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1 Introduction

Theoretical predictions for top-antitop pair production at hadron colliders are known in
perturbative QCD up to next-to-next-to-leading order (NNLO) [1-9]. Recently, also the
NLO electroweak corrections to this process were evaluated [10]. Predictions at NNLO in
QCD are available for the total cross section and for distributions that are differential with
respect to quantities which depend on the momenta of the top-antitop pair, such as the
pair invariant mass, the top (or antitop) transverse momentum and rapidity, etc.

From the technical point of view, the numerical calculations carried out in [1-8] rep-
resent a landmark in the field of the evaluation of higher-order corrections in perturbative
QCD. One of the main technical problems that was necessary to solve in order to achieve
NNLO accuracy was the evaluation of two-loop 2 — 2 amplitudes with massive and massless
propagators. The evaluation had to be carried out for arbitrary values of the Mandelstam
invariants s and ¢t and of the top-quark mass m. The problem was solved by evaluating
numerically these diagrams in a grid of points covering all of the physics phase space in
the s — t plane, for a fixed value of m. The evaluation in each single point was carried
out by solving numerically differential equations satisfied by the Master Integrals (MIs)



present in the problem. The numerical solution of large sets of differential equations is
not only technically challenging but it also requires a significant amount of CPU time. In
addition, it was necessary to evaluate analytically the boundary conditions to be used in
the numerical solution of the differential equations.

In this context, an analytic calculation of the two-loop amplitudes contributing to top-
quark pair production has a twofold purpose: on the one hand, it provides an independent
check of the results obtained numerically; on the other hand it could provide a faster and
cheaper (in terms of CPU time) way to evaluate the two-loop corrections needed in order
to obtain phenomenological predictions for this process.

A complete analytic computation of the top-pair production cross section to NNLO
in QCD is not yet available, although many of the necessary elements were evaluated in
the recent past. In particular, the matrix elements for the one-loop 2 — 3 process are
known [11-14]. Furthermore, progress was also made in the determination of infra-red
(IR) subtraction terms which are needed to regularize IR divergences in collinear and soft
regions of the phase space during the integration [15-19]. Finally, the one-loop squared
matrix elements were calculated in [20-22]. Analytic results for the interference between
two-loop 2 — 2 diagrams and tree-level amplitudes are available only in part.

Two-loop contributions to the t¢ production process in hadronic collisions are required
for two partonic channels: ¢g — t¢ (quark-annihilation channel) and gg — ¢t (gluon fusion
channel). The interference of the two-loop amplitude in the quark-annihilation channel with
the corresponding tree-level amplitude can be expressed in terms of ten gauge independent
functions. Each one of these functions is proportional to a different color coefficient. In
the rest of this work we refer to these functions as “color factors”. The color structure in
the gluon-fusion channel is more complicated, and it can be expressed in terms of sixteen
color factors.

All of the ten color factors in the ¢¢ channel are known numerically [23] and their
infrared poles are known analytically [24, 25]. For eight out of the ten color factors a
complete analytic expression, written in terms of generalized harmonic polylogarithms
(GPLs) [26-29], was found in [30, 31]. The remaining two color factors in the quark-
annihilation channel are not known analytically to date.

All of the sixteen color factors appearing in the two-loop corrections in the gluon-fusion
channel are known numerically [32] and the analytic expression of all the infrared poles was
evaluated in [24, 25]. In addition, a complete analytic expression (again written in terms of
GPLs) is known for ten out of the sixteen color factors in the gluon fusion channel [33-35].
The remaining six color factors in this partonic channel involve elliptic integrals and are
not known analytically. A subset of the remaining MIs were considered recently. MIs for
a non-elliptic planar double box were calculated in [36] in terms of GPLs. MIs for elliptic
topologies that involve a closed heavy fermionic loop were studied in [37-39].

In this paper we focus on the analytic calculation of the MIs that are needed to complete
the evaluation of the two color factors in the quark-annihilation channel which are not yet
known analytically. Part of the MIs needed for this task are known from previous works [30,
31, 33-35, 40-42] (see also the Loopedia database [43]). In particular, the first analytical
evaluation of a crossed double box with a massive propagator was presented in [34] in



terms of GPLs. More recently, within the context of a project that requires the analytic
evaluation of the NNLO QED corrections to electron-muon scattering [44, 45], planar [46]
and a crossed [47] topology were evaluated analytically using GPLs. These topologies also
enter top-pair production in the ¢g channel, although for different kinematics. Pointing
out the non-trivial analytic continuation between these two regions, in [48] a subset of
these topologies were calculated in the context of heavy-lepton pair production in electron-
positron collisions. In the present work, we provide results for the MIs belonging to the
last crossed topology not considered analytically so far and we carry out an independent
calculation of the MIs of the topology evaluated in [47, 48]. These results will allow one to
complete the analytic calculation of the two-loop corrections to top-quark pair production
in the ¢q channel.

The evaluation of the MIs discussed in this work is carried out by following a by
now standard technique based on two steps. First, one observes that the dimensionally
regularized scalar integrals which appear in the interference of two-loop and tree-level
diagrams can all be written in terms of a reduced set of scalar integrals which are identified
as the MlIs for the problem under study. The two topologies considered in this work
involve 52 and 44 MIs, respectively. The reduction to Mls is carried out by means of
the computer programs' FIRE [53-55] and Reduze 2 [56, 57, that implement integration-
by-parts identities [58-60] and Lorentz-invariance identities [61]. Subsequently, the MIs
are computed by employing the differential equations method [61-65]. The system of
differential equations is cast in canonical form [66] (see also [67—77]). The solution is
expressed in terms of Chen’s iterated integrals, which can be expanded as a series in the
dimensional regularization parameter, and each order of the expansion is represented in
terms of GPLs.

The paper is structured as follows. In section 2, we introduce our notation and we
define the topologies that are considered in this work. In section 3, we briefly review the
method of differential equations. In section 4, we present the canonical form we used for the
evaluation of the solution of the system of differential equations. In section 5, we describe
a reparametrization which rationalizes our differential equations. In section 6, we discuss
the integration of the differential equations in terms of GPLs and present the structure of
our results. In section 7, we discuss numerical checks which were carried out in order to
validate the analytic expression of the MIs. We emphasize that, in addition to the checks
discussed in section 7, our results have been successfully compared against the expressions
of a different set of master integrals, independently obtained by S. Di Vita, T. Gehrmann,
S. Laporta, P. Mastrolia, A. Primo, and U. Schubert [78], which were published on the
arXiv simultaneously to the present manuscript. Finally, section 8 contains our conclusions.
The definition of the various MIs in terms of momentum integrals over a set of propagators
can be found in appendix A. Numerical results in a specific phase-space point for the seven
denominator Mls evaluated analytically in this paper are collected in appendix B.

Our full analytical results are provided in ancillary files included in the arXiv submis-
sion of this paper.

!Other public programs for the reduction to the MIs can be found in [49-52].



2 Notations

In this paper we consider the process q7 — tt, where ¢ and ¢ are massless quarks and ¢
and ¢ are massive (top) quarks. The incoming partons have momenta p; and pe, while the
final state partons have momenta ps and ps. All particles are on their mass-shell, namely
p? = p3=0, and pg = p? = m?, where m is top-quark mass.
The kinematics of the process can be described in terms of the three Mandelstam
invariants
s=(p+p2)° t=(p1—p3)’ u=(p—ps)’, (2.1)

which satisfy the relation s+t +u = 2m?. The physical region is defined by

5> 4m?, t=m?— % (s —+/s(s — 4m?) cos 9) , (2.2)

where 0 is the scattering angle of top quark with respect to the direction of the incoming
q quark in the partonic center of mass frame.

Figure 1 shows the two seven-denominator two-loop topologies that we consider in this
paper; they are indicated with the capital letters A and B. The scalar integrals belonging
to Topology A are defined as

dp. 7y Dy Dg*
Dk D% 2.3
/ 17 par pE p3s pis par pas pao (2:3)
while the scalar integrals belonging to Topology B are defined as
D5 Dyt
/ delpdk2 b1 b2 bi b46 b7 Hbs b (2'4)
DY Dy’ D3* Dy D7" Dg® Dy
The labels a; and b;, with ¢ = 1,...,9, are integer numbers where a4, ag, b5, bg < 0. The
D;,i=1,...,9, are the denominators and numerators involved and d is the dimension of
the space-time. The normalization of the integrals is such that
dk; 2\ ¢
Dk = “ e (”2) : (2.5)
T2 H

where € = (4 — d)/2, vg = 0.5772... is the Euler-Mascheroni constant and p is the ’t
Hooft scale.

The nine-propagator integral family that we use for the reduction of both Topology A
and Topology B is

D; = {_k%v _k%a —(p1 + kl)Qa —(p1+ k1 + k2)27 — (k1 +p1 —1—192)27 — (k2 +p1 +p2)2,
— (k1 + ka4 p1 4+ p2)?, m® — (k1 + ko +p3)®, m® — (ko +p3)°} (2.6)

Topology A has 52 MIs while Topology B has 44 MIs. Since some MIs are common to both
topologies, the total number of independent MIs is 70. Some of the MIs were already known
in the literature [30, 31, 33-35, 4042, 47]. Many MIs, including many seven denominator
four-point functions, are evaluated here for the first time.



(A) (B)

Figure 1. Seven-denominator topologies. Thin lines represent massless external particles and
internal propagators, while thick lines represent massive external particles and internal propagators.

3 The differential equations method

The analytic computation of the MlIs is carried out by employing the differential equations
method [62-65, 79]. The MIs can be thought of as components of a vector f where each
component depends on a vector & of dimensionless parameters and on the dimensional
regulator e. The dimensionless parameters in £ are functions of the kinematic invariants
of the problem. In the case under study, the vector I has two components; the specific

choice of these components is discussed in section 5. The MIs f(Z, €) satisfy a system of
first-order partial linear differential equations with respect to the kinematic invariants -

— —

81]0(5’ 6) = Az(f’ E)f(f’ E) ) (31)

where 0; = 0/0x;, Ai(Z,€) is a set of matrices associated with the system of differential
equations. These matrices have dimensions N x N, where N is the number of MlIs in the
vector f In general, the elements of A; also depend on the kinematic invariants, #, and
on the dimensional regulator e. The matrices A;(Z,€) satisfy the integrability conditions

&-Aj - 8]AZ + [Al,AJ] =0, (32)

where [A;, A;] = A;A; — A A; is the usual matrix commutator. For a given choice of MIs,
the matrices A; can be computed using integration-by-parts identities.

We solve the system in (3.1) by employing the Canonical Basis approach [65, 66], which
consists in finding a basis for the MIs in which the system of differential equations has the
specific form

df(Z,¢) = edA(T) f(Z,¢) . (3.3)

In (3.3), dA(Z) is a logarithmic differential one-form. Several methods that allow one to
find a Canonical Basis for a given topology have been proposed [65-67, 72, 76, 80]. In this
work, we find the Canonical Basis by employing the semi-algorithmic approach described
in [70, 81].

In this basis the solution of the system of differential equations in (3.3) is formally
written in terms of Chen iterated integrals [82]:

fldo) =P o / 4@ ) fo) (3.4



where P stands for the path-ordered integration, + is some path in the space of kine-
matic invariants and ﬁ)(e) is a vector of boundary conditions that we found by imposing
the regularity of the MIs in particular points of the phase space or known solutions for
simple integrals.

For the process under study it is possible to find a change of variables such that the
matrix 121(373') is a rational function of the kinematic invariants, i.e. the entries of the one-form
dA(Z) are linear combinations of terms dlog(z, — ), where oy, are algebraic functions
of kinematic invariants and the arguments of the logarithms (z; — ay) determine the so
called alphabet of the process. In this case, once a path v = «(t) is specified, the solution
can be written order-by-order in the dimensional regularization parameter explicitly in

terms of GPLs
dt

t—a1

G(al,...,an;z):/ G(ag,...,an;t), (3.5)
0

with

z . 1 n
G(ag;2) = / dt for a1 #0, and G(0n;2) = 0g” (2) , (3.6)
0

t— o n!

where 0,, indicates a list of n weights, all equal to 0.

4 Canonical form for the master integrals

In this section, we present the canonical basis used in this work. In particular, we provide
the relations that allow one to go from the MIs in pre-canonical form (see figure 2) to MIs
in canonical form, where the latter satisfy a differential equation of the form (3.3). These
relations are written assuming that the Mandelstam invariants s and ¢ take values in the
physical region of phase space. The normalizing prefactors contain two square roots, one of
which enters only through the two integrals fﬁl and f3BS, see below. As will be shown in the
next section, it is possible to rationalize these roots by a suitable reparametrization. We
will extend the definition of the canonical MIs also to other phase-space regions by using
the expressions listed in (4.1)—(4.96) after rationalization. In other words, we effectively
define our canonical MIs using rational prefactors in the parameters {w, z} rather than
analytically continue root-valued prefactors in the original Mandelstam invariants.

The pre-canonical MIs basis is shown graphically in figure 2. As discussed in the
caption, thin lines represent massless propagators and external legs, while massive lines
represent massive propagators and external legs. For two and three point functions, we
indicate explicitly the Mandelstam variable on which a given MI depends by adding “s”,
“7 ) “u” or “p3” to the drawing (see for example T¢', T5P, etc.). For sub-topologies involving
several Mls, dotted propagators indicate a squared propagator in the integrand of the MI
(see for example 7'1]? ). A dotted propagator with a 3 next to the dot indicates a cubed
propagator in the integrand (see for example 7;5). The four-point subtopologies in the
last two lines of figure 2 involve several MIs which differ from one another because of the
numerator in the integrand. These numerators are shown on top of the drawing of each
single MI (see for example 7'3173 , etc). In order to avoid any possible misinterpretation
of figure 2, the integral definition of each MIs in the pre-canonical basis can be found
in appendix A. In addition, we provide all definitions in the ancillary files of the arXiv
submission of this work.
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Figure 2. Master Integrals in pre-canonical form. Internal thin lines represent massless propaga-
tors, while thick lines represent heavy-quark (massive) propagators. External thin lines represent

massless particles on their mass-shell, p?> = 0. External thick lines represent massive particles on

their mass-shell, p? = m?2.



4.1 Topology A

Topology A involves 52 MIs. Their canonical form is obtained with the following change

of basis:
=Tt (4.1)
= Vsl - ) T+ 5@Vl - )T (1.2)
§4 = 62575‘4, (4.3)
fA=Em2TA, (4.4)
A= & (—2m® + s +1) TA, (4.5)
f=EGs+t—m?) T8 + 2Em? T, (4.6)
A= ETA, (4.7)
f§4 = —¢ (m2 — t) 7§A —2e2m? 7}‘4, (4.8)
= 2T, (4.9)
fo = €€sTi (4.10)
I = €V/s(s —4m?) Ty, (4.11)
fis = € (s+t—m?) T, (4.12)
fit = em? (s +t—m?) T4, (4.13)
fiy = =€ (m*—1) T4, (4.14)
fiy = —€m? (m* —1) T3, (4.15)
s = VoG- AT (110
s = ol T, (117
f{% =e2m?s ’ng + 624771255’7'1’;l — 36387'112 , (4.18)
= & VS — T T, (419
b= e (1) T (4.20)
fa = /s(s — 4m?) (s+t—m?) T, (4.21)
= Em (st md) T+ 5 2mt =) (s 0= ) TR 422)
1 = VG T T (12
fo = —€m? (m* —1) T3, (4.24)
J3 = =€ (m®> 1) (s +t—m?) T35, (4.25)
fag = €m? (s+t—m?) T4, (4.26)
far = € (s+t— m2) T, (4.27)
P = et (=) T+ e (5= 2m) (1) T, (129
fa = —€ /s(s — 4m?2) (m?* —t) Tz, (4.29)
fio = €'V/s(s — 4m?) Tgg, (4.30)
B =Em?sTH — 24 s Ty + 35T + EsTia —282m?s Ti4 (4.31)



A
32

fi =€ s(s+t—m)7§§+e3m257§’§,
fa =t s(s —am2) T4,
fit = €2e+1)m?sTi + 264 s T —62871‘3,
f?ﬁ%:_54 (mQ—t) 7-367
f:’)A}Ze?)m 5757,
fis = € (s+t—m )7387
fip = €m® s Tgg,
fﬁ]:e?’stﬁ‘g,
i =—em?s (mQ—t) T4+ Em?s Ty,
fis = €'s (s+t—m?) T,
fit =€ s\/s(s—4am?) Tjs
fii = €t iv/m?s(m? —t)(s +t —m?) Tii,
i =es(s —am?) T/ + €*/s(s — 4m?2) (s+t—m? Th
FAVA T + ARG BT + A
2s (12m4 —m?2(Ts + 4t) + s(s + )) A
2y/s(s —4m?) (s +t —m?2) >
—iez s(s — 4m? 7BA*62 8(82_(;?2_)15(;12+t) T
oI T + VG T T - /ol — I T
+e3\/s(s — 4m?) T — m \/me,
fﬁj:e‘l(s—i-t—m?) E’é+e4s(s+t—m2) Ti + et sTh
+é2 (m”f_st —|—m2> TA - %8 (;;nist —s+t> TA - 61‘97;{‘
+ 5T —emsT (s+t—m2)7’2§1+6457§‘2
—%e"‘(s—t—i—m)ﬁg,
f4A}:64(t— )7:(;‘-1—%6 (s—t+m2) Tss
fﬁz—e4s(m2—t) 7:187
fﬁ):e452(s+t—m)713—|—64527ﬁ

=es (s+t—2m?) Ts,

3m?2s 3m?s 9m?
2 ( _ A
+6<2wﬂ—ﬂ+ﬂ&H—mﬂ 4>ﬁ
3m?3s s t e2s
2 ( 2 ° v A S 2 gA
e < dsrt_m2) T3 2)75 ;s

A
4

(4.45)
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m2s st A €2s A
2 (m 2Jﬁ+4%

(a5
P ( 352 éts (m? — 1)

s A

4(m2—t (S+t—m2)+8>7-10+ 1+ 4e T

et (m2 —t) A+ ets (mz—t)
1+4e¢ % 1+ 4e

—ie?’s (s—t+ ’m2) Tia — %638 (s —t+ m2) T

Lag o 6s A 3 2 2m?s A
T3¢ (m ‘0(s+t_nﬁ‘3>7%+‘s ) T

_364 (s+t—m2) (s—t—l—m2) 2¢3m2s (8—t+m2)

t— 759

m2 — ¢t 7513 + m2—t 733 +€382728
—E2m?s T + €é's (s+t—m? Th — 2 Tia, (4.49)
e*s\/s(s — A4m2) Ty — e*s\/s(s — 4m2) Ty + €*\/s(s — 4m2) (m? — t) Ti1, (4.50)
3m? 3m?s

4 2 A 2 A
—¢ s(m —t) Ts1 + € ( 1 _2(s+t—m2)) Ti

L4 2 3s Ay A 3625(S*t+m2) A
+§6 <m <S+t—m2_2>_s+t)7- T 8(s+t—m?) Tio

es (m2 — t) A ets (m2 — t) A

1+ 4e 2 1+ 4e 2
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—1_|_46)7-29 *6 S(S—t+m2) 7?313

L ¢ TA 2 ) (5-— 05 ) 7a
+Zes(sf +m) 3+*€ (mf) 7s—|—t—m2 36

2
+3m2s (ths_m2 - 1) T4, (4.51)
46°
f52 =€ 37—52 + 730 1_ 42 T
+é2 6(3—47712)—|—imz—2m2+f TA
2(2¢ — 1) 2) 2

M—i—e(—QmQ—s) _m2> T

3m? m?2s n m?2s A
22e—1) 4(m?—1t) 2(s+t—m?)

2 2 2
4g<_7”5_ﬁ”+8_v7?_2%?

2(s+t—m2) 4 8 &8
—2m2 —t (m2+t)(s—t+m2)>
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4 ((3m? — 25— 3t A 63m2(m2—t) A
% — 1 5) o % — 1 28

s(s+t—m? m2s 4 5
S g S e (g - )

4.2
—et 1(s—t—FmQ)—Fis TA —rZTA L S gA +1645(s—t+m2) T
s

4 1 1
+% T + 3¢ (s —t+m?) Tig + ¢ (s —t+m?) Tt (4.52)

4.2 Topology B

Topology B involves 44 MIs. The relations linking the canonical and pre-canonical forms
of the MI basis are the following:

[P 2Th (4.53)
2 =4Th, (4.54)
2= (s+t—2m?) TP, (4.55)
= (s+t—m?) TP + 2m? TP, (4.56)
fi=eEmP T (4.57)
fE =T, (4.58)
fF=-m?—t) TP - 2&m* 77, (4.59)
& =esT, (4.60)
8 ==(s+t—-m?) 77, (4.61)
i = —¢m? (s+t—m?) T8 (4.62)
fli =€ (m®—t) T, (4.63)
B =e&m? (m2 — 1) T5, (4.64)
B=em? (2m?—t) T —3Em* T + 2m* 75, (4.65)
ffi =€ (m*—t) Tf, (4.66)
f=em? (m?—t) Tk, (4.67)
s = € V/s(s —4m?) Tyg (4.68)
fi =€ (m* —t) T, (4.69)
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) Tis

i = é&m? (mQ— )(s—l—t—m2) ﬂlg—eg(mQ—t)(s+t—m2
3 = €' /s(s —4m?) Tof ,
fa=€m? (m?—1t) T,
£ = & (2 — 1) (s — ) TH
M= eEm? (s+t—m?) T,
foi=€¢'sTo
== (=) s+ - ) T,
1= EQ+2m’ s Ty + 26 s Tf =& ST,
f3r = €' \/s(s — 4m?) T3 |
=~ (m* —1) TR,
f3p = —€m? (m* —t) Tg
f£)=64(s+t—m2) 7})07
f381:€3m2875?,
fi=—€s (m® —t) Tgj
f?g:_64(m2_t) 753,
f£:63m287?’)47
f3B5_64(m2_t) 7557
= —¢€ s(s—4m m° —t
f3BG ! ( 4 2)( 2 )7?’)6a
f:g: _63(1—26)(m2—t) 7'3]$ + 26t (mz—t) 7513 — 264(m2—t) 7})07
f3BS = e4i\/m2 s(m? —t)(8+t—m2)7§§,
fiy = Vsl —4m?) Tog +*\/s(s —am?) (s +t —m?) T + € V/s(s —4m?) T35

et \/s(s — 4m?) (s + t — 3m?)

/=AY TE +

e\/s(s—4m?) 5  e&m?

2(s+t—m?)

sy/s(s —4m?) g

4 m?2
RN T
2(m? —t) 6

1 /o(s —Am?) T — m\/o(s — Am?) T

—em\/mm,

ffé = 648725 + éts (s+t—m2) TB

f41

e2s(m +t)
2(m2 t)

—'sTE + & sTh

—et(m? —t) T + ' sT5,

€
4

e (s+t—m?) Tig +

7?5 —77'7 + € s'T

~12 -

—t)(s+t—m?2) °

s(s — 4m2) TP

—em?sTE - €

m2—t°

7-33

LS als —am?) T

62 m28 B

T

(8+t—m2

(4.91)

) T3
(4.92)
(4.93)



Fm et (o) (ot m?) TE ) (50— ) T

—et(m? —t) (s+t—m?) T + E€sT + €m? (m* —t) T

— & m? (m2—t) (S+t—m2) 7'15

—eg(mz—t)(s—i-t—mQ) B

+EmPsTE — et (m? —t) T + Em?sTh + ets (m* —t) T3, (4.94)
B = (m? —t)2 TE +EsTP +68 (2m* — 3m*t + t?) T8

3

—e@m?s (m?—t) T5 — < (m —t) T + € (s+t—m?) T55

+m?s T + ets (m? —t) T, (4.95)
fﬁ:€4(m —t) Ti

et )

4 s+t —m? 4(1+4e) (s +t—m?)
2
2 _Lt 5\ B
e ( 8(1 + 4e) 8)7:l
3m*-s 3m?2s
2 _ B
e <4(1—|—4e)(5—|—t—m2) 4(s+t—m2)>75

2 2
o [(—m” —2t 2\ 7B , 2 m” —1 2 B
) S '
+e (4(1+4e) m)Tﬁ te < 81+40 " +)T7

2—t 2
+€2 (835 (m ) — 35 ) T8 + & (m2 —t) 7B

(s+t—m2) 8(1+4e)(s+t—m?)

—e2m? (m2 —t)2 7113 - 163 (m2 —t)2 T8 + etsTh

2
¢ (s (m?—1) 2 2 B, 4 2 3 B
R e (e t— 2 41
T\ v ) Te s m)<2(1+46)—|— >7§’0
4e*m?s 7B _ 6¢7(m? — t)? 7B
1+4e 3 (1+46)(s+t—m2) 33
2.2 —
3 mes ( s+t— m2) B
e s+t —m? + 1+ 4e Tsi - (4.96)

5 Rationalizing parametrization

Both the definition of the Canonical Basis for topologies A and B and the differential
equations fulfilled by the MIs in the Canonical Basis contain two square roots of functions
of Mandelstam invariants. These roots are:

V(s —4m?2),  /m2s(m2? —t)(s +t — m?2), (5.1)

where the latter root enters only through the definition of two MIs in the canonical basis:
fﬁ and fzg. In order to express the solution in terms of GPLs one needs to rationalize
the square roots by finding an appropriate change of variables. We start by defining the
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dimensionless variables x and y as follows:
s t
— =——. 5.2
D Y=g (5.2)

A particularly convenient parametrization [47, 83] which rationalizes the roots? in (5.1) is

given by
1—
L =w?
w
1—w+w? — 22
= . 5.3
y po (5.3)
Since we want to express all of the MIs in terms of w and z, it is also necessary to write the
Mandelstam variable u in terms of w and z. Starting from the relation v = —s — ¢ + 2m?
one finds ) o o
U w* — (1 —
U (1-—w+w)z ' (5.4)
m? w(w — 22)

The analytic expressions that can be found in the ancillary files are written in terms of w
and z defined in (5.3).

In order to write w and z as a function of x and y, it is necessary to invert the system
n (5.3). The first equation has two solutions

e YEHA—
L Vet E
Vet+d+yz 1

wy = NoEw e = (5.5)

When 0 < 2 < oo (—o0 < s < 0), the first solution is limited and such that 0 < w; < 1,
while the second solution is unlimited, 1 < ws < oco. In view of the fact that GPLs of

w should be manifestly real in this region, we choose the first solution, w;. The second
equation, (5.3), has four solutions, two for each choice of w:

1—w+w?+wy
Z =
1 1+y )

1—w+w?+wy
= — 2. 5.6
22 = \/ 11y 21 (5.6)

The first solution z; is always positive for y > 0 (¢ < 0) and w = w;, while the second
is always negative. When, for a given x, y varies from 0 to oo, 21 is limited to the range
Vw <z < V1—w+ w2

Consequently, in the region s < 0 and ¢t < 0, we choose the set of variables

\/ﬁ Vrtd—z 1—w+w?2+wy

z = .
vr+4+ f 1+y

2 Another solution to the rationalization problem can be obtained from diophantine equations as described

in [81]: = 16w*(1 + 42)*(w + z + 4wz)?/[2(1 + 8w)(2® — 4w?) (2 + 4w + 8wz)] , y = 82(1 +22). However,
this change of variables leads to rather long expressions.

(5.7)
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When s becomes positive, it is necessary to consider the Feynman prescription and
add to s a positive vanishing imaginary part: s +i0™:

x=— =2 —i0", (5.8)

where, now, o’ = s/m? > 0. If 2’ is such that 0 < 2’ < 4, w becomes a phase and it moves
on the upper unit circle:

Vi—a —v—a' —i0t  VA—a iV,
= = = e
Vi =o'+ =2 —i0t A -2 —iVa!

; (5.9)

with

¢ = arctan ( 4f/$/> . (5.10)

For 2/ = 4, w becomes real again and one finds that w = —1.
For physical kinematics one finds that s > 4m?, t < 0, u < 0, where

tmin < t < tmax (5.11)
with
o8 _ 1 2
tmin = m” — = — —v/s(s —4m?), (5.12)
2 2
1
tmax = M2 — g + 5\/8(8 —4m?). (5.13)

In this physical region we use

VrHd— o Vo -4 4ot L 1—w+w?+wy (5.14)
T Vrtdtyvi Ve —dtvo 1+y ' '
with the phase space constraint
0<—-w<z<l1. (5.15)
The crossing t <> u is given by
w
- ——. 5.16
—_— (5.16)
By keeping into account the relation (5.15), the roots in (5.1) become
2
—1
s(s —4m?) = m2d -
w
 y(w—=1)z

We apply these substitutions to the definition of the canonical integrals in the physical
region in equations (4.1)-(4.96) and employ the resulting rational expressions to define the
Canonical Basis also in other regions of the phase space.
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6 Integration and results

In terms of the rationalizing variables, we can write for the matrix A(Z) in our differential
equation (3.3)

A@) = AW (1) (6.1)
k

where the A®) are rational matrices and the letters [, form the alphabet

{lk}:{w,w—1,w—|—1,z,z—1,z+1,w—z,w—|—z,w—22,w2—w+1—22,

w2—z2(w2—w+1),w2—3w+z2+1}. (6.2)

The last letter is needed only for Topology B. We provide explicit expressions for the matrix
A(Z) for Topologies A and B, respectively, in the ancillary files on arXiv.
This alphabet allows to analytically integrate the MIs in terms of GPLs of argument

w with the weights

{0 L. 2 1 VIR TS 14 VIR 2z - VI 32

’ 2 2 2(z2-1) 7
2(z+V4—322) 3—5—422 34+ V5422
2(z2-1) 7 2 ’ 2 } ’ (6.3)
and GPLs of argument z with the weights
{0,-1,1, —i,i}. (6.4)

We fix the boundary constants by imposing regularity conditions, supplemented by external
input for a few well-known simple integrals.

The analytic continuation of the GPL functions of w and z between different regions
of the phase space is non-trivial. We found it convenient to provide the MIs in terms of an
analytic expression which is valid in the region v < 1 and of a second analytic expression
that is valid in the region u > 1. Our complete results are available in the ancillary files
sol-A-unphys.m, sol-B-unphys.m for © > 1 and sol-A-phys.m, sol-B-phys.m for u < 1,
which includes, in particular, the physical region.

7 Numerical checks

In order to validate our results we performed numerical checks in different points of the
phase space. In several cases, the Mls were checked by evaluating the MIs in the pre-
canonical basis numerically by means of Sector Decomposition [84] as implemented in
SecDec [85-88] and FIESTA [89-91] and by subsequently comparing the numerical results
with the evluation of the analytic expressions for the MIs carried out with GiNaC [92].
However, in some cases, and in particular for the MIs involving six or seven denom-
inators, we were not able to obtain sufficiently precise numbers by a direct evaluation of
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the MIs with SecDec or FIESTA. For this reason, we employed the techniques described
in [93-95] and rewrote the canonical MIs as linear combinations of quasi-finite integrals.
Quasi-finite integrals are integrals which have, at worst, a single pole in € which originates
from the Euler Gamma function prefactor in the Feynman parameter representation of the
integral. Quasi-finite integrals are built with the same set of propagators as the original
integral but they might be defined in shifted space-time dimensions and might have one
or more propagators squared or raised to higher power. It was shown in [93, 95] that
quasi-finite integrals are evaluated more efficiently by SecDec and FIESTA with respect to
non quasi-finite integrals with the same sets of propagators. Using SecDec we generated
numerical results for quasi-finite integrals in the unphysical and in the physical region.
Subsequently, we converted these numbers to results for the canonical integrals, at which
level we were left with typically 2—6 significant digits, depending on the integral and the
region of phase space. We successfully compared these numbers against those obtained
from the analytic expressions of the MIs, which are the main result of the present work.
With this procedure it was possible to test numerically all of the 52+44 MIs evaluated in
this paper.

In addition, we compared numerically the MIs that are in common with the ones
presented in [47] with a numeric evaluation of their expressions, finding complete agreement.
Finally, all of the MIs evaluated in this work were simultaneously evaluated in [78]. We
compared numerically the MIs evaluated in this work with the results obtained in [78].
This comparison was carried out in several phase space points, both in the physical region
(s > 4m?) and in the non-physical region (s < 0). We found complete agreement between
the results in this work and the ones in [78].

8 Conclusions

In this paper we presented the analytic calculation of the master integrals necessary for
the evaluation of the last two color coeflicients of the interference between two-loop and
tree-level diagrams for the partonic process qq — tt, for which an analytic expression is
not yet available.

The master integrals were evaluated with the method of differential equations. By
determining a canonical basis, we brought the system of first-order linear differential equa-
tions into an e-form, allowing for their decoupling after an expansion in powers of the
dimensional regulator e. We integrated the expansion coefficients in terms of generalized
harmonic polylogarithms of two dimensionless variables through to weight 4 and fixed the
integration constants using regularity conditions and known solutions for simple integrals.

We checked our analytic results numerically against the results obtained with two
numerical codes, SecDec and FIESTA, using the method of quasi-finite integrals. We also
compared numerically the MIs that are in common with the ones presented in [47], finding
complete agreement. Finally, we cross-checked numerically the MIs of our topology A with
the authors of [78], in several points of the phase space, finding complete agreement.

All the analytic expressions for the MIs presented in this paper are provided as com-
puter readable ancillary files together with the arXiv submission of this work.
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A Pre-canonical form for the Master Integrals

In this section we present the routing for all the pre-canonical MIs of the two topologies.
The definition of the integration measure D%; (i = 1,2) can be found in (2.5). The list of
the denominators D; (i =1,---,9) can be found in (2.6).

A.1 Topology A

4= / delpdngngg, A= / delpdngngng, (A.1)
T = / delp%m, T = / dem%m, (A.2)
TA = / delpdkzD%;%, TN = / delpd/chggng, (A.3)
fr?A:/de;ldegD%ggm, 7; _/delp% D%gng’ (A.4)

= / delD%D%;DS’ Tia = / dem%D%;QD%, (A.5)

T = / delpdkzpspjpgpg’ T4 = / DUy Dk, 1)31)711)8133’ (A.6)
Tia = / dem%m, T = / delp%m, (A7)
TA = / delpdkzm, TA = / dem%DlD;D?Dg, (A.8)
T4 = / dem%m, Tia = / dem%DlD:%, (A.9)
TA = / delpd@m, T = / delpdkzm, (A.10)

TS = / DUy Do W, Tss = / delpdkgm, (A.11)
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1
Ti = / DUy Dy —————— T = / DU Dy —————_ (A12)

DyD3D7DsDy’ DyD3D7DsD3’
1 1
TA:/delde - TA:/de Dy ———— (Al
25 ? DyD2D7DgDy 26 " " DyD3D7 DDy’ (8.13)
1 1
TA — / de de A — d d
27 Y 2 D DsDsDs Dy’ Tss DD ks DyD3DsDgD2’ (A-14)
1 1
TA:/delde - TA:/de Dy —————— (A1
29 ? DyD3D5D2Dy 30 Y " DI DsD7Ds Do’ (A-15)
1 1
TA:/delde - TA:/de Dy —————— (A1
31 2D1D5D7D8D§ 32 1 2D1D3D5D7D3’ (A.16)
1 1
TA:/delde - TA:/de Dy ——— (A1
35 ? D1D3D5D2Dy 3 D'k 5 beDspy A7)
1 1
TA:/de Dy ——— TA:/de Dy ——— —
35 ' " DDy D2ZDgDy 36 Y " DI DyD3D7 Dy’ (A.18)
1 1
Ti7 = / DUy Dy —————— Tis = / DDy
37 > D1DyD3D7 D2 38 D% 55 bspiny A1)
1 1
TA:/deﬂ?dk - TA:/de Dy —————— (A2
39 ? D1DyD3D7 D2 40 ' " DiDyD3sD5 DY’ (A.20)
1 1
TAZ/de; Dy ——— — TA:/de Dy —
a Y DDy D3 D5 DE 42 1Dk 5 B DiDsDy )
1 1
TA:/dede A:/Dd d
43 Y DI DyDs D7 DDy’ Tia MDDk Dy DyD3D7D3 Dy’
(A.22)
D D
TA:/dede - A:/Dd d ’
45 Y 2 DI DyaD3 D7 DDy’ Tis MD ks D1DyD3D7Ds Dy’
(A.23)
D 1
TA:/de Dk ) A:/de d
a7 Y 2 DI DD D7D Dy’ Tis 1Dk D1D3yD3DsDs Dy’
(A.24)
1 D
Tia = / Dy Dy . T = / Dk DU 1
1 Y " D\DyD3DsD;DsDy %0 " " Dy DyD3 D5 D Ds Dy’
(A.25)
D D4D
TA:/de:de 6 A:/de d 4ls
o1 P2 DyDsDsDrDsDy” 2 Pk b DyDsDs Dy DDy’
(A.26)
A.2 Topology B
1
T8 = / DU Dy ——, TP = / DU Dy ——— A.27
DD 2 DyD2D?2 (A.27)
1 1
TS5 = / DU Dy —5 ., T = / Dk Dy —5 5 A2
3 D2D;D? 4 T DpIp2Dy’ (A.28)
1 1
TB_/de,Ide. . — TB_/de de - A
5 2 DD, D2 6 1D ko DIDSD?’ (A.29)
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7*73
EB
T
T
75
77
Tis
T
Tos
Tos
Tot
Ts
Tat
Tss

B
T35

B
Ts7

B
T3

B
Tat

B
Ti3

= / DUy Dy
= / DUy Dy
= / DUy Dy
= / DUy Dy
= / DUy Dy
= / DU Dy
= / DUy Dy
= / DUy Dy
= / DUy Dy
= / DUy Dy
= / DUy Dy
= / DUy Dy
= / DUy Dy
= / DUy Dy

= / DU Dy
= / DUy Dy
= / DUy Dy
= / DUy Dy

= / Dk Dy

1 1

—90 —

B d d
S — | DDy — A.30
D2D2 Dy Ts / 7 pp2p, (A.30)
1 B dy. 1
- — [ DDy ——— A.31
D3D7D8Dg’ 7-10 / 1 2 D3D7D8D3’ ( )
1 B d d 1
- = [ DDy ———— A.32
D3D4D8Dg ) 712 / 1 2 D3D4D8Dg ) ( )
1 B dy. 1
- = [ DDy ——— A.33
D3DyD2D?’ T / Y DDy D2Dy (A-33)
1 B d d 1
- = [ DDy ————— A.34
DyD3D3Dy’ Tis / Y D2D, DDy’ (A.34)
1 1
-, TB:/de Dlyg—— (A35
D1 D2DyDg 18 Y7 " DyDy D7D D2 (4.35)
1 B dy. 1
- - — [ DDy ——— (A,
D3D.D;DsDY’ Ta0 / DR 5 DiDsDy 39)
1 B d d 1
- - = [ DDy ———— (A37
DyD3D7DgD2’ T2 / Y " DyD2ZD; DDy’ (A-37)
1 B dy. 1
- - — [ DU DUy ———— (A,
DyD3D; DDy’ Tai / Mk B bbby )
1 B d d 1
- - — [ DU DUy ————— (A.39
DyDsDyD7D2’ Tas / Y DI Dy D2Ds Dy’ (A.39)
1 B dy. 1
- = [ DDy ——— (A4
D1D3yD7DgDy’ Tas / D7k D1DyD4DgDy’ (A.40)
1 B d d 1
- - — [ DDy ———— (A4
D1DyD4D2Dy’ Tso / PR 5 5y babypy A
1 B d d 1
- - = | DDy ———— (A42
DDy Dy DD’ Ts2 / Y DI D2D, DDy’ (A-42)
1 B d d 1
- - = [ DDy ————_ (A43
D1D3yD3D7 Dy’ Ta / ! 2&%%&%’( )
1 B d d 1
— [ Dk, DU
D1D3D3DyDgDg’ 76 / e D1DsD4D7DgDg’
(A.44)
Deg B / dy. 1
— [ Dk, DU
D1D3D4D7Dg Dy’ Tas Y 2 DI DyDsD7Dg Dy’
(A.45)
Dy B dy. D5
— [ Dk, DU
D1DyD3D7Dg Dy’ Tio / e D1D3yD3D7DgDy’
(A.46)
Deg B dy. 1
— [ Dk, DU
D1D3D3D7DsDg’ Tiz / e D1DyD3DyD7Dg Dy’
(A.47)
Ds B dy. Dy
— [ Dk, DU .
DiDsD3D1D; DDy’ 14 / ' " D1DyD3D,D7Dg Dy
(A.48)



B Numerical results

In this appendix we collect numerical results for the seven-denominator canonical Mls at
the point
m=1GeV, s=51GeV?, and t=—25GeV?. (B.1)
The numerical values of the MIs are (with 16 significant digits):
fis =—0.8125
+ (1.571461643987763 — i 1.570796326794896 )¢
+ (1.869800565465933 + 7 7.871341877028778)€>
— (26.64417846013623 + i 2.934819494524318)¢*
— (5.561888073241050 + i 69.90392666348392) € | (B.2)
fg‘(‘) = (0.3936751877201319 — i 1.229555494857724)¢>
+ (14.12478202913410 — 7 2.239408800880071) €’
+ (49.29394916594301 + i 37.08333857464637)¢* | (B.3)
ft—ﬁ = 0.02083333333333333
+ 0.07833393820762243¢
+ (8.538951737141223 — 7 1.580009353612773)€>
— (4.529079554851615 + i 2.930479163733208)¢°
+ (0.1103747892867767 — i 78.51623866876891)e* (B.4)
fah = —0.0625
+ 0.2937522682785850¢
+ (7.8274169758047892 + i 5.478308035237822) ¢
— (26.357322954146530 — i 15.39070197526472)€>
— (121.01714343276939 + i 42.90574414612206)€* , (B.5)
fB = — (0.5193031088754503 + 7 0.7853981633974483 )e
— (5.247646105592740 — i 3.6418501617483698 )€
— (51.07989282173662 + i 30.039485666638732) >
— (68.03046563599218 + i 107.21203451885746 )€ , (B.6)

fy=—1
(2.702244138720994 — i 3.9269908169872423 )¢
(18.05310915519800 + i 12.796025276368288) ¢

— (3.231845611282520 + 7 2.7724176443956750)€>

+ (127.3934689436371 — i 12.984632048850981)¢* , (B.7)
B =-0625

+ (0.9285563596344188 + i 3.1415926535897928) ¢
6.716934387387509 + i 10.089909832711628)¢?
50.38595267312016 — 7 44.149878496215228)¢>
146.4134579642496 — i 86.512460126974730)¢ . (B.8)

+ o+

_|_
+
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