

Sex differences in auditory brainstem response audiograms from vasopressin-deficient Brattleboro and wild-type Long-Evans rats

Payton E. Charlton¹, Kelcie C. Schatz¹, Kali Burke¹, Matthew J. Paul¹, Micheal L. Dent^{1*}

¹Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, United States of America

Corresponding author

E-mail: mdent@buffalo.edu (MD)

19 **Abstract**

20 Rats are highly social creatures that produce ultrasonic vocalizations (USVs) during
21 social interactions. Brattleboro rats, a Long-Evans derived rat that lacks vasopressin (AVP) due
22 to a mutation in the *Avp* gene, exhibit atypical social behavior, including fewer USVs with
23 altered spectrotemporal characteristics during social interactions. It is unclear why Brattleboro
24 rats produce atypical USVs, but one factor could be differences in auditory acuity between them
25 and wild-type Long Evans rats with functional vasopressin. Previous studies have suggested a
26 link between increased levels of AVP and auditory processing. Additionally, few studies have
27 investigated sex differences in auditory perception by Long-Evans rats. Sex differences in
28 auditory acuity have been found throughout the animal kingdom, but have not yet been
29 demonstrated in rat audiograms. This study aimed to measure auditory brainstem response
30 (ABR) derived audiograms for frequencies ranging from 1 to 64 kHz in male and female
31 homozygous Brattleboro (Hom), heterozygous Brattleboro (Het), and wild-type (WT) Long-
32 Evans rats to better understand the role of AVP and sex differences in auditory processing by
33 these rats. We failed to detect significant differences between the ABR audiograms of Hom, Het,
34 and WT Long-Evans rats, suggesting that varying levels of AVP do not affect auditory
35 processing. Interestingly, males and females of all genotypes did differ in their ABR thresholds,
36 with males exhibiting higher thresholds than females. The sex differences in auditory acuity were
37 significant at the lowest and highest frequencies, possibly affecting the perception of USVs.
38 These are the first known sex differences in rat audiograms.

39

40

41

42

43 **Introduction**

44 Vocal communication is thought to serve a key role in facilitating or suppressing
45 different behaviors, such as approach behaviors and play. In order for vocal communication to
46 occur, there are two roles that need to be present: a sender (the animal producing the
47 vocalization) and a receiver (the animal perceiving and processing the vocalization). In order for
48 vocal communication to be effective, the sender needs to be able to perceive and decipher the
49 auditory signals being produced. Theories describing the co-evolution of communication signals
50 and sensory systems involve exploiting the environment in which animals live to send
51 conspicuous signals or exploiting the latent preferences of certain signals [1,2]. A key aspect of
52 communication systems is a drive to maximize the signal to noise ratio for the receiver of the
53 signal. This maximization can be accomplished by increasing a signal's intensity or amplitude,
54 producing vocal signals that degrade at a certain rate based on distance from the receiver, or by
55 producing signals in environments with little ambient noise. Additionally, the signal to noise
56 ratio can also be maximized by biological considerations such as auditory tuning of spectral
57 (frequency) or temporal (duration) features of the signal and the ability to average a signal over
58 time [1]. Regardless of how signals evolve, and whether the evolution is sender driven or
59 receiver driven, the design of signals is not arbitrary and the differences between signals are
60 important [3].

61 Rats (*Rattus norvegicus domesticus*) are highly social creatures that emit ultrasonic
62 vocalizations (USVs) during social interactions such as rough-and-tumble play behavior [4-8].
63 These USVs likely serve a communicative function within different social contexts. Rat USVs
64 have been broadly classified into two categories: 22 kHz and 50 kHz [5,6]. The 22 kHz USVs

65 are monotonous vocalizations ranging from 20-30 kHz, and are thought to communicate distress,
66 an aversive state [5,9], or alarm (reviewed in [10]). The 50 kHz USVs are short in duration and
67 are thought to communicate positive, appetitive states, and are considered prosocial [5, 11-13].

68 In order for USVs to serve a role in social interactions, it is imperative that rats are able
69 to perceive the incoming signals. Wild-type Long-Evans rats have a peak auditory sensitivity
70 between 8 and 16 kHz for pure tones [14,15]. This is comparable to other rat strains such as
71 Fischer 344, Wistar, Sprague-Dawley, and Hooded Norway rats (reviewed in [16]). Auditory
72 thresholds for different frequencies often vary between different strains of rats [16,17].

73 Additionally, the peak frequency of vocalizations often correlates with peak auditory sensitivity
74 within a species [18-20]. For example, peak auditory sensitivity corresponds to the
75 peak/dominant frequency in songs of Belgian Waterslager canaries (*Serinus canaria* [20]), calls
76 of the orange-fronted conure (*Aratinga canicularis* [21]) vocalizations from four Australian
77 pygopod geckos (*Delma desmosa*, *Delma fraseri*, *Delma haroldi*, *Delma pax* [19]), vocalizations
78 of several anabantoid fishes (*Trichopsis vittata*, *Trichopsis pumila*, *Colisa lalia*, *Macropodus*
79 *opercularis*, *Trichogaster trichopterus* [22]), vocalizations from Lusitanian toadfish
80 (*Halobatrachus didactylus* [23]) and vocalizations from Chinese webbed-toed geckos (*Gekko*
81 *subpalmatus* [24]).

82 There is some evidence that vasopressin (AVP) plays a role in auditory perception.
83 Vasotocin, the non-mammalian homolog of AVP, is found in auditory processing regions of
84 bullfrogs (*Rana catesbeiana* [25]) and plainfin midshipman fish (*Porichthys notatus* [26-28]).
85 Singing mice (*Scotinomys teguina* and *Scotinomys xerampelinus*) have vasopressin 1a (V1a)
86 receptor expression in the medial geniculate nucleus, an area that plays a key role in auditory
87 processing in mammals [29]. In Lincoln's sparrows (*Melospiza lincolni*), vasotocin-

88 immunoreactivity is correlated with the quality of songs they hear [30]. AVP could also impact
89 sensitivity in the inner ear, where it binds to V2 receptors to increase water permeability [31-35].
90 Altered water permeability can lead to excess water in the inner ear, which can negatively impact
91 hearing [31,34,36].

92 AVP also regulates several social behaviors, including play, social recognition, parental
93 behavior, aggression, and vocal communication in several strains of Wistar, Sprague-Dawley,
94 and Long-Evans laboratory rats, singing mice, Syrian hamsters (*Mesocricetus auratus*), house
95 rats (*Rattus rattus*), prairie voles (*Microtus ochrogaster*), meadow voles (*Microtus*
96 *pennsylvanicus*), European hamsters (*Cricetus cricetus*), garden dormice (*Eliomys quercinus*),
97 wild house mice (*Mus domesticus*), guinea pigs (*Cavia porcellus*), and the Greater Egyptian
98 jerboa (*Jaculus orientalis*) [37-40]. Central injections of AVP increase maternal separation
99 induced USVs of laboratory rat pups [41]. Conversely, pharmacological or genetic disruptions to
100 AVP decrease maternal separation induced USVs of infant CD and Brattleboro strain rat pups
101 [42-44], 50 kHz USVs of juvenile Brattleboro and Wistar rats emitted during affiliative
102 behaviors, and USVs of adult female vasopressin 1b knockout mice emitted during aggressive
103 interactions [45-47].

104 The Brattleboro rat is an ideal laboratory model to study the impact of lifelong
105 disruptions to AVP. Brattleboro rats have a mutation in the *Avp* gene and lack AVP throughout
106 life [48]. This mutation has been maintained on the Long Evans background strain of laboratory
107 rat. Consistent with AVP's role in social behavior, Long Evans rats homozygous for the
108 Brattleboro mutation (Hom) exhibit atypical social behaviors characterized by decreased social
109 interactions (including juvenile social play), decreased 50 kHz USVs, but increased huddling
110 compared to both heterozygous (Het) siblings that have one copy of the Brattleboro mutation and

111 wild-type (WT) siblings that do not carry the mutation (i.e., have two copies of the functional
112 AVP gene) [46,49,50]. Furthermore, the spectrotemporal characteristics of their 50 kHz
113 vocalizations differ from the vocalizations of their Het and WT littermates. Brattleboro rats'
114 upward-ramp, flat, step-up, and complex USVs had lower integrated frequencies than the other
115 two genotypes, while step-up calls and trills differed in durations across the three genotypes [46].
116 Adult Brattleboro rats have deficits in their event-related potentials to auditory stimuli [49]
117 suggesting that the Brattleboro mutation may also impact auditory processing and/or perception.
118 Altered acoustic communication in the Brattleboro rats could contribute to their atypical social
119 phenotype.

120 Males have higher levels of AVP expressing cells in the bed nucleus of the stria
121 terminalis and medial amygdala, as well as denser projections to fore-, mid-, and hindbrain
122 regions than females [51]. The sex difference in this pathway is driven by organizational actions
123 of perinatal androgens, activational actions of adult gonadal steroids, and direct effects of genes
124 on the sex chromosomes [52]. Sex differences in AVP are thought to regulate sex differences in
125 some behaviors, such as social behaviors, and manipulations of AVP can have different,
126 sometimes opposite, actions. For example, septal infusion of a V1a receptor antagonist increases
127 social play in juvenile male rats, but decreases social play in females [53,54]. Similarly, septal
128 AVP infusion enhances social recognition in juvenile male rats, but has no effect in females [55].
129 For these reasons, it is important to determine whether AVP manipulations (e.g., lack of AVP in
130 Brattleboro rats) have a similar impact in males and females.

131 Females and males often differ in their sensory processing due to differing genetic
132 material and exposure to gonadal hormones during development [56,57]. Female mammals tend
133 to have more sensitive auditory thresholds than males, and females tend to retain their hearing

134 for longer over their lifespan [58,59]. There are sex differences in the audiograms of many
135 strains of mice, and these sex differences are often compounded by noise exposure and age
136 (reviewed in [60]). The heightened sensitivity and longer retention of auditory acuity in females
137 is believed to be due to the protective actions of estradiol [58]. In humans, menopausal women
138 given hormone therapy demonstrated better auditory acuity relative to control women who had
139 received no hormone therapy [61]. This was similar to findings from ovariectomized rats that
140 received estrogen replacement [62].

141 In the present experiment, we tested whether there are sex differences in the auditory
142 acuity of Long-Evans laboratory rats. We further asked whether lifelong disruptions in AVP
143 impact auditory sensitivity or potential sex differences in auditory acuity, i.e., whether ABRs of
144 Long Evans rats carrying the Brattleboro mutation would differ from WT Long Evans rats. We
145 reasoned that if AVP plays a critical role in sensitivity, Hom rats would have higher auditory
146 thresholds (lower acuity) than WT rats, or would exhibit a shifted peak sensitivity to frequencies
147 that match the lower frequency of their USVs. To test these hypotheses, auditory brainstem
148 responses (ABRs) were measured in male and female Hom, Het, and WT littermates. ABRs
149 demonstrate how the cochlea and auditory pathways are working when presented with different
150 frequencies at different intensities. The waveforms that are produced allow us to determine both
151 hearing thresholds and peak sensitivity, which can then be compared across sexes and genotypes.

152 **Materials and methods**

153 **Ethics statement**

154 All procedures were approved by the University at Buffalo, SUNY's Institutional Animal
155 Care and Use Committee [IACUC] and were in accordance with the *Guide for Care and Use of*
156 *Laboratory Animals*.

157 **Subjects**

158 Male and female wild-type Long-Evans rats (WT; n=10; 5 males, 5 females) and those
159 homozygous (Hom; n=10; 5 males, 5 females) or heterozygous (Het; n=10; 5 males, 5 females)
160 for the Brattleboro mutation were obtained from our breeding colony maintained at the
161 University at Buffalo, State University of New York, which were derived from rats obtained
162 from the Rat Resource and Research Center (University of Missouri, Columbia, MO). Breeding
163 pairs consisted of Het males and Het females in order to produce subjects from all three
164 genotypes within the same litters. Offspring were ear punched on postnatal day (P)14, and ear
165 tissue was used for genotyping (see genotyping procedures below). Rats were weaned into
166 same-sex, same-genotype pairs on P21. All rats were housed in plastic cages (44 cm X 22.5 cm
167 X 20.5 cm) with corn cobb bedding (Envigo) and had *ad libitum* access to food and water.

168 **Genotyping**

169 Genotyping was performed using the method described in Paul et al. [46]. This
170 procedure has been validated by sequencing [46] as well as behavioral phenotyping of water
171 intake [63]. Briefly, ear tissue was digested and DNA extracted using Extraction Solution and
172 Neutralization Solution B from the REDExtract-N-Amp Tissue PCR Kit (Sigma-Millipore).
173 DNA surrounding the Brattleboro mutation was amplified by PCR using GoTaq Green Master
174 Mix (Promega), the forward primer GACGAGCTGGCTGCTTC, and the reverse primer,
175 CCTCAGTCCCCACTTAGCC. Samples were subsequently incubated overnight at 37°C with
176 the restriction endonuclease, Bcg1 (New England BioLabs), which cuts the Brattleboro allele,
177 but not the wild-type allele. Samples were run on a 2% agarose gel for visualization of DNA
178 fragments corresponding to the Hom, Het, and WT genotypes. Samples from WT rats exhibit a

179 single 222-bp band, whereas those of Hom rats exhibit a single 95-bp band (the two fragments
180 do not separate on a 2% agarose gel). Samples from Het rats exhibit both WT and Hom bands.

181 **ABR procedure**

182 Auditory brainstem responses were collected one month apart from each other from two
183 groups of rats. Thirty rats were tested between 50 and 60 days of age. Rats were anesthetized
184 with a mixture of 90 mg/kg ketamine and 10 mg/kg xylazine. All rats were anesthetized at a dose
185 between 60-100% of their body weight in order to keep them fully sedated for the duration of the
186 procedure.

187 Rats were placed on a heating pad kept at 37°C inside a small sound-attenuated chamber
188 (interior dimensions 55 x 33 x 36 cm) lined with 4 cm thick Sonex sound-attenuating foam
189 (Illbruck Inc., Minneapolis, MN). The ABR system was manufactured by Tucker-Davis
190 Technologies (TDT, Alachua, FL). The test chamber contained the needle electrodes (ELE-N), a
191 speaker (MF1), a 4-channel preamplifier (RA4PA), a 4-channel low impedance headstage
192 (RA4LI), a heating pad, and the test subject. The speaker was placed three inches away from the
193 ear being stimulated. Subcutaneous needle electrodes were placed on the bulla of alternating ears
194 (approximately half on the left bulla, half on the right bulla, randomly assigned), on the vertex of
195 the skull, and a ground electrode was inserted into the opposite leg of the bulla being stimulated.

196 The experiments were controlled by a WS4 Windows computer running an Optibit
197 interface on a TDT driver using BioSigRZ. The stimuli used in this experiment were generated
198 by a Multi I/O Processor with optic port (RZ6-A-P1) and sent to the speaker. Digitized data from
199 the preamplifier were sent back to the RZ6 processor. The noise floor for each subject was
200 obtained prior to testing by placing the electrodes and recording activity in with no stimulus
201 presentation.

202 Broadband sounds 0.1 ms in duration (defined as “clicks”) were first tested to verify
203 electrode placement and a clearly observable response. The clicks were presented at a rate of 21
204 presentations per second. A total of 512 responses were averaged at each sound pressure level.
205 Sounds were calibrated using a quarter-inch free field microphone (PCB-378C01) placed at the
206 location of the rat’s head using TDT software. Clicks were presented at 90 dB SPL, descending
207 in 5 dB steps. Tones were then presented in ascending order from 1 to 64 kHz. Frequencies
208 tested were 1, 2, 4, 8, 16, 24, 32, 42, and 64 kHz. Each tone was presented at a rate of 21
209 presentations per second. A total of 512 responses were averaged for each frequency at each
210 sound pressure level. The tones were 5 ms in durations, and were cosine-gated tones. Tones were
211 then presented beginning at 90 dB SPL, descending in 10 dB steps. Testing lasted approximately
212 45 minutes, after which rats were placed on a heating pad until they regained consciousness and
213 then returned to their home cage.

214 **Data analysis**

215 ABR waveforms were bandpassed between 500 Hz and 3 kHz. Thresholds were
216 quantitatively determined as the average value between the lowest intensity where a waveform
217 response is still qualitatively present and the intensity where no waveform response is
218 qualitatively present.

219 A three-way mixed analysis of variances (ANOVA) was conducted on the final
220 thresholds, with sex and genotype as between-subject factors and frequency as a within-subjects
221 factor. All possible post hoc tests were conducted using the Bonferroni correction. Significance
222 was assumed when $p < .05$. Statistical analyses were conducted using SPSS software, Version
223 24. Five males and five females for each of the three genotypes were included in the statistical
224 analyses, resulting in 10 rats for each genotype, for a total of 30 rats. These results were

225 graphically compared to previous results from Popelar et al. [15] to demonstrate similar ABR
226 thresholds across studies. Post-hoc power analyses were conducting using G*Power, version
227 3.1.9.4.

228 **Results**

229 ABR audiograms were constructed for male and female mice across the three genotypes
230 separately (see Figure 1). Thresholds differed across the six groups by as little as 6 dB at 8 kHz
231 and by as much as 24 dB at 42 kHz. Thresholds for the click stimuli were exactly the same for all
232 six groups: 25 dB. Peak sensitivity for all six groups was between 8 and 16 kHz, with higher
233 thresholds at higher and lower frequencies. Figure 2 illustrates the mean audiograms for males
234 and females collapsed across the three genotypes as well as ABR audiograms from juvenile male
235 wild-type Long-Evans rats (from [15]). The patterns of ABR audiograms across frequencies,
236 including frequencies of peak sensitivity and overall acuity, were similar between the current
237 study and the previous one from Popelar et al. [15].

238

239 **Figure 1. Auditory brainstem thresholds across genotype and sex.** Mean ABR thresholds for
240 each genotype and sex for tones ranging from 1 to 64 kHz and clicks. Error bars are standard
241 error of the mean (Males = white fill, Females = black fill, wild-type = squares, heterozygotes =
242 circles, and Brattleboro homozygotes = triangles)

243

244 **Figure 2. Auditory brainstem thresholds across sex.** Mean ABR thresholds for males and
245 females across all three genotypes for tones ranging from 1 to 64 kHz (error bars are standard
246 error of the mean) compared to Popelar et al. [15] ABR thresholds from 1 month old male Long-

247 Evans rats (Females = black squares, Males = white circles, and Popelar et al. (2006) = gray
248 diamonds). * $p < .05$, ** $p < .01$, *** $p < .001$

249

250 There were significant main effects of frequency and sex, but not genotype (main effect
251 of frequency: $F(8, 27) = 151.00, p < .001, \eta^2 = .863$; main effect of sex: $F(1, 27) = 8.81, p =$
252 $.007, \eta^2 = .269$; main effect of genotype: $F(2, 27) = 1.13, p = .340, \eta^2 = .086$). There was a
253 significant interaction between frequency and sex ($F(8, 27) = 2.11, p = .037, \eta^2 = .081$). No
254 significant interaction between frequency and genotype was found ($F(16, 27) = 1.02, p = .442,$
255 $\eta^2 = .078$). There was no significant three-way interaction between sex, genotype, and
256 frequency ($F(16, 27) = 1.47, p = .113, \eta^2 = .109$) (see Figure 1). Bonferroni post-hoc tests
257 revealed significant mean differences amongst several frequencies. These results are outlined
258 below in Table 1.

259 **Table 1. Mean Thresholds (M), Differences Between Thresholds (dB SPL, Cell Values),**
 260 **and Bonferroni Post-Hoc Test Results (* Where Significant)**

Frequency	M (SEM)	1 kHz	2 kHz	4 kHz	8 kHz	16 kHz	24 kHz	32 kHz	42 kHz	64 kHz
1 kHz	58.33 (1.68)									
2 kHz	50.00 (1.78)		8.33***							
4 kHz	37.00 (1.62)	21.33***		13.00***						
8 Hz	23.67 (1.50)	34.67***	26.33***		13.33***					
16 kHz	26.33 (1.42)	32.00***	23.67***	10.67***		-2.67				
24 kHz	46.33 (1.50)	12.00***	3.67	-9.33**	-22.67***		-20.00***			
32 kHz	48.33 (1.75)	10.00***	1.67	-11.33***	-24.67***	-22.00***		-2.00		
42 kHz	45.33 (2.69)	13.00***	4.67	-8.33*	-21.67***	-19.00***	1.00		3.00	
64 kHz	79.67 (1.64)	-21.33***	-29.67***	-42.67***	-56.00***	-53.33***	-33.33***	-31.33***	-34.33***	

261 * $p < .05$ ** $p < .01$ *** $p < .001$

262 Bonferroni post-hoc tests were conducted to probe the significant interaction between sex
263 and frequency. These tests revealed that males and females significantly differed in threshold
264 values for 1 kHz ($p = .002$), 4 kHz ($p = .046$), 32 kHz ($p = .046$), and 42 kHz ($p < .001$). Females
265 and males did not differ in threshold values for 2, 8, 16, 24, and 64 kHz ($p > .05$) (see Figure 2).

266 A post-hoc power analysis using a repeated-measures within-subjects design was
267 conducted on the main effect of frequency and yielded a power of 1.00. Post-hoc power analyses
268 using a repeated-measures between-subjects design were conducted on the main effects of sex
269 and genotype and yielded a power of 0.99 and 0.46, respectively. Post-hoc power analyses using
270 a repeated-measures within-between interaction design were conducted on the interactions
271 between frequency and sex, frequency and genotype, and frequency, sex, and genotype. Both the
272 interaction between sex and frequency and the interaction between genotype and frequency
273 yielded a power of 0.99. The three-way interaction between frequency, sex, and genotype
274 yielded a power of 0.96.

275 **Discussion**

276 The goals of this study were to determine whether there are sex differences in the
277 auditory acuity of Long-Evans rats and whether the ABR thresholds are altered by the
278 Brattleboro mutation. There was a significant main effect of sex on pure tone thresholds, in
279 addition to a significant interaction between sex and frequency. Males generally had higher
280 thresholds at the low and high ends of the frequencies tested compared to females, specifically
281 for 1, 4, 32, and 42 kHz. Sex differences in auditory acuity and auditory anatomy are common in
282 the animal kingdom, found in humans, mice, and birds, to name a few [59, 64-66]. However, to
283 our knowledge, this is the first demonstration of sex differences in ABR-derived thresholds of
284 laboratory rats. Sex differences in auditory acuity are typically amplified as animals age,

285 possibly due to the protective effects of estrogen on the auditory system. It is unknown if the sex
286 differences found here will increase in older rats, or if there would be an interaction between the
287 Brattleboro rats and their wild-type Long Evans counterparts with age.

288 Significant sex differences in the ABRs were not found at all frequencies, but were
289 obtained at some of the lowest and some of the highest frequencies tested. It is not known
290 whether the sex differences occurred at ecologically “meaningful” frequencies. Neither 1 kHz
291 nor 4 kHz are typically employed in rodent vocalizations, although 4 kHz falls within the range
292 of audible rodent “squeals.” These “squeals” are usually produced in times of distress and are
293 thought to express physical pain or discomfort [67]. The sex differences in the 32 and 42 kHz
294 ABR thresholds are interesting, as these are typical frequencies found in rat USVs. However, rats
295 in this study were tested with pure tones rather than USVs, so while the pure tone frequencies
296 align with USV frequencies, we cannot say definitively whether there are differences in USV
297 detection between male and female Long-Evans rats using the results from the current study.

298 The sex differences in auditory acuity are possibly linked to the sex differences in vocal
299 production in rats. Previous studies have shown that male rat pups produce a greater quantity of
300 USVs than females do, and their USVs tend to be slightly lower in fundamental frequency and
301 amplitude than USVs from females [68]. Males also produce more USVs during play bouts than
302 females do [69], although another report only found this to be true for trills [46]. Additionally,
303 Graham and colleagues [70] found sex differences in USVs in two different strains of rats, with
304 males producing more USVs than females (Sprague-Dawley and Long-Evans).

305 Sex differences in vocalizations are not limited to rats. Male golden hamsters
306 (*Mesocricetus auratus*) produce shorter USVs than females, and their USVs had lower entropy
307 and bandwidth compared to female USVs [71]. Mice are also known to produce variable

308 vocalizations across the sexes, differing in spectrotemporal characteristics [72,73], amplitude
309 [74], and proportions of call categories produced [72]. Responses to USVs from playback studies
310 also commonly show sex differences (e.g., [75]). Although the function of mouse USVs is not
311 entirely known, there are clear parallels across rodent species. As USVs are typically produced
312 alongside social behaviors in rats, the sex differences observed in USV production and social
313 behaviors align with each other.

314 Another possibility for the presence of sex differences in auditory acuity could be that the
315 young female Long-Evans rats' ABR thresholds are influenced by levels of estradiol. Estradiol
316 has been linked to auditory perception and processing changes in young and old female
317 laboratory rats, mice, and humans (as reviewed in [76]). Older human females (post-menopausal)
318 have higher ABR thresholds than young females and young males [77,78]. Additionally,
319 ovariectomized laboratory rats also show higher ABR thresholds compared to non-
320 ovariectomized rats [62]. Estradiol has also been found to affect outer hair cells, as young
321 females have larger otoacoustic emission (OAEs) amplitudes than young males [79,80].
322 Furthermore, females who use oral contraceptives have been found to produce fewer
323 spontaneous OAEs (SOAEs) and lower click-evoked OAE (CEOAE) amplitudes than females
324 who did not use oral contraceptives [81,82]. These findings are likely due to differing levels of
325 estradiol and other steroid hormones, such as testosterone. It is possible that the sex differences
326 in auditory acuity exhibited by the Long-Evans strain of rat could be due to these hormone effects.
327 Studies manipulating gonadal steroid hormones and measuring SOAEs, CEOAEs, and distortion
328 product OAEs (DPOAEs) alongside ABRs would be a fruitful avenue for research into sex
329 differences in hearing acuity.

330 Since AVP has been linked to auditory processing [37], we hypothesized that auditory
331 thresholds, as measured by ABR audiograms, would differ amongst Hom, Het, and WT Long-
332 Evans rats. When Naganuma and colleagues [83] injected AVP and then measured ABRs,
333 thresholds were significantly elevated. Counter to our hypothesis, however, we failed to detect a
334 significant difference across the three genotypes, suggesting that the chronic vasopressin
335 deficiency does not influence auditory acuity. Our results may have differed from Naganuma and
336 colleagues' results as they tested acute increases in AVP rather than chronic AVP deficiency.
337 Differences could also arise due to the differing natures of the manipulations – peripheral AVP
338 manipulation from an IP injection versus global AVP loss due to a genetic mutation. In addition,
339 the Brattleboro mutation could trigger compensatory mechanisms during development that
340 ameliorate deficits in auditory detection. Finally, it is possible that a larger sample sizes is
341 necessary to detect genotype differences. Our post-hoc power analysis conducted on the main
342 effect of genotype revealed that our sample size of 30 rats (10 rats per genotype) was moderately
343 powered ($\beta = 0.46$).

344 One possible limitation of the current study is related to the age range in which the rats
345 were tested. Paul and colleagues [46] found differences in the USVs of Brattleboro and wild-type
346 rats at P34 and P44, which corresponds to early and mid-adolescence. However, the ABR
347 audiograms measured in the current study were collected in late adolescent rats, between P50
348 and P60. Given that adolescence is a time of marked behavioral and neural change, it is possible
349 that between these two time points, differences in USVs became diminished and, in conjunction,
350 differences in auditory acuity could have diminished or disappeared. However, the range at
351 which ABRs were collected still fell within late adolescence and, while USVs could develop

352 quite rapidly, it is unknown whether auditory thresholds would significantly change after 16-20
353 days after birth [84].

354 Another possible limitation of the study is that only a few frequencies were tested in the
355 ultrasonic range (24, 32, 42, and 64 kHz). Additionally, these results reflect auditory processing
356 of pure tones, which are not fundamentally the same as USVs. While this study reveals that the
357 basic auditory processing of pure tones and clicks by anesthetized Hom, Het, and WT Long-
358 Evans rats is equivalent, future studies should measure the perception of more tones in the
359 ultrasonic range, as well as USVs, across more ages. Researchers should also measure ABR
360 audiograms in these rats between P34 and P44 when the differences in USVs are most
361 prominent, as well as at other developmental periods to see if the developmental rate changes.

362 The above findings do not support the idea that differences in auditory perception
363 contribute to differences in USV production or social behaviors, but further studies are needed
364 before this idea can be completely ruled out; Brattleboro rats may show deficits in acuity of
365 natural stimuli. Furthermore, researchers should also investigate other ways of manipulating
366 AVP, such as vasopressin receptor blockers, to determine their effects on acoustic
367 communication. For instance, AVT can influence acoustic communication in amphibians by
368 changing acoustic features in calls or altering the rate of calls (reviewed in [85, 86]). Male
369 túngara frogs (*Physalaemus pustulosus*) treated with exogenous AVT alter the “whine”
370 component of their advertisement calls by increasing the initial frequency and shortening the
371 duration of the call [87]. The altered “whine” call decreases the likelihood of a female túngara
372 frog finding the “whine” attractive and diminishing their preference for the caller [87]. However,
373 exogenous AVT injections also increased the number of “chucks” in male túngara advertisement
374 calls, which can increase attractiveness of male túngara frogs to female túngara frogs [88].

375 Additionally, exogenous AVT injections in the gray treefrog (*Hyla versicolor*) altered
376 advertisement calls by increasing the duration and including more pulses to the calls [89].
377 However, these changes were dependent on close proximity to conspecific males [89]. Tito and
378 colleagues [90] found that exogenous AVT injections increased the likelihood of advertisement
379 calling in the gray treefrog; however, call rate (the number of calls produced within a given time
380 frame) of advertisement calls decreased to half of the baseline call rate and the dominant
381 frequency of the calls increased compared to calls produced by non-AVT-treated males [90]. It is
382 possible that manipulations of AVP in mammals could produce similar changes in mammalian
383 acoustic communication as AVT produces in amphibians.

384 **Conclusions**

385 This was the first attempt to determine correlates between a chronic lack of AVP and
386 auditory processing. We failed to detect a significant effect of genotype, which suggests that
387 chronic AVP deficiency does not affect auditory acuity, at least to simple tone detection. To our
388 knowledge, this is the first study to report sex differences in auditory thresholds in Long-Evans
389 rats. Furthermore, a greater range of frequencies was tested in the present study, including those
390 in the ultrasonic range, providing a more comprehensive view of auditory thresholds.

391

392 **References**

393 1. Endler JA. Signals, signal conditions, and the direction of evolution. *Am Nat.*
394 1992;139:S125-S153.

395 2. Ryan MJ. Sexual selection, receiver biases, and the evolution of sex differences. *Science.*
396 1998 Sep 25;281:1999-2003.

397 3. Rendall D, Owren MJ, Ryan MJ. What do animal signals mean? *Anim Behav.*
398 2009;78(2):233-40.

399 4. Brudzynski SM. Communication of adult rats by ultrasonic vocalization: biological,
400 sociobiological, and neuroscience approaches. *ILAR J.* 2009;50(1):43-50.

401 5. Brudzynski SM. Ethotransmission: communication of emotional states through ultrasonic
402 vocalizations in rats. *Curr Opin Neurobiol.* 2013;23(3):310-7.

403 6. Burgdorf J, Kroes RA, Moskal JR, Pfau JG, Brudzynski SM, Panksepp J. Ultrasonic
404 vocalizations of rats (*Rattus norvegicus*) during mating, play, and aggression: behavioral
405 concomitants, relationship to reward, and self-administration of playback. *J Comp Psychol.*
406 2008;122(4):357-67.

407 7. Burke CJ, Kisko TM, Euston DR, Pellis SM. Do juvenile rats use specific ultrasonic calls to
408 coordinate their social play? *Anim Behav.* 2018;140:81-92.

409 8. Burke CJ, Kisko TM, Pellis SM, Euston DR. Avoiding escalation from play to aggression
410 in adult male rats: the role of ultrasonic calls. *Behav Processes.* 2017;144:72-81.

411 9. Brudzynski SM, Ociepa D. Ultrasonic vocalization of laboratory rats in response to handling
412 and touch. *Physiol Behav.* 1992;52(4):655-60.

413 10. Litvin Y, Blanchard DC, Blanchard RJ. Rat 22 kHz ultrasonic vocalizations as alarm cries.
414 *Behav Brain Res.* 2007 Sep 4;182(2):166-72.

415 11. Wright JM, Gourdan JC, Clarke PB. Identification of multiple call categories within the rich
416 repertoire of adult rat 50-kHz ultrasonic vocalizations: effects of amphetamine and social
417 context. *Psychopharmacology*. 2010 Jul 1;211(1):1-3.

418 12. Willey AR, Varlinskaya EI, Spear LP. Social interactions and 50 kHz ultrasonic
419 vocalizations in adolescent and adult rats. *Behav Brain Res*. 2009;202(1):122-9.

420 13. Wohr M, Schwarting RK. Ultrasonic communication in rats: can playback of 50-kHz calls
421 induce approach behavior? *PLoS One*. 2007 Dec 26;2(12):e1365.

422 14. Popelar J, Groh D, Mazelova J, Syka J. Cochlear function in young and adult Fischer rats.
423 *Hear Res*. 2003;186(1-2):75-84.

424 15. Popelar J, Groh D, Pelanova J, Canlon B, Syka J. Age-related changes in cochlear and
425 brainstem auditory functions in Fischer 344 rats. *Neurobiol Aging*. 2006;27(3):490-500.

426 16. Dent ML, Screven LA, Kobrina A. Hearing in rodents. In: Dent ML, Fay RR, Popper AN,
427 editors. *Rodent bioacoustics*. Switzerland: Springer International Publishing; 2018. pp. 71-
428 106.

429 17. Heffner RS, Koay G, Heffner HE. Audiograms of five species of rodents: implications for
430 the evolution of hearing and the perception of pitch. *Hear Res*. 2001;17(1-2):138-52.

431 18. Bonn KM, Moss CF, Wilkinson GS. Correlated evolution between hearing sensitivity and
432 social calls in bats. *Biol Lett*. 2006;2(4):561-4.

433 19. Manley GA, Kraus JEM. Exceptional high-frequency hearing and matched vocalizations in
434 Australian pygopod geckos. *J Exp Biol*. 2010;213(11):1876-85.

435 20. Wright TF, Brittan-Powell EF, Dooling RJ, Mundinger PC. Sex-linked inheritance of
436 hearing and song in the Belgian Waterslanger canary. *Proc R Soc B Biol Sci*. 2004;271
437 Suppl 6:409-12.

438 21. Wright TF, Cortopassi KA, Bradbury JW, Dooling RJ. Hearing and vocalizations in the
439 Orange-Fronted Conure (*Aratinga canicularis*). *J Comp Psychol.* 2003;117(1):87-95.

440 22. Ladich F, Yan HY. Correlation between auditory sensitivity and vocalization in anabantoid
441 fishes. *J Comp Physiol A.* 1998;182(6):737-46.

442 23. Vasconcelos RO, Ladich F. Development of vocalization, auditory sensitivity and acoustic
443 communication in the Lusitanian toadfish *Halobatrachus didactylus*. *J Exp Biol.*
444 2008;211(4):502-9.

445 24. Chen J, Jono T, Cui J, Yue X, Tang Y. The acoustic properties of low intensity
446 vocalizations match hearing sensitivity in the webbed-toed gecko, *Gekko subpalmatus*.
447 *PLoS One.* 2016;11(1):1-12.

448 25. Boyd SK, Moore FL. Sexually dimorphic concentrations of arginine vasotocin in sensory
449 regions of the amphibian brain. *Brain Res.* 1992 Aug 21;588(2):304-6.

450 26. Caruana DA, Alexander GM, Dudek SM. New insights into the regulation of synaptic
451 plasticity from an unexpected place: hippocampal area CA2. *Learn Mem.* 2012;19(9):391-
452 400.

453 27. Goodson J, Bass A. Vasotocin innervation and modulation of vocal-acoustic circuitry in the
454 teleost *Porichthys notatus*. *J Comp Neurol.* 2000;422(3):363-79.

455 28. Goodson J, Evans A, Bass A. Putative isotocin distributions in sonic fish: relation to
456 vasotocin and vocal-acoustic circuitry. *J Comp Neurol.* 2003;462(1):1-14.

457 29. Campbell P, Ophir AG, Phelps SM. Central vasopressin and oxytocin receptor distributions
458 in two species of singing mice. *J Comp Neurol.* 2009;516(4):321-33.

459 30. Sewall KB, Dankoski EC, Sockman KW. Song environment affects singing effort and
460 vasotocin immunoreactivity in the forebrain of male Lincoln's sparrows. *Horm Behav.*
461 2010;58(3):544-53.

462 31. Eckhard A, Gleiser C, Arnold H, Rask-Andersen H, Kumagami H, Mueller M, et al. Water
463 channel proteins in the inner ear and their link to hearing impairment and deafness. *Mol
464 Aspects Med.* 2012;33(5-6):612-37.

465 32. Furuta H, Luo L, Ryan AF, Mori N. Expression of mRNA encoding vasopressin V1a,
466 vasopressin V2, and ANP-B receptors in the rat cochlea. *Hear Res.* 1998;117(1-2):140-8.

467 33. Gu F, Han H, Zhang L. Effects of vasopressin on gene expression in rat inner ear. *Hear Res.*
468 2006;222(1-2):70-8.

469 34. Kumagami, H, Loewenheim M, Beitz E, Wild K, Schwartz H, Yamashita K, et al. The
470 effect of anti-diuretic hormone on the endolymphatic sac of the inner ear. *Pflugers Arch.*
471 1998;436(6):970-5.

472 35. Takumida M, Kakigi A, Egami N, Nishioka R, Anniko M. Localization of aquaporins 1, 2,
473 and 3 and vasopressin type 2 receptor in the mouse inner ear. *Acta Otolaryngol.*
474 2012;132(8):807-13.

475 36. Kitano H, Suzuki M, Kitanishi T, Yazawa Y, Kitajima K, Isono T, et al. Regulation of inner
476 ear fluid in the rat by vasopressin. *Neuroreport.* 1999;10(6):1205-7.

477 37. Bester-Meredith JK, Fancher AP, Mammarella GE. Vasopressin proves es-sense-tial:
478 vasopressin and the modulation of sensory processing in mammals. *Front Endocrinol.*
479 2015;6:1-12.

480 38. Bosch OJ, Neumann ID. Both oxytocin and vasopressin are mediators of maternal care and
481 aggression in rodents: from central release to sites of action. *Horm Behav.* 2012;61:293–
482 303.

483 39. Caldwell HK, Albers HE. Oxytocin, vasopressin, and the motivational forces that drive
484 social behaviors. *Curr Top Behav Neurosci.* 2016;27:51–103.

485 40. Kelly AM, Goodson JL. Social functions of individual vasopressin-oxytocin cell groups in
486 vertebrates: what do we really know? *Front Neuroendocrinol.* 2014;35:512–529.

487 41. Winslow JT, Insel TR. Effects of central vasopressin administration to infant rats. *Eur J
488 Pharmacol.* 1993 Mar 16;233(1):101-7.

489 42. Bleickardt CJ, Mullins CP, MacSweeney BJ, Werner AJ, Pond MF, Guzzi FDC, et al.
490 Characterization of the V1a antagonist, JNJ-17308616, in rodent models of anxiety-like
491 behavior. *Psychopharmacology.* 2009 Mar;202(4):711-8.

492 43. Hodgson RA, Mullins D, Lu SX, Guzzi M, Zhang X, Bleickardt CJ, et al. Characterization
493 of a novel vasopressin V1b receptor antagonist, V1B-30N, in animal models of anxiety-like
494 and depression-like behavior. *Eur J Pharamcol.* 2014 May 4;730:157-163.

495 44. Varga J, Fodor A, Klausz, B, Zelena D. Anxiogenic role of vasopressin during the early
496 postnatal period: maternal separation-induced ultrasound vocalization in vasopressin-
497 deficient Brattleboro rats. *Amino Acids.* 2015 Nov;47(11):2409-18.

498 45. Lukas M, Wohr M. Endogenous vasopressin, innate anxiety, and the emission of pro-social
499 50-kHz ultrasonic vocalizations during social play behavior in juvenile rats.
500 *Psychoneuroendocrinology.* 2015;56:35-44.

501 46. Paul MJ, Peters NV, Holder MK, Kim AM, Whylings J, Terranova JI, et al. Atypical social
502 development in vasopressin-deficient Brattleboro rats. *eNeuro.* 2016;3(2):1-15.

503 47. Scattoni ML, McFarlane HG, Zhodzishsky V, Caldwell HK, Young WS, Ricceri L, et al.
504 Reduced ultrasonic vocalizations in vasopressin 1b knockout mice. *Behav Brain Res.*
505 2008;187(2):371-8.

506 48. Schmale H, Richter D. Single base deletion in the vasopressin gene is the cause of diabetes
507 insipidus in Brattleboro rats. *Nature.* 1984;308:705–709.

508 49. Lin RE, Ambler L, Billingslea EN, Suh J, Batheja S, Tatard-Leitman V, et al.
509 Electroencephalographic and early communicative abnormalities in Brattleboro rats. *Physiol*
510 *Rep.* 2013;1(5):1-11.

511 50. Schatz KC, Kyne RF, Parmeter SL, Paul MJ. Investigation of social, affective, and
512 locomotor behavior of adolescent Brattleboro rats reveals a link between vasopressin's
513 actions on arousal and social behavior. *Horm Behav.* 2018;106:1-9.

514 51. De Vries GJ, Miller MA. Anatomy and function of extrahypothalamic vasopressin systems
515 in the brain. *Prog Brain Res.* 1998;119:3-20.

516 52. De Vries GJ, Fields CT, Peters NV, Whylings J, Paul MJ. Sensitive periods for hormonal
517 programming of the brain. *Curr Top Behav Neurosci.* 2014;16:79-108.

518 53. Bredewold R, Smith CJW, Dumais KM, Veenema AH. Sex-specific modulation of juvenile
519 social play behavior by vasopressin and oxytocin depends on social context. *Front Behav*
520 *Neurosci.* 2014;8:216.

521 54. Veenema AH, Bredewold R, De Vries GJ. Sex-specific modulation of juvenile social play
522 by vasopressin. *Psychoneuroendocrinology.* 2013;38:2554–2561.

523 55. Veenema AH, Bredewold R, De Vries GJ. Vasopressin regulates social recognition in
524 juvenile and adult rats of both sexes, but in sex- and age-specific ways. *Horm Behav.*
525 2012;61:50–56.

526 56. Arnold AP. A general theory of sexual differentiation. *J Neurosci Res.* 2017;95(1-2):291-
527 300.

528 57. McCarthy MM, Herold K, Stockman SL. Fast, furious and enduring: sensitive versus critical
529 periods in sexual differentiation of the brain. *Physiol Behav.* 2018;187:13-9.

530 58. Cooper WA, Ross KC, Coleman JR. Estrogen treatment and age effects on auditory
531 brainstem responses in the post-breeding Long-Evans rat. *Audiology.* 2009;38(1):7-12.

532 59. McFadden D. Gender difference in the auditory system. *Dev Neuropsychol.* 1998;14:261-
533 98.

534 60. Willott JF. Effects of sex, gonadal hormones, and augmented acoustic environments on
535 sensorineural hearing loss and the central auditory system: insights from research on
536 C57BL/6J. *Hear Res.* 2009 Jun 8;252(1-2):89-99.

537 61. Kilicdag EB, Yavuz H, Bagis T, Tarim E, Erkan AN, Kazanci F. Effects of estrogen therapy
538 on hearing in postmenopausal women. *Am J Obstet Gynecol.* 2004 Jan 1;190(1):77-82.

539 62. Coleman JR, Campbell D, Cooper WA, Welsh MG, Moyer J. Auditory brainstem responses
540 after ovariectomy and estrogen replacement in rat. *Hear Res.* 1994;80(2):209-215.

541 63. Schatz KC, Martin CD, Ishiwari K, George AM, Richards JB, Paul MJ. Mutation in the
542 vasopressin gene eliminates the sex difference in social reinforcement in adolescent rats.
543 *Physiol Behav.* 2019;206:125-133.

544 64. Gall MD, Lucas JR. Sex differences in auditory filters of brown-headed cowbirds
545 (*Molothrus ater*). *Journal of Comparative Physiology A.* 2010 Aug 1;196(8):559-67.

546 65. Guimaraes P, Zhu X, Cannon T, Kim S, Frisina RD. Sex differences in distortion product
547 otoacoustic emissions as a function of age in CBA mice. *Hearing Research.* 2004 Jun
548 1;192(1-2):83-9.

549 66. Hultcrantz M, Simonoska R, Stenberg AE. Estrogen and hearing: a summary of recent
550 investigations *Acta Otolaryngol*. 2006 Jan 1;126(1):10-4.

551 67. Borszcz GS. Contribution of the ventromedial hypothalamus to generation of the affective
552 dimension of pain. *Pain*. 2006;123:155-68.

553 68. Bowers JM, Perez-Pouchoulen M, Edwards NS, McCarthy MM. Foxp2 mediates sex
554 differences in ultrasonic vocalizations by rat pups and directs order of maternal retrieval. *J
555 Neurosci*. 2013;33(8):3276-83.

556 69. Himmller BT, Kisko TM, Euston DR, Kolb B, Pellis SM. Are 50-kHz calls used as play
557 signals in the playful interactions of rats? I. Evidence from the timing and context of their
558 use. *Behav Processes*. 2014;106:60-6.

559 70. Graham LK, Yoon T, Lee HJ, Kim JJ. Strain and sex differences in fear conditioning: 22
560 kHz ultrasonic vocalizations and freezing in rats. *Psychology & Neuroscience*. 2009
561 Dec;2(2):219-25.

562 71. Fernandez-Vargas M, Johnston RE. Ultrasonic vocalizations in golden hamsters
563 (*Mesocricetus auratus*) reveal modest sex differences and nonlinear signals of sexual
564 motivation. *PLoS One*. 2015;10(2):1-29.

565 72. Burke K, Screven LA, Dent ML. CBA/CaJ mouse ultrasonic vocalizations depend on prior
566 social experience. *PloS One*. 2018 Jun 6;13(6):e0197774.

567 73. Hammerschmidt K, Radyushkin K, Ehrenreich H, Fischer J. The structure and usage of
568 female and male mouse ultrasonic vocalizations reveal only minor differences. *PloS One*.
569 2012 Jul 17;7(7):e41133.

570 74. Zala SM, Reitschmidt D, Noll A, Balazs P, Penn DJ. Sex-dependent modulation of
571 ultrasonic vocalizations in house mice (*Mus musculus musculus*). *PLoS One*. 2017 Dec
572 13;12(12):e0188647.

573 75. Pultorak JD, Matusinec KR, Miller ZK, Marler CA. Ultrasonic vocalization production and
574 playback predicts intrapair and extrapair social behaviour in a monogamous mouse. *Animal
575 Behaviour*. 2017 Mar 1;125:13-23.

576 76. Charitidi K, Meltser I, Tahera Y, Canlon B. Functional responses of estrogen receptors in
577 the male and female auditory system. *Hear Res*. 2009;252(1-2):71-8.

578 77. Wharton, J.A., Church, G.T., 1990. Influence of menopause on the auditory brainstem
579 response. *Audiology* 29, 196–201.

580 78. Jerger J, Johnson K. Interactions of age, gender, and sensorineural hearing loss on ABR
581 latency. *Ear Hear*. 1988;9(4):168–76.

582 79. McFadden D. A masculinizing effect on the auditory systems of human females having male
583 co-twins. *Proc Natl Acad Sci*. 1993;90(24):11900–4.

584 80. Snihur AWK, Hampson E. Sex and ear differences in spontaneous and click-evoked
585 otoacoustic emissions in young adults. *Brain Cogn*. 2011;77(1):40–7.

586 81. McFadden D. Masculinizing effects on otoacoustic emissions and auditory evoked potentials
587 in women using oral contraceptives. *Hear Res*. 2000;142(1-2):23–33.

588 82. Snihur AWK, Hampson E. Oral contraceptive use in women is associated with
589 defeminization of otoacoustic emission patterns. *Neuroscience*. 2012;210:258–65.

590 83. Naganuma H, Kawahara K, Tokumasu K, Satoh R, Okamoto M. Effects of arginine
591 vasopressin on auditory brainstem response and cochlear morphology in rats. *Auris Nasus
592 Larynx*. 2014;41(3):249-54.

593 84. Crowley DE, Hepp-Raymond MC. Development of cochlear function in the ear of the infant
594 rat. *J Comp Physiol Psychol.* 1966;62(3):427-32.

595 85. Wilczynski W, Quispe M, Muñoz MI, Penna M. Arginine vasotocin, the Social neuropeptide
596 of amphibians and reptiles. *Front Endocrinol.* 2017;8(186):1-17.

597 86. Yamaguchi A, Kelley DB. Hormonal Mechanisms in Acoustic Communication. In: Simmons
598 AM, Popper AN, Fay RR, editors. *Acoustic Communication.* Springer; 2006. p. 275–323.

599 87. Kime NM, Whitney TK, Ryan MJ, Rand AS, Marler CA. Treatment with arginine vasotocin
600 alters mating calls and decreases call attractiveness in male túngara frogs. *Gen Comp
601 Endocrinol.* 2010;165(2):221–8.

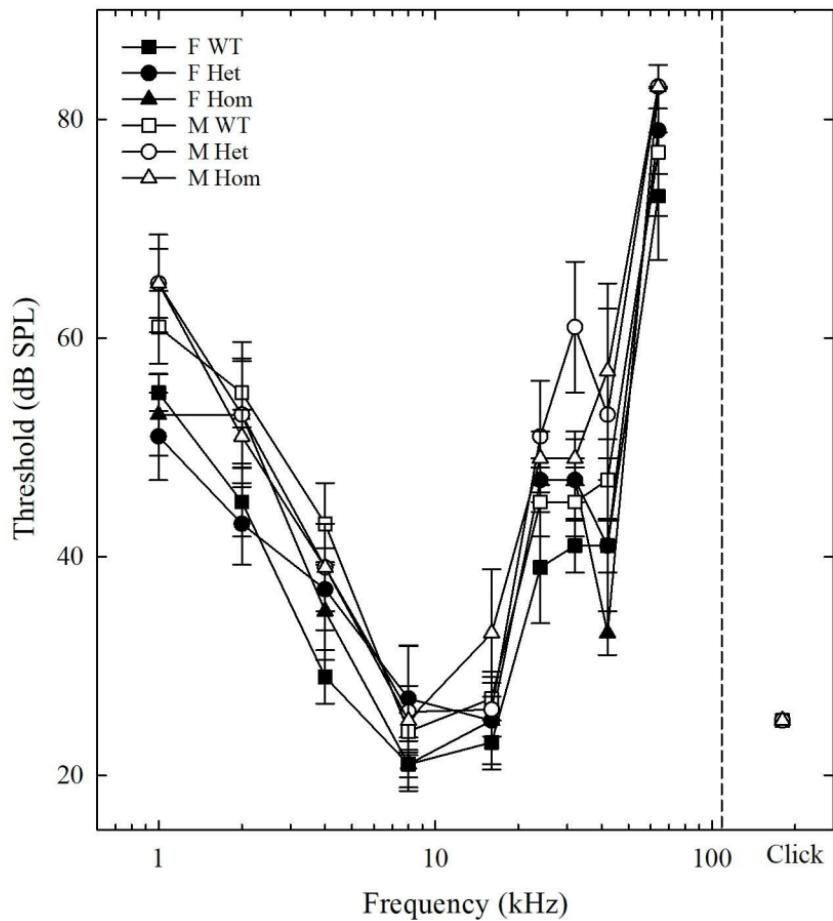
602 88. Kime NM, Whitney TK, Davis ES, Marler CA. Arginine vasotocin promotes calling
603 behavior and call changes in male túngara frogs. *Brain Behav Evol.* 2007;69(4):254–65.

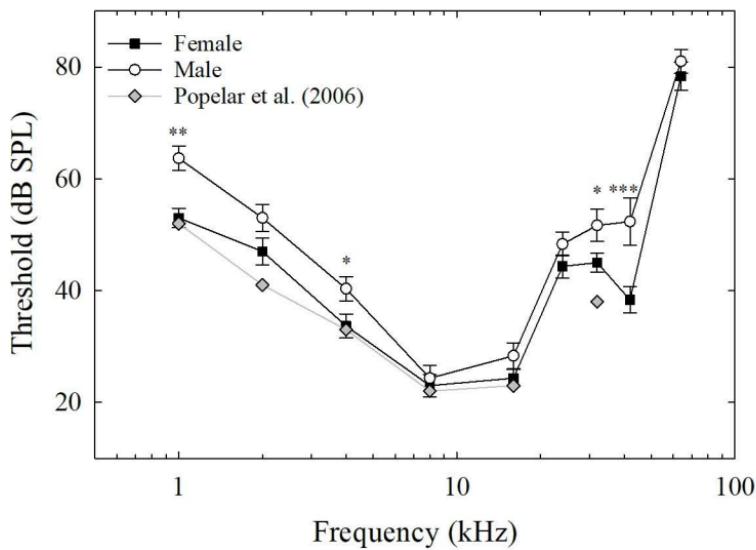
604 89. Trainor BC, Rouse KL, Marler CA. Arginine vasotocin interacts with the social environment
605 to regulate advertisement calling in the gray treefrog (*Hyla versicolor*). *Brain Behav Evol.*
606 2003;61(4):165–71.

607 90. Tito MB, Hoover MA, Mingo AM, Boyd SK. Vasotocin maintains multiple call types in the
608 gray treefrog, *Hyla versicolor*. *Horm Behav.* 1999;36(2):166–75.

609

610


611


612

613

614 **Supporting Information**

615 **S1 file. S1_File.xls.** The raw experimental results for individuals across all conditions.

