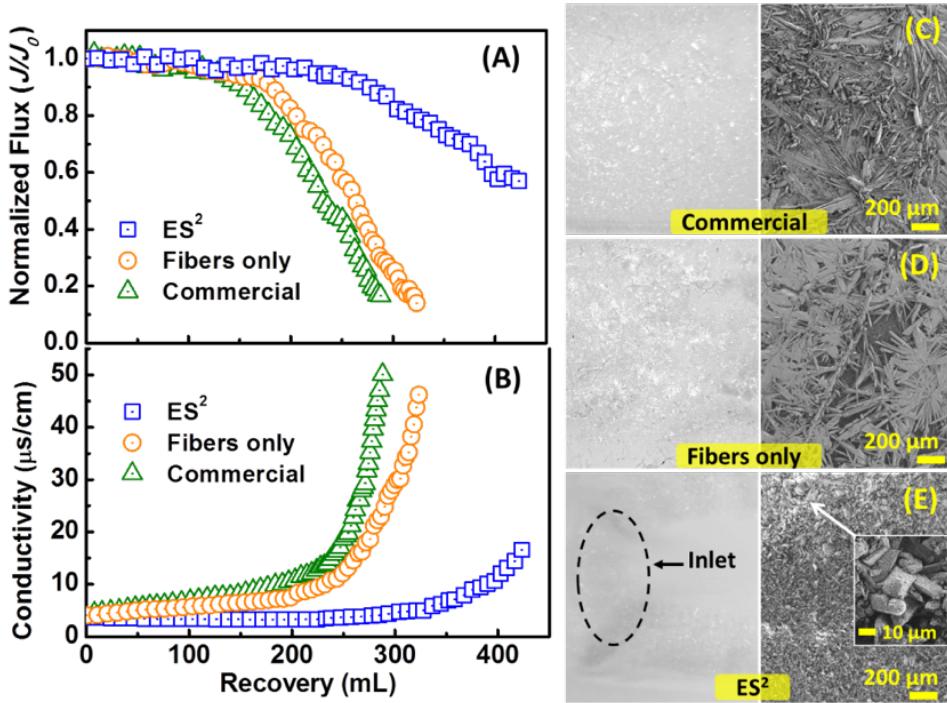
289 The observation of sustained vapor flux even when the NaCl feed solution was highly  
290 concentrated is similar to what has been reported by Xiao et. al <sup>16</sup> using a templated  
291 micropillared superhydrophobic MD membrane, except that in our case we did not even  
292 observe any increase in distillate conductivity as reported by Xiao et al. <sup>16</sup>, even when the  
293 feed water was concentrated by more than 2-fold. This exceptional resistance to scaling and  
294 the pore wetting thereby-induced may be attributable to the r-SH layer that is dramatically  
295 more difficult to penetrate than membranes that rendered superhydrophobic only by surface  
296 features <sup>48, 49</sup>.



297

298 **Figure 4.** (A) Normalized water flux and (B) distillate conductivity as functions of the water recovery for  
299 r-SH membrane fabricated using  $\text{ES}^2$  (blue), electrospun PVDF-HFP membrane (orange), and  
300 commercial PVDF membrane (green) in NaCl scaling experiments (the replicates of the results shown  
301 in A and B are also presented in Figure S5). The average initial vapor fluxes for the three membranes  
302 were 27.4 L, 28.5, and  $16.2 \text{ m}^2 \text{ h}^{-1}$ , respectively, with a feed temperature of 60 °C and a distillate  
303 temperature of 20 °C. The feed water was 840 mL NaCl solution (25 wt %). SEM micrographs (left) and  
304 the corresponding EDS mapping for Na element (right) for (C) commercial PVDF membrane, (D)  
305 electrospun PVDF-HFP fibrous membrane, and (E) r-SH membrane fabricated using  $\text{ES}^2$ .

306 The fact that both the electrospun fibrous membrane and the r-SH membrane had  
307 significantly higher water fluxes than the commercial PVDF membrane suggests that the  
308 observed difference in scaling behaviors has little to deal with concentration polarization, as  
309 otherwise the electrospun membrane and the r-SH membrane should have had lower limiting  
310 recoveries than the commercial PVDF membrane that had the lowest vapor flux. Top-view  
311 SEM images and the corresponding EDS mapping of Na element reveal large NaCl crystal on  
312 the surface the commercial PVDF membrane (Figure 4C) and significantly smaller crystals  
313 on the electrospun PVDF-HFP membrane (Figure 4D) after the scaling experiments. In  
314 contrast, very little Na was detected on the r-SH membrane, and no observable crystal was  
315 found on the surface of the r-SH membrane at all.


316 We also measured the WCA and SA of the three membrane samples after scaling  
317 experiments (without rinsing) and found that whereas the WCA of the commercial PVDF

318 membrane and the electrospun PVDF-HFP membrane decreased by 29.7 and 19.9°,  
319 respectively (Figure S6). The decreased hydrophobicity of these membranes may be  
320 attributable to the presence of surface-bound crystal deposit. In contrast, the WCA of the  
321 r-SH membrane decreased by only 4.6° to 157°. Besides, the WCA hysteresis for the r-SH  
322 membrane remained very small, as quantified by a SA of 9.0° even after the scaling  
323 experiments (Figure S6). In conclusion, the wetting properties of the r-SH were almost  
324 unaffected by the scaling experiment with highly concentrated NaCl solution, again  
325 confirming the robustness of its superhydrophobicity.

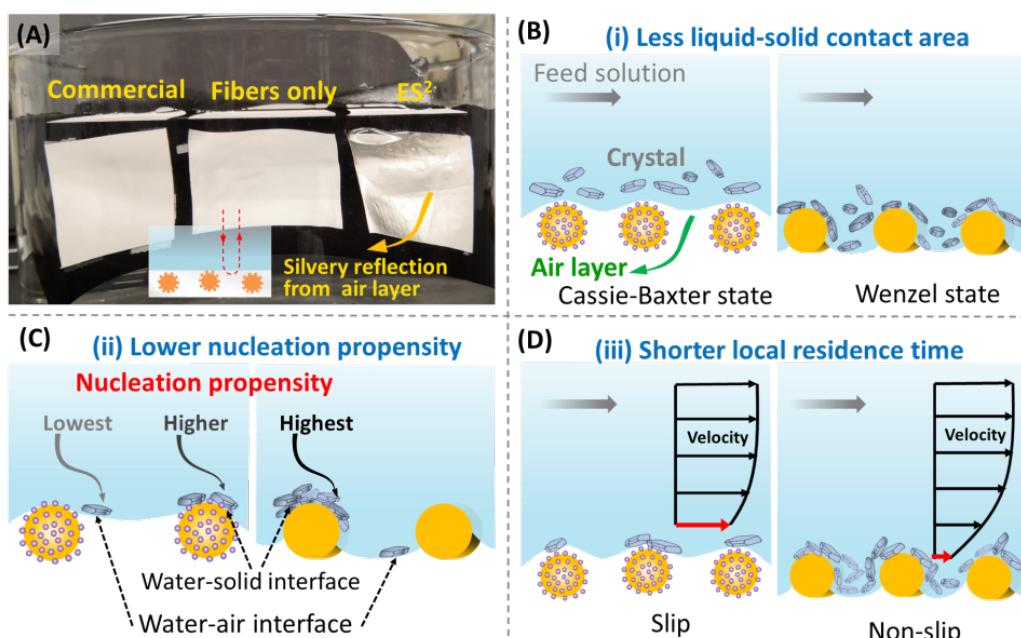
326

### 327 **Resistance to scaling by gypsum**

328 The scaling behavior with gypsum, a sparingly soluble mineral, differs substantially from  
329 that with NaCl. With the commercial PVDF membrane and the electrospun PVDF-HFP  
330 membrane, the flux decline upon the onset of scaling is less “precipitous” with gypsum  
331 scaling than with NaCl scaling. Based on the water recovery corresponding to the onset of  
332 scaling and the flux decline rate, the r-SH membrane was more scaling resistant than the  
333 commercial or electrospun membranes (Figure 5A, 5B). However, unlike the case with  
334 concentrated NaCl solution as feedwater, even the r-SH membrane was subject to gypsum  
335 scaling that leads to both flux decline and pore wetting. This observation is consistent with  
336 recent studies using superhydrophobic membranes in MD, that superhydrophobic membrane  
337 can only delay, but not eliminate gypsum scaling <sup>15, 17, 50</sup>. The exact mechanism underlying  
338 these different scaling behaviors between NaCl and gypsum is beyond the scope of this study  
339 and needs further elucidation. But it is nonetheless consistent with the observations in a  
340 recent study by Xiao et al <sup>16, 50</sup>.



341


342 **Figure 5.** (A) Normalized water flux and (B) distillate conductivity as functions of the water recovery for  
343 r-SH membrane fabricated using  $\text{ES}^2$  (blue), electrospun PVDF-HFP membrane (orange), and  
344 commercial PVDF membrane (green) in gypsum scaling experiments (the replicates of the results  
345 shown in A and B are also presented in Figure S7). The average initial vapor fluxes for the three  
346 membranes were 44.5, 48.1, and 40.2  $\text{L m}^{-2} \text{ h}^{-1}$ , respectively, with a feed temperature of 75 °C and a  
347 distillate temperature of 20 °C. The feed water was 840 mL of a mixed 14 mM/L  $\text{CaCl}_2$  and 14 mM/L  
348  $\text{Na}_2\text{SO}_4$  solution. Photographic images (left) and SEM micrographs (right) for (C) commercial PVDF  
349 membrane, (D) electrospun PVDF-HFP membrane, and (E) r-SH membrane fabricated using  $\text{ES}^2$ .

350 Results from membrane autopsy also indicate that gypsum scaling on the r-SH  
351 membrane is qualitatively different from that on the commercial PVDF membrane or the  
352 electrospun PVDF-HFP membrane. With hydrophobic (but not superhydrophobic)  
353 membranes, needle-like gypsum crystals almost entirely covered the membrane surface  
354 (Figure 5C, 5D). With a r-SH membrane, however, a large fraction of the membrane surface  
355 remained free of scaling crystals. Interestingly, the portions of the r-SH membrane that were  
356 covered by gypsum crystal were either near the entrance and exit or along the edges of the  
357 feed channel (Figure S8). Because the hydrodynamic conditions in these regions are more  
358 stagnant than that in the central region of feed channel, it is most likely that hydrodynamic  
359 effect plays an important role in mitigating gypsum scaling on the superhydrophobic  
360 membrane<sup>16</sup>. Scaling near the entrance seems to be the most severe among all regions likely  
361 due to additional conditions that are favorable for crystal precipitation. Specifically, the  
362 higher feed temperature at the entrance leads to both lower gypsum solubility<sup>51</sup> and stronger  
363 concentration polarization as a result of high vapor flux<sup>52, 53</sup>. Perhaps more importantly, the

364 feed stream near the entrance has a flow component toward the membrane surface, which  
365 enhances the convective transport of solutes toward the membrane surface.

366 **Mechanisms for scaling mitigation with superhydrophobic membrane**

367 It is widely believed that an air layer is present on the surface of a superhydrophobic  
368 membrane submerged in water<sup>54-56</sup>. The presence of such a surface-bound air layer on a  
369 superhydrophobic membrane is evidenced by the silvery and reflective appearance of the  
370 submerged surface, which is caused by the different refractive indexes between water and air  
371<sup>57-60</sup> (Figure 6A). Based on the presence of such an air layer, three possible mechanisms likely  
372 contribute to the lower scaling propensity with superhydrophobic membranes, even though  
373 their relative contributions are difficult to quantify.



374  
375 **Figure 6.** (A) Photographic image of the submerged commercial PVDF membrane (left),  
376 electrospun PVDF-HFP fibrous membrane (center), and r-SH membrane fabricated using  
377 ES<sup>2</sup> (right). The r-SH membrane has a silvery reflective surface due to the presence of a  
378 surface-bound air layer. Graphical illustration of (B) reduced liquid-solid interfacial area, (C)  
379 lower overall surface energy and nucleation propensity, and (D) reduced local residence time,  
380 with a superhydrophobic membrane (left) as compared with a hydrophobic membrane (right).

381 The first mechanism is the reduced liquid-solid contact area, which is consequent of the  
382 excellent Cassie-Baxter state required for superhydrophobicity. The smaller contact area  
383 between the feed solution and the solid material of the membrane reduces the area of

384 interfacial crystallization at the water-solid interface and thereby reduces the overall adhesive  
385 interaction between the scale layer and the MD membrane (Figure 6B). A recent paper by  
386 Horseman et al. also suggests the formation of crystal “anchors” within the membrane pores  
387 when the feed solution partially intrudes into a conventional hydrophobic MD membrane <sup>61</sup>.  
388 Such an anchoring effect can be minimized with superhydrophobic membranes with  
389 minimum pinning as indicated by a very low sliding angle. In addition, this mechanism also  
390 contributes to less deposition of crystal particles that are heterogeneously formed in the bulk,  
391 simply because small area of solid-water interface is available for particle deposition.

392 While the first mechanism regards the reduced area for interaction between crystals and  
393 the membrane, the second mechanism concerns the more difficult formation of such crystals  
394 on superhydrophobic membranes than on hydrophobic membranes. It is widely accepted that  
395 heterogeneous nucleation at the solid-water interface is typically more favorable and faster  
396 than homogeneous nucleation <sup>62, 63</sup>. Interestingly, previous analyses also showed that the  
397 Gibbs free energy for heterogeneous nucleation at water-air interface equals that for  
398 homogeneous nucleation <sup>64, 65</sup>. Since surface energy of air is practically zero and the surface  
399 energy of 17-FAS is lower than that of PVDF (and PVDF-HFP), the ranking of “nucleation  
400 propensity” should follow the order below:

401 PVDF > 17-FAS > Water-air interface ~ Homogeneous nucleation

402 If we divide the total contact area between feed solution and the membrane into two  
403 fractions with one being water-air contact and the other being the water-solid contact, MD  
404 with superhydrophobic membrane has a larger fraction of water-air contact which has the  
405 lowest nucleation propensity. Furthermore, even for the portion of water-solid contact, the  
406 lower surface energy of the 17-FAS on a superhydrophobic membrane also results in a lower  
407 scaling propensity than with a PVDF (and PVDF-HFP) hydrophobic membrane. Both effects  
408 cooperatively lead to more difficult nucleation on a superhydrophobic than on a hydrophobic  
409 membrane (Figure 6C).

410 The third mechanism is related to the reduced local residence time available for  
411 interaction between mineral ions and the solid surface of the membrane. The air layer

412 between a superhydrophobic surface and the fluid flowing along it is effective in reducing the  
413 drag to fluid flow due to what has been referred to as the “slip boundary effect” <sup>66</sup>. Unlike  
414 typical non-slip boundary at which the local flow velocity is considered to be zero at the  
415 solid-water interface, the flow velocity at a slip boundary is positive (Figure 6D) <sup>57, 67, 68</sup>. For  
416 a non-permeable solid surface, the higher flow velocity on a superhydrophobic surface with  
417 slip-boundary leads to significantly less residence time for interaction between mineral ions  
418 and surface, which reduces the scaling propensity. For a permeable surface like a membrane,  
419 the impact of local residence time is all the more significant. The potentially significantly  
420 longer residence time is caused by the partial intrusion of feed solution into the pores of a  
421 hydrophobic membrane creates a stagnant zone within the pore where mineral ions can linger  
422 (Figure 6D). This effect may be exacerbated by convective transport into this stagnant zone  
423 due to vapor flux in MD. The detrimental impact of the slip-boundary and in-pore stagnant  
424 zone applies to both interfacial heterogeneous nucleation and deposition of crystal particles  
425 that have already formed in the solution.

426 In summary, the recently proposed strategy of using superhydrophobic membranes for  
427 scaling mitigation has three possible mechanisms including reduced solid-water contact area  
428 for interaction of the membrane surface with crystal particles or solutes, lower nucleation  
429 propensity due to the reduced overall surface energy, and the shorter local residence time for  
430 interaction between mineral ions and solid surface. These mechanisms, which result from the  
431 exceptional Cassie-Baxter state imparted by superhydrophobic membranes, likely all  
432 contribute to the effectiveness of superhydrophobic membrane for universally reducing the  
433 propensity of mineral scaling. However, breaking down individual contributions of these  
434 mechanisms is both experimentally and theoretically challenging.

## 435 **IMPLICATIONS**

436 As a thermal distillation process that is inherently energy intensive, the most promising  
437 applications of MD are treatment of hypersaline brine, which is an emerging environmental  
438 challenge with growing importance. To unlock the potential of MD toward its best-suited  
439 applications, the critical challenge of mineral scaling must be overcome. While recent

440 research has demonstrated the potential of superhydrophobic membranes in mitigating  
441 mineral scaling in MD, the method reported herein for fabricating three-dimensionally  
442 superhydrophobic (r-SH) membrane using electro-co-spinning/spraying (ES<sup>2</sup>) offers a  
443 scalable approach for making superhydrophobic membrane with robust superhydrophobicity  
444 and minimal compromise in the intrinsic MD performance. To the best of our knowledge, the  
445 r-SH membrane fabricated using ES<sup>2</sup> delivers higher flux than most, if not all,  
446 superhydrophobic membranes reported in other studies with similar operating conditions. The  
447 unique particles-in-fibrous-web structure of the r-SH membrane also delivers highly robust  
448 superhydrophobicity that is required for stable performance in long-term operations.

## 449 **ASSOCIATED CONTENT**

### 450 **Supporting Information**

451 Fabrication and composite of reference membranes (Table S1); schematic (top and side views) of the  
452 ES<sup>2</sup> process (Figure S1); SEM images of the membranes before (Figure S2) and after welding (Figure S3);  
453 thickness and porosity of the membranes (Table S2); water flux and solution conductivity of the  
454 membranes using a 3.5wt% NaCl as feed solution (Figure S5); photo of membranes surface (feed side)  
455 after scaled by 25 wt % NaCl (Figure S6); reproducible DCMD results for concentrating the 25 wt %  
456 NaCl (Figure S7) and CaSO<sub>4</sub> feed solution (Figure S8).

## 457 **AUTHOR INFORMATION**

### 458 **Corresponding Author**

459 E-mail:ypli@ipe.ac.cn Phone: + 86 1082544839. (Y. L.)

460 E-mail:shihong.lin@vanderbilt.edu. Phone: +1 (615) 322-7226. (S.L.)

### 461 **Notes**

462 The authors declare no competing financial interest.

### 463 **ORCID**

464 Chunlei Su: 0000-0002-6732-9455

465 Thomas Horseman: 0000-0002-4660-1448

466 Yuping Li: 0000-0003-2490-0436

467 Shihong Lin: 0000-0001-9832-9127

468

## 469 **ACKNOWLEDGMENTS**

470 C.S. is thankful to the support from China Scholarship Council (No.201804910753); T.H.  
471 is supported by American Chemical Society Petroleum Research Foundation via grant  
472 ACS-PRF 57353 DNI; K.C. acknowledges the support from National Science Foundation via  
473 an NSF-GRFP award DGE-1145194; and S.L. acknowledges the support from National  
474 Science Foundation via standard research grant 1705048.

## 475 **REFERENCES**

- 476 1. Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A. P.; Tong, T.; Warsinger, D. M.; Elimelech, M.,  
477 Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. *Energy Environ. Sci.*  
478 **2018**, *11*, (5), 1177-1196.
- 479 2. Lin, S.; Yip, N. Y.; Elimelech, M., Direct contact membrane distillation with heat recovery:  
480 Thermodynamic insights from module scale modeling. *J. Membr. Sci.* **2014**, *453*, (0), 498-515.
- 481 3. Wang, Z.; Jin, J.; Hou, D.; Lin, S., Tailoring surface charge and wetting property for robust oil-fouling  
482 mitigation in membrane distillation. *J. Membr. Sci.* **2016**, *516*, 113-122.
- 483 4. Su, C.; Li, Y.; Cao, H.; Lu, C.; Li, Y.; Chang, J.; Duan, F., Novel PTFE hollow fiber membrane fabricated  
484 by emulsion electrospinning and sintering for membrane distillation. *J. Membr. Sci.* **2019**, *583*, 200-208.
- 485 5. Su, C.; Lu, C.; Cao, H.; Gao, F.; Chang, J.; Li, Y.; He, C., Fabrication of a novel nanofibers-covered hollow  
486 fiber membrane via continuous electrospinning with non-rotational collectors. *Mater. Lett.* **2017**, *204*, 8-11.
- 487 6. Chen, Y.; Zheng, R.; Wang, J.; Liu, Y.; Wang, Y.; Li, X.-M.; He, T., Laminated PTFE membranes to  
488 enhance the performance in direct contact membrane distillation for high salinity solution. *Desalination* **2017**,  
489 *424*, 140-148.
- 490 7. Tian, M.; Yin, Y.; Yang, C.; Zhao, B.; Song, J.; Liu, J.; Li, X.-M.; He, T., CF4 plasma modified highly  
491 interconnective porous polysulfone membranes for direct contact membrane distillation (DCMD). *Desalination*  
492 **2015**, *369*, 105-114.
- 493 8. Tijing, L. D.; Woo, Y. C.; Choi, J.-S.; Lee, S.; Kim, S.-H.; Shon, H. K., Fouling and its control in  
494 membrane distillation—A review. *J. Membr. Sci.* **2015**, *475*, 215-244.
- 495 9. Turek, M.; Mitko, K.; Piotrowski, K.; Dydo, P.; Laskowska, E.; Jakóbik-Kolon, A., Prospects for high  
496 water recovery membrane desalination. *Desalination* **2017**, *401*, 180-189.
- 497 10. He, F.; Sirkar, K. K.; Gilron, J., Effects of antiscalants to mitigate membrane scaling by direct contact  
498 membrane distillation. *J. Membr. Sci.* **2009**, *345*, (1-2), 53-58.

499 11. Alkhudhiri, A.; Darwish, N.; Hilal, N., Membrane distillation: A comprehensive review. *Desalination* **2012**,  
500 287, 2-18.

501 12. Tong, T.; Wallace, A. F.; Zhao, S.; Wang, Z., Mineral scaling in membrane desalination: Mechanisms,  
502 mitigation strategies, and feasibility of scaling-resistant membranes. *J. Membr. Sci.* **2019**, *579*, 52-69.

503 13. Zhao, F.; Ma, Z.; Xiao, K.; Xiang, C.; Wang, H.; Huang, X.; Liang, S., Hierarchically textured  
504 superhydrophobic polyvinylidene fluoride membrane fabricated via nanocasting for enhanced membrane  
505 distillation performance. *Desalination* **2018**, *443*, 228-236.

506 14. Dong, Y.; Ma, L.; Tang, C. Y.; Yang, F.; Quan, X.; Jassby, D.; Zaworotko, M. J.; Guiver, M. D., Stable  
507 Superhydrophobic Ceramic-Based Carbon Nanotube Composite Desalination Membranes. *Nano Lett.* **2018**, *18*,  
508 (9), 5514-5521.

509 15. Meng, S.; Ye, Y.; Mansouri, J.; Chen, V., Crystallization behavior of salts during membrane distillation  
510 with hydrophobic and superhydrophobic capillary membranes. *J. Membr. Sci.* **2015**, *473*, 165-176.

511 16. Xiao, Z.; Zheng, R.; Liu, Y.; He, H.; Yuan, X.; Ji, Y.; Li, D.; Yin, H.; Zhang, Y.; Li, X. M.; He, T., Slippery  
512 for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface. *Water  
513 Res.* **2019**, *155*, 152-161.

514 17. Karanikola, V.; Boo, C.; Rolf, J.; Elimelech, M., Engineered Slippery Surface to Mitigate Gypsum Scaling  
515 in Membrane Distillation for Treatment of Hypersaline Industrial Wastewaters. *Environ. Sci. Technol.* **2018**, *52*,  
516 (24), 14362-14370.

517 18. Wang, Y.; He, G.; Shao, Y.; Zhang, D.; Ruan, X.; Xiao, W.; Li, X.; Wu, X.; Jiang, X., Enhanced  
518 performance of superhydrophobic polypropylene membrane with modified antifouling surface for high salinity  
519 water treatment. *Sep. Purif. Technol.* **2019**, *214*, 11-20.

520 19. Tian, X.; Verho, T.; Ras, R. H. A., Moving superhydrophobic surfaces toward real-world applications.  
521 *Science* **2016**, *352*, (6282), 142-143.

522 20. Quan, Y. Y.; Zhang, L. Z.; Qi, R. H.; Cai, R. R., Self-cleaning of Surfaces: the Role of Surface Wettability  
523 and Dust Types. *Sci. Rep.* **2016**, *6*, 38239.

524 21. Yang, C.; Tian, M.; Xie, Y.; Li, X.-M.; Zhao, B.; He, T.; Liu, J., Effective evaporation of CF4 plasma  
525 modified PVDF membranes in direct contact membrane distillation. *J. Membr. Sci.* **2015**, *482*, 25-32.

526 22. Yang, C.; Li, X.-M.; Gilron, J.; Kong, D.-f.; Yin, Y.; Oren, Y.; Linder, C.; He, T., CF4 plasma-modified  
527 superhydrophobic PVDF membranes for direct contact membrane distillation. *J. Membr. Sci.* **2014**, *456*,  
528 155-161.

529 23. Tuteja, A.; Choi, W.; Ma, M.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R.  
530 E., Designing Superoleophobic Surfaces. *Science* **2007**, *318*, (5856), 1618-1622.

531 24. Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J., Study on morphology of electrospun poly(vinyl alcohol)  
532 mats. *Eur. Polym. J.* **2005**, *41*, (3), 423-432.

533 25. Meng, S.; Ye, Y.; Mansouri, J.; Chen, V., Fouling and crystallisation behaviour of superhydrophobic  
534 nano-composite PVDF membranes in direct contact membrane distillation. *J. Membr. Sci.* **2014**, *463*, 102-112.

535 26. Hamzah, N.; Leo, C. P.; Ooi, B. S., Superhydrophobic PVDF/TiO<sub>2</sub>-SiO<sub>2</sub> Membrane with Hierarchical  
536 Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant.  
537 *Chin. J. Polym. Sci.* **2019**, *37*, (6), 609-616.

538 27. Dong, Z.-Q.; Ma, X.-H.; Xu, Z.-L.; Gu, Z.-Y., Superhydrophobic modification of PVDF-SiO<sub>2</sub> electrospun  
539 nanofiber membranes for vacuum membrane distillation. *RSC Advances* **2015**, *5*, (83), 67962-67970.

540 28. Meng, S.; Mansouri, J.; Ye, Y.; Chen, V., Effect of templating agents on the properties and membrane  
541 distillation performance of TiO<sub>2</sub>-coated PVDF membranes. *J. Membr. Sci.* **2014**, *450*, 48-59.

542 29. Ardeshiri, F.; Salehi, S.; Peyravi, M.; Jahanshahi, M.; Amiri, A.; Rad, A. S., PVDF membrane assisted by

543 modified hydrophobic ZnO nanoparticle for membrane distillation. *Asia-Pac. J. Chem. Eng.* **2018**, *13*, (3),  
544 e2196.

545 30. Lu, Y.; Sathasivam, S.; Song, J.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P., Robust self-cleaning surfaces  
546 that function when exposed to either air or oil. *Science* **2015**, *347*, (6226), 1132-1135.

547 31. Im, M.; Im, H.; Lee, J.-H.; Yoon, J.-B.; Choi, Y.-K., A robust superhydrophobic and superoleophobic  
548 surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. *Soft Matter* **2010**, *6*,  
549 (7), 1401.

550 32. Low, Z.-X.; Chua, Y. T.; Ray, B. M.; Mattia, D.; Metcalfe, I. S.; Patterson, D. A., Perspective on 3D  
551 printing of separation membranes and comparison to related unconventional fabrication techniques. *J. Membr.  
552 Sci.* **2017**, *523*, 596-613.

553 33. Chowdhury, M. R.; Steffes, J.; Huey, B. D.; McCutcheon, J. R., 3D printed polyamide membranes for  
554 desalination. *Science* **2018**, *361*, (6403), 682.

555 34. Ma, X.-H.; Yang, Z.; Yao, Z.-K.; Guo, H.; Xu, Z.-L.; Tang, C. Y., Interfacial Polymerization with  
556 Electrosprayed Microdroplets: Toward Controllable and Ultrathin Polyamide Membranes. *Environ. Sci. Technol.  
557 Lett.* **2018**, *5*, (2), 117-122.

558 35. Ahmed, F. E.; Lalia, B. S.; Hashaikeh, R., A review on electrospinning for membrane fabrication:  
559 Challenges and applications. *Desalination* **2015**, *356*, 15-30.

560 36. Zamani, M.; Prabhakaran, M. P.; Ramakrishna, S., Advances in drug delivery via electrospun and  
561 electrosprayed nanomaterials. *Int J Nanomedicine* **2013**, *8*, 2997-3017.

562 37. Ekaputra, A. K.; Prestwich, G. D.; Cool, S. M.; Hutmacher, D. W., Combining Electrospun Scaffolds with  
563 Electrosprayed Hydrogels Leads to Three-Dimensional Cellularization of Hybrid Constructs. *Biomacromolecules* **2008**, *9*, (8), 2097-2103.

564 38. Liao, Y.; Wang, R.; Fane, A. G., Fabrication of Bioinspired Composite Nanofiber Membranes with Robust  
565 Superhydrophobicity for Direct Contact Membrane Distillation. *Environ. Sci. Technol.* **2014**, *48*, (11),  
566 6335-6341.

567 39. Wang, S.; Li, Y. P.; Fei, X. L.; Sun, M.; Zhang, C. Q.; Li, Y.; Yang, Q.; Hong, X., Preparation of a durable  
568 superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy-siloxane  
569 modified SiO<sub>2</sub> nanoparticles: A possible route to superhydrophobic surfaces with low water sliding angle and  
570 high water contact angle. *J. Colloid Interface Sci.* **2011**, *359*, (2), 380-388.

571 40. Nejati, S.; Boo, C.; Osuji, C. O.; Elimelech, M., Engineering flat sheet microporous PVDF films for  
572 membrane distillation. *J. Membr. Sci.* **2015**, *492*, 355-363.

573 41. Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Bending instability of electrically charged liquid  
574 jets of polymer solutions in electrospinning. *J. Appl. Phys.* **2000**, *87*, (9), 4531-4547.

575 42. Lalia, B. S.; Guillen-Burrieza, E.; Arafat, H. A.; Hashaikeh, R., Fabrication and characterization of  
576 polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact  
577 membrane distillation. *J. Membr. Sci.* **2013**, *428*, 104-115.

578 43. Shaulsky, E.; Nejati, S.; Boo, C.; Perreault, F.; Osuji, C. O.; Elimelech, M., Post-fabrication modification  
579 of electrospun nanofiber mats with polymer coating for membrane distillation applications. *J. Membr. Sci.* **2017**,  
580 *530*, 158-165.

581 44. Zhang, J.; Song, Z. Y.; Li, B.; Wang, Q.; Wang, S. C., Fabrication and characterization of  
582 superhydrophobic poly (vinylidene fluoride) membrane for direct contact membrane distillation. *Desalination*  
583 **2013**, *324*, (0), 1-9.

584 45. Liao, Y.; Wang, R.; Fane, A. G., Engineering superhydrophobic surface on poly(vinylidene fluoride)  
585 nanofiber membranes for direct contact membrane distillation. *J. Membr. Sci.* **2013**, *440*, (0), 77-87.

587 46. Lee, E.-J.; Deka, B. J.; An, A. K., Reinforced superhydrophobic membrane coated with aerogel-assisted  
588 polymeric microspheres for membrane distillation. *J. Membr. Sci.* **2019**, *573*, 570-578.

589 47. Rezaei, M.; Warsinger, D. M.; Lienhard V, J. H.; Duke, M. C.; Matsuura, T.; Samhaber, W. M., Wetting  
590 phenomena in membrane distillation: Mechanisms, reversal, and prevention. *Water Res.* **2018**, *139*, 329-352.

591 48. Yohe, S. T.; Freedman, J. D.; Falde, E. J.; Colson, Y. L.; Grinstaff, M. W., A Mechanistic Study of Wetting  
592 Superhydrophobic Porous 3D Meshes. *Adv. Funct. Mater.* **2013**, *23*, (29), 3628-3637.

593 49. Liao, Y.; Loh, C. H.; Wang, R.; Fane, A. G., Electrospun Superhydrophobic Membranes with Unique  
594 Structures for Membrane Distillation. *ACS Appl. Mat. Interfaces* **2014**, *6*, (18), 16035-16048.

595 50. Xiao, Z.; Li, Z.; Guo, H.; Liu, Y.; Wang, Y.; Yin, H.; Li, X.; Song, J.; Nghiem, L. D.; He, T., Scaling  
596 mitigation in membrane distillation: From superhydrophobic to slippery. *Desalination* **2019**, *466*, 36-43.

597 51. Nghiem, L. D.; Cath, T., A scaling mitigation approach during direct contact membrane distillation. *Sep.*  
598 *Purif. Technol.* **2011**, *80*, (2), 315-322.

599 52. Warsinger, D. M.; Tow, E. W.; Swaminathan, J.; Lienhard V, J. H., Theoretical framework for predicting  
600 inorganic fouling in membrane distillation and experimental validation with calcium sulfate. *J. Membr. Sci.*  
601 **2017**, *528*, 381-390.

602 53. He, F.; Gilron, J.; Lee, H.; Song, L.; Sirkar, K. K., Potential for scaling by sparingly soluble salts in  
603 crossflow DCMD. *J. Membr. Sci.* **2008**, *311*, (1-2), 68-80.

604 54. Luo, C.; Zheng, H.; Wang, L.; Fang, H.; Hu, J.; Fan, C.; Cao, Y.; Wang, J., Direct three-dimensional  
605 imaging of the buried interfaces between water and superhydrophobic surfaces. *Angew. Chem. Int. Ed. Engl.*  
606 **2010**, *49*, (48), 9145-8.

607 55. Yohe, S. T.; Herrera, V. L. M.; Colson, Y. L.; Grinstaff, M. W., 3D superhydrophobic electrospun meshes as  
608 reinforcement materials for sustained local drug delivery against colorectal cancer cells. *J. Control. Release*  
609 **2012**, *162*, (1), 92-101.

610 56. Patankar, N. A., Thermodynamics of Trapping Gases for Underwater Superhydrophobicity. *Langmuir* **2016**,  
611 *32*, (27), 7023-8.

612 57. Kavalenka, M. N.; Vullers, F.; Lischker, S.; Zeiger, C.; Hopf, A.; Rohrig, M.; Rapp, B. E.; Worgull, M.;  
613 Holscher, H., Bioinspired air-retaining nanofur for drag reduction. *ACS Appl. Mat. Interfaces* **2015**, *7*, (20),  
614 10651-5.

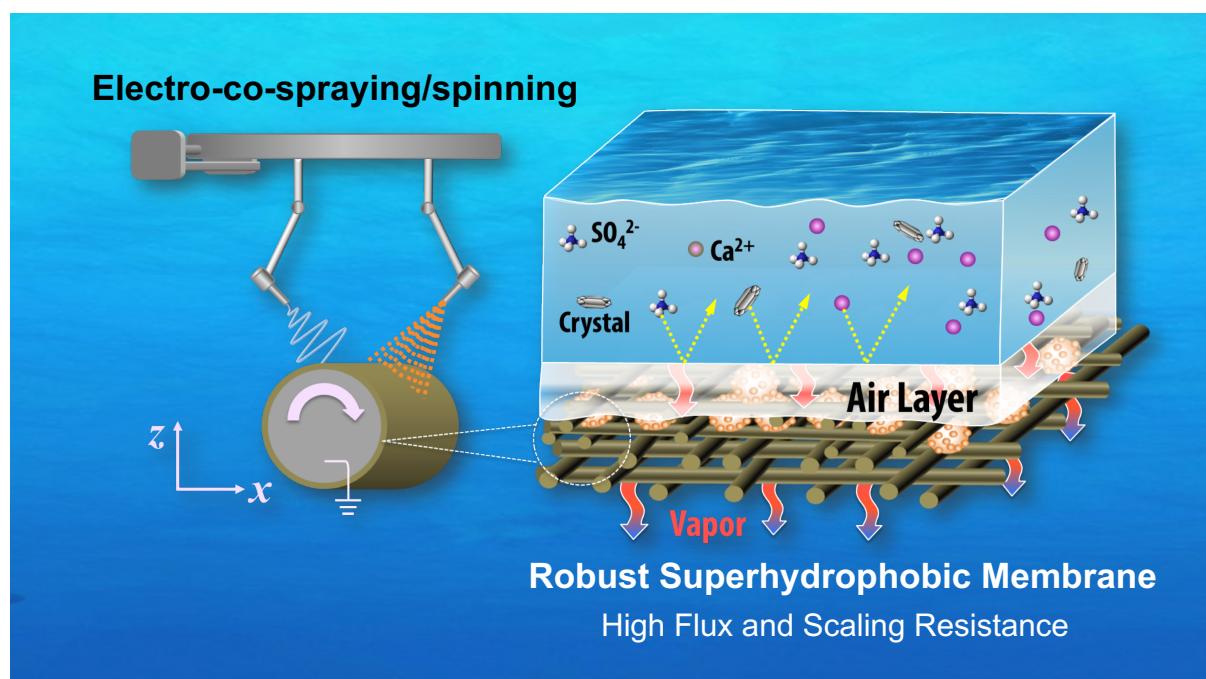
615 58. Balmert, A.; Bohn, H. F.; Ditsche-Kuru, P.; Barthlott, W., Dry under water: Comparative morphology and  
616 functional aspects of air-retaining insect surfaces. *J. Morphol.* **2011**, *272*, (4), 442-451.

617 59. Babu, D. J.; Mail, M.; Barthlott, W.; Schneider, J. J., Superhydrophobic Vertically Aligned Carbon  
618 Nanotubes for Biomimetic Air Retention under Water (Salvinia Effect). *Adv. Funct. Mater.* **2017**, *4*, (13),  
619 1700273.

620 60. Nguyen, D. D.; Tai, N.-H.; Lee, S.-B.; Kuo, W.-S., Superhydrophobic and superoleophilic properties of  
621 graphene-based sponges fabricated using a facile dip coating method. *Environ. Sci. Technol.* **2012**, *5*, (7),  
622 7908-7912.

623 61. Horseman, T.; Su, C.; Christie, K. S. S.; Lin, S., Highly Effective Scaling Mitigation in Membrane  
624 Distillation Using a Superhydrophobic Membrane with Gas Purging. *Environ. Sci. Technol. Lett.* **2019**.

625 62. Liu, X. Y., Heterogeneous nucleation or homogeneous nucleation? *J. Chem. Phys.* **2000**, *112*, (22),  
626 9949-9955.


627 63. Sear, R. P., Heterogeneous and Homogeneous Nucleation Compared: Rapid Nucleation on Microscopic  
628 Impurities. *J. Phys. Chem. B* **2006**, *110*, (10), 4985-4989.

629 64. Christenson, H. K., Two-step crystal nucleation via capillary condensation. *CrystEngComm* **2013**, *15*, (11),  
630 2030.

631 65. Kashchiev, D.; Firoozabadi, A., Nucleation of gas hydrates. *J. Cryst. Growth* **2002**, *243*, (3), 476-489.  
632 66. McHale, G.; Newton, M. I.; Shirtcliffe, N. J., Immersed superhydrophobic surfaces: Gas exchange, slip and  
633 drag reduction properties. *Soft Matter* **2010**, *6*, (4), 714-719.  
634 67. Choi, C. H.; Kim, C. J., Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface.  
635 *Phys. Rev. Lett.* **2006**, *96*, (6), 066001.  
636 68. Lee, C.; Choi, C.-H.; Kim, C.-J., Superhydrophobic drag reduction in laminar flows: a critical review. *Exp.*  
637 *Fluids* **2016**, *57*, (12), 176.

638

639 **TOC ART**



640