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1 Introduction

Theoretical predictions for top-antitop pair production at hadron colliders are known in

perturbative QCD up to next-to-next-to-leading order (NNLO) [1–9]. Recently, also the

NLO electroweak corrections to this process were evaluated [10]. Predictions at NNLO in

QCD are available for the total cross section and for distributions that are differential with

respect to quantities which depend on the momenta of the top-antitop pair, such as the

pair invariant mass, the top (or antitop) transverse momentum and rapidity, etc.

From the technical point of view, the numerical calculations carried out in [1–8] rep-

resent a landmark in the field of the evaluation of higher-order corrections in perturbative

QCD. One of the main technical problems that was necessary to solve in order to achieve

NNLO accuracy was the evaluation of two-loop 2→ 2 amplitudes with massive and massless

propagators. The evaluation had to be carried out for arbitrary values of the Mandelstam

invariants s and t and of the top-quark mass m. The problem was solved by evaluating

numerically these diagrams in a grid of points covering all of the physics phase space in

the s − t plane, for a fixed value of m. The evaluation in each single point was carried

out by solving numerically differential equations satisfied by the Master Integrals (MIs)
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present in the problem. The numerical solution of large sets of differential equations is

not only technically challenging but it also requires a significant amount of CPU time. In

addition, it was necessary to evaluate analytically the boundary conditions to be used in

the numerical solution of the differential equations.

In this context, an analytic calculation of the two-loop amplitudes contributing to top-

quark pair production has a twofold purpose: on the one hand, it provides an independent

check of the results obtained numerically; on the other hand it could provide a faster and

cheaper (in terms of CPU time) way to evaluate the two-loop corrections needed in order

to obtain phenomenological predictions for this process.

A complete analytic computation of the top-pair production cross section to NNLO

in QCD is not yet available, although many of the necessary elements were evaluated in

the recent past. In particular, the matrix elements for the one-loop 2 → 3 process are

known [11–14]. Furthermore, progress was also made in the determination of infra-red

(IR) subtraction terms which are needed to regularize IR divergences in collinear and soft

regions of the phase space during the integration [15–19]. Finally, the one-loop squared

matrix elements were calculated in [20–22]. Analytic results for the interference between

two-loop 2→ 2 diagrams and tree-level amplitudes are available only in part.

Two-loop contributions to the tt̄ production process in hadronic collisions are required

for two partonic channels: qq̄ → tt̄ (quark-annihilation channel) and gg → tt̄ (gluon fusion

channel). The interference of the two-loop amplitude in the quark-annihilation channel with

the corresponding tree-level amplitude can be expressed in terms of ten gauge independent

functions. Each one of these functions is proportional to a different color coefficient. In

the rest of this work we refer to these functions as “color factors”. The color structure in

the gluon-fusion channel is more complicated, and it can be expressed in terms of sixteen

color factors.

All of the ten color factors in the qq̄ channel are known numerically [23] and their

infrared poles are known analytically [24, 25]. For eight out of the ten color factors a

complete analytic expression, written in terms of generalized harmonic polylogarithms

(GPLs) [26–29], was found in [30, 31]. The remaining two color factors in the quark-

annihilation channel are not known analytically to date.

All of the sixteen color factors appearing in the two-loop corrections in the gluon-fusion

channel are known numerically [32] and the analytic expression of all the infrared poles was

evaluated in [24, 25]. In addition, a complete analytic expression (again written in terms of

GPLs) is known for ten out of the sixteen color factors in the gluon fusion channel [33–35].

The remaining six color factors in this partonic channel involve elliptic integrals and are

not known analytically. A subset of the remaining MIs were considered recently. MIs for

a non-elliptic planar double box were calculated in [36] in terms of GPLs. MIs for elliptic

topologies that involve a closed heavy fermionic loop were studied in [37–39].

In this paper we focus on the analytic calculation of the MIs that are needed to complete

the evaluation of the two color factors in the quark-annihilation channel which are not yet

known analytically. Part of the MIs needed for this task are known from previous works [30,

31, 33–35, 40–42] (see also the Loopedia database [43]). In particular, the first analytical

evaluation of a crossed double box with a massive propagator was presented in [34] in

– 2 –



J
H
E
P
0
8
(
2
0
1
9
)
0
7
1

terms of GPLs. More recently, within the context of a project that requires the analytic

evaluation of the NNLO QED corrections to electron-muon scattering [44, 45], planar [46]

and a crossed [47] topology were evaluated analytically using GPLs. These topologies also

enter top-pair production in the qq̄ channel, although for different kinematics. Pointing

out the non-trivial analytic continuation between these two regions, in [48] a subset of

these topologies were calculated in the context of heavy-lepton pair production in electron-

positron collisions. In the present work, we provide results for the MIs belonging to the

last crossed topology not considered analytically so far and we carry out an independent

calculation of the MIs of the topology evaluated in [47, 48]. These results will allow one to

complete the analytic calculation of the two-loop corrections to top-quark pair production

in the qq̄ channel.

The evaluation of the MIs discussed in this work is carried out by following a by

now standard technique based on two steps. First, one observes that the dimensionally

regularized scalar integrals which appear in the interference of two-loop and tree-level

diagrams can all be written in terms of a reduced set of scalar integrals which are identified

as the MIs for the problem under study. The two topologies considered in this work

involve 52 and 44 MIs, respectively. The reduction to MIs is carried out by means of

the computer programs1 FIRE [53–55] and Reduze 2 [56, 57], that implement integration-

by-parts identities [58–60] and Lorentz-invariance identities [61]. Subsequently, the MIs

are computed by employing the differential equations method [61–65]. The system of

differential equations is cast in canonical form [66] (see also [67–77]). The solution is

expressed in terms of Chen’s iterated integrals, which can be expanded as a series in the

dimensional regularization parameter, and each order of the expansion is represented in

terms of GPLs.

The paper is structured as follows. In section 2, we introduce our notation and we

define the topologies that are considered in this work. In section 3, we briefly review the

method of differential equations. In section 4, we present the canonical form we used for the

evaluation of the solution of the system of differential equations. In section 5, we describe

a reparametrization which rationalizes our differential equations. In section 6, we discuss

the integration of the differential equations in terms of GPLs and present the structure of

our results. In section 7, we discuss numerical checks which were carried out in order to

validate the analytic expression of the MIs. We emphasize that, in addition to the checks

discussed in section 7, our results have been successfully compared against the expressions

of a different set of master integrals, independently obtained by S. Di Vita, T. Gehrmann,

S. Laporta, P. Mastrolia, A. Primo, and U. Schubert [78], which were published on the

arXiv simultaneously to the present manuscript. Finally, section 8 contains our conclusions.

The definition of the various MIs in terms of momentum integrals over a set of propagators

can be found in appendix A. Numerical results in a specific phase-space point for the seven

denominator MIs evaluated analytically in this paper are collected in appendix B.

Our full analytical results are provided in ancillary files included in the arXiv submis-

sion of this paper.

1Other public programs for the reduction to the MIs can be found in [49–52].
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2 Notations

In this paper we consider the process qq̄ → tt̄, where q and q̄ are massless quarks and t

and t̄ are massive (top) quarks. The incoming partons have momenta p1 and p2, while the

final state partons have momenta p3 and p4. All particles are on their mass-shell, namely

p21 = p22 = 0, and p23 = p24 = m2, where m is top-quark mass.

The kinematics of the process can be described in terms of the three Mandelstam

invariants

s = (p1 + p2)
2, t = (p1 − p3)2, u = (p1 − p4)2 , (2.1)

which satisfy the relation s+ t+ u = 2m2. The physical region is defined by

s > 4m2 , t = m2 − 1

2

(
s−

√
s(s− 4m2) cos θ

)
, (2.2)

where θ is the scattering angle of top quark with respect to the direction of the incoming

q quark in the partonic center of mass frame.

Figure 1 shows the two seven-denominator two-loop topologies that we consider in this

paper; they are indicated with the capital letters A and B. The scalar integrals belonging

to Topology A are defined as∫
Ddk1Ddk2

D−a44 D−a66

Da1
1 Da2

2 Da3
3 Da5

5 Da7
7 Da8

8 Da9
9

, (2.3)

while the scalar integrals belonging to Topology B are defined as∫
Ddk1Ddk2

D−b55 D−b66

Db1
1 Db2

2 Db3
3 Db4

4 Db7
7 Db8

8 Db9
9

. (2.4)

The labels ai and bi, with i = 1, . . . , 9, are integer numbers where a4, a6, b5, b6 ≤ 0. The

Di, i = 1, . . . , 9, are the denominators and numerators involved and d is the dimension of

the space-time. The normalization of the integrals is such that

Ddki =
ddki

iπ
d
2

eεγE
(
m2

µ2

)ε
, (2.5)

where ε = (4 − d)/2, γE = 0.5772 . . . is the Euler-Mascheroni constant and µ is the ’t

Hooft scale.

The nine-propagator integral family that we use for the reduction of both Topology A

and Topology B is

D i = {−k21, −k22, − (p1 + k1)
2 , − (p1 + k1 + k2)

2 , − (k1 + p1 + p2)
2 , − (k2 + p1 + p2)

2 ,

− (k1 + k2 + p1 + p2)
2 , m2 − (k1 + k2 + p3)

2 , m2 − (k2 + p3)
2} . (2.6)

Topology A has 52 MIs while Topology B has 44 MIs. Since some MIs are common to both

topologies, the total number of independent MIs is 70. Some of the MIs were already known

in the literature [30, 31, 33–35, 40–42, 47]. Many MIs, including many seven denominator

four-point functions, are evaluated here for the first time.

– 4 –



J
H
E
P
0
8
(
2
0
1
9
)
0
7
1

(A) (B)

Figure 1. Seven-denominator topologies. Thin lines represent massless external particles and

internal propagators, while thick lines represent massive external particles and internal propagators.

3 The differential equations method

The analytic computation of the MIs is carried out by employing the differential equations

method [62–65, 79]. The MIs can be thought of as components of a vector ~f where each

component depends on a vector ~x of dimensionless parameters and on the dimensional

regulator ε. The dimensionless parameters in ~x are functions of the kinematic invariants

of the problem. In the case under study, the vector ~x has two components; the specific

choice of these components is discussed in section 5. The MIs ~f(~x, ε) satisfy a system of

first-order partial linear differential equations with respect to the kinematic invariants ~x:

∂i ~f(~x, ε) = Ai(~x, ε)~f(~x, ε) , (3.1)

where ∂i = ∂/∂xi, Ai(~x, ε) is a set of matrices associated with the system of differential

equations. These matrices have dimensions N ×N , where N is the number of MIs in the

vector ~f . In general, the elements of Ai also depend on the kinematic invariants, ~x, and

on the dimensional regulator ε. The matrices Ai(~x, ε) satisfy the integrability conditions

∂iAj − ∂jAi + [Ai, Aj ] = 0 , (3.2)

where [Ai, Aj ] ≡ AiAj −AjAi is the usual matrix commutator. For a given choice of MIs,

the matrices Ai can be computed using integration-by-parts identities.

We solve the system in (3.1) by employing the Canonical Basis approach [65, 66], which

consists in finding a basis for the MIs in which the system of differential equations has the

specific form

d~f(~x, ε) = ε dÃ(~x) ~f(~x, ε) . (3.3)

In (3.3), dÃ(~x) is a logarithmic differential one-form. Several methods that allow one to

find a Canonical Basis for a given topology have been proposed [65–67, 72, 76, 80]. In this

work, we find the Canonical Basis by employing the semi-algorithmic approach described

in [70, 81].

In this basis the solution of the system of differential equations in (3.3) is formally

written in terms of Chen iterated integrals [82]:

~f(~x, ε) = P exp

(
ε

∫
γ
dÃ(~x)

)
~f0(ε) , (3.4)
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where P stands for the path-ordered integration, γ is some path in the space of kine-

matic invariants and ~f0(ε) is a vector of boundary conditions that we found by imposing

the regularity of the MIs in particular points of the phase space or known solutions for

simple integrals.

For the process under study it is possible to find a change of variables such that the

matrix Ã(~x) is a rational function of the kinematic invariants, i.e. the entries of the one-form

dÃ(~x) are linear combinations of terms d log(xk − αk), where αk are algebraic functions

of kinematic invariants and the arguments of the logarithms (xk − αk) determine the so

called alphabet of the process. In this case, once a path γ = γ(t) is specified, the solution

can be written order-by-order in the dimensional regularization parameter explicitly in

terms of GPLs

G(α1, . . . , αn; z) =

∫ z

0

dt

t− α1
G(α2, . . . , αn; t) , (3.5)

with

G(α1; z) =

∫ z

0

dt

t− α1
for α1 6= 0, and G(~0n; z) =

logn(z)

n!
, (3.6)

where ~0n indicates a list of n weights, all equal to 0.

4 Canonical form for the master integrals

In this section, we present the canonical basis used in this work. In particular, we provide

the relations that allow one to go from the MIs in pre-canonical form (see figure 2) to MIs

in canonical form, where the latter satisfy a differential equation of the form (3.3). These

relations are written assuming that the Mandelstam invariants s and t take values in the

physical region of phase space. The normalizing prefactors contain two square roots, one of

which enters only through the two integrals fA44 and fB38, see below. As will be shown in the

next section, it is possible to rationalize these roots by a suitable reparametrization. We

will extend the definition of the canonical MIs also to other phase-space regions by using

the expressions listed in (4.1)–(4.96) after rationalization. In other words, we effectively

define our canonical MIs using rational prefactors in the parameters {w, z} rather than

analytically continue root-valued prefactors in the original Mandelstam invariants.

The pre-canonical MIs basis is shown graphically in figure 2. As discussed in the

caption, thin lines represent massless propagators and external legs, while massive lines

represent massive propagators and external legs. For two and three point functions, we

indicate explicitly the Mandelstam variable on which a given MI depends by adding “s”,

“t”, “u” or “p23” to the drawing (see for example T A9 ,T B2 , etc.). For sub-topologies involving

several MIs, dotted propagators indicate a squared propagator in the integrand of the MI

(see for example T B17 ). A dotted propagator with a 3 next to the dot indicates a cubed

propagator in the integrand (see for example T B12 ). The four-point subtopologies in the

last two lines of figure 2 involve several MIs which differ from one another because of the

numerator in the integrand. These numerators are shown on top of the drawing of each

single MI (see for example T B37 , etc). In order to avoid any possible misinterpretation

of figure 2, the integral definition of each MIs in the pre-canonical basis can be found

in appendix A. In addition, we provide all definitions in the ancillary files of the arXiv

submission of this work.
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massless particles on their mass-shell, p2 = 0. External thick lines represent massive particles on
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4.1 Topology A

Topology A involves 52 MIs. Their canonical form is obtained with the following change

of basis:

fA1 = ε2 T A1 , (4.1)

fA2 = ε2
√
s(s− 4m2) T A2 +

1

2
ε2
√
s(s− 4m2)T A3 , (4.2)

fA3 = ε2 s T A3 , (4.3)

fA4 = ε2m2 T A4 , (4.4)

fA5 = ε2
(
−2m2 + s+ t

)
T A5 , (4.5)

fA6 = ε2
(
s+ t−m2

)
T A6 + 2 ε2m2 T A5 , (4.6)

fA7 = ε2 t T A7 , (4.7)

fA8 = −ε2
(
m2 − t

)
T A8 − 2 ε2m2 T A7 , (4.8)

fA9 = ε2 s T A9 , (4.9)

fA10 = ε2 s T A10 , (4.10)

fA11 = ε3
√
s(s− 4m2) T A11 , (4.11)

fA12 = ε3
(
s+ t−m2

)
T A12 , (4.12)

fA13 = ε2m2
(
s+ t−m2

)
T A13 , (4.13)

fA14 = −ε3
(
m2 − t

)
T A14 , (4.14)

fA15 = −ε2m2
(
m2 − t

)
T A15 , (4.15)

fA16 = ε3
√
s(s− 4m2) T A16 , (4.16)

fA17 = ε2m2
√
s(s− 4m2) T A17 , (4.17)

fA18 = ε2m2 s T A18 + ε24m2sT A17 − 3ε3sT A16 , (4.18)

fA19 = ε3
√
s(s− 4m2) T A19 , (4.19)

fA20 = ε4
(
m2 − t

)
T A20 , (4.20)

fA21 = ε3
√
s(s− 4m2)

(
s+ t−m2

)
T A21 , (4.21)

fA22 = ε3m2
(
s+ t−m2

)
T A22 +

1

2
ε3
(
2m2 − s

) (
s+ t−m2

)
T A21 , (4.22)

fA23 = ε4
√
s(s− 4m2) T A23 , (4.23)

fA24 = −ε3m2
(
m2 − t

)
T A24 , (4.24)

fA25 = −ε3
(
m2 − t

) (
s+ t−m2

)
T A25 , (4.25)

fA26 = ε3m2
(
s+ t−m2

)
T A26 , (4.26)

fA27 = ε4
(
s+ t−m2

)
T A27 , (4.27)

fA28 = −ε3m2
(
m2 − t

)
T A28 +

1

2
ε3
(
s− 2m2

) (
m2 − t

)
T A29 , (4.28)

fA29 = −ε3
√
s(s− 4m2)

(
m2 − t

)
T A29 , (4.29)

fA30 = ε4
√
s(s− 4m2) T A30 , (4.30)

fA31 = ε2m2 s T A31 − 2ε4 s T A30 + ε3s T A11 + ε3s T A16 − 2ε2m2s T A17 , (4.31)
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fA32 = ε3 s
(
s+ t− 2m2

)
T A32 , (4.32)

fA33 = ε3 s
(
s+ t−m2

)
T A33 + ε3m2 s T A32 , (4.33)

fA34 = ε4
√
s(s− 4m2) T A34 , (4.34)

fA35 = ε2(2ε+ 1)m2 s T A35 + 2ε4 s T A34 −
ε3s

2
T A19 , (4.35)

fA36 = −ε4
(
m2 − t

)
T A36 , (4.36)

fA37 = ε3m2 s T A37 , (4.37)

fA38 = ε4
(
s+ t−m2

)
T A38 , (4.38)

fA39 = ε3m2 s T A39 , (4.39)

fA40 = ε3 s t T A40 , (4.40)

fA41 = −ε2m2 s
(
m2 − t

)
T A41 + ε3m2 s T A40 , (4.41)

fA42 = ε4 s
(
s+ t−m2

)
T A42 , (4.42)

fA43 = ε4 s
√
s(s− 4m2) T A43 , (4.43)

fA44 = ε4 i
√
m2 s(m2 − t)(s+ t−m2) T A44 , (4.44)

fA45 = ε4
√
s(s− 4m2) T A45 + ε4

√
s(s− 4m2)

(
s+ t−m2

)
T A44

+ ε4
√
s(s− 4m2) T A46 + ε4

√
s(s− 4m2) T A47 +

ε2m2s
√
s(s− 4m2)

(m2 − t) (s+ t−m2)
T A4

+
ε2s
(
12m4 −m2(7s+ 4t) + s(s+ t)

)
2
√
s(s− 4m2) (s+ t−m2)

T A5

−1

4
ε2
√
s(s− 4m2) T A6 −

ε2
√
s(s− 4m2)

(
m2 + t

)
2 (m2 − t)

T A7

−1

4
ε2
√
s(s− 4m2) T A8 + ε3

√
s(s− 4m2) T A12 − ε2m2

√
s(s− 4m2) T A13

+ε3
√
s(s− 4m2) T A14 − ε2m2

√
s(s− 4m2) T A15 , (4.45)

fA46 = ε4
(
s+ t−m2

)
T A46 + ε4s

(
s+ t−m2

)
T A44 + ε4 s T A47

+ε2
(

m2s

m2 − t
+m2

)
T A4 −

1

2
ε2
(

2m2s

m2 − t
− s+ t

)
T A7 −

ε2s

4
T A8

+ ε3 s T A14 − ε2m2 s T A15 − ε4
(
s+ t−m2

)
T A23 + ε4s T A36

−1

2
ε4
(
s− t+m2

)
T A38 , (4.46)

fA47 = ε4
(
t−m2

)
T A47 +

1

2
ε4
(
s− t+m2

)
T A38 , (4.47)

fA48 = −ε4 s
(
m2 − t

)
T A48 , (4.48)

fA49 = ε4 s2
(
s+ t−m2

)
T A49 + ε4 s2 T A51

+ε2
(
− 3m2s

2 (m2 − t)
+

3m2s

2 (s+ t−m2)
− 9m2

4

)
T A4

+ε2
(
− 3m2s

2 (s+ t−m2)
+m2 +

s

2
− t

2

)
T A5 −

ε2s

4
T A6
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+ε2
(

m2s

2 (m2 − t)
+

st

m2 − t

)
T A7 +

ε2s

4
T A8

+ε2
(

3s2

4 (m2 − t)
− 3s2

4 (s+ t−m2)
+

9s

8

)
T A10 +

ε4s
(
m2 − t

)
1 + 4ε

T A21

+
ε4s
(
m2 − t

)
1 + 4ε

T A25 +
ε4s
(
m2 − t

)
1 + 4ε

T A29

−1

4
ε3s
(
s− t+m2

)
T A32 −

1

4
ε3s
(
s− t+m2

)
T A33

+
1

2
ε4
(
m2 − t

)( 6s

s+ t−m2
− 3

)
T A36 + ε3s

(
m2 − 2m2s

s+ t−m2

)
T A37

−
3ε4
(
s+ t−m2

) (
s− t+m2

)
m2 − t

T A38 +
2ε3m2s

(
s− t+m2

)
m2 − t

T A39 + ε3s2 T A40

−ε2m2s2 T A41 + ε4s
(
s+ t−m2

)
T A44 − ε4s2 T A48 , (4.49)

fA50 = ε4s
√
s(s− 4m2) T A50 − ε4s

√
s(s− 4m2) T A42 + ε4

√
s(s− 4m2)

(
m2 − t

)
T A44 , (4.50)

fA51 = −ε4s
(
m2 − t

)
T A51 + ε2

(
3m2

4
− 3m2s

2 (s+ t−m2)

)
T A4

+
1

2
ε2
(
m2

(
3s

s+ t−m2
− 2

)
− s+ t

)
T A5 +

ε2s

4
T A6 +

3ε2s
(
s− t+m2

)
8 (s+ t−m2)

T A10

−
ε4s
(
m2 − t

)
1 + 4ε

T A21 −
ε4s
(
m2 − t

)
1 + 4ε

T A25

−
ε4s
(
m2 − t

)
1 + 4ε

T A29 +
1

4
ε3s
(
s− t+m2

)
T A32

+
1

4
ε3s
(
s− t+m2

)
T A33 +

1

2
ε4
(
m2 − t

)(
3− 6s

s+ t−m2

)
T A36

+ε3m2s

(
2s

s+ t−m2
− 1

)
T A37 , (4.51)

fA52 = ε4 s T A52 +
ε4s2

2
T A50 +

4ε5

1− 4ε2
T A1

+ε2
(
ε
(
s− 4m2

)
+

s− 4m2

2(2ε− 1)
− 2m2 +

s

2

)
T A2

+ε2
(
−4m2 − s
4(2ε− 1)

+ ε
(
−2m2 − s

)
−m2

)
T A3

+ε2
(

3m2

2(2ε− 1)
+

m2s

4 (m2 − t)
+

m2s

2 (s+ t−m2)

)
T A4

+ε2
(
− m2s

2 (s+ t−m2)
+
m2

4
+
s

8
− t

8

)
T A5 −

ε2s

8
T A6

+ε2

(
−2m2 − t
2(2ε− 1)

−
(
m2 + t

) (
s− t+m2

)
8 (m2 − t)

)
T A7

+ε2
(

t−m2

2(2ε− 1)
− m2

16
− s

16
+

t

16

)
T A8 + ε3s T A9 −

ε4s

2ε− 1
T A11 +

ε3s

2
T A12
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−1

4
ε2m2

(
s− t+m2

)
T A13 + ε3

(
3
(
m2 − t

)
2(2ε− 1)

+
m2

4
+
s

4
− t

4

)
T A14

+ε2

(
−

2m2
(
m2 − t

)
2ε− 1

− 1

4
m2
(
s− t+m2

))
T A15 +

ε4s

2ε− 1
T A16 −

2ε3m2s

2ε− 1
T A17

− 4ε4s

2ε− 1
T A19 −

1

8
ε3s
(
s+ t−m2

)
T A21 + ε4

(
t

4
− m2

4

)
T A23

+ ε4
(

3m2 − 2s− 3t

2ε− 1
+ s

)
T A27 −

ε3m2
(
m2 − t

)
2ε− 1

T A28

+ε3

(
1

8
s
(
m2 − t

)
−
(
2m2 − s

) (
m2 − t

)
2(2ε− 1)

)
T A29 + ε3m2s T A31

+ε3

(
s
(
s+ t−m2

)
2(2ε− 1)

+
m2s

2

)
T A32 −

ε4s

4
T A34 + ε4

(
− s

2ε− 1
− 5

4

(
s− t+m2

))
T A36

−ε4
(

1

2

(
s− t+m2

)
+

s

2ε− 1

)
T A38 − ε4

s

2
T A42 +

ε4s2

4
T A43 +

1

4
ε4s
(
s− t+m2

)
T A44

+
ε4s

2
T A45 +

1

4
ε4
(
s− t+m2

)
T A46 +

1

4
ε4
(
s− t+m2

)
T A47 . (4.52)

4.2 Topology B

Topology B involves 44 MIs. The relations linking the canonical and pre-canonical forms

of the MI basis are the following:

fB1 = ε2 T B1 , (4.53)

fB2 = ε2t T B2 , (4.54)

fB3 = ε2
(
s+ t− 2m2

)
T B3 , (4.55)

fB4 = ε2
(
s+ t−m2

)
T B4 + 2 ε2m2 T B3 , (4.56)

fB5 = ε2m2 T B5 , (4.57)

fB6 = ε2 t T B6 , (4.58)

fB7 = −ε2
(
m2 − t

)
T B7 − 2 ε2m2 T B6 , (4.59)

fB8 = ε2 s T B8 , (4.60)

fB9 = −ε3
(
s+ t−m2

)
T B9 , (4.61)

fB10 = −ε2m2
(
s+ t−m2

)
T B10 , (4.62)

fB11 = ε3
(
m2 − t

)
T B11 , (4.63)

fB12 = ε2m2
(
m2 − t

)
T B12 , (4.64)

fB13 = ε2m2
(
2m2 − t

)
T B13 − 3 ε3m2 T B11 + 2 ε2m4 T B12 , (4.65)

fB14 = ε3
(
m2 − t

)
T B14 , (4.66)

fB15 = ε2m2
(
m2 − t

)
T B15 , (4.67)

fB16 = ε3
√
s(s− 4m2) T B16 , (4.68)

fB17 = ε3
(
m2 − t

)
T B17 , (4.69)
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fB18 = ε3
(
m2 − t

) (
s+ t− 2m2

)
T B18 (4.70)

fB19 = ε2m2
(
m2 − t

) (
s+ t−m2

)
T B19 − ε3

(
m2 − t

) (
s+ t−m2

)
T B18 , (4.71)

fB20 = ε4
√
s(s− 4m2) T B20 , (4.72)

fB21 = ε3m2
(
m2 − t

)
T B21 , (4.73)

fB22 = ε3
(
m2 − t

) (
s+ t−m2

)
T B22 , (4.74)

fB23 = ε3m2
(
s+ t−m2

)
T B23 , (4.75)

fB24 = ε4 s T B24 , (4.76)

fB25 = −ε3
(
m2 − t

) (
s+ t−m2

)
T B25 , (4.77)

fB26 = ε2(1 + 2ε)m2 s T B26 + 2 ε4 s T B27 − ε3
s

2
T B16 , (4.78)

fB27 = ε4
√
s(s− 4m2) T B27 , (4.79)

fB28 = −ε4
(
m2 − t

)
T B28 , (4.80)

fB29 = −ε3m2
(
m2 − t

)
T B29 , (4.81)

fB30 = ε4
(
s+ t−m2

)
T B30 , (4.82)

fB31 = ε3m2 s T B31 , (4.83)

fB32 = −ε3 s
(
m2 − t

)
T B32 , (4.84)

fB33 = −ε4
(
m2 − t

)
T B33 , (4.85)

fB34 = ε3m2 s T B34 , (4.86)

fB35 = ε4
(
m2 − t

)2 T B35 , (4.87)

fB36 = −ε4
√
s(s− 4m2)

(
m2 − t

)
T B36 , (4.88)

fB37 = −ε3 (1− 2ε)
(
m2 − t

)
T B37 + 2 ε4 s

(
m2 − t

)
T B36 − 2 ε4

(
m2 − t

)
T B30 , (4.89)

fB38 = ε4 i
√
m2 s(m2 − t)(s+ t−m2) T B38 , (4.90)

fB39 = ε4
√
s(s− 4m2) T B39 + ε4

√
s(s− 4m2)

(
s+ t−m2

)
T B38 + ε4

√
s(s− 4m2) T B40

+ ε4
√
s(s− 4m2) T B41 +

ε2
√
s(s− 4m2)

(
s+ t− 3m2

)
2 (s+ t−m2)

T B3

−
ε2
√
s(s− 4m2)

4
T B4 +

ε2m2 s
√
s(s− 4m2)

(m2 − t) (s+ t−m2)
T B5

−
ε2
√
s(s− 4m2)

(
m2 + t

)
2 (m2 − t)

T B6 −
ε2

4

√
s(s− 4m2) T B7

+ε3
√
s(s− 4m2) T B9 − ε2m2

√
s(s− 4m2) T B10 + ε3

√
s(s− 4m2) T B14

−ε2m2
√
s(s− 4m2) T B15 , (4.91)

fB40 = ε4 s T B41 + ε4 s
(
s+ t−m2

)
T B38 + ε4

(
s+ t−m2

)
T B40 +

ε2m2 s

m2 − t
T B5

−
ε2 s

(
m2 + t

)
2 (m2 − t)

T B6 −
ε2 s

4
T B7 + ε3 s T B14 − ε2m2 s T B15 − ε4

(
s+ t−m2

)
T B20

−ε4 s T B30 + ε4 s T B33 , (4.92)

fB41 = −ε4
(
m2 − t

)
T B41 + ε4 s T B30 , (4.93)
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fB42 = −ε4 s
(
m2 − t

) (
s+ t−m2

)
T B42 − ε4

(
m2 − t

) (
s+ t−m2

)
T B43

−ε4
(
m2 − t

) (
s+ t−m2

)
T B44 + ε2 s T B8 + ε3m2

(
m2 − t

)
T B18

− ε2m2
(
m2 − t

) (
s+ t−m2

)
T B19

− ε3
(
m2 − t

) (
s+ t−m2

)
T B25

+ ε3m2 s T B31 − ε4
(
m2 − t

)
T B33 + ε3m2 s T B34 + ε4 s

(
m2 − t

)
T B35 , (4.94)

fB43 = ε4
(
m2 − t

)2 T B43 + ε2 s T B8 + ε3
(
2m4 − 3m2t+ t2

)
T B18

− ε2m2 s
(
m2 − t

)
T B19 −

ε3

2

(
m2 − t

)2 T B25 + ε4
(
s+ t−m2

)
T B30

+ ε3m2 s T B31 + ε4 s
(
m2 − t

)
T B38 , (4.95)

fB44 = ε4
(
m2 − t

)2 T B44
+ ε2

{
1

4

[
m2

(
3s

s+ t−m2
− 2

)
− s+ t

]
−
(
m2 − t

) (
5m2 − 2(s+ t)

)
4(1 + 4ε) (s+ t−m2)

}
T B3

+ε2
(
− m2 − t

8(1 + 4ε)
+
s

8

)
T B4

+ε2
(

3m2s

4(1 + 4ε) (s+ t−m2)
− 3m2s

4 (s+ t−m2)

)
T B5

+ε2
(
−m2 − 2t

4(1 + 4ε)
− 2m2

)
T B6 + ε2

(
− m2 − t

8(1 + 4ε)
−m2 + t

)
T B7

+ε2

(
3s
(
m2 − t

)
8 (s+ t−m2)

− 3s2

8(1 + 4ε) (s+ t−m2)

)
T B8 + ε3

(
m2 − t

)2 T B18
−ε2m2

(
m2 − t

)2 T B19 − 1

2
ε3
(
m2 − t

)2 T B22 + ε4 s T B24

+
ε3

4

(
s
(
m2 − t

)
1 + 4ε

−
(
m2 − t

)2) T B25 + ε4
(
s+ t−m2

)( 3

2(1 + 4ε)
+ 1

)
T B30

+
4ε4m2s

1 + 4ε
T B31 −

6ε5(m2 − t)2

(1 + 4ε) (s+ t−m2)
T B33

+ε3

 m2s2

s+ t−m2
+
m2s

(
1− s

s+t−m2

)
1 + 4ε

 T B34 . (4.96)

5 Rationalizing parametrization

Both the definition of the Canonical Basis for topologies A and B and the differential

equations fulfilled by the MIs in the Canonical Basis contain two square roots of functions

of Mandelstam invariants. These roots are:√
s(s− 4m2),

√
m2s(m2 − t)(s+ t−m2), (5.1)

where the latter root enters only through the definition of two MIs in the canonical basis:

fA44 and fB38. In order to express the solution in terms of GPLs one needs to rationalize

the square roots by finding an appropriate change of variables. We start by defining the
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dimensionless variables x and y as follows:

x = − s

m2
, y = − t

m2
. (5.2)

A particularly convenient parametrization [47, 83] which rationalizes the roots2 in (5.1) is

given by

x =
(1− w)2

w
,

y =
1− w + w2 − z2

z2 − w
. (5.3)

Since we want to express all of the MIs in terms of w and z, it is also necessary to write the

Mandelstam variable u in terms of w and z. Starting from the relation u = −s− t+ 2m2

one finds
u

m2
=
w2 − (1− w + w2)z2

w(w − z2)
. (5.4)

The analytic expressions that can be found in the ancillary files are written in terms of w

and z defined in (5.3).

In order to write w and z as a function of x and y, it is necessary to invert the system

in (5.3). The first equation has two solutions

w1 =

√
x+ 4−

√
x√

x+ 4 +
√
x
,

w2 =

√
x+ 4 +

√
x√

x+ 4−
√
x

=
1

w1
. (5.5)

When 0 < x < ∞ (−∞ < s < 0), the first solution is limited and such that 0 < w1 < 1,

while the second solution is unlimited, 1 < w2 < ∞. In view of the fact that GPLs of

w should be manifestly real in this region, we choose the first solution, w1. The second

equation, (5.3), has four solutions, two for each choice of w:

z1 =

√
1− w + w2 + wy

1 + y
,

z2 = −

√
1− w + w2 + wy

1 + y
= −z1 . (5.6)

The first solution z1 is always positive for y > 0 (t < 0) and w = w1, while the second

is always negative. When, for a given x, y varies from 0 to ∞, z1 is limited to the range√
w < z1 <

√
1− w + w2.

Consequently, in the region s < 0 and t < 0, we choose the set of variables

w =

√
x+ 4−

√
x√

x+ 4 +
√
x
, z =

√
1− w + w2 + wy

1 + y
. (5.7)

2Another solution to the rationalization problem can be obtained from diophantine equations as described

in [81]: x = 16w2(1 + 4z)2(w + z + 4wz)2/[z(1 + 8w)(z2 − 4w2)(z + 4w + 8wz)] , y = 8z(1+2z). However,

this change of variables leads to rather long expressions.
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When s becomes positive, it is necessary to consider the Feynman prescription and

add to s a positive vanishing imaginary part: s+ i0+:

x = −s+ i0+

m2
≡ −x′ − i0+ , (5.8)

where, now, x′ = s/m2 > 0. If x′ is such that 0 < x′ < 4, w becomes a phase and it moves

on the upper unit circle:

w =

√
4− x′ −

√
−x′ − i0+√

4− x′ +
√
−x′ − i0+

=

√
4− x′ + i

√
x′

√
4− x′ − i

√
x′

= ei2φ , (5.9)

with

φ = arctan

(√
x′

4− x′

)
. (5.10)

For x′ = 4, w becomes real again and one finds that w = −1.

For physical kinematics one finds that s > 4m2, t < 0, u < 0, where

tmin < t < tmax , (5.11)

with

tmin = m2 − s

2
− 1

2

√
s(s− 4m2) , (5.12)

tmax = m2 − s

2
+

1

2

√
s(s− 4m2) . (5.13)

In this physical region we use

w =

√
x+ 4−

√
x√

x+ 4 +
√
x

=

√
x′ − 4−

√
x′

√
x′ − 4 +

√
x′

+ i0+ , z =

√
1− w + w2 + wy

1 + y
. (5.14)

with the phase space constraint

0 < −w < z < 1 . (5.15)

The crossing t↔ u is given by

z → −w
z
. (5.16)

By keeping into account the relation (5.15), the roots in (5.1) become

√
s(s− 4m2) = m2w

2 − 1

w√
m2s(m2 − t)(s+ t−m2) = m4 (w − 1)3z

w(z2 − w)
. (5.17)

We apply these substitutions to the definition of the canonical integrals in the physical

region in equations (4.1)–(4.96) and employ the resulting rational expressions to define the

Canonical Basis also in other regions of the phase space.
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6 Integration and results

In terms of the rationalizing variables, we can write for the matrix Ã(~x) in our differential

equation (3.3)

Ã(~x) =
∑
k

Ã(k) ln(lk) (6.1)

where the Ã(k) are rational matrices and the letters lk form the alphabet

{lk} =
{
w,w − 1, w + 1, z, z − 1, z + 1, w − z, w + z, w − z2, w2 − w + 1− z2,

w2 − z2(w2 − w + 1), w2 − 3w + z2 + 1
}
. (6.2)

The last letter is needed only for Topology B. We provide explicit expressions for the matrix

Ã(~x) for Topologies A and B, respectively, in the ancillary files on arXiv.

This alphabet allows to analytically integrate the MIs in terms of GPLs of argument

w with the weights{
0, 1,−1, z,−z, z2, 1−

√
4z2 − 3

2
,

1 +
√

4z2 − 3

2
,
z(z −

√
4− 3z2)

2(z2 − 1)
,

z(z +
√

4− 3z2)

2(z2 − 1)
,

3−
√

5− 4z2

2
,

3 +
√

5− 4z2

2

}
, (6.3)

and GPLs of argument z with the weights

{0,−1, 1,−i, i} . (6.4)

We fix the boundary constants by imposing regularity conditions, supplemented by external

input for a few well-known simple integrals.

The analytic continuation of the GPL functions of w and z between different regions

of the phase space is non-trivial. We found it convenient to provide the MIs in terms of an

analytic expression which is valid in the region u < 1 and of a second analytic expression

that is valid in the region u > 1. Our complete results are available in the ancillary files

sol-A-unphys.m, sol-B-unphys.m for u > 1 and sol-A-phys.m, sol-B-phys.m for u < 1,

which includes, in particular, the physical region.

7 Numerical checks

In order to validate our results we performed numerical checks in different points of the

phase space. In several cases, the MIs were checked by evaluating the MIs in the pre-

canonical basis numerically by means of Sector Decomposition [84] as implemented in

SecDec [85–88] and FIESTA [89–91] and by subsequently comparing the numerical results

with the evluation of the analytic expressions for the MIs carried out with GiNaC [92].

However, in some cases, and in particular for the MIs involving six or seven denom-

inators, we were not able to obtain sufficiently precise numbers by a direct evaluation of
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the MIs with SecDec or FIESTA. For this reason, we employed the techniques described

in [93–95] and rewrote the canonical MIs as linear combinations of quasi-finite integrals.

Quasi-finite integrals are integrals which have, at worst, a single pole in ε which originates

from the Euler Gamma function prefactor in the Feynman parameter representation of the

integral. Quasi-finite integrals are built with the same set of propagators as the original

integral but they might be defined in shifted space-time dimensions and might have one

or more propagators squared or raised to higher power. It was shown in [93, 95] that

quasi-finite integrals are evaluated more efficiently by SecDec and FIESTA with respect to

non quasi-finite integrals with the same sets of propagators. Using SecDec we generated

numerical results for quasi-finite integrals in the unphysical and in the physical region.

Subsequently, we converted these numbers to results for the canonical integrals, at which

level we were left with typically 2–6 significant digits, depending on the integral and the

region of phase space. We successfully compared these numbers against those obtained

from the analytic expressions of the MIs, which are the main result of the present work.

With this procedure it was possible to test numerically all of the 52+44 MIs evaluated in

this paper.

In addition, we compared numerically the MIs that are in common with the ones

presented in [47] with a numeric evaluation of their expressions, finding complete agreement.

Finally, all of the MIs evaluated in this work were simultaneously evaluated in [78]. We

compared numerically the MIs evaluated in this work with the results obtained in [78].

This comparison was carried out in several phase space points, both in the physical region

(s > 4m2) and in the non-physical region (s < 0). We found complete agreement between

the results in this work and the ones in [78].

8 Conclusions

In this paper we presented the analytic calculation of the master integrals necessary for

the evaluation of the last two color coefficients of the interference between two-loop and

tree-level diagrams for the partonic process qq̄ → tt̄, for which an analytic expression is

not yet available.

The master integrals were evaluated with the method of differential equations. By

determining a canonical basis, we brought the system of first-order linear differential equa-

tions into an ε-form, allowing for their decoupling after an expansion in powers of the

dimensional regulator ε. We integrated the expansion coefficients in terms of generalized

harmonic polylogarithms of two dimensionless variables through to weight 4 and fixed the

integration constants using regularity conditions and known solutions for simple integrals.

We checked our analytic results numerically against the results obtained with two

numerical codes, SecDec and FIESTA, using the method of quasi-finite integrals. We also

compared numerically the MIs that are in common with the ones presented in [47], finding

complete agreement. Finally, we cross-checked numerically the MIs of our topology A with

the authors of [78], in several points of the phase space, finding complete agreement.

All the analytic expressions for the MIs presented in this paper are provided as com-

puter readable ancillary files together with the arXiv submission of this work.
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A Pre-canonical form for the Master Integrals

In this section we present the routing for all the pre-canonical MIs of the two topologies.

The definition of the integration measure Ddki (i = 1, 2) can be found in (2.5). The list of

the denominators Di (i = 1, · · · , 9) can be found in (2.6).

A.1 Topology A

T A1 =

∫
Ddk1Ddk2

1

D2
8D

2
9

, T A2 =

∫
Ddk1Ddk2

1

D2
5D

2
8D9

, (A.1)

T A3 =

∫
Ddk1Ddk2

1

D5D2
8D

2
9

, T A4 =

∫
Ddk1Ddk2

1

D2
5D7D2

9

, (A.2)

T A5 =

∫
Ddk1Ddk2

1

D2
3D7D2

9

, T A6 =

∫
Ddk1Ddk2

1

D2
3D

2
7D9

, (A.3)

T A7 =

∫
Ddk1Ddk2

1

D2
2D3D8

, T A8 =

∫
Ddk1Ddk2

1

D2
2D

2
3D8

, (A.4)

T A9 =

∫
Ddk1Ddk2

1

D2
1D5D2

9

, T A10 =

∫
Ddk1Ddk2

1

D2
1D2D2

7

, (A.5)

T A11 =

∫
Ddk1Ddk2

1

D5D7D8D2
9

, T A12 =

∫
Ddk1Ddk2

1

D3D7D8D2
9

, (A.6)

T A13 =

∫
Ddk1Ddk2

1

D3D7D8D3
9

, T A14 =

∫
Ddk1Ddk2

1

D2D3D2
8D9

, (A.7)

T A15 =

∫
Ddk1Ddk2

1

D2D3D3
8D9

, T A16 =

∫
Ddk1Ddk2

1

D1D5D7D2
9

, (A.8)

T A17 =

∫
Ddk1Ddk2

1

D1D5D7D3
9

, T A18 =

∫
Ddk1Ddk2

1

D1D5D2
7D

2
9

, (A.9)

T A19 =

∫
Ddk1Ddk2

1

D2
1D2D7D9

, T A20 =

∫
Ddk1Ddk2

1

D3D5D7D8D9
, (A.10)

T A21 =

∫
Ddk1Ddk2

1

D3D5D7D8D2
9

, T A22 =

∫
Ddk1Ddk2

1

D3D5D7D2
8D9

, (A.11)
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T A23 =

∫
Ddk1Ddk2

1

D2D3D7D8D9
, T A24 =

∫
Ddk1Ddk2

1

D2D3D7D8D2
9

, (A.12)

T A25 =

∫
Ddk1Ddk2

1

D2D2
3D7D8D9

, T A26 =

∫
Ddk1Ddk2

1

D2D3D7D2
8D9

, (A.13)

T A27 =

∫
Ddk1Ddk2

1

D2D3D5D8D9
, T A28 =

∫
Ddk1Ddk2

1

D2D3D5D8D2
9

, (A.14)

T A29 =

∫
Ddk1Ddk2

1

D2D3D5D2
8D9

, T A30 =

∫
Ddk1Ddk2

1

D1D5D7D8D9
, (A.15)

T A31 =

∫
Ddk1Ddk2

1

D1D5D7D8D2
9

, T A32 =

∫
Ddk1Ddk2

1

D1D3D5D7D2
9

, (A.16)

T A33 =

∫
Ddk1Ddk2

1

D1D3D5D2
7D9

, T A34 =

∫
Ddk1Ddk2

1

D1D2D7D8D9
, (A.17)

T A35 =

∫
Ddk1Ddk2

1

D1D2D2
7D8D9

, T A36 =

∫
Ddk1Ddk2

1

D1D2D3D7D9
, (A.18)

T A37 =

∫
Ddk1Ddk2

1

D1D2D3D7D2
9

, T A38 =

∫
Ddk1Ddk2

1

D1D2D3D7D8
, (A.19)

T A39 =

∫
Ddk1Ddk2

1

D1D2D3D7D2
8

, T A40 =

∫
Ddk1Ddk2

1

D1D2D3D5D2
8

, (A.20)

T A41 =

∫
Ddk1Ddk2

1

D1D2D3D5D3
8

, T A42 =

∫
Ddk1Ddk2

1

D1D3D7D8D9
, (A.21)

T A43 =

∫
Ddk1Ddk2

1

D1D2D5D7D8D9
, T A44 =

∫
Ddk1Ddk2

1

D1D2D3D7D8D9
,

(A.22)

T A45 =

∫
Ddk1Ddk2

D4

D1D2D3D7D8D9
, T A46 =

∫
Ddk1Ddk2

D5

D1D2D3D7D8D9
,

(A.23)

T A47 =

∫
Ddk1Ddk2

D6

D1D2D3D7D8D9
, T A48 =

∫
Ddk1Ddk2

1

D1D2D3D5D8D9
,

(A.24)

T A49 =

∫
Ddk1Ddk2

1

D1D2D3D5D7D8D9
, T A50 =

∫
Ddk1Ddk2

D4

D1D2D3D5D7D8D9
,

(A.25)

T A51 =

∫
Ddk1Ddk2

D6

D1D2D3D5D7D8D9
, T A52 =

∫
Ddk1Ddk2

D4D6

D1D2D3D5D7D8D9
.

(A.26)

A.2 Topology B

T B1 =

∫
Ddk1Ddk2

1

D2
8D

2
9

, T B2 =

∫
Ddk1Ddk2

1

D4D2
8D

2
9

, (A.27)

T B3 =

∫
Ddk1Ddk2

1

D2
3D7D2

9

, T B4 =

∫
Ddk1Ddk2

1

D2
3D

2
7D9

, (A.28)

T B5 =

∫
Ddk1Ddk2

1

D2
3D4D2

9

, T B6 =

∫
Ddk1Ddk2

1

D2
2D3D2

8

, (A.29)
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T B7 =

∫
Ddk1Ddk2

1

D2
2D

2
3D8

, T B8 =

∫
Ddk1Ddk2

1

D2
1D

2
2D7

, (A.30)

T B9 =

∫
Ddk1Ddk2

1

D3D7D8D2
9

, T B10 =

∫
Ddk1Ddk2

1

D3D7D8D3
9

, (A.31)

T B11 =

∫
Ddk1Ddk2

1

D3D4D8D2
9

, T B12 =

∫
Ddk1Ddk2

1

D3D4D8D3
9

, (A.32)

T B13 =

∫
Ddk1Ddk2

1

D3D4D2
8D

2
9

, T B14 =

∫
Ddk1Ddk2

1

D2D3D2
8D9

, (A.33)

T B15 =

∫
Ddk1Ddk2

1

D2D3D3
8D9

, T B16 =

∫
Ddk1Ddk2

1

D2
1D2D7D9

, (A.34)

T B17 =

∫
Ddk1Ddk2

1

D1D2
2D4D8

, T B18 =

∫
Ddk1Ddk2

1

D3D4D7D8D2
9

, (A.35)

T B19 =

∫
Ddk1Ddk2

1

D3D4D7D8D3
9

, T B20 =

∫
Ddk1Ddk2

1

D2D3D7D8D9
, (A.36)

T B21 =

∫
Ddk1Ddk2

1

D2D3D7D8D2
9

, T B22 =

∫
Ddk1Ddk2

1

D2D2
3D7D8D9

, (A.37)

T B23 =

∫
Ddk1Ddk2

1

D2D3D7D2
8D9

, T B24 =

∫
Ddk1Ddk2

1

D1D3D4D7D9
, (A.38)

T B25 =

∫
Ddk1Ddk2

1

D1D3D4D7D2
9

, T B26 =

∫
Ddk1Ddk2

1

D1D2D2
7D8D9

, (A.39)

T B27 =

∫
Ddk1Ddk2

1

D1D2D7D8D9
, T B28 =

∫
Ddk1Ddk2

1

D1D2D4D8D9
, (A.40)

T B29 =

∫
Ddk1Ddk2

1

D1D2D4D2
8D9

, T B30 =

∫
Ddk1Ddk2

1

D1D2D4D7D9
, (A.41)

T B31 =

∫
Ddk1Ddk2

1

D1D2D4D8D2
9

, T B32 =

∫
Ddk1Ddk2

1

D1D2
2D4D7D8

, (A.42)

T B33 =

∫
Ddk1Ddk2

1

D1D2D3D7D9
, T B34 =

∫
Ddk1Ddk2

1

D1D2D3D7D2
9

, (A.43)

T B35 =

∫
Ddk1Ddk2

1

D1D2D3D4D8D9
, T B36 =

∫
Ddk1Ddk2

1

D1D2D4D7D8D9
,

(A.44)

T B37 =

∫
Ddk1Ddk2

D6

D1D2D4D7D8D9
, T B38 =

∫
Ddk1Ddk2

1

D1D2D3D7D8D9
,

(A.45)

T B39 =

∫
Ddk1Ddk2

D4

D1D2D3D7D8D9
, T B40 =

∫
Ddk1Ddk2

D5

D1D2D3D7D8D9
,

(A.46)

T B41 =

∫
Ddk1Ddk2

D6

D1D2D3D7D8D9
, T B42 =

∫
Ddk1Ddk2

1

D1D2D3D4D7D8D9
,

(A.47)

T B43 =

∫
Ddk1Ddk2

D5

D1D2D3D4D7D8D9
, T B44 =

∫
Ddk1Ddk2

D6

D1D2D3D4D7D8D9
.

(A.48)
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B Numerical results

In this appendix we collect numerical results for the seven-denominator canonical MIs at

the point

m = 1 GeV , s = 5.1 GeV2 , and t = −2.5 GeV2 . (B.1)

The numerical values of the MIs are (with 16 significant digits):

fA49 =− 0.8125

+ (1.571461643987763− i 1.570796326794896)ε

+ (1.869800565465933 + i 7.871341877028778)ε2

− (26.64417846013623 + i 2.934819494524318)ε3

− (5.561888073241050 + i 69.90392666348392)ε4 , (B.2)

fA50 = (0.3936751877201319− i 1.229555494857724)ε2

+ (14.12478202913410− i 2.239408800880071)ε3

+ (49.29394916594301 + i 37.08333857464637)ε4 , (B.3)

fA51 = 0.02083333333333333

+ 0.07833393820762243ε

+ (8.538951737141223− i 1.580009353612773)ε2

− (4.529079554851615 + i 2.930479163733208)ε3

+ (0.1103747892867767− i 78.51623866876891)ε4 , (B.4)

fA52 =− 0.0625

+ 0.2937522682785850ε

+ (7.8274169758047892 + i 5.478308035237822)ε2

− (26.357322954146530− i 15.39070197526472)ε3

− (121.01714343276939 + i 42.90574414612206)ε4 , (B.5)

fB42 =− (0.5193031088754503 + i 0.7853981633974483)ε

− (5.247646105592740− i 3.6418501617483698)ε2

− (51.07989282173662 + i 30.039485666638732)ε3

− (68.03046563599218 + i 107.21203451885746)ε4 , (B.6)

fB43 =− 1

+ (2.702244138720994− i 3.9269908169872423)ε

+ (18.05310915519800 + i 12.796025276368288)ε2

− (3.231845611282520 + i 2.7724176443956750)ε3

+ (127.3934689436371− i 12.984632048850981)ε4 , (B.7)

fB44 =− 0.625

+ (0.9285563596344188 + i 3.1415926535897928)ε

− (6.716934387387509 + i 10.089909832711628)ε2

+ (50.38595267312016− i 44.149878496215228)ε3

+ (146.4134579642496− i 86.512460126974730)ε4 . (B.8)
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