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Abstract

This Editorial is intended for materials scientists interested in performing machine

learning-centered research. We cover broad guidelines and best practices regarding

the obtaining and treatment of data, feature engineering, model training, validation,

evaluation and comparison, popular repositories for materials data and benchmarking
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datasets, model and architecture sharing, and finally publication. In addition, we in-

clude interactive Jupyter notebooks with example Python code to demonstrate some of

the concepts, workflows, and best practices discussed. Overall, the data-driven methods

and machine learning workflows and considerations are presented in a simple way, allow-

ing interested readers to more intelligently guide their machine learning research using

the suggested references, best practices, and their own materials domain expertise.
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Introduction

Materials scientists are constantly striving to advance their ability to understand, predict

and improve materials properties. Due to the high cost of traditional trial-and-error methods

in materials research (often in the form of repeated rounds of material synthesis and charac-

terization), material scientists have increasingly relied on simulation and modeling methods

to understand and predict materials properties a priori. Materials informatics (MI) is a

resulting branch of materials science that utilizes high-throughput computation to analyze

large databases of materials properties to gain unique insights. More recently, data-driven

methods such as machine learning (ML) have been adopted in MI to study the wealth of

existing experimental and computational data in materials science, leading to a paradigm

shift in the way materials science research is conducted.

However, there exist many challenges and “gotchas” when implementing ML techniques in

materials science. Furthermore, many experimental materials scientists lack the know-how

to get started in data-driven research, and there is a lack of recommended best practices

for implementing such methods in materials science. As such, this Editorial is designed to
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assist those materials science scholars who wish to perform data-driven materials research.

We demonstrate a typical ML project step-by-step (Figure 1 on page 24), starting with

loading and processing data, splitting data, feature engineering, fitting different ML models,

evaluating model performance, comparing performance across models, and visualizing the

results. We also cover sharing and publication of the model and architecture, with the goal

of unifying research reporting and facilitating collaboration this emerging field. Throughout

this process, we highlight some of the challenges and common mistakes encountered during

a typical ML study in materials science, as well as approaches to overcome or address them.

Highlighting the best practices will improve the research and manuscript quality, and ensure

reproducible results.

To demonstrate some of the best practices discussed throughout this Editorial, we have

created several interactive Jupyter notebooks with relevant Python code structured in a

tutorial format (Table 1). The sections in this Editorial that include accompanying note-

books are marked with an asterisk*. The notebooks walk the readers through a basic ML

study in materials science: the prediction of heat capacity for solid inorganic compounds.

We demonstrate this by implementing several classical machine learning as well as neu-

ral network models from the well-known Python packages scikit-learn and PyTorch,

respectively. The Jupyter notebooks can be accessed at the online GitHub repository:

https://github.com/anthony-wang/BestPractices. Setup, usage, further instructions

and pertinent information can also be found there. Please note, an intermediate knowledge

of the Python programming language and general programming principles is required.

Table 1: List of accompanying Jupyter notebooks and the topics demonstrated.

# Notebook contents
1 Loading data; examining, processing, cleaning up of data
2 Splitting data into train/validation/test datasets
3 Featurizing data; modeling with classical models, evaluating models,

effect of different train/validation/test splits
4 Modeling with neural networks, evaluating models, exporting models,

avoiding overfitting
5 Visualizing results
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Meaningful machine learning

Machine learning is a powerful tool, but not every materials science problem is a nail. It is

important to delineate when to use ML, and when it may be more appropriate to use other

methods. Consider what value ML can add to your project and whether there are more

suitable approaches. Machine learning is most useful when human learning is impossible,

such as where the data and interactions within the data are too complex and intractable for

human understanding and conceptualization. Contrarily, machine learning often fails to find

meaningful relationships and representations from small amounts of data, when a human

mind would otherwise likely succeed.

When developing ML tools and workflows, consider how (and with what ease) they can

be used not only by yourself, but by others in the research community. If another researcher

wants to use your method, will they be able to do so, and will it be worth it for them? For

example, if you include data from ab initio calculations such as density functional theory

(DFT), or crystal structure as one of the input features of your ML model, would it not be

simpler for other researchers to use DFT or other simulation methods themselves, instead of

using your ML model?

Another limitation to consider when using ML as a tool is the model interpretability

vs. predictive power trade-off. If you are looking for physical or chemical insights into your

materials, you are unlikely to find them when using powerful and complex models such as

neural networks: these models—while they can exhibit high model performance—are usually

too complex to be easily understood. These are so-called “black-box” models because outside

of their inputs and outputs, it is nearly impossible for a human to grasp the inner model

workings and its decision making processes. In contrast, simpler models might be easier to

understand, but tend to lack the predictive power of the more complex models.

In general, a good ML project should do one or more of the following: screen or down-

select candidate materials from a pool of known compounds for a given application or prop-

erty,1–3 acquire and process data to gain new insights,4,5 conceptualize new modeling ap-
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proaches,6–10 or explore ML in materials-specific applications. 1,11–13 Consider these points

when you judge the applicability of ML for your project.

Machine learning in materials science

Machine learning has been applied in the study of many inorganic material properties, such

as mechanical, electronic, thermodynamic, and transport properties. It has also been used

in many different material application areas, such as photovoltaic materials, materials for

energy storage, catalysts/photocatalysts, thermoelectric materials, high-temperature super-

conductors, and high entropy and metallic glass alloys. We highlight some current examples

in the literature of inorganic material properties and their application areas in Table 2. Here,

we are not attempting to summarize the methods or results of these studies; instead, we ad-

vise the interested reader to refer to the cited works as well as other well-written reviews

available in the literature.3,14–24

Table 2: Examples of using machine learning in the study of inorganic materials.

Material properties Refs.
Mechanical properties 1,6,9,25–30

Formation energy 7,9,29,31–34

Band gap 6,9,29,35–39

Density of states 40,41

Crystal structure / stability 32,42–52

Debye temperature / heat capacity 6,53,54

Thermal expansion coefficient 6,53

Thermal conductivity 6,53,55–57

Seebeck coefficient 56,58

Material classes Refs.
Photovoltaic materials 34,59,60

Energy storage 61–65

Catalysts / photocatalysts 2,66–71

Thermoelectric materials 4,13,56,72,73

High-temperature superconductors 74,74–80

High entropy alloys 81,82

Metallic glass alloys / glass-forming ability 34,83,84
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Working with materials data

Data source

Some of the more commonly-used repositories for materials property data are shown below

in Table 3.
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Table 3: Comparison of materials data repositories with predominantly property information.

Name Structure
information

Mechanical
properties

Thermal
properties

Electronic
properties API* Data license Refs.

Materials Project Y Y Y Y Y CC BY 4.0 85

Open Quantum Materials
Database

Y N Y Y Y CC BY 4.0 86

AFLOW for Materials Dis-
covery

Y Y Y Y Y † 87

NOvel MAterials Discovery
(NOMAD)

Y Y Y Y Y CC BY 4.0 88

Open Materials Database Y N Y Y Y CC BY 4.0 89

Citrine Informatics Y Y Y Y Y CC BY 90

Materials Platform for Data
Science (MPDS)

Y Y Y Y Y CC BY 4.0 91

AiiDA / Materials Cloud Y Y Y Y Y Varies 92,93

NREL MatDB Y N Y Y N Own license 94

NIST TRC Alloy Data N N Y N On request Free 95

NIST TRC ThermoData N N Y N N NIST SRD 96

NIST JARVIS-DFT /-ML
Database

Y Y Y Y Y Public domain 97,98

MatWeb N Y Y N N Paid 99

Total Materia N Y Y N N Paid 100

Ansys Granta (Material-
Universe repository)

N Y Y N N Paid 101

MATDAT N Y Y N N Paid 102

*: An “application programming interface” is a set of defined functions, procedures, methods or classes which enable a
structured way of exchanging data between programs. In the framework of a materials data repository, an API facilitates,
e.g., the uploading, examining, downloading of data, and other forms of interactions between the user and the repository.
†: not specified.
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Other repositories that host predominantly crystal structure information are shown below

in Table 4. While these repositories do not necessarily host material property information,

the structure information contained within these repositories are also valuable.

Table 4: Comparison of materials data repositories with predominantly structure informa-
tion.

Name # records API Data license Refs.
Cambridge Structural Database (CSD) 1,055,780 Y Paid 103

Inorganic Crystal Structure Database (ICSD) 216,302 N Paid 104

Pearson’s Crystal Data (PCD) 335,000 N Paid 105

International Centre for Diffraction Data
(ICDD)

1,004,568 N Paid 106

Crystallography Open Database (COD) 455,714 Y Open-access 107

Pauling File 357,612 Y Paid 108

CrystMet database 160,000 N Paid 109

Note: values for number of records were updated as of the submission date (May
2020).

There is an ever-increasing number of materials informatics-related resources and reposi-

tories; as such, only the more commonly used repositories are mentioned above. Keep in mind

that each dataset is different, and may contain domain-specific information and features that

are restricted to certain research fields or applications. There may also be differences in the

methodologies with which the data are experimentally or computationally derived, curated,

and recorded in these databases. As a result of this, the values for material properties might

not be directly comparable across the different repositories. Be mindful of this when you

are comparing property data across the repositories, especially if you plan on aggregating or

merging data from different sources.

Dataset size & composition*

When collecting your dataset for your ML study, be mindful of your dataset size. Ensure

that your dataset size is large enough and includes most examples of the combinations of

material compositions in the material space you want to study. It is also important to

consider data balance or bias in your datasets. Does your data form clusters based on
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chemical formula, test condition, structure type, or other criteria? Are some clusters greatly

over- or under-represented? Many statistical models used in ML are frequentist in nature,

and will be influenced by dataset imbalance or bias. Visualization techniques such as t-

distributed stochastic neighbor embedding (t-SNE 110), uniform manifold approximation and

projection (UMAP111), or even simple elemental prevalence mapping 112 may be useful in

investigating dataset imbalance and bias.

Lastly, if your dataset is too large (a rare luxury in the materials science field), you

may find yourself having to wait a long time to train and validate your models during the

prototyping phase of your project. In this case, you can sub-sample your dataset into a

small-scale “toy dataset”, and use that to test and adjust your models. Once you have tuned

your models to your satisfaction on the toy dataset, you can then carry on and apply them

to the full dataset. When sampling the original dataset to create the toy dataset, be aware

that you do not introduce any dataset biases through your sampling. Also keep in mind that

not all performance-related problems can be fixed by sub-sampling your data. If your model

can only train successfully on the toy dataset, and cannot train on the full dataset (e.g., due

to memory or time constraints), you may wish to focus on improving its performance first.

Data version control

Be sure to save an archival copy of your raw dataset as obtained, and be sure that you can

retrieve it at any time. If you make any changes to your dataset, clearly record the steps of

the changes and ensure that you are able to reproduce them on the dataset in the future if

needed. To simplify version control, consider using a version control system (such as Git, 113

Mercurial114 or Subversion115) for your datasets.

Cleanup and processing*

Once you have curated your dataset, examine and explore the data on a high level to see if

there are any obvious flaws or issues. These may—and often do—include missing or unre-
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alistic values (e.g., NaN’s, or negative values/positive values where you don’t expect them),

outliers or infinite values, badly-formatted or corrupt values (e.g., wrong text encoding, num-

bers stored in non-numeric format), non-matching data formats or data schema caused by

changes in the repository, and other irregularities. If you find any irregularities, deal with

them in an appropriate way, and be careful not to introduce any bias or irregularities of

your own. Make sure you document any data cleanup and processing steps you performed;

this is an important step in ensuring reproducibility that is often overlooked in ML studies.

In addition, during your model prototyping stage, you may find some additional problem-

atic data samples which adversarially affect your model performance. In this case, consider

performing another round of data cleanup before finalizing your model.

Train-validation-test split*

Split your data once into three datasets: train, validation, and test. The split should be

performed in a reproducible way (e.g., by assigning a random seed and shuffling the dataset);

alternatively, you can save the split datasets as files for reuse. Make sure that no same (or

similar) data appear in the test dataset, if they are already present in the train or validation

dataset. For example, if you have several measurements of a chemical compound that are

performed at different measurement conditions in the train dataset (e.g., temperature or

pressure), during the testing phase, your model would likely perform well if it is asked to

predict the property of the same compound at a different condition. This, however, gives

you an inflated estimate of how well the model will generalize in cases where it hasn’t seen

a particular chemical compound before. For a truly rigorous evaluation of your model’s

generalization performance, you should take care to avoid this data leakage when you split

your data.

During the training stage, models may only be shown the training data as part of the

learning process. Validation data may be used to assess and tune different model hyper-

parameters, and may be compared with the predictions of different model/hyperparameter
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combinations to evaluate a model’s performance. In contrast, test data may only be used in

order to evaluate a model’s performance as a final step, after the model has been finalized.

Models must not be trained nor tuned on the test dataset. Use the same train, validation,

and test datasets for all modeling and model comparison/benchmarking steps.

The training dataset can be further partitioned to be used for cross-validation (CV). CV

is a method that is often employed to estimate the true ability of a model to predict on new

unseen data, and to catch model-specific problems such as overfitting or selection bias. 116

One typical method is k-fold cross-validation. In k-fold CV, the training dataset is first

randomly partitioned into K subsets (remember to note down your partitioning details).

Then, for each k of the data subsets k = 1, 2, ..., K, the model is trained on the combined

data of the other K − 1 subsets, and then evaluated using the kth subset. The resulting K

prediction errors are then typically averaged to give a more accurate estimate of the model’s

true predictive performance compared to evaluating the model performance on one single

train/validation/test split. Typical choices for K in the literature are 5 or 10. In the case of

a small input dataset size, k-fold CV or other methods of cross-validation can also be used

as a data re-sampling technique for models that are more robust against overfitting on the

validation set (e.g., linear regression).

Modeling

Choosing appropriate models & features*

The dataset size will almost always determine your available choices of ML models. For

smaller dataset sizes, classical and statistical ML approaches (e.g., regression, support vector

machines, k-nearest neighbors, and decision trees) are more suitable. In contrast, neural

networks require larger amounts of data, and only start becoming feasible/useful when you

have training data points on the order of thousands or more. Typically, ML models such as

regression, decision tree/random forest, k-nearest neighbors, and support vector machines
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are used on smaller datasets. These algorithms can be further improved by applying bagging,

boosting or stacking approaches. There are many existing Python libraries for implementing

the above, with perhaps the most well-known being scikit-learn.117 For larger datasets,

neural networks and deep learning methods are more commonly used. In the scholarly

community, the Python libraries PyTorch118 and TensorFlow119 are often used to implement

these architectures.

Feature engineering is important for smaller dataset sizes, and can contribute to a large

model performance increase if the features are well-engineered. 1,54,120 A common way to

transform chemical compositions into usable input features for ML studies is through the

use of composition-based feature vectors (“CBFVs”). There are numerous forms of the CBFV

available, such as Jarvis,121 Magpie,34 mat2vec,4 and Oliynyk.13 These CBFVs contain val-

ues that are either experimentally-derived, calculated through high-throughput computation,

or extracted from materials science literature using ML techniques. Instead of featurizing

your data using CBFVs, you can also try a simple onehot-encoding of the elements. These

CBFV featurization schemes as well as the relevant functions and code for featurizing chem-

ical compositions are included in the online GitHub repository associated with this work.

For sufficiently large datasets and for more “capable” learning architectures like very

deep, fully-connected networks7,122 or novel attention-based architectures such as CrabNet,6

feature engineering and the integration of domain knowledge (such as through the use of

CBFVs) in the input data becomes irrelevant and does not contribute to a better model

performance compared to a simple onehot-encoding. 11 Therefore, due to the effort required to

curate and evaluate domain knowledge-informed features specific to your research, you may

find it more beneficial to seek out additional sources of data, already-established featurization

schemes, or use learning methods that don’t require domain-derived features 6 instead.
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Data scaling & normalization*

In most cases, it may be beneficial to scale your input data (X). For a regression task, it may

also be helpful to scale the targets (y) as well. Scaling can be done in many ways. Often,

the input data is scaled to have zero-mean and unit variance. This allows for more stable

gradients and faster model convergence, since the resulting feature dimensions are similar in

scale.123–126

This is done by using the transformation:

X ′ = (X −X)/σX (1)

where X denotes the mean and σX the standard deviation of X. In some cases, applying

the logarithm function to your values before scaling them according to Equation 1 may

further improve your model performance.

Keep in mind that the scaling operations must be conducted using solely the statis-

tics from the training dataset (i.e., the train/validation/test datasets are scaled using only

the mean and standard deviation values computed from the training data), and that the

validation and test data statistics must not be used. Remember also to undo the scaling

operation(s) on the target values (if these were scaled) after loss computation, but before

performance evaluation. Similar to scaling, normalization of X is recommended for regres-

sion tasks. Here it is also important to use only the training data statistics when normalizing

input data.

Scaling and normalization are not commutable: their ordering matters. You should scale,

then normalize. When undoing this operation, the inverse is required: unnormalize and then

unscale.
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Keep it simple

Sometimes, especially in the case of small dataset sizes, simpler models can perform better

than more complex models on the held-out test data. Some simpler models that you can try

are linear (or ridge / lasso) regression, random forest, or k-nearest neighbors.

Furthermore, consider the model complexity–explainability trade-off. Typically, more

complex models achieve higher model performance, but have the caveat that they are gen-

erally not easily interpretable by humans. In contrast, simpler models are typically assumed

to be more easily understood by humans, and lead to better opportunities for model intro-

spection. This an important consideration in materials science, since synthesis and charac-

terization are costly and time-consuming and the costs must be justified.

Hyperparameter optimization

Depending on your choice of ML model, there may be model hyperparameters that can be

tuned. Examples of hyperparameters are the number of neighbors (k) in k-nearest neighbors,

the number and depth of trees in a random forest, the kernel type and coefficient in support

vector machines, the maximum number of features to consider in gradient boosting, and loss

criterion, learning rate and optimizer type in neural networks. These hyperparameters are

properties of the models themselves, and can significantly affect your model’s performance,

speed (in training and inference), and complexity.

The hyperparameters are not learned by the model during the training step; rather, they

are selected by you when you create the model. The recommended way to optimize your

model hyperparameters is by training numerous models (each with a different set of hy-

perparameters) using the same training set, and then evaluating the models’ performance

using the same validation set. By doing this, you will be able to identify the set of hyper-

parameters that generally lead to good-performing models. This is commonly referred to as

a “grid search”. Imagine that your model has two continuous-variable hyperparameters, h1

and h2, and that there is a range of values for each of these parameters that you wish to
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investigate, [h1,min, h1,max] and [h2,min, h2,max], respectively. You can then define a grid that

spans between (h1,min, h2,min) and (h1,max, h2,max). At each point on this grid, you train a

model corresponding to that set of hyperparameters using the training set, and then evaluate

its performance on the validation set. After repeating this for every point on the grid, you

obtain a mapping that you can then use to determine the best set of hyperparameters for

your specific model and data.

Once again, we stress the importance of reserving a held-out test dataset during dataset

splitting. By training and optimizing your model on the training and validation datasets, you

have effectively tuned—and possibly biased—your model to perform exceptionally well on

these data samples. Therefore, the performance metrics of your model on these datasets are

no longer good indicators of your model’s true generalization ability. In contrast, evaluating

your model’s performance on the held-out test dataset (which your model has never seen

before) will give you a much more realistic estimate.

Model evaluation and comparison

Typically, studies in materials science will compare the performance of several ML model and

hyperparameter combinations on a given task. Trained models are typically compared by

evaluating their performance on the held-out test dataset using computed test metrics such as

accuracy, logarithmic loss, precision, recall, F1-score, ROC (receiver operating characteristic

curve), and AUC (area under curve) for classification tasks, and r2 (Pearson correlation

coefficient), mean absolute error, and (root) mean squared error for regression tasks. Also

consider using cross-validation (as discussed earlier) to give a more accurate estimate of your

model’s true performance.

Show your model*

If you are reporting a new model architecture or algorithm, you must include all pertinent

information necessary to reproduce, evaluate, and apply your models. This entails providing
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the complete source code for your implementation, the hyperparameters used, the random

seeds applied (if any), and the pre-trained weights of the models themselves. In addition,

clear descriptions and schematics of your new system should be provided, as well as instruc-

tions to reproduce your model and work. Ideally, you can show your model and results in

an interactive manner, such as through the use of Jupyter notebooks.

Fitting and testing

Avoid overfitting*

In an ML problem, the model is asked to perform two contradicting tasks: (1) minimize

its prediction error on the training dataset, and (2) maximize its ability to generalize on

unseen data. Depending on how the model, loss criterion, and evaluation methods are

set up, the model may end up memorizing the training dataset (an unwanted outcome)

rather than learning an adequate representation of the data (the intended outcome). This is

called “overfitting”, and usually leads to decreased generalization performance of the model.

Overfitting can occur on all kinds of models, although it typically occurs more often on

complex models such as random forests, support vector machines and neural networks.

During model training, observe the training metrics such as your loss output and r2 score

on the training and validation set. For example, when training a neural network, you can

use a learning curve to track validation error over each epoch during the training process.

As the model trains, the validation and training error will ideally decrease. Your training

error will approach zero, but this is not the metric we care about! Rather, you should closely

observe the validation error. When your validation error increase again while your training

error continues to decrease, you are likely memorizing your training data and thus overfitting

your data.

Overfitting can have an adverse effect on your model’s ability to generalize (that is,

returning a reasonable output prediction for new and unseen data) thus performing poorer
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on the test dataset. If you notice that your model overfits your data very easily, consider

reducing the complexity of your model, or using regularization.

Beware of random initialization*

Many ML models require an initial guess as a starting point for their internal parameters.

In many model implementations (e.g., in scikit-learn’s linear regression, random forest,

support vector machines, boosting implementations), these initial internal model parameters

are provided by your system’s random number generator. The same applies for neural

network-based models, in the initialization of the weights and biases of the networks and some

optimizer parameters. Depending on how sensitive your model is to initialization, different

initial states of the models can lead to significant differences in your model performance.

It is therefore important that you ensure reproducible results across different model runs

and different models (both for your internal testing and for publication). To accomplish this,

you can choose a seed to use for the random number generator. Don’t forget to mention

this seed in your publication and code. Note that alternative ways of model initialization

exist, such as using different estimators for initial parameter guesses as well as different

initialization schemes for neural network weights and biases; here, you should note down

your changes if you use an alternative implementation.

Avoid p-hacking

Train your models on the training dataset only, and use the validation dataset for tuning

your model hyperparameters. Do not evaluate your model on the held-out test dataset until

you have finished tuning your model, and it is ready for publication. Looking at the test

dataset multiple times to pick ideal model hyperparameters is a form of p-hacking and is

considered cheating!127
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Benchmarking and Testing

Reproducibly test various methods*

For comparison / ablation studies against other ML models and/or architectures, make sure

you use the same train/validation/test datasets (refer to above for best practices on dataset

splitting and management). For the most informative and fair comparison between different

published models, consider running the models yourself. If you perform any additional model-

specific data manipulation steps, make sure to document them and make them reproducible

for your readers.

During the model tuning process, train your models on the train dataset and evaluate

their performance on the validation set. After you have finalized your model architecture and

hyperparameters, train the models once more on the combined train & validation datasets,

and evaluate their performance on the test dataset.

Existing benchmarks

There are some tools and software packages online, which can be used as baselines to judge

the performance of your models.128–130 Some of these tools can perform automatic feature

engineering and testing of several different ML models. We suggest that you download these

tools and compare the performance of your models against them. If your model does not

perform better, or does not offer any advantages over these existing tools, consider other

venues of improvement.

Making publication-ready, reproducible work

Source code & documentation*

Publishing in peer-reviewed journals relies on the foundational principle that the methodol-

ogy be sufficiently described in order to ensure reproducibility. Therefore, for your ML-based
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study, full source code for your models and architecture (if any) must be provided, including

implementation details of data processing, data cleanup, data splitting, model training, and

model evaluation. If you can, you should also publish your source code under a permissive or

an open-source license so that others may (re-)use, improve, collaborate on, and contribute

further to your work.131

Your published source code must be complete—that is, somebody should be able to take

your source code verbatim, execute it, and obtain the same results that you did. Required

libraries and other software dependencies (if any) must be listed, preferably with the per-

tinent version numbers. Ideally, these dependencies will be listed in an “environment file”

that others can use to directly create a working software environment on their local system.

If you use any code or packages developed by others, make sure to adhere to their licenses.

Also consider hosting your code in an online, version-controlled repository such as GitHub,

GitLab, Bitbucket, DLHub132 or similar.

Make sure the source code is well-documented and follows well-established code stan-

dards. Instead of writing additional comments to explain your code, considering writing code

in a way such that it is self-explanatory without the need for additional comments. This

entails using clear variable names, closely following formatting guidelines (such as PEP 8),

and writing “explicit” code. Add a “README” file as well that provides your readers with

instructions for the installation, setup, usage of your code, and for the reproduction of your

published results. To ensure large-scale deployability and consistency on any infrastructure,

consider also publishing your project as a containerized application, using tools such as

Docker.133

All data should be provided*

All results and datasets reported in the manuscript should be provided with the manuscript;

alternatively, code for the users to obtain the data themselves must be given, ideally with

clear instructions of the process. Additionally, all raw data—if their licenses allow it—
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should be provided with the manuscript as well. In the case where the data cannot be

provided, due to licensing, legal, intellectual property protection, or other insurmountable

hurdles, an explanation should be given. You are nevertheless encouraged to find alternative

solutions for providing data within reason. Examples may be to provide a partial dataset, an

anonymized dataset, trained model weights, or instructions for users on how to obtain the

dataset themselves. Consult with the owner of the data before considering these approaches,

and as always, make sure you adhere to the data license.

Trained models & weights*

Ideally, you should provide a record of all model hyperparameters tested, as well as the best

hyperparameters reported. For neural network implementations, the trained weights from

the models should also be provided. In this case, be sure to provide the necessary code to

recreate the neural network architecture and to load the saved weights for use. Ideally, you

should also offer a friendly way to make predictions on user-supplied input data using these

saved weights.

Visualizations*

All visualizations shown in the manuscript should be reproducible by a user who accesses

your code. Ensure that you have included the required data (and ideally the code) used

to generate the visualizations, or have given the users a way to obtain the required data

themselves. If there are additional figures, such as in the supplementary information (SI),

ensure that they are understandable by themselves and do not require additional explanation.

If they do require explanation, provide this in the SI along with the figures.

Some of the typical visualizations that have shown themselves to be generally useful—and

are thus commonly shown—in MI studies are: predicted property value vs. actual property

value plots (Figure 2), residual error plots and histograms of residual errors (Figure 3),

loss curves throughout the training process of a neural network (Figure 4), and element
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prevalence visualizations (Figures 5 and 6). The figures are shown together at the end of

this manuscript, on page 24.

Benchmark datasets

While there are currently several materials property datasets online which could potentially

be used as benchmark datasets for benchmarking model performance in MI, there exist few

published train/validation/test splits of these datasets which can be used by researchers

to conduct a fair benchmark. Here, we note that examples of such datasets are commonly

found in the fields of computer vision (e.g., CIFAR, Google Open Images dataset, CelebFaces,

ImageNet) as well as in natural language processing (e.g., Glue, decaNLP, WMT 2014 EN-

DE).

Furthermore, the data heterogeneity—in terms of the classes of materials, the reported

material properties, or the diversity in the types of compounds and constituent elements—

of the available materials datasets are typically quite limited and vary between dataset to

dataset. Additionally, the methods to access some of the data stored in the online data

repositories are sometimes restricted, and therefore hinder potential MI studies. This is due

in part to the fact that certain datasets are proprietary or licensed under terms that do not

allow their sharing (whether online or offline).

Another challenge is that the online material property repositories do not offer a “check-

pointed” repository state; therefore, the repository and its data may change at any point

in time, and there is no easy way to revert or refer back to the state of the repository at

an earlier time. Therefore, current ML researchers typically download materials datasets

from the repositories and archive them locally to run their benchmarks internally. However,

there are recent emerging works from researchers that aim to address this issue of missing

benchmark datasets for MI and ML studies in materials science. 134
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Summary

While various machine learning methods, including classical methods and more advanced

techniques such as deep learning and neural network-based architectures, have successfully

been used for the prediction of materials properties, unique challenges still exist for their

application in the domain of materials informatics. There are common pitfalls in the gath-

ering, analysis and reporting of materials science-related data and machine learning results,

and in the facilitation of reproduction studies. This Editorial highlights a large number of

these issues which are found in submitted manuscripts and published works in the field of

materials informatics. Proper observation to the recommendations given above will certainly

ensure higher publication standards and more reproducible science in this exciting emerging

field.
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Figures

Figure 1: Schematic of a machine learning study in materials science.

Figure 2: Example predicted vs. actual material property plots, plotted (left) without and
(right) with marginal histogram. In addition, lines corresponding to ideal predictions (where
the predicted value exactly matches the actual values) and a linear regression fit (for esti-
mating the correlation between the predicted and actual values) are shown.
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Figure 3: Example residual error plots, plotted (left) against the actual value and (right) as
a histogram with a kernel density estimation (kde). A lower error indicates a more accurate
model prediction.

Figure 4: Example loss curve plot of a neural network, showing model performance (loss)
evaluated on the train and validation datasets at each epoch throughout the training process.
A lower loss indicates a better-performing model.
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Figure 5: Example visualization of element prevalence in a dataset, shown as a histogram.

Figure 6: Example visualization of element prevalence in a dataset, shown as a heatmap on
a periodic table.
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