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Many theories beyond the Standard Model postulate short-range modifications to gravity which
produce deviations of Newton’s gravitational potential from a strict 1=r dependence. It is common to
analyze experiments searching for these modifications using a potential of the form V 0ðrÞ ¼
− GMm

r ½1þ α exp ð−r=λÞ�. The best present constraints on α for λ < 100 nm come from neutron scattering
and often employ comparisons of different measurements of the coherent neutron scattering amplitudes b.
We analyze the internal consistency of existing data from two different types of measurements of low-
energy neutron scattering amplitudes: neutron interferometry, which involves squared momentum transfers
q2 ¼ 0, and neutron gravity reflectometry, which involves squared momentum transfers q2 ¼ 8mVopt

where m is the neutron mass and Vopt is the neutron optical potential of the medium. We show that the

fractional difference Δb
jbj averaged over the seven elements where high precision data exist on the same

material from both measurement methods is ½2.2� 1.4� × 10−4. We also show that Δb
jbj for these data is

insensitive both to exotic Yukawa interactions and also to the electromagnetic neutron-atom interactions
proportional to the neutron-electron scattering length bne and the neutron polarizability scattering
amplitude bpol. This result will be useful in any future global analyses of neutron scattering data to
determine bne and bound α and λ. We also discuss how various neutron interferometric and scattering
techniques with cold and ultracold neutrons can be used to improve the precision of b measurements and
make some specific proposals.
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I. INTRODUCTION AND THEORETICAL
OVERVIEW

Newton’s inverse square law form for the force of gravity
between two pointlike test bodies is one of the first
quantitative facts learned by students of physics. In the
limit where relativistic effects are negligible, this law is
obeyed with high accuracy over macroscopic distance
scales. Many theoretical speculations, however, propose
that the 1=r2 gravitational force law can be greatly modified
at shorter distances. Examples of these speculations include
the idea of compact extra dimensions of spacetime acces-
sible only to the gravitational field, which can explain the
unnaturally small strength of gravity relative to the other
known forces [1–3], and the idea that gravity might be
modified on the length scale of 100 microns corresponding

to the scale set by the dark energy density [4]. Experiments
which search for possible modifications to gravity at short
range are also sensitive to new nongravitational interactions
of various types. Many extensions to the Standard Model
of particle physics produce weakly coupled, long-range
interactions [5,6]. Certain candidates for dark matter in the
sub-giga-electron-volt mass range can induce Casimir-
Polder-type interactions between nucleons [7,8] with
ranges from nuclear to atomic scales. New sources of
information which can probe exotic gravity or other
possible exotic interactions on short distance scales are
therefore of fundamental interest.
Many experiments have been conducted to search for

short-range deviations from the 1=r2 gravitational force law
[4,9]. Most of the results from experimental searches have
been analyzed assuming a potential of the form

V 0ðrÞ ¼ −
GMm
r

½1þ α exp ð−r=λÞ�; ð1Þ*Corresponding author.
wsnow@indiana.edu
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where G is the gravitational constant, m1;2 are the masses
of two objects separated by a distance r, and α and λ
parametrize the strength of some new Yukawa interaction
relative to gravity and the range set by the mass of the
new massive boson whose exchange generates the new
potential. Recent reviews [4,9] present the existing limits
on α and λ, which come from torsion balances [10], and
microcantilevers and techniques adapted from measure-
ments of the Casimir effect [11–14]. Experiments using
laser-levitated dielectric microspheres [15,16] are also in
progress.
Below 100 nanometers the most stringent experimental

limits for many of these weakly coupled exotic interactions
come from experiments using neutrons. The electrical
neutrality of the neutron coupled with its small magnetic
moment and very small electric polarizability make it
insensitive to many of the electromagnetic backgrounds
such as the Casimir effect which can plague experiments
that employ test mass pairs made of atoms. The ability of
slow neutrons to penetrate macroscopic amounts of matter
and to interact coherently with the medium allow the
quantum amplitudes governing their motion to accumulate
large phase shifts which can be sensed with interferometric
measurements [17–19]. These features of slow neutron
interactions with matter and external fields have been
exploited in a number of recent experiments which search
for possible new weakly coupled interactions of various
types [20–33]. This strategy can succeed despite the
uncertainties in our knowledge of the neutron-nucleus
strong interaction. In the slow neutron regime with
kR ≪ 1 where k is the neutron wave vector and R is the
range of the neutron-nucleus strong interaction, neutron-
nucleus scattering amplitudes are dominated by s-wave
scattering lengths which are accurately measured exper-
imentally. This makes coherent neutron interactions with
matter sufficiently insensitive to the complicated details of
the strong nucleon-nucleus interaction that one can cleanly
interpret and analyze searches for smaller effects. Existing
neutron limits on deviations from the 1=r2 gravitational
force law between 10−8 and 10−12 m come from theoretical
analyses of the neutron energy and A dependence of
neutron-nucleus scattering lengths [34], which have been
measured to better than 0.1% accuracy for a large number
of nuclei. Other experiments have measured the angular
distribution of neutrons scattered from noble gases to
search for a deviation from that expected in this theoreti-
cally calculable system [35,36]. At shorter distances the
best limits come from the measured energy dependence of
neutron-nucleus cross sections in lead [20,37] and from
very high-energy forward cross-section measurements at
accelerator facilities [38].
Various authors [20,34,39] have conducted analyses of

the neutron scattering data to constrain exotic Yukawa
interactions. All used some amount of theoretical modeling
of the neutron Standard Model interactions in combination

with experimental information. In all of these cases
uncertainties in the neutron-atom strong and electromag-
netic interactions still place an ultimate limit on the
sensitivity of these types of searches for possible new
interactions. For the case of slow, unpolarized neutrons
incident upon unpolarized atoms with energies far from
neutron-nucleus resonances, the s-wave neutron-atom
scattering amplitude batomðqÞ as a function of the momen-
tum transfer q can be expressed as [40]

batomðqÞ ¼ bðqÞ − bneZ½1 − fðqÞ� þ bpolðqÞ þ bYðqÞ: ð2Þ

The first term bðqÞ describes the low-energy (s-wave)
coherent neutron scattering from the nucleus of the atom
from the neutron-nucleus strong interaction. The second
term describes the interaction between the internal radial
charge density of the neutron and the electric field of the
atom. It is proportional to the neutron electron scattering
length bne ¼ −1.345ð25Þ × 10−3 fm [41] and depends on
the atomic form factor fðqÞ of the electron distribution
around a nucleus of charge Z, which is measured by x-ray
scattering. The third term bpolðqÞ is proportional to the very
small but nonzero electric polarizability of the neutron and
comes from the neutron electric dipole moment induced by
the very large electric field near and inside the nucleus.
Finally the fourth term bYðqÞ ¼ −fYðqÞ ¼ 2Gαm3A

ℏ2
1

ðq2þ1=λ2Þ
comes from applying the Born approximation to calculate
the scattering amplitude corresponding to the exotic
Yukawa interaction potential of interest in this work and
from adopting the convention b ¼ −f historically used in
slow neutron scattering.
In this paper we will analyze the possible effects of both

exotic Yukawa interactions and of electromagnetic neutron-
atom interactions in the context of Eq. (2). The different q’s
used in various neutron-atom scattering amplitude experi-
ments weight the contributions in this expression differ-
ently. In principle one needs to perform some type of global
analysis of the scattering data [20,34,39,42] to derive
constraints on bYðqÞ. In the near future we expect that
new more sensitive data will be available which can enable
an improved analysis. Such a new analysis is beyond the
scope of this paper. For such an improved analysis,
however, it would be very useful to investigate the degree
of internal consistency in the existing dataset on coherent
neutron scattering amplitudes. In this paper we show that
we can test the internal consistency of batomðqÞ mea-
surements using slow neutrons in an essentially model-
independent way using data from the two most sensitive
neutron optical techniques. Forward scattering techniques
for batomðqÞ measurement such as neutron transmission
and neutron interferometry involve squared momentum
transfers q2 ¼ 0, and neutron gravity reflectometry
involves squared momentum transfers q2 ¼ 8mVopt where
m is the neutron mass and Vopt is the optical potential of
the medium. The precision of both of these methods
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approaches the 10−4 level. Of the many atomic species
which have been measured to high precision by these
techniques, there is a subset where data exist for the same
medium from both techniques. Furthermore, over the small
range of squared momentum transfers 0 < q2 < 8mVopt

and over the milli-electron-volt energy range spanned by
these two measurement methods, the differences in the
neutron-electron interactions term bneZ½1 − fðqÞ�, the neu-
tron polarizability term bpolðqÞ, and the exotic Yukawa term
bYðqÞ are all at least 3 orders of magnitude smaller than the
present experimental uncertainties in batomðqÞ. Therefore
the fractional difference ðbGR−bT Þ

jbT j ¼ Δb
jbj, where bGR comes

from gravity reflectometry and bT comes from neutron
interferometry, can be used to judge the internal consis-
tency of the neutron scattering amplitude dataset independ-
ently of one’s knowledge of the neutron electromagnetic
and exotic gravity interactions. The simple geometries and
macroscopic sample sizes used in neutron interferometry
and neutron gravity reflectometry experiments which we
analyze, combined with the availability of analytic sol-
utions to the effects of a weak perturbation of Yukawa form
on these observables, makes it possible to evaluate the
different corrections from a Yukawa interaction analytically
to high accuracy for each case. At this level of precision one
must also take into account some small multiple scattering
corrections to the kinematic limit of neutron optics whose
physical origin we briefly review below.
The result of our analysis is quite encouraging. We find

that Δb
jbj for the seven nuclei which have been precisely

measured using both techniques is consistent with zero at
the 10−4 level. This result demonstrates the internal con-
sistency of the associated data and can be applied to
analyses of neutron data searching for exotic Yukawa
interactions from future experiments. We mention some
of the issues that must be carefully considered in any future
global neutron scattering analysis to constrain exotic
interactions which makes use of a wider dynamic range
of neutron energies and momentum transfers. We also
outline how the sensitivity of this approach to constraining
exotic Yukawa interactions can be improved by about 1–2
orders of magnitude through future higher-precision coher-
ent neutron scattering length measurements using neutron
interferometry for bT combined with future high-precision
measurements using ultracold neutrons (UCN) for bGR.
The rest of this paper is organized as follows. We first

present the expressions for the modification of the neutron
optical potential and the neutron interferometer phase shift
from a slab of matter in the presence of an extra Yukawa
interaction. Next we present the correction to the neutron
optical reflectivity if one adds an exotic Yukawa potential
to the neutron-atom interaction. We estimate the size of the
difference between bGR and bT from the electromagnetic
and Yukawa terms. We gather the neutron scattering length
data for nuclei which have been measured by both

techniques with high precision and analyze these data to
demonstrate their degree of internal consistency. We end by
outlining additional neutron interferometry measurements
which can be compared to the existing neutron gravity
reflectometry measurements and outline future measure-
ments using cold and ultracold neutrons.

II. CORRECTIONS TO THE PHASE SHIFTS
MEASURED IN NEUTRON INTERFEROMETRY

FROM A WEAK YUKAWA POTENTIAL

The most sensitive methods for the measurement of
forward neutron scattering amplitudes comes from perfect
crystal neutron interferometry, which is described in great
detail in a recent work [43]. Neutron interferometric
measurements of scattering amplitudes employ a Mach-
Zehnder interferometer in which the neutron amplitude
ψe−iΦ is coherently split into two paths and recombined
using perfect crystal dynamical diffraction. The measured
phase shift is dominated by the real part of the neutron
optical potential VðxÞ and can be expressed as [43]

Φ ¼ m
kℏ2

Z
VðxÞdx; ð3Þ

where m is the neutron mass and k is the neutron wave
number. For kR ≪ 1 where R is the range of the neutron-
atom interaction, VðxÞ ¼ VF where VF is the Fermi
pseudopotential from the short-range strong and electro-
magnetic interactions of the neutron with the atoms in the
material. In the kinematic limit of the theory of neutron
optics, b is related to VF by

VF ¼ 2πℏ2Nb
m

; ð4Þ

where N is the atom number density. The sample geometry
used in all neutron interferometry scattering length mea-
surements employs a rectangular plate of thickness L
whose surface is normal to one of the coherent subbeams
in the interferometer. In the presence of an additional
Yukawa interaction between the neutron and the sample
material with a range L ≫ λ > Ratom we must integrate the
accumulated phase shift from the potential from a plate of
matter of uniform mass density ρ. Since the thickness of the
samples is much greater than the range λ of the Yukawa
interaction, and the neutron transverse coherence length is
very small compared to the transverse dimensions of the
samples in all of the neutron interferometry scattering
length measurements, the potential energy of a neutron
as a function of x, the distance from the neutron to the
plate, can be calculated analytically for a Yukawa potential
by taking the limit of an infinite planar slab of material
as [39,44]

VðxÞ ¼ −VY exp ð−jxj=λÞ ð5Þ
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outside the material and

VðxÞ ¼ VF − VY½2 − exp ð−jxj=λÞ� ð6Þ

inside the material, where VY ¼ −2Gmπραλ2. By treating
the exotic Yukawa interaction as a weak perturbation
compared to VF, the additional neutron phase shift from
the Yukawa interaction can be calculated as [44]

ΔΦY ¼ −2mVYðLþ 2λÞ
ℏ2k

; ð7Þ

where we have approximated ρ ¼ Nm. By comparison of
Eqs. (3), (4), and (7) we can express the effect of the
Yukawa-like deviation from gravity for the case of neutron
interferometry in terms of an additional contribution to the
coherent scattering amplitude bT . One can split the effect of
the Yukawa interaction shown in Eq. (7) into a “bulk” term,
which just adds to the Fermi potential VF, and a term from
the tail of the Yukawa potential which extends outside the
slab on both ends. From Eq. (7) one can see that the size of
the “tail” term for interferometry is smaller than the bulk
Yukawa term by a factor of 2λ=L where L is the sample
thickness, of order 1 mm or greater in neutron interferom-
etry measurements. Therefore for the range of λ < 100 nm
of interest for neutron constraints on exotic Yukawa
interactions λ=L < 10−4 and the dominant correction term
for bT becomes

bT ¼ −
2αGm3Aλ2

ℏ2
: ð8Þ

III. CORRECTIONS TO THE REFLECTIVITY
MEASURED IN NEUTRON GRAVITY
REFLECTOMETRY FROM A WEAK

YUKAWA POTENTIAL

The gravity reflectometry method for the measurement
of scattering amplitudes [45,46] has also produced n-A
scattering amplitude results of high precision. In this
method one prepares a slow neutron beam which drops
in the gravitational field of the Earth by a height H over a
long evacuated flight path so that all of the neutrons in the
beam gain an extra momentum along the gravitational field
corresponding to an energy E ¼ mgH. This neutron beam
is allowed to fall upon a flat mirror made of the material of
interest of neutron optical potential VF, which is main-
tained in liquid form so that the surface is normal to the
direction of the local gravitational field. When E ¼ VF the
neutrons start to penetrate the mirror and the reflectivity
jRj2 falls below unity according to the well-known Fresnel
reflectivity formula of optics. A precise measurement of
jRj2 as a function of H can determine VF and therefore the
n-A scattering amplitude bGR. A long series of such
measurements on many materials spanning nearly three

decades was conducted by the group of Koester et al. at the
FRM research reactor in Garching, Germany, on a spe-
cialized neutron beam line devoted specifically for this
purpose. All of the reflectometry data analyzed in this paper
come from this group.
We show below that, to high accuracy in our regime of

interest, the presence of a neutron-atom Yukawa potential
just modifies the arguments in the Fresnel reflectivity
expression used to analyze these data while preserving
its functional form. The modification to the formula for the
reflectivity for an exponential potential can be calculated
[47] with the exotic Yukawa potential treated as a pertur-
bation as also done for the neutron interferometry case
above. In the limit where the neutron mirror is treated as an
infinite plane, the one-dimensional (1D) Schrödinger wave
equation for this potential can be solved exactly. The
solutions are proportional to the modified Bessel functions
of the first kind. The reflection amplitude R of a neutron
incident upon the surface of the material is given by
demanding continuity of the wave function and its loga-
rithmic derivative at the surface

R ¼ −
ϕo;þð0Þ
ϕo;−ð0Þ

d
dz lnϕi;þðzÞ − d

dz lnϕo;þðzÞ
d
dz lnϕi;þðzÞ − d

dz lnϕo;−ðzÞ

����
z¼0

; ð9Þ

where ϕo;þ (ϕi;þ) and ϕo;− (ϕi;−) are the two independent
solutions to the wave equation outside (inside) of the
material. Since the wave equation is of second order and
we are considering two independent cases, we must have
four independent solutions in total. In the limit where the
neutron interaction energy with the mirror from the Yukawa
interaction is much smaller than the kinetic energy of the
incident neutron, and we restrict ourselves to the regime
of (α − λ) parameter space of interest in this work and
where this reflectivity calculation is relevant, namely λ ¼
ð1 − 100Þ × 10−10 m and α below the existing experimen-
tal limits, the expression for the reflection probability jRj2
can be written as (see Appendix)

jRj2 ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H0

c=H
p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H0

c=H
p

�2
; ð10Þ

whereH0
c ¼ VFþ2VY

mg is the critical height in the presence of a
new Yukawa deviation from gravity proportional to VY
and H0

c < H.
This is the same Fresnel reflectivity formula used by the

Koester group to analyze their data, but with the critical
heightHc replaced withH0

c. The value of the critical height
is determined experimentally when the reflectivity curve
becomes discontinuous andH0

c ¼ H. In the presence of the
Yukawa interaction, this height shift can be expressed in
terms of scattering lengths as
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b0 ¼ m
2πNℏ2

× ½mgHc þ 2VY� ¼ bþ mVY

πNℏ2
; ð11Þ

where b is the coherent scattering length inferred from the
gravity reflectometry data for the case of no Yukawa
interaction and b0 is the scattering amplitude in the presence
of the Yukawa interaction. We can therefore identify

bGR ¼ mVY

πNℏ2
¼ −

2αGm3Aλ2

ℏ2
; ð12Þ

and by comparing Eqs. (8) and (12) we see that bY;GR −
bY;T ¼ 0 to high accuracy. This can be understood simply.
In both cases one can split the effect of the Yukawa
interaction on the observable of interest into a “bulk” term
which just adds to the Fermi potential VF and a term from
the “tail” of the Yukawa potential which extends outside
the slab. As the bulk term is the same for both cases, it
cancels in the difference. The size of the tail terms for
interferometry and gravity reflectometry are not exactly the
same, but they are both much smaller than the bulk Yukawa
term by a factor below 10−3 in both cases for the range of
λ < 100 nm of interest for neutron constraints on exotic
Yukawa interactions.

IV. CORRECTIONS TO N-A SCATTERING
LENGTHS FROM NEUTRON-ATOM

ELECTROMAGNETIC INTERACTIONS

The remaining sources for the difference Δb ¼
½ðbatom;GR − batom;T� between the scattering lengths mea-
sured by these two different methods come from Standard
Model interactions. For the case of slow, unpolarized
neutrons incident upon unpolarized atoms, batomðqÞ can
be expressed as [40]

batomðqÞ ¼ bðqÞ − bneZ½1 − fðqÞ� þ bpolðqÞ: ð13Þ

The first term b describes the low-energy (s-wave)
scattering from the nucleus of the atom from the neutron-
nucleus strong interaction, which has contributions from
both the potential scattering and (for heavier nuclei) from
the low-energy tails from n-A resonance scattering. The
resonances contribute to a slight dependence of bðqÞ ¼
bpot þ bres on neutron energy through the Breit-Wigner
resonance formula. In the presence of n-A resonances the
expression for the resonant part bres of the total scattering
amplitude becomes [48]

bres ¼
X
j

g�;j

2k0j

Γn;j

½ðE0 − EjÞ þ iΓj=2�
; ð14Þ

where Γn;j and Γj are the neutron width and total width of
the resonance at energy Ej and k0 ¼ μk=m is the wave
vector in the n-A center of mass system of reduced mass μ,

E0 is the associated energy in the COM frame, and gþ;j ¼
ðI þ 1Þ=ð2I þ 1Þ and g−;j ¼ I=ð2I þ 1Þ are the statistical
weight factors for a resonance at energy Ej in the total
angular momentum channels J ¼ I � 1=2. This means that
the neutron scattering amplitudes that are reported in the
literature from slow neutron measurements are in fact a sum
of the potential scattering contribution and also the tails of
all of the other resonances in the limit E → 0:

bmeasured ¼ R −
X
j

g�;j

2k0j

Γn;j

½ðEjÞ − iΓj=2�
; ð15Þ

and since Γ scales linearly with k0, this expression gives a
finite contribution in the k0 → 0 limit.
The second term bneZð1 − fðqÞÞ describes the interac-

tion between the internal radial charge density of the
neutron and the electric field of the atom. It is proportional
to the neutron electron scattering length bne ¼
−1.345ð25Þ × 10−3 fm [41] and depends on the atomic
form factor fðqÞ of the electron distribution around a
nucleus of charge Z, which is measured by x-ray scattering
and obeys approximately the universal form fðqÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3ðq=qxÞ2

p where the element-specific parameter qx of

order ℏ
Ratom

can be obtained from fitting to the x-ray
scattering data. The corresponding form factor from the
internal charge distribution of the nucleus can be expanded
in the small q limit as FðqÞ ¼ 1 − 1

6
ðqR0Þ2 where R0 is the

root mean square nuclear charge radius [49]. The third term
bpolðqÞ is proportional to the very small but nonzero electric
polarizability of the neutron and comes from the neutron
electric dipole moment induced by the very large electric
field near and inside the nucleus [40,50–52]. In the small q

limit bp ¼ Z2e2mαem
ℏ2R ½6=5 − πqR=4� where Ze is the nuclear

charge, αem is the electromagnetic coupling, and R is the
nuclear radius. The first term is q-independent and is as
large as 0.06 fm for uranium.
We can now estimate the size of Δb ¼ bGR − bT know-

ing the slightly different energy and momentum transfer
ranges accessed in these measurements. The typical relative
sizes of bðqÞ, bneZ½1 − fðqÞ�, and bpolðqÞ in the slow
neutron regime for medium-mass nuclei are in the approxi-
mate proportion 1∶10−2∶10−3. The neutron interferometry
measurements all possess q2 ¼ 0 and were conducted at
neutron energies of several milli-electron-volts. The neu-
tron gravity reflectometry measurements all possess q2 ¼
8mVopt with q’s below 10−2 inverse angstroms, and the
energies used on the measurements of Koester et al. were
centered at 0.5 meV. Using the expressions above we can
see that the contribution to Δb from the bne term is of order
10−6 and that from the bp term is of order 10−15. The
contribution from the energy dependence of the tails of the
n-A resonances depends on the details of the resonance
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energies and widths of the particular nuclei. For the
particular list of nuclei used in the analysis of this paper
(H, D, C, O, Sn, Pb, and Bi) the light nuclei possess no n-A
resonances, and both Pb and Bi are close in A to the doubly
magic nucleus 208Pb, which possess especially low level
densities near threshold and in particular no low-lying
resonances between 1 and 10 eV whose tails could give a
visible energy dependence in the milli-electron-volt regime.
As for Sn: three of its isotopes have n-A resonances
between 0 and 10 eV [53,54]: 113Sn (E ¼ 8.3 eV,
Γn ¼ 4.5 meV), 117Sn (E ¼ 1.3 eV, Γn ¼ 0.00011 meV,
a p-wave resonance), and 119Sn (E ¼ 6.2 eV,
Γn ¼ 0.00148 meV). Using the real part of the resonance
formula above one sees that the contributions to Δb=jbj
from the residual neutron energy dependence of bres for Sn
over a δE ¼ 10 meV range starting at 0.5 meV is of order
ΓnδE
E2
res
, which does not exceed 10−6 for any of these resonance

parameters. This is much smaller than the precision of the b
measurements analyzed in this paper, which do not
exceed 10−4.
We conclude that all of the physical effects analyzed

above, both from a possible exotic Yukawa interaction and
from Standard Model interactions, give differences well
below the current measurement precision for the scattering
lengths. Neither exotic Yukawa interactions nor Standard
Model neutron-atom interactions can introduce a visible
difference between these two methods of neutron scattering
length measurements. Therefore an analysis ofΔb=jbj from
these two methods is a valid test of the internal consistency
of the present experimental data.

V. CORRECTIONS TO N-A SCATTERING
LENGTHS FROM MULTIPLE SCATTERING

EFFECTS IN THE NEUTRON OPTICAL
POTENTIAL

Before comparing the scattering lengths determined by
these two methods we must consider some small correc-
tions to the usual kinematic expression for the neutron
optical potential. The physical origin for these modifica-
tions comes from local field corrections and neutron
multiple scattering in the medium and are physically very
similar to the analogous corrections from dispersive effects
for light optics in a dielectric medium. We make use of an
evaluation of these effects performed long ago by Sears
[55]. His correction formulas are consistent with both
previous and subsequent theoretical work using different
theoretical approaches [56]. Calculations of multiple scat-
tering corrections to the kinematic theory of neutron optics
performed in the 1980s [57–60] built upon much earlier
work [61–68] and were conducted within the framework of
the traditional multiple scattering theory. Different calcula-
tional methods based on resummation of dominant sub-
classes of diagrams important for backscattering [69] and a
Lindblad operator treatment developed to understand

decoherence in neutron optics [70] give the same results.
All calculations restore consistency with the optical theo-
rem and reduce in appropriate limits to the usual kin-
ematic limit.
As shown by Sears, in the kR ≪ 1 limit of relevance to

this work the dominant correction to the neutron optical
potential can be written in terms of a modified neutron
index of refraction n0:

n0 ¼ 1 −
2πNb0

k2

�
1þ J0 þ πNb0

k2

�
; ð16Þ

where the first two terms are the usual results from the
kinematic theory of neutron optics and the last two terms
come from local field effects and multiple scattering. J0 ¼
Nb

R
exp i  k ·  rGðrÞ½1 − gðrÞ�d3r for an isotropic medium,

where GðrÞ ¼ exp ikr=r is the neutron Green’s function
and gðrÞ is the pair correlation function for the atoms in the
material, n0 is the real part of the neutron index of refraction
with the multiple scattering correction, b0 is the neutron
scattering length with the multiple scattering correction, N
is the number density of atoms in the material, and k is the
incident neutron wave vector. The neutron index of
refraction is defined in the usual way by n ¼ kin=kout
where kin and kout are the neutron wave vectors inside and
outside of the medium. Sears shows that the resulting
relationships between the true real part of the scattering
length b0 and the effective scattering length beff inferred
foregoing the multiple scattering corrections is bT ¼ b0½1þ
J0 þ πρb0

k2 � for interferometry and bGR ¼ b0½1þ J0� for grav-
ity reflectometry. The correction for the neutron interfer-
ometry measurements performed using thermal neutrons
(in the kb ≪ 1 limit) was found by Sears to be of order
10−5, more than 1 order of magnitude smaller than the
measured accuracy and therefore negligible. For the cold
neutron energies employed in the gravity reflectometry
work the size of the corrections is at the 10−4 level, close to
the size of some of the measurement errors for b. Sears’s
scattering corrections were evaluated with 10% accuracy,
which is about 1 order of magnitude more accurate than the
scattering length measurement errors and therefore good
enough for our analysis. Thus the precision with which
these two methods of scattering length measurement can be
compared is not yet limited by our knowledge of the
multiple scattering corrections to the kinematic theory of
neutron optics, a fact that will guide how this method to
search for exotic short-range gravitational interactions of
the Yukawa form might be improved in the future.

VI. DATA EVALUATION AND ANALYSIS

With these upper bounds on the possible differences
between the neutron scattering lengths measured by inter-
ferometry and gravity reflectometry and the corrections to
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the kinematic theory of neutron optics, we can test the
internal consistency of the existing data. Table I presents
the dataset that we analyze to evaluate the internal con-
sistency of the interferometry and gravity reflectometry
data. We used all the available high-precision data for
isotopes that have been measured by both techniques.
Figure 1 shows the difference Δb

jbj ¼ ½bGR−bT �
jbT j as a function

of A. The uncertainties for Δbjbj for the seven nuclei of interest
come from the properly weighted sums of the results
quoted in the references. The weighted mean of these
seven differences is ½2.2� 1.4� × 10−4. We conclude that
these data are internally consistent at the 1.5σ level.
Future analyses which make use of new data and also

other high-precision neutron cross-section measurements
which extend over a broader range of neutron energies and
momentum transfers can make use of this feature to help

determine an internally consistent set of values for bne and
bp and constrain α and λ. An example of a successful global
analysis of this type was presented long ago [82] for a broad
set of neutron optics and scattering data for n-A scattering
for 6 < A < 60 using a S-matrix treatment of the potential
and resonance scattering parameters, including a consistent
treatment of effects from subthreshold resonances.

VII. POSSIBILITIES FOR FUTURE
IMPROVEMENTS

One could extend this test of the internal consistency of
these two methods of scattering length measurements if
desired by measuring the coherent scattering lengths of a
select set of nuclei and compounds using neutron interfer-
ometry to higher precision than they are known at present to
yield a more sensitive comparison with the existing results
from gravity reflectometry. We suggest measurements of
carbon, carbon tetrachloride, gallium, and thallium, which
can be compared to the already-measured gravity reflec-
tometry results for Cl, Ga, and Th. The coherent scattering
lengths for these elements have already been measured by
neutron gravity reflectometry to precision near the 10−4

level needed for a sensitive consistency test. Aside from Th,
which is poisonous in its pure form, the other materials
can be obtained and handled easily in a chemically pure
form and with care can be formed into practical neutron
interferometry targets. One can now obtain carbon of
sufficient thickness, flatness, and density uniformity for
precision neutron interferometry phase shift measurements
in the form of artificial single crystal diamond plates, which
are available with faces cut parallel to the crystal planes.
CCl4 is a liquid at room temperature which can be obtained
in high chemical purity and can be placed in commercially
available rectangular quartz containers, which produce
negligible small angle neutron scattering and whose inter-
nal thickness can be measured to high absolute accuracy

FIG. 1. Fractional difference Δb
jbT j and between the coherent

scattering amplitude bGR as measured by gravity reflectometry
and bT as measured by neutron interferometry for the same
media (hydrogen, deuterium, carbon, oxygen, tin, lead, and
bismuth) along with uncertainties in Δb

jbT j plotted as a function of

nucleon number A. The weighted mean of these seven
differences is ½2.2� 1.4� × 10−4.

TABLE I. A list of the neutron-nucleus scattering length measurements used in this analysis which have been conducted using the
techniques described above. All scattering length units are in fm. The measurements using the gravity reflectometry method bGR were all
performed at the FRM research reactor by the group of Koester et al. The measurements of bT all come from neutron interferometry. The
bT values for H and D come from the analysis presented in the appendix of Schoen et al. [71]. The scattering length value for C comes
from two separate neutron interferometer measurements of 12C and 13C properly weighted in order to be able to compare to the results
from Koester, which used liquids with natural isotopic abundance. The bGR values and the bT values include small corrections for
neutron optics multiple scattering effects as evaluated by Sears [55] and Schoen et al. [71]. All of the interferometer measurements
except for Schoen et al. were conducted at high enough neutron energies that these multiple scattering corrections are negligible. The
accuracy for the scattering amplitudes achieved by both techniques is comparable.

Element A bGR δbGR Refs. (GR) bT δbT Refs. (T) Δb=bT δ½Δb=bT �
1H 1 −3.7406 0.0011 [55,72,73] −3.7384 0.0020 [71] −0.00058 0.00061
2H 2 6.6713 0.0036 [55,72] 6.6649 0.004 [71] 0.00096 0.00081
C 12 6.6460 0.0012 [55,73] 6.6484 0.0013 [74] −0.00015 0.00028
O 16 5.8025 0.0041 [55,72] 5.805 0.004 [72,74] −0.00043 0.00099
Sn 119 6.2257 0.0019 [75] 6.2220 0.0018 [76] 0.00092 0.00044
Pb 207 9.4031 0.0015 [55,75,77] 9.4017 0.002 [78] 0.00015 0.00022
Bi 209 8.5284 0.0011 [55,75,79] 8.5201 0.0034 [80,81] 0.00097 0.00042
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using gauge blocks. Gallium is a liquid at 30 °C and
therefore can easily be produced with a very uniform
density and cast into a form with flat parallel sides. One
would of course need to take care to avoid and suppress
bubbles in the liquid samples. This set of measurements
would help cover the range of nucleon number A more
uniformly and could improve the precision of the consis-
tency test described in this paper. The statistical accuracy
of neutron interferometry phase shift measurements can
approach 10 ppm as was shown in the measurements of the
bound coherent neutron scattering length measurements on
silicon [83].
One can in principle improve on the slow neutron beam

reflectometry measurements of Koester et al. by another
1–2 orders of magnitude by instead using UCN, which can
be confined in material bottles at all angles of incidence and
therefore correspond to neutrons with kinetic energies less
than about 300 neV. One could drop UCN onto a flat level
sample surface, change its height, and measure the reflec-
tivity curve as a function of H as in the Koester approach.
The GRANIT UCN spectrometer [84] nearing completion
at the ILL/Grenoble, which is designed to conduct mea-
surements on UCN gravitational bound states [85] and
therefore already possesses a very flat, horizontal surface,
could more sharply define the starting height of the
neutrons than the cold neutron apparatus of Koester et al.
With the new superfluid-helium-based UCN source [86]
installed to supply GRANIT, one could imagine measuring
the neutron optical potential using the neutron reflectivity
curve with statistical accuracy 1–2 orders of magnitude
better than previous work. However, the multiple scattering
corrections to the optical potential relation to the scattering
length are much larger for UCN than for cold neutrons and
would need to be evaluated to higher precision than they are
known now to be able to make full use of such data for our
purposes. Good choices for the material to be used in such a
measurement could be flat perfect crystals with known
absolute densities at the ppm level such as silicon and
germanium.
Another neutron measurement technique which could

improve the sensitivity of the search for exotic Yukawa
interactions is gravity resonance spectroscopy [87,88]. This
measurement technique creates coherent superpositions of
bound states of neutrons formed in a potential from the
Earth’s gravity and a flat mirror, and one can drive and
resolve resonance transitions using acoustic transducers
in a vibrational version of Ramsey spectroscopy. The
qBOUNCE apparatus has successfully conducted several
measurements, including the proof of principle measure-
ments demonstrating vibrational Rabi spectroscopy [89],
and has sought different types of exotic interactions
[28,33,90–92]. The eigenstate energies of the bouncing
UCN would be shifted in the presence of exotic Yukawa
interactions sourced by the mirror material [93]. A new
version of the qBOUNCE apparatus which is designed to

implement vibrational Ramsey spectroscopy and has seen
its first signal [94] has recently been commissioned. One
can also consider employing a Lloyd’s mirror interferom-
eter for neutrons [95–97] as the interference between the
forward-propagating amplitude and that reflected from the
mirror in this type of interferometer can be sensitive to
the exotic Yukawa phase shift from the mirror surface.
Dynamical diffraction in perfect crystals can measure

bðqÞ at larger values of q of about an inverse angstrom.
However, in this case many other effects must be corrected
for, such as the contributions from the electromagnetic
neutron-atom interaction proportional to bne and due to the
charge form factor of the electron cloud in the atom and
also those from the Debye-Waller factor of the crystal,
which at finite temperatures will need to include informa-
tion on the phonon spectrum as well as possibly other
material properties. The angular distribution of neutron
scattering from noble gas atoms is sensitive to exotic
Yukawa interactions through the q dependence of the form
factor in bYðqÞ and has been used in two recent experiments
which have improved the bounds on exotic Yukawa
interactions with ranges near the angstrom scale. The
recent measurements using this approach which have
improved the upper bounds on α for λ’s below 100 nm
can be improved.
Having said all of this, however, it is prudent also to

emphasize some of the experimental difficulties and extra
theoretical work which would need to be addressed in any
such attempts to achieve the Δb

jbj ¼ 10−5 level of precision.
One would certainly need to control and understand both
the chemical purity, the knowledge of the isotopic compo-
sition of the materials, and possible density nonuniformities
at an uncommon level of detail. In the case of perfect crystal
neutron interferometry one must worry about possible
corrections from geometric and dynamical diffraction
effects in the interferometer blades, and one must control
the external influences of the environment to a severe
degree. The theory for the corrections to the kinematic
theory of neutron optics discussed above would need to be
improved, and as these theoretical corrections also involve
knowledge of the internal structure and atom-atom corre-
lations of the material it is likely that subsidiary measure-
ments using neutron or maybe x-ray scattering would need
to be performed on the samples as input to the theory
corrections.

VIII. CONCLUSION

We present the results of an internal consistency check
on the experimental data from two different types of
measurements of slow neutron scattering amplitudes on
the same nuclei, neutron interferometry with q2 ¼ 0, and
neutron gravity reflectometry with q2 ¼ 8mVopt. We show
that this consistency check is insensitive to possible
corrections from electromagnetic and (possible) exotic
Yukawa interactions in the narrow range of energies and
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momentum transfers accessed in these measurement
methods. We show that the existing data are internally
consistent at the 1.5σ level. The fractional difference Δb

jbj
averaged over the seven elements where data exist on the
same material from both measurement methods is
½2.2� 1.4� × 10−4. One must take into account some
small corrections to the kinematic theory of neutron optics
due to local field and multiple scattering effects to make
this comparison. We view this exercise as an initial step in
a future global analysis of neutron scattering data to bound
possible exotic Yukawa interactions of the neutron. We
outlined a number of ongoing measurement possibilities
using slow neutrons, some now in progress, which could
be used to improve the sensitivity of neutron-based exotic
interaction searches.
Although we considered possible neutron interactions

of Yukawa form, other theories envision power-law
interactions. One could repeat the analysis presented in
this paper for this case as well. Since power-law potentials
fall off much more slowly than the damped exponential
in the Yukawa potential, it is possible that power-law
potentials could introduce a larger difference between the
neutron interferometry and neutron gravity reflectometry
scattering amplitudes. In this case it is possible that the
present data may already provide useful model con-
straints. Although we know of no simple analytical
solutions for these cases, numerical analysis could be
employed to solve for the modifications to the reflectivity
and the accumulated phase shift in neutron interferometry.
A comparison with the data presented in this paper as a
function of nucleon number A could then be used to
constrain exotic interactions with power-law forms.
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APPENDIX: DERIVATION FOR THE NEUTRON
REFLECTIVITY FORMULAE FROM A MIRROR

IN THE PRESENCE OF A YUKAWA
INTERACTION

The reflection amplitude generalized to include the
Yukawa interaction was presented by Taketani in terms
of modified Bessel functions of the first kind as [47]

R ¼ −
ϕo;þð0Þ
ϕo;−ð0Þ

d
dz lnϕi;þðzÞ − d

dz lnϕo;þðzÞ
d
dz lnϕi;þðzÞ − d

dz lnϕo;−ðzÞ

����
z¼0

; ðA1Þ

where as noted in the text ϕo;þ (ϕi;þ) and ϕo;− (ϕi;−) are the
two independent solutions to the wave equation outside
(inside) of the material. In the limit where the potential due
to non-Newtonian gravity is much smaller than the kinetic
energy, the following approximations can be made in this
expression:

ϕo;�ð0Þ ∼ 1 − xo � iyo;a,
d
dz lnϕo;�ðzÞjz¼0 ∼�ikoð1þ 2xo ∓ iðyo;a − yo;bÞÞ,
d
dz lnϕi;�ðzÞjz¼0 ∼�ikið1þ 2xi � iðyi;a − yi;bÞÞ,

where ki;o is the neutron wave vector for inside, outside the
material, and λ is the interaction length for Yukawa-like
gravity. The definitions for the other parameters are

κo;i ¼ ko;i
kg

¼ ko;iλ,

xo ¼ κo
1þκ2o

θ0 ¼ koλ
1þk2oλ2

ð− mnVgλ

2koℏ2
Þ ¼ − mnVgλ

2

ð1þðkoλÞ2Þ2ℏ2,

yo;a ¼ κ2o
1þκ2o

θ0 ¼ κoxo,

yo;b ¼ 1
1þκ2o

θ0 ¼ xo=κo,

xi ¼ κi
1þκ2i

θi ¼ kiλ
1þk2i λ

2 ðmnVgλ

2kiℏ2
Þ ¼ mnVgλ

2

ð1þðkiλÞ2Þ2ℏ2,

yi;a ¼ κ2i
1þκ2i

θi ¼ κixi,

yi;b ¼ 1
1þκ2i

θi ¼ xi=κi,

θo ¼ − mnVg

2kokgℏ2
¼ − mnVgλ

2koℏ2 ,

θi ¼ − mnVg

2kikgℏ2
¼ − mnVgλ

2kiℏ2
.

Substituting into the above expression for the reflectivity
R gives

R ≈ −
�
1 − xo þ iyo;a
1 − xo − iyo;a

�
kið1þ 2xi þ iðyi;a − yi;bÞÞ − kið1þ 2xi − iðyi;a − yi;bÞÞ
kið1þ 2xi þ iðyi;a − yi;bÞÞ þ kið1þ 2xi þ iðyi;a − yi;bÞÞ

ðA2Þ

¼ −
�
1 − xo þ iyo;a
1 − xo − iyo;a

� ½kið1þ 2xiÞ − koð1þ 2xoÞ� þ i½kiðyi;a − yi;bÞ þ koðyo;a − yo;bÞ�
½kið1þ 2xiÞ þ koð1þ 2xoÞ� þ i½kiðyi;a − yi;bÞ þ koðyo;a − yo;bÞ�

: ðA3Þ
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The reflection probability is then given by

jRj2 ¼ ½kið1þ 2xiÞ − koð1þ 2xoÞ�2 þ ½kiðyi;a − yi;bÞ þ koðyo;a − yo;bÞ�2
½kið1þ 2xiÞ þ koð1þ 2xoÞ�2 þ ½kiðyi;a − yi;bÞ þ koðyo;a − yo;bÞ�2

: ðA4Þ

Using ℏ2k2
0

2mn
¼ mngH gives

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

ngH=ℏ2

q
: ðA5Þ

At the critical height, mgH0
c ¼ Vf þ 2Vg, so we can

express ki in terms of H0
c and H:

ℏ2k2i
2mn

¼ ℏ2k2o
2mn

− ðVf þ 2VgÞ

¼ mngðH −H0
cÞ; ðA6Þ

where we use the primed critical height H0
c to denote the

usual critical height due to the Fermi potential, Vf ,

with the addition of the Yukawa-like gravitational
potential Vg.

⇒ ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

ngðH −H0
cÞ=ℏ2

q
: ðA7Þ

The ratio is then given by

ki
ko

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

H0
c

H

r
; ðA8Þ

and substituting into Eq. (A5) gives

jRj2 ¼
h ffiffiffiffiffiffiffiffiffiffiffiffi

1 − H0
c

H

q
ð1þ 2xiÞ − ð1þ 2xoÞ

i2 þ h ffiffiffiffiffiffiffiffiffiffiffiffi
1 − H0

c
H

q
ðyi;a − yi;bÞ þ ðyo;a − yo;bÞ

i2
h ffiffiffiffiffiffiffiffiffiffiffiffi

1 − H0
c

H

q
ð1þ 2xiÞ þ ð1þ 2xoÞ

i2 þ h ffiffiffiffiffiffiffiffiffiffiffiffi
1 − H0

c
H

q
ðyi;a − yi;bÞ þ ðyo;a − yo;bÞ

i2 ðA9Þ

¼
h ffiffiffiffiffiffiffiffiffiffiffiffi

1 − H0
c

H

q
ð1þ 2xiÞ − ð1þ 2xoÞ

i2 þ h ffiffiffiffiffiffiffiffiffiffiffiffi
1 − H0

c
H

q
ðκixi − xi=κiÞ þ ðxoκo − xo=κoÞ

i2
h ffiffiffiffiffiffiffiffiffiffiffiffi

1 − H0
c

H

q
ð1þ 2xiÞ þ ð1þ 2xoÞ

i2 þ h ffiffiffiffiffiffiffiffiffiffiffiffi
1 − H0

c
H

q
ðκixi − xi=κiÞ þ ðxoκo − xo=κoÞ

i2 ðA10Þ

¼
h ffiffiffiffiffiffiffiffiffiffiffiffi

1 − H0
c

H

q �
1þ 2γ

1þκ2i

	
−
�
1 − 2γ

1þκ2o

	i2 þ γ2
h ffiffiffiffiffiffiffiffiffiffiffiffi

1 − H0
c

H

q �
κi

1þκ2i
− 1

κið1þκ2i Þ
	
þ
�
− κo

1þκ2o
þ 1

κoð1þκ2oÞ
	i2

h ffiffiffiffiffiffiffiffiffiffiffiffi
1 − H0

c
H

q �
1þ 2γ

1þκ2i

	
þ
�
1 − 2γ

1þκ2o

	i2 þ γ2
h ffiffiffiffiffiffiffiffiffiffiffiffi

1 − H0
c

H

q �
κi

1þκ2i
− 1

κið1þκ2i Þ
	
þ
�
− κo

1þκ2o
þ 1

κoð1þκ2oÞ
	i2 ; ðA11Þ

where γ ¼ mnVgλ
2

2ℏ2 is a small parameter proportional to the Yukawa-like gravitational potential Vg and Vg is written in terms
of a coupling parameter αg as Vg ¼ Gmnπραgλ

2=2.

Finally, since γ ≪ 1 we can neglect terms proportional to it and rewrite the reflectivity as

jRj2 ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H0

c=H
p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H0

c=H
p

�2
: ðA12Þ
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