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Abstract:

The discovery of the enhancement of Raman scattering by molecules adsorbed on
nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical
techniques. Significant experimental and theoretical effort has been directed toward
understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its
potential in various types of ultrasensitive sensing applications in a wide variety of fields. In
the 45 years since its discovery, SERS has blossomed into a rich area of research and
technology, but additional efforts are still needed before it can be routinely used analytically
and as a commercial product. In this Review, prominent authors from around the world joined
together to summarize the state-of-the-art in understanding and using SERS and to predict
what can be expected in the near future in terms of research, applications, and technological
development. This Review is dedicated to SERS pioneer and our co-author, the late Prof.
Richard Van Duyne, whom we lost during the preparation of this article.

Keywords: surface-enhanced Raman scattering, biosensing, SERS tags, chemosensors,
nanomedicine, TERS, SEIRA, charge transfer, hot electrons, catalysis
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Surface-enhanced Raman scattering, or SERS, is a commonly used sensing technique in
which inelastic light scattering (Figure 1) by molecules is greatly enhanced (by factors up to
108 or even larger, enabling single-molecule (SM) SERS in some cases) when the molecules
are adsorbed onto silver or gold nanoparticles (NPs). Since its original discovery over 40
years ago, it has enjoyed steady growth of interest in the research community, and has
spawned a variety of other spectroscopic techniques that take advantage of enhanced local
fields that arise from plasmon excitation in the NPs, for optical phenomena such as
fluorescence or nonlinear optics. In addition, the coupling of SERS with atomic force
microscopy (AFM) or scanning tunneling microscopy (STM) tips has led to tip-enhanced
Raman scattering (TERS) which is a powerful imaging tool. For analytical applications,
SERS can be differentiated from many other techniques by the rich vibrational spectroscopic
information that it provides, which has led to applications in several different directions,
including electrochemistry, catalysis, biology, medicine, art conservation, materials science,

and others.

Figure 1. Surface-enhanced Raman scattering involves inelastic light scattering by

molecules adsorbed onto silver or gold nanoparticles.
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The discovery of SERS has a relatively short history. It was accidentally discovered by
Fleischmann and co-workers in 1974 during measurements of the Raman scattering of
pyridine on rough silver electrodes,' and they ascribed the enhancement to a surface-area
effect. The phenomenon was identified independently by Jeanmaire and Van Duyne,?> and
Albrecht and Creighton? in 1977, both of whom suggested enhancement factors (EFs) of 10°—
10%. The connection with plasmon excitation was suggested by Albrecht and Creighton as a
resonant Raman effect involving plasmon excitation, as proposed earlier by Philpott.*
Subsequently, the connection of SERS intensities to enhanced fields arising from localized
surface plasmons in nanostructured metals was noted by Moskovits.> Forty-five years later,
tens of thousands of research papers have been published on SERS,® which discuss in great
detail elements of the theory behind it, the design of a wide variety of (mostly but not only
metallic) enhancing substrates, and their implementation in a wide variety of applications.
Indeed, SERS has become a research field in its own right, as a source of exciting scientific
phenomena, as well as one of the most sensitive analytical techniques currently available.
Numerous excellent review articles have been published on various aspects of SERS and
related topics, and even comprehensive overviews of the technique. There is, thus, probably
no need to carry out an extensive literature review again. However, during the recent 26th
International Conference on Raman Spectroscopy (XXVI ICORS, Jeju, Korea, August 26 —
31 2018),” some of us identified the need to put together a comprehensive perspective to
describe the current state of the field and the path that we expect will be followed in the near
future. We therefore joined efforts to identify the most active areas of SERS research and
development, including basic aspects and emerging phenomena, materials synthesis, and
major applications. We also decided to include a section devoted to other “surface-enhanced”
techniques, which have seen significant development in parallel with and often profiting from

lessons learned during the optimization of SERS-related methods and materials.

The different sections include both basic and state-of-the-art concepts and methods, but
because we consistently attempt to present a view forward, also what we can expect during
the coming years, to guide and to inspire not only currently active researchers but also young
generations of scientists from different disciplines who can get excited about this rich field

of research and its emerging branches into so many different directions.
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Modeling and New Concepts

The use of modeling and advanced theory has become essential for understanding SERS as
a fundamental phenomenon, and to interpret and to predict experimental results obtained
under various conditions and in varying environments correctly. This holds for SERS at the
SM/single-particle level, as well as for ensembles comprising either a few or many
molecules/particles. Theoretical modeling of SERS intensities and spectra has a long history,
which has been reviewed many times.®!> There is now good agreement among researchers
in the field that the overall EF is a combination of an electromagnetic (EM) enhancement
associated with plasmon excitation in metal particles serving as the SERS substrate, and a
chemical (CHEM) enhancement due to the target molecules being able to transfer electrons
to/from the metal particles in both ground and excited states, often in the process of forming

the metal-molecule bond.

The Raman signal involves absorption of an incident photon of frequency wj, (see Figure
1), coupling to an internal degree of freedom of the molecule, typically a molecular vibration
of frequency w,;;, and re-emission at the difference frequencies wey, = Wiy + Wyp, Where the
sum/difference results in anti-Stokes/Stokes Raman scattering, respectively. Three inelastic
transitions are therefore involved in the process (absorption, vibrational excitation, and re-
emission); the vibrational excitation occurs with a probability that depends on the
environment through the chemical interaction discussed above, whereas the other two
processes are controlled by the availability of photonic states in the molecules. In the absence
of a structured environment (e.g., in solution), the Raman process has a low probability,
quantified in terms of the optical cross-section (i.e., the area of the incident beam over which
incident photons are effectively converted into emitted Raman photons) ~10-'-10-15 nm?,
which depends on whether the process is resonant or non-resonant Raman (i.e., whether the
incoming light is or is not resonant with transitions between ground and excited electronic
states of the molecule). The low intensity of Raman scattering is clearly insufficient for many
practical applications and, therefore, finding means of enhancing the Raman process is often
beneficial. Such means are provided by the large optical field enhancement produced by

suitably resonant structures. In particular, the initial absorption process is directly
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proportional to the local electric field intensity at the molecule, which plasmons in noble
metal nanostructures can dramatically amplify relative to the incident light intensity.
Although SERS can be obtained from the electric field enhancement at single NPs, it is
advantageous to involve a more elaborate structure, for example by placing the molecules
within nanometer-sized gaps between two metal particles (so-called hotspots), which enable

intensity EFs as large as EF~105-10° to be routinely reached.!6-1?

Hotspots can be produced not only at gaps between NPs, but also within NP junctions and
flat metal surfaces supporting plasmon resonances. The resulting field strength depends
strongly on the gap distance and other geometrical details. In particular, the EM field
amplitude is inversely proportional to the square of the gap distance. The main characteristics
for a typical SERS hotspot, the extension of which lies in the 2—10 nm range, are satisfactorily
well described within classical electromagnetism by neglecting nonlocal effects and only
resorting to the frequency-dependent dielectric functions of the materials involved in the
structure. When reducing the NP gap distance below 1 nm, nonlocal effects come into play,
requiring a more sophisticated treatment of the optical response. In addition, at such small
separations the enhancement of EM fields is so strong that the optical response may become
nonlinear (i.e., the threshold for nonlinear effects is correspondingly reduced in inverse
proportion to the field enhancement). In this strong coupling regime, the intrinsic properties
of the molecule—NP system might be significantly altered, which, in turn, affects the SERS
intensities. Examples include the creation of hot electrons at the NP surface that can trigger
or catalyze chemical reactions, change the photophysical and/or photochemical properties of
the adsorbed molecule, and modify the excitation dynamics, and the emergence of molecular
optomechanical effects. In the extreme coupling regime (e.g., a single molecule inside a nm-
sized cavity, or picocavity), classical models are no longer valid and must be complemented
by descriptions based on quantum-mechanical approaches. Therefore, specific and accurate
modeling of Raman and competing processes in subnano- to nano-sized hotspots are crucial
in supporting and/or interpreting experimental results and enabling the design of substrates

with the desired SERS response.

Surface-Enhanced Raman Scattering Mechanisms: Electromagnetic Field Enhancement
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The EM EF has been the subject of numerous studies, typically using computational
electrodynamics calculations to determine the enhanced electric field amplitude E(w) that
arises when plasmons are excited in a SERS substrate at frequency o; E(o) is then evaluated
at the molecular positions. The SERS enhancement is normally approximated by averaging
|[E(w)|*|Eo* over the illuminated molecules, where Ej is the incident (laser) field amplitude.
Actually, this analytical result neglects the Stokes shift, which can be included through a
slightly more elaborate expression: |E(o)|?|E(®')|?/|E¢|* where o' is the Raman emitted
frequency. A slightly more accurate approximation is also obtained by correcting the |[E(®')[?
factor to account properly for the emission from the inelastic emission dipole (sometimes
termed dipole re-radiation?®). Another important issue is related to the significant field
gradients that often exist as a consequence of the strong spatial localization of the plasmon-
enhanced field;?!*> these gradients contain nondipolar components that can efficiently
produce SERS involving dipole—quadrupole and quadrupole—quadrupole in—out
polarizabilities; these effects are obviously stronger for transitions involving more spatially
delocalized electronic states in the molecule. Calculations based on dipole re-radiation and
field gradient effects have rarely been carried out, as the structures of the NPs involved are
not known accurately enough to warrant this level of detail in the analysis. Indeed, for most
applications, the |E(w)|* expression produces results that are good to about an order of
magnitude. In fact, ten years ago, pioneering work by Schatz and Van Duyne on NP clusters
used this level of theory,?** and showed that the EM EF for clusters of NPs is often the
highest (experimentally measured as ~10°) at wavelengths where the plasmon resonance is
“dark” (i.e., at wavelengths corresponding to a dip rather than a maximum in the extinction
spectrum). Dark plasmon modes, which are often quadrupolar in character, can nevertheless
produce large electric fields in the electromagnetic hotspots between NPs.?* In addition, it
was found that the dipole re-radiation at wavelengths where the plasmon resonance is dark
can sometimes lead to stronger-than-expected far-field intensities because the dipole field of
the adsorbed molecules can more effectively excite quadrupolar and higher-order multipolar

resonances than light plane waves can.

Although most numerical simulations of EM enhacement have been limited to relatively
simple geometries or at most a few particles, ensemble effects can be critical in the

performance of actual large-scale SERS samples. In a recent example, state-of-the-art
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electromagnetic computation techniques were used to simulate NP-based SERS substrates,
comprising hundreds of randomly organized gold NPs. The authors unexpectedly concluded

that NP morphologies that provide large enhancements at the single particle level, such as

oNOYTULT D WN =

nanostars, do not necessarily improve when organized in close-packed arrays; in contrast,
10 simpler morphologies (e.g. spheres or rods) lead to significantly increased SERS

12 enhancement as their surface density approaches full coverage (Figure 2).1°
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32 Figure 2. Predicted surface-enhanced Raman scattering enhancement as a function of
34 surface coverage, for monolayers of gold nanoparticles (NPs) with different shapes (a).
Solid curves obtained for excitation at 785 nm light wavelength (resonant with 65x21 nm
nanorods); dashed curves obtained for 633 nm (resonant with 51 nm nanospheres) and
39 900 nm (resonant with nanostars: 20 nm core, 10 nm branches). Schemes in (b) illustrate
41 low- and high-density NP surface coverage. Reproduced from ref 19. Copyright 2017

American Chemical Society.

48 In addition to EM enhancements that can be calculated by solving Maxwell’s equations for
specific nanostructures, more qualitative estimates of EFs based on simple model structures
51 (such as spheroids) have been developed,?® and recently used to understand SERS for
53 randomly rough substrates made of aluminum, gold, or silver, over a wide range of
wavelengths from the ultraviolet (UV) to the near-infrared (NIR), and in good agreement

56 with experimental data.?® Prediction of plasmonic properties of NPs with arbitrary
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morphologies has also been recently simplified by derivation of analytical expressions based
on parameters that stem from numerical modeling.?”-*® Nonlocal effects can also play a role
in the EM mechanism;?%3° for example, although gaps between NPs lead to EM hotspots that
often dominate SERS measurements (leading to SM sensitivity®"), and although classical
electromagnetics predicts that enhancements should vary inversely as the square of the gap
size,3? for gaps with dimensions significantly below 1 nm, quantum effects associated with
electron tunneling between NPs become important,?!-33-4 changing the dominant plasmon

energies significantly, usually resulting in a reduction in the EM enhancement.

Surface-Enhanced Raman Scattering Mechanisms: Chemical

The chemical mechanism of SERS refers to contributions to the Raman scattering that do not
rely on the EM environment (e.g., plasmon excitation), often because they are associated
with the transfer of electrons between adsorbed molecules and the NP substrate. This can
arise in two ways, corresponding to electron transfer in the ground and excited states of the
molecule—metal s