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ABSTRACT

We report in this study a scalable and controllable approach for fabricating robust and
high-performance superhydrophobic membranes for membrane distillation (MD). This novel
approach combines electro-co-spinning/spraying (ES?) with chemical vapor welding, and
enables the formation of robust superhydrophobic (r-SH) membranes that are mechanically
strong, highly porous, and robustly superhydrophobic. Compared with superhydrophobic
membranes obtained using surface deposition of fluorinated nanoparticles, the r-SH
membranes have more robust wetting properties and higher vapor permeability in MD. MD
scaling experiments with NaCl and gypsum show that the r-SH membrane is highly effective
in mitigating mineral scaling. Finally, we also discuss the mechanism of scaling resistance
enabled by superhydrophobic membranes with a highlight on the roles of the surface-bound
air layer in reducing the crystal-membrane contact area, nucleation propensity, and

ion-membrane contact time.
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INTRODUCTION

Membrane distillation (MD), which can harvest low-grade waste heat for desalinating
high salinity brine, is potentially a promising solution for hypersaline brine management in
oil and gas wastewater treatment and zero liquid discharge 2. In a typical MD process, the
temperature difference between hot salty water (the feed solution) and cold deionized water
(the distillate) results in a partial vapor pressure difference that drives the vapor to transport

from the feed stream to the distillate stream, thereby producing distilled water 3.

If MD is applied for hypersaline brine treatment, membrane scaling represents a major
and unavoidable technical challenge as the feed streams will eventually become oversaturated
8. The formation of mineral scales can induce both fouling, which reduces water vapor flux,
and pore wetting, which reduces salt rejection, either of which will compromise the
performance and eventual fail the MD process. Extensive research has been performed to
explore strategies for scaling mitigation in MD, such as membrane cleaning and dosing of

anti-scalants 11

. However, these strategies increase either the complexity or cost of MD
operation !2. Very recently, superhydrophobic MD membranes have been explored by several
research groups as an effective material strategy for scaling mitigation '3-15. While the
detailed mechanism for scaling-resistance remains an active area of study, these studies

collectively show the effectiveness of using superhydrophobic membranes for mitigating

mineral scaling in MD 1618,

A superhydrophobic membrane is a membrane with a very high water contact angle
(WCA) and very low contact angle hysteresis. The contact angle hysteresis can be quantified
by measuring the sliding angle (SA) which is the minimum tilting angle (from the horizontal
position) at which a water droplet starts to slide off the membrane surface. In the convention
of material science, both very high WCA (>150 °) and very low SA (<10 °) are required for a
surface to be classified as “superhydrophobic” ' 2%, In other words, a surface with strong

contact angle hysteresis (i.e., high SA) is not superhydrophobic, regardless of its WCA.

The two major requirements for fabricating a superhydrophobic membrane, or more
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generally, a superhydrophobic surface, are that (1) the material has low surface energy !> %2,

and (2) the surface has a high degree of roughness 2*. Following this principle, most existing
superhydrophobic MD membranes were obtained by decorating the surface of commercial
hydrophobic membranes with fluorinated nano- or micron-sized particles 2#2°, However, this
approach of surface decoration is of limited practical application because (1) the vapor
permeability is often significantly compromised with this approach 272, and (2) robust
attachment of particles onto the membrane surface is challenging and often requires complex,
multi-step modification procedure 3% 3!, Therefore, a new way is in need for scalable
fabrication of robust superhydrophobic MD membranes without sacrificing the vapor

permeability.

Herein, we report a method of fabricating a robust superhydrophobic (r-SH) membrane
for MD with both outstanding vapor permeability and scaling resistance. This method is
based on the principle of 3D printing, an additive manufacturing approach that creates object
by bottom-up, layer-by-layer deposition of the constituting material 2. This additive
manufacturing approach has received increasing recent attention in fabricating membranes
and module components. For example, recent studies have been reported to use
electrospraying for fabrication of polyamide membranes with exceptional control of active
layer thickness and composition ** 3% In fact, the many existing studies of using
electrospinning to fabricate membranes can all be categorized as additive manufacturing in
principle °. Notably, electro-co-spinning/spraying (ES?) has been explored for fabricating

fiber/particle composite biomaterials 3637,

In this study, we employ an ES? method to develop MD membranes with a r-SH layer
with micron-sized clusters of silica nanoparticles (SiNPs) intercalated within a matrix of
polymeric nanofibers. We characterize the morphological and wetting properties of the r-SH
membranes, and also test the MD performance of such r-SH membranes and compare them
with conventional hydrophobic membranes and superhydrophobic (SH) membranes obtained
using conventional method of decorating surface with fluorinated particles. We also
investigate the scaling resistance of the r-SH membranes in MD operation with NaCl and

gypsum as the scalants.



85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

MATERIALS AND METHODS

Chemicals and membranes. Polyvinylidenefluoride-co-hexafluoropropylene
(PVDF-HFP) (PVDF-HFP, MW: 455 kDa), N,N-dimethylformamide (DMF, 99.8%), acetone
(99.9%), sodium chloride (NaCl), 2-propanol (99.5%), 1H,1H,2H,2H
-perfluorodecyltriethoxysilane (17-FAS, 97%) were purchased from Sigma-Aldrich (St. Louis,
USA). Silica nanoparticles (SiNPs) with 40-60 nm diameter were purchased from SkySpring
Nanomaterials (Houston, TX). A commercial polyvinylidene difluoride (PVDF) membrane
with 0.45 pm nominal pore size from GE Healthcare (Pittsburg, PA) was used as the

reference in scaling experiments.
Fabrication of the r-SH membrane and reference membranes.

The dope solution for electrospinning was prepared by dissolving PVDF-HFP pellets at 20
wt% using a 2:1 (by volume) mixture of DMF to acetone as solvent (mixed overnight at
50°C). The dope solution for electrospraying, referred to as SiNPs/PVDF-HFP dope, was
prepared by first dissolving PVDF-HFP pellets to prepare at 8 wt% using a 4:1 (by volume)
mixture of DMF to acetone as solvent (mixed overnight at 50°C) and then adding SiNPs (15
wt%) to this solution under vigorous stir-mixing at room temperature for 2 h. Acetone was
used to accelerate solvent evaporation during electrospraying, as the already-spun
nanofibrous substrate could easily dissolve if only DMF was used as the solvent for the dope

solution.

The four-step procedure for fabricating the r-SH membrane is schematically depicted in
Figure 1. In step 1, a nanofibrous substrate was electrospun using an electrospinning
instrument (TL-01, Tongli Tech., China) by feeding the 20 wt % PVDF-HFP dope solution at
1.0 mL hl. In step 2, both PVDF-HFP electrospinning dope and SiNPs/PVDF-HFP
electrospraying dope were deposited onto the PVDF-HFP fibrous substrate via the
electro-co-spinning/spraying (ES?) technique for 20 min with the spinning and spraying
needles facing the rotating collector drum from opposite directions (Figure S1). For the

membrane under primary investigation in this paper, flow rate of the SiNPs/PVDF-HFP
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electrospraying dope solution was fixed at 2.5 mL h-!, whereas the flow rate of the
PVDF-HFP electrospinning dope solution was 0.3 ml h'!. Other flow rates of the PVDF-HFP
electrospinning dope solution were also tested and will be discussed later. The low polymer
concentration in electrospraying dope solution facilitates the formation of SiNPs/PVDF-HFP
microbeads *% 3. In both steps, a voltage of 13 kV was applied between the collecting drum

rotating at 250 rpm and the needles that reciprocated horizontally at 120 cm min™.

(A) Electrospinning (B) Electro-co-spinning/spraying (C) Welding (D) Silanization
—
- |}+_'_' DMF (85°C, 1.5 h) 17-FAS (-0.05 MPa, 85°C, 16 h)
PVDF-HFP . = SiNPs/PVDF-HFP f
iz 2N s

G
S|+
J PVDF-HFP
- —

Substrate 3D-SH composite layer

/ ﬁjf__
5SS
Voo

\\ ’tf
PVDF-HFP nanofibers SiNPs/PVDF-HFP microbeads Welded joint

Figure 1. Schematic illustration of the ES? procedure for fabricating r-SH membrane. (A) Fabrication of
the PVDF-HFP nanofibrous substrate by electrospinning. (B) Construction of a r-SH composite layer
with electrosprayed SiNPs/PVDF-HFP microbeads embedded in electrospun PVDF-HFP fibrous web.
(C) Structural reinforcement by chemical vapor “welding” using DMF solvent vapor. (D) Fluorination of
the SiNPs in the membrane structure using 17-FAS via vapor phase silanization.

After the formation of nanofibrous network intercalated with SiNPs/PVDF-HFP
microbeads, the fibrous network was subject to DMF vapor phase “welding” at 85 °C for 1.5
h (step 3). The vaporized DMF solvent slightly dissolved the PVDF-HFP on the surface of
the fibers and the microbeads, resulting in “welding” of the contact points between fibers
themselves and between fibers and the microbeads. This step was performed with the
intention to enhance the mechanical integrity of the r-SH membrane. Finally, the welded
membrane was functionalized with fluoroalkylsilane (i.e., 17-FAS) to lower the membrane
surface energy via vapor phase silanization at 85 °C and -0.05 MPa for 16 h in an vacuum
oven (step 4) 7. The superhydrophobic membrane formed following this stated procedure, as

described in Figure 1, is referred to r-SH membrane in the following discussion.
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Membrane characterization and performance test

The surface morphology of each membrane was characterized using scanning electron
microscopy (SEM, Zeiss Merlin, Thornwood, NY). After scaling experiments,eElemental
mapping of the species in the scale layers on the different membranes was conducted with the
SEM equipped with energy dispersive X-ray detector, (EDS, Oxford Instruments,
Oxfordshire, UK). Static WCA was measured with an optical goniometer (OneAttension,
Biolin scientific instrument, Espoo, Finland). We also quantified the WCA hysteresis by
measuring the sliding angle, SA. The membrane porosity was measured using a gravimetric
method #°. To quantify the robustness of the membrane wetting properties, the WCA and SA
of the membrane samples were measured after the membranes were subjected to prolonged

ultrasonic treatments (660 watts, Kendal, China) for 90, 180, 270 minutes.

We evaluated the performance of the membrane samples using a laboratory-scale direct
contact membrane distillation (DCMD) system with membrane coupons (2.5 cm x 8 cm).
The mass and conductivity of the distillate were measured continuously, from which the real
time flux and salt rejection were calculated. For evaluating the intrinsic MD performance in
the absence of scaling, we used 2.3 L of NaCl solution (3.5 wt%) as the feed water. The feed
and distillate temperatures were 65 and 20 °C, respectively, whereas the cross-flow velocities

in the feed and distillate channels were 8.6 and 4.3 cm s°!, respectively.

Scaling resistance evaluation

We performed two sets of experiments with two feed solutions of different chemistry to
evaluate the scaling resistance of the different membranes. In the first set of experiments, we
used 840 mL of highly concentrated NaCl solution (25 wt%) as the feed water. The feed and
distillate temperatures were 60 and 20 °C, respectively, whereas the cross-flow velocities in
the feed and distillate channels were 6.5 and 4.3 cm s™!, respectively. In the second set of
experiments, the feed solution (initial volume of 840 mL) contained 14 mM CaCl, and 14
mM Na,SOs. The feed and distillate temperatures were 75 and 20 °C, respectively, whereas
the cross-flow velocity in the feed and distillate channels was 7.6 and 4.3 cm s°!, respectively.

Scaling experiments were terminated when the volume of solution in the feed tank was
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RESULTS AND DISCUSSIONS

Membrane morphology

The r-SH membrane displays a rough, porous morphology consisting of
SiNPs/PVDF-HFP microbeads (with an average diameter of 11.3£3.1 um) and intercrossing
PVDF-HFP nanofibers (with an average diameter of 420+180 nm) wrapping around the
microbeads (Figure 2A). Welding does not only fuse the PVDF-HFP nanofibers at their
intercrossing junctions but also fuses the fibers with the SINPs/PVDF-HFP microbeads. The
surface of the SiINPs/PVDF-HFP microbeads exhibits a secondary nanoscale roughness due
to the presence of the SiNPs that are “glued” by the PVDF-HFP to become composite

microbeads.

f =
2
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o
@
w
(")
(7}
o
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o

Figure 2. (A) SEM micrographs showing the surface of “welded” r-SH membrane at different
magnifications: (left) 500 x, (center) 10,000 x, and (right) 50,000 x. (B) Cross-section morphologies of
r-SH membrane. The composite layer (top), the fibrous substrate (bottom), and the boundary between
the two layers (center) are highlighted with magnified images shown on the right. (C) Physical
appearance of the r-SH membrane before welding (top) and after welding (bottom).
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This composite layer with both fibers and microbeads, constructed via ES? onto a
fibrous PVDF-HFP substrate, forms a robust superhydrophobic layer that is approximately 35
um thick (Figure 2B left). Higher magnification of the cross-sectional SEM image of the
r-SH layer (Figure 2B top right), the interface between the r-SH layer and the fibrous
substrate (Figure 2B center right), and the fibrous substrate (Figure 2B bottom right) reveal
welding-induced reinforcement within the two respective layers and at their interface. This
welding reinforcement is also critical to the mechanical integrity of membranes, i.e., without
welding the membranes were flimsy with loose fibers that can be easily peeled away from the
substrate (Figure 2C top) because the fibers only physically stack without inter-fiber
connection *'*¥; in contrast, the welding-reinforced membranes were significantly more
robust (Figure 2C bottom), allowing them to be used in MD as self-supporting membranes

without additional mechanical reinforcement. The SEM images of other prepared membranes

were also shown in Figure S2 (before welding) and Figure S3 (after welding).
Wetting properties and robustness of the membranes

The membrane wetting properties were compared using WCA and SA with DI water as the
testing liquid. All membranes fabricated in this study have higher WCA than that of a
commercial PVDF membrane. The WCA increases systematically with a percentage of
17-FAS fluorinated SiNPs/PVDF-HFP microbeads (Figure 3A). The abundance of
microbeads was adjusted by controlling the flow rates of the dope solutions in the ES?
process (Table S1). Both the membrane fabricated via the ES? procedure described in the
Methods section and the membrane with electro-sprayed composite microbeads (microbeads
only) are superhydrophobic, i.e., they both have WCA higher than 150° and SA lower than
10°. In contrast, the SA was not measurable with commercial PVDF membrane and
electrospun membranes without microbeads (fibers only), because the water droplet adhered
onto the membrane surface even when the membranes were inverted. Expectably, the
membrane fabricated using ES? with a lower percentage of microbeads (mostly fibers), has a
relatively high SA, falling between that of the electrospun membrane (fibers only) and the

r-SH membrane formed via ES?.
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Although the membranes formed via ES? with both microbeads and fibers and that
formed via electrospraying of microbeads (only) are both superhydrophobic right after
synthesis, the superhydrophobicity is much more robust with the membrane formed via ES?.
This difference was confirmed by subjecting both membranes to ultrasonication which can
potentially “knock” the SiNPs/PVDF-HFP microbeads off the membrane surface. The WCA
decreased, and the SA increased, as the membranes with only electrosprayed microbeads
experienced longer ultrasonication (Figure 3B). Such a membrane was no longer
superhydrophobic after 270 min of ultrasonication, yielding a WCA of only 145.9° and a SA
up to 64.0°. In contrast, the ES?>-formed r-SH membrane was only slightly affected by
prolonged ultrasonication and remained superhydrophobic after 270 min of ultrasonication.
The robustness of superhydrophobicity of ES?> membrane was further demonstrated in a more
practically relevant context where both the electrosprayed SH membrane and the ES2-derived
r-SH membrane membrane was subject to a 30-hour MD experiment with DI water and a
cross-flow velocity of 7.6 cm s'. The WCA and SA of the originally SH membrane with
electrosprayed microbeads became 144.8° and >90°, respectively; whereas the WCA and SA
of the r-SH membrane were only subject to slight changes to 155.6 ° and 7.2 °, respectively.
The comparison between these two membranes is qualitatively consistent in both the

sonication and prolonged MD experiments.

10
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Figure 3. (A) WCA and SA of different membrane samples. The SA of commercial PVYDF membrane
and the electrospun PVDF-HFP membrane (fibers only) cannot be measured because water droplets
adhere even onto an inverted membrane surface. The membrane sample denoted as “mostly fibers”
was fabricated also using ES? but with a different composition (see Supplementary Information for
details). The membrane sample denoted as “microbeads only” was fabricated by electrospraying
SiNPs/PVDF-HFP composite beads, without simultaneous electrospinning of PVDF-HFP fibers, onto
the already formed PVDF-HFP fibrous substrate. (B) WCA and SA of the r-SH membranes fabricated
using ES? and using electrospraying of SiNPs/PVDF-HFP microbeads after different durations of
ultrasonication. (C) SEM surface morphology of ES?-derived r-SH membrane before (left) and after
(right) 270 mins of ultrasonication. (D) SEM surface morphology of superhydrophobic membrane
fabricated by electrospraying SiNPs/PVDF-HFP composite beads before (left) and after (right) 270
mins of ultrasonication.

The robustness of the wetting properties for ES?-formed r-SH membrane is attributable
to the unique structure formed via ES? in which composite SINPs/PVDF-HFP microbeads are
locked up in the interconnected network of PVDF-HFP fibers that was further reinforced by
the “welding” process. Prolonged ultrasonication was not able to remove the microbeads
from such an interconnected and welded network, as evidenced by the lack of change in
surface morphology (Figure 3C). In contrast, the surface structure of the membranes with

only electrosprayed microbeads is significantly more susceptible to degradation by

11
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ultrasonication because of the weak connections between the microbeads. While the “welding”
process may strengthen such connections by fusing the contacting PVDF-HFP portions
between different microbeads, this reinforcement was still insufficient when the surface was
subject to prolonged perturbation. The layer of SiNPs/PVDF-HFP microbeads was almost
completely removed after 270 mins of ultrasonication, as clearly shown by comparing the

surface morphology before and after ultrasonication (Figure 3D).
MD performance (in the absence of scaling)

Without the superhydrophobic layer, the electrospun fibrous membrane achieved a vapor flux
of 51.1 L m? h'! (Figure S4) with the feed and distillate temperatures being 65 and 20 °C,
respectively. With a superhydrophobic layer constructed by electrosprayed SiNPs/PVDF-HFP
microbeads, however, the vapor flux declined to 34.3 L m? h'! which was similar to that of
the commercial PVDF membrane (35. 2 L m™? h'!). This finding is qualitatively consistent
with most previous studies that reported a decline in vapor permeability due to the use of a
nanoparticle “cake layer” on the membrane surface to impart superhydrophobicity 446,
However, using the ES? method only led to a much smaller decline of vapor permeability,
yielding a vapor flux of 45.6 L m2 h'! with the same experimental conditions. The difference
in MD performance between the ES?-derived r-SH membrane and the superhydrophobic
membrane formed via electrospraying microbeads is even more dramatic considering the fact

that the functional superhydrophobic layer was 35 um thick for the ES?-derived membrane

but only 16 um thick for the membrane with electrosprayed microbeads.

The better MD performance with the thicker ES?-derived r-SH membrane is mainly
attributable to its higher porosity. Compared to electrospun membrane which has the highest
porosity of 84.2+0.7 % (Table S2), the ES?-derived r-SH membrane has a slightly lower
overall porosity of 80.7+1.2 %, which is significantly higher than the porosity of membrane
with electrosprayed microbeads (69.7£1.5 %). The presence of the co-spun fibers
significantly reduces the packing density of the microbeads, preventing the formation of a
low-porosity layer that forms with microbeads alone, but at the same time maintains

superhydrophobicity. Therefore, both the long-term robustness of superhydrophobicity and

12
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the MD performance suggest that r-SH membrane synthesized using ES? should be used in

MD instead of the superhydrophobic membrane formed only via electrospraying.
Resistance to scaling by NaCl

Experiments with a high concentration NaCl feed solution (25 wt%) show that the
electrospun fibrous PVDF-HFP membrane is more scaling resistant than the commercial
PVDF membrane (Figure 4A). Specifically, the limiting recovery, defined as the water
recovery at which precipitous flux decline occurred, was higher with the fibrous PVDF-HFP
membrane (~141 mL,) than with the commercial PVDF membrane (~103 mL). Beyond the
limiting recovery, a sharp increase in distillate conductivity was observed for both

15, 47 In

membranes (Figure 4A), indicating the occurence of scaling-induced pore wetting
contrast, the r-SH membrane is exceptionally resistant to scaling by NaCl as indicated by the
absence of either flux decline or pore wetting even after around 420 mL of water was

recovered, and the feed solution was concentrated approximately 2-fold.

The observation of sustained vapor flux even when the NaCl feed solution was highly
concentrated is similar to what has been reported by Xiao et. al !® using a templated
micropillared superhydrophobic MD membrane, except that in our case we did not even

1. ', even when the

observe any increase in distillate conductivity as reported by Xiao et a
feed water was concentrated by more than 2-fold. This exceptional resistance to scaling and
the pore wetting thereby-induced may be attributable to the r-SH layer that is dramatically
more difficult to penetrate than membranes that rendered superhydrophobic only by surface

features 4% 49,

13
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Figure 4. (A) Normalized water flux and (B) distillate conductivity as functions of the water recovery for
r-SH membrane fabricated using ES? (blue), electrospun PVDF-HFP membrane (orange), and
commercial PVDF membrane (green) in NaCl scaling experiments (the replicates of the results shown
in A and B are also presented in Figure S5). The average initial vapor fluxes for the three membranes
were 27.4 L, 28.5, and 16.2 m2 h', respectively, with a feed temperature of 60 °C and a distillate
temperature of 20 °C. The feed water was 840 mL NaCl solution (25 wt %). SEM micrographs (left) and
the corresponding EDS mapping for Na element (right) for (C) commercial PVDF membrane, (D)
electrospun PVDF-HFP fibrous membrane, and (E) r-SH membrane fabricated using ES2.

The fact that both the electrospun fibrous membrane and the r-SH membrane had
significantly higher water fluxes than the commercial PVDF membrane suggests that the
observed difference in scaling behaviors has little to deal with concentration polarization, as
otherwise the electrospun membrane and the r-SH membrane should have had lower limiting
recoveries than the commercial PVDF membrane that had the lowest vapor flux. Top-view
SEM images and the corresponding EDS mapping of Na element reveal large NaCl crystal on
the surface the commercial PVDF membrane (Figure 4C) and significantly smaller crystals
on the electrospun PVDF-HFP membrane (Figure 4D) after the scaling experiments. In
contrast, very little Na was detected on the r-SH membrane, and no observable crystal was

found on the surface of the r-SH membrane at all.

We also measured the WCA and SA of the three membrane samples after scaling

experiments (without rinsing) and found that whereas the WCA of the commercial PVDF

14
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membrane and the electrospun PVDF-HFP membrane decreased by 29.7 and 19.9°,
respectively (Figure S6). The decreased hydrophobicity of these membranes may be
attributable to the presence of surface-bound crystal deposit. In contrast, the WCA of the
r-SH membrane decreased by only 4.6° to 157°. Besides, the WCA hysteresis for the r-SH
membrane remained very small, as quantified by a SA of 9.0° even after the scaling
experiments (Figure S6). In conclusion, the wetting properties of the r-SH were almost
unaffected by the scaling experiment with highly concentrated NaCl solution, again

confirming the robustness of its superhydrophobicity.

Resistance to scaling by gypsum

The scaling behavior with gypsum, a sparely soluble mineral, differs substantially from
that with NaCl. With the commercial PVDF membrane and the electrospun PVDF-HFP
membrane, the flux decline upon the onset of scaling is less “precipitous” with gypsum
scaling than with NaCl scaling. Based on the water recovery corresponding to the onset of
scaling and the flux decline rate, the r-SH membrane was more scaling resistant than the
commercial or electrospun membranes (Figure 5A, 5B). However, unlike the case with
concentrated NaCl solution as feedwater, even the r-SH membrane was subject to gypsum
scaling that leads to both flux decline and pore wetting. This observation is consistent with
recent studies using superhydrophobic membranes in MD, that superhydrophobic membrane
can only delay, but not eliminate gypsum scaling !> 17-3°, The exact mechanism underlying
these different scaling behaviors between NaCl and gypsum is beyond the scope of this study
and needs further elucidation. But it is nonetheless consistent with the observations in a

recent study by Xiao et al 1639,
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Figure 5. (A) Normalized water flux and (B) distillate conductivity as functions of the water recovery for
r-SH membrane fabricated using ES? (blue), electrospun PVDF-HFP membrane (orange), and
commercial PVDF membrane (green) in gypsum scaling experiments (the replicates of the results
shown in A and B are also presented in Figure S7). The average initial vapor fluxes for the three
membranes were 44.5, 48.1, and 40.2 L m? h™', respectively, with a feed temperature of 75 °C and a
distillate temperature of 20 °C. The feed water was 840 mL of a mixed 14 mM/L CaClz and 14 mM/L
Na2SOs4 solution. Photographic images (left) and SEM micrographs (right) for (C) commercial PVDF
membrane, (D) electrospun PVDF-HFP membrane, and (E) r-SH membrane fabricated using ES2.

Results from membrane autopsy also indicate that gypsum scaling on the r-SH
membrane is qualitatively different from that on the commercial PVDF membrane or the
electrospun PVDF-HFP membrane. With hydrophobic (but not superhydrophobic)
membranes, needle-like gypsum crystals almost entirely covered the membrane surface
(Figure 5C, 5D). With a r-SH membrane, however, a large fraction of the membrane surface
remained free of scaling crystals. Interestingly, the portions of the r-SH membrane that were
covered by gypsum crystal were either near the entrance and exit or along the edges of the
feed channel (Figure S8). Because the hydrodynamic conditions in these regions are more
stagnant than that in the central region of feed channel, it is most likely that hydrodynamic
effect plays an important role in mitigating gypsum scaling on the superhydrophobic
membrane '°. Scaling near the entrance seems to be the most severe among all regions likely
due to additional conditions that are favorable for crystal precipitation. Specifically, the
higher feed temperature at the entrance leads to both lower gypsum solubility 3! and stronger

concentration polarization as a result of high vapor flux %33, Perhaps more importantly, the
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feed stream near the entrance has a flow component toward the membrane surface, which

enhances the convective transport of solutes toward the membrane surface.
Mechanisms for scaling mitigation with superhydrophobic membrane

It is widely believed that an air layer is present on the surface of a superhydrophobic
membrane submerged in water >*3¢. The presence of such a surface-bound air layer on a
superhydrophobic membrane is evidenced by the silvery and reflective appearance of the
submerged surface, which is caused by the different refractive indexes between water and air
3760 (Figure 6A). Based on the presence of such an air layer, three possible mechanisms likely
contribute to the lower scaling propensity with superhydrophobic membranes, even though

their relative contributions are difficult to quantify.
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Figure 6. (A) Photographic image of the submerged commercial PVDF membrane (left),
electrospun PVDF-HFP fibrous membrane (center), and r-SH membrane fabricated using
ES? (right). The r-SH membrane has a silvery reflective surface due to the presence of a
surface-bound air layer. Graphical illustration of (B) reduced liquid-solid interfacial area, (C)
lower overall surface energy and nucleation propensity, and (D) reduced local residence time,
with a superhydrophobic membrane (left) as compared with a hydrophobic membrane (right).

The first mechanism is the reduced liquid-solid contact area, which is consequent of the
excellent Cassie-Baxter state required for superhydrophobicity. The smaller contact area

between the feed solution and the solid material of the membrane reduces the area of
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interfacial crystallization at the water-solid interface and thereby reduces the overall adhesive
interaction between the scale layer and the MD membrane (Figure 6B). A recent paper by
Horseman et al. also suggests the formation of crystal “anchors” within the membrane pores
when the feed solution partially intrudes into a conventional hydrophobic MD membrane °!.
Such an anchoring effect can be minimized with superhydrophobic membranes with
minimum pinning as indicated by a very low sliding angle. In addition, this mechanism also
contributes to less deposition of crystal particles that are heterogeneously formed in the bulk,

simply because small area of solid-water interface is available for particle deposition.

While the first mechanism regards the reduced area for interaction between crystals and
the membrane, the second mechanism concerns the more difficult formation of such crystals
on superhydrophobic membranes than on hydrophobic membranes. It is widely accepted that
heterogeneous nucleation at the solid-water interface is typically more favorable and faster
than homogeneous nucleation % . Interestingly, previous analyses also showed that the
Gibbs free energy for heterogeneous nucleation at water-air interface equals that for
homogeneous nucleation % . Since surface energy of air is practically zero and the surface
energy of 17-FAS is lower than that of PVDF (and PVDF-HFP), the ranking of “nucleation

propensity” should follow the order below:
PVDF > 17-FAS > Water-air interface ~ Homogeneous nucleation

If we divide the total contact area between feed solution and the membrane into two
fractions with one being water-air contact and the other being the water-solid contact, MD
with superhydrophobic membrane has a larger fraction of water-air contact which has the
lowest nucleation propensity. Furthermore, even for the portion of water-solid contact, the
lower surface energy of the 17-FAS on a superhydrophobic membrane also results in a lower
scaling propensity than with a PVDF (and PVDF-HFP) hydrophobic membrane. Both effects
cooperatively lead to more difficult nucleation on a superhydrophobic than on a hydrophobic

membrane (Figure 6C).

The third mechanism is related to the reduced local residence time available for

interaction between mineral ions and the solid surface of the membrane. The air layer
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between a superhydrophobic surface and the fluid flowing along it is effective in reducing the
drag to fluid flow due to what has been referred to as the “slip boundary effect” . Unlike
typical non-slip boundary at which the local flow velocity is considered to be zero at the
solid-water interface, the flow velocity at a slip boundary is positive (Figure 6D) °7-67-68 For
a non-permeable solid surface, the higher flow velocity on a superhydrophobic surface with
slip-boundary leads to significantly less residence time for interaction between mineral ions
and surface, which reduces the scaling propensity. For a permeable surface like a membrane,
the impact of local residence time is all the more significant. The potentially significantly
longer residence time is caused by the partial intrusion of feed solution into the pores of a
hydrophobic membrane creates a stagnant zone within the pore where mineral ions can linger
(Figure 6D). This effect may be exacerbated by convective transport into this stagnant zone
due to vapor flux in MD. The detrimental impact of the slip-boundary and in-pore stagnant
zone applies to both interfacial heterogeneous nucleation and deposition of crystal particles

that have already formed in the solution.

In summary, the recently proposed strategy of using superhydrophobic membranes for
scaling mitigation has three possible mechanisms including reduced solid-water contact area
for interaction of the membrane surface with crystal particles or solutes, lower nucleation
propensity due to the reduced overall surface energy, and the shorter local residence time for
interaction between mineral ions and solid surface. These mechanisms, which result from the
exceptional Cassie-Baxter state imparted by superhydrophobic membranes, likely all
contribute to the effectiveness of superhydrophobic membrane for universally reducing the
propensity of mineral scaling. However, breaking down individual contributions of these

mechanisms is both experimentally and theoretically challenging.

IMPLICATIONS

As a thermal distillation process that is inherently energy intensive, the most promising
applications of MD are treatment of hypersaline brine, which is an emerging environmental
challenge with growing importance. To unlock the potential of MD toward its best-suited

applications, the critical challenge of mineral scaling must be overcome. While recent
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research has demonstrated the potential of superhydrophobic membranes in mitigating
mineral scaling in MD, the method reported herein for fabricating three-dimensionally
superhydrophobic (r-SH) membrane using electro-co-spinning/spraying (ES?) offers a
scalable approach for making superhydrophobic membrane with robust superhydrophobicity
and minimal compromise in the intrinsic MD performance. To the best of our knowledge, the
r-SH membrane fabricated using ES? delivers higher flux than most, if not all,
superhydrophobic membranes reported in other studies with similar operating conditions. The
unique particles-in-fibrous-web structure of the r-SH membrane also delivers highly robust

superhydrophobicity that is required for stable performance in long-term operations.
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