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1. Introduction

The cusp anomalous dimension of N = 4 super Yang-Mills theory has long been recognized as an important probe of the infrared 
structure of massless gauge theory scattering amplitudes [1]. In fact, the four-loop correction to the cusp anomalous dimension represents 
the first non-trivial check of the so-called Casimir scaling conjecture [2–4], a proposal which would imply that the leading infrared poles 
of massless gauge theory scattering amplitudes have a universal, semi-classical origin. From numerical studies in N = 4 super Yang-Mills 
theory [5,6] and QCD [7,8] it is now clear that the Casimir scaling conjecture must be generalized [9,10] to accommodate color structures 
built out of quartic Casimir operators. While an analytic expression for the leading-color four-loop cusp anomalous dimension in N = 4
super Yang-Mills was proposed long ago in [11] (and subsequently confirmed in [12,13]), the analytic sub-leading-color corrections were 
first discussed in the literature only recently in [14].
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A possible method to obtain the cusp anomalous dimension is via the calculation of the ε−2 pole of the N = 4 Sudakov form factor 
[15]. The latter was derived to three loops in [16], while its four-loop integrand [17], reduction [18], transformation to a uniformly 
transcendental basis, and numerical integration [5,6] became available over the years. The ε−1 pole of the Sudakov form factor is related 
to the collinear anomalous dimension, whose planar-color part is known both numerically [19] and analytically [20], while the non-planar-
color part was computed numerically in [6]. Ongoing efforts to compute the finite (i.e. O(ε0)) part of massless form factors both in N = 4
super Yang-Mills theory and QCD can be found in [21–28].

In this paper, we confirm the result of [14] by providing an alternative, fully-independent analytic derivation of the full four-loop cusp 
anomalous dimension of the N = 4 model. From the ε−2 pole of the N = 4 Sudakov form factor, we use the infrared evolution equation 
satisfied by the form factor [29] to read off the cusp anomalous dimension. In order to calculate the Laurent expansions of the 55 ten-, 
eleven-, and twelve-line four-loop form factor master integrals which contribute to the form factor, the method of parametric integrations 
for a basis of finite integrals [30,31] is used. In Section 2, we give our conventions for the Sudakov form factor of N = 4 super Yang-Mills 
theory and, in Section 3, we recall the compact formula for the integrand derived in reference [6]. In Section 4, we present analytic results 
for all 55 master integrals through to O

(
ε−2

)
. As expected from the analysis of [6], our results are built out of Riemann zeta values of 

uniform weight 8 + k at O
(
εk

)
. We present the main results of this paper, the Laurent expansion of the Sudakov form factor and the 

associated cusp anomalous dimension, in Section 5. Finally, we conclude in Section 6.

2. Notation and conventions

Up to an unimportant overall normalization factor, the Sudakov form factor of N = 4 super Yang-Mills theory may be defined as in 
references [15,16] in terms of scalar fields,

F =
∫

d4x e−i q·x〈φa
12(p1)φ

b
12(p2)|

[
φc

34φ
c
34

]
(x) |0〉. (2.1)

In Eq. (2.1), field superscripts denote adjoint SU (Nc) color indices and field subscripts denote SU (4)R indices. It is convenient to expand 
the Sudakov form factor in a modified bare ’t Hooft coupling,

g2 = Nc g2
N=4

16π2

(
4πe−γE

)ε
, (2.2)

where Nc is the number of colors, gN=4 is the bare coupling of the model, γE is Euler’s constant, and ε = (4 − d)/2 is the parameter 
of dimensional regularization. At each order in perturbation theory, the perturbative expansion coefficients of the Sudakov form factor 
depend on a virtuality parameter, q2 = (p1 + p2)

2, which may be set to −1 without loss of generality. In terms of the modified bare ’t 
Hooft coupling, we then have

F = F tree
∞∑

�=0

g2� F (�) (2.3)

for the Sudakov form factor.

3. Integrand for the N = 4 four-loop Sudakov form factor

In this section, we recall the compact form presented in Section 4 of reference [6] for the unintegrated four-loop Sudakov form factor. 
The expression below was derived in earlier work using loop-level color-kinematics duality [17], integration by parts identities [18,32–34], 
and a systematic construction of and projection onto (conjectured) uniform-transcendentality master integrals [6]. As expected, it splits 
naturally into a leading-color (planar-color) part and a sub-leading-color (non-planar-color) part.1 We have

F (4) = 2

[
8I(1)

p,1 + 2I(2)
p,2 − 2I(3)

p,3 + 2I(4)
p,4 + 1

2
I(5)
p,5 + 2I(6)

p,6 + 4I(7)
p,7 + 2I(9)

p,8 − 2I(10)
p,9 + I(12)

p,10

+ I(12)
p,11 + 2I(13)

p,12 + 2I(14)
p,13 − 2I(17)

p,14 + 2I(17)
p,15 − 2I(19)

p,16 + I(19)
p,17 + I(21)

p,18 + 1

2
I(25)
p,19 + 2I(30)

p,20 + 2I(13)
p,21

+ 4I(14)
p,22 − 2I(14)

p,23 − I(14)
p,24 + 4I(17)

p,25 − I(17)
p,26 − 2I(17)

p,27 − 2I(17)
p,28 − I(19)

p,29 − I(19)
p,30 + I(19)

p,31 − 1

2
I(30)
p,32

]

+ 48

N2
c

[
1

2
I(21)
1 + 1

2
I(22)
2 + 1

2
I(23)
3 − I(24)

4 + 1

4
I(25)
5 − 1

4
I(26)
6 − 1

4
I(26)
7 + 2I(27)

8 + I(28)
9

+ 4I(29)
10 + I(30)

11 + I(27)
12 − 1

2
I(28)
13 + I(29)

14 + I(29)
15 + I(30)

16 + I(30)
17 + I(30)

18 + I(22)
19 + I(22)

20

− I(24)
21 + 1

4
I(24)
22 + 1

2
I(28)
23

]
, (3.1)

1 Note that non-trivial non-planar master integrals also contribute to the leading-color part.
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where F (4) is defined in Section 2. The precise definition of the integrals in Eq. (3.1) can be found in [6]. Note also that three integrals 
appear in both the planar-color and non-planar-color parts:

I(21)
1 = I(21)

p,18, I(25)
5 = I(25)

p,19, I(30)
11 = I(30)

p,20. (3.2)

Laurent expansions of the master integrals through to O(ε−2) are provided in the next section.

4. Master integrals to weight six

In this section, we provide results for the (conjectured) uniform-transcendentality master integrals which appear on the right-hand side 
of Eq. (3.1), up to and including terms of transcendental weight six. From the definitions of Section 2, it is evident that we employ the MS
normalization convention for our master integrals. In total, 32 integrals contribute to the planar-color part and 23 integrals contribute to 
the non-planar-color part.

I(1)
p,1 = 1

ε8

(
1

576

)
+ 1

ε6

(
17

288
ζ2

)
+ 1

ε5

(
89

432
ζ3

)
+ 1

ε4

(
677

720
ζ 2

2

)

+ 1

ε3

(
5489

720
ζ5 + 487

216
ζ3ζ2

)
+ 1

ε2

(
1571

324
ζ 2

3 + 3919

420
ζ 3

2

)
+O

(
ε−1) (4.1)

I(2)
p,2 = 1

ε8

(
1

144

)
+ 1

ε6

(
− 13

144
ζ2

)
+ 1

ε5

(
−577

432
ζ3

)
+ 1

ε4

(
−269

80
ζ 2

2

)

+ 1

ε3

(
−4309

720
ζ5 − 236

27
ζ3ζ2

)
+ 1

ε2

(
115529

1296
ζ 2

3 − 13721

1260
ζ 3

2

)
+O

(
ε−1) (4.2)

I(3)
p,3 = 1

ε8

(
− 1

288

)
+ 1

ε6

(
− 17

144
ζ2

)
+ 1

ε5

(
−233

216
ζ3

)
+ 1

ε4

(
−173

360
ζ 2

2

)

+ 1

ε3

(
−16529

360
ζ5 + 2033

108
ζ3ζ2

)
+ 1

ε2

(
−8717

162
ζ 2

3 − 615

14
ζ 3

2

)
+O

(
ε−1) (4.3)

I(4)
p,4 = 1

ε8

(
1

288

)
+ 1

ε6

(
17

144
ζ2

)
+ 1

ε5

(
89

216
ζ3

)
+ 1

ε4

(
533

360
ζ 2

2

)

+ 1

ε3

(
7469

360
ζ5 + 163

108
ζ3ζ2

)
+ 1

ε2

(
1150

81
ζ 2

3 + 218

35
ζ 3

2

)
+O

(
ε−1) (4.4)

I(5)
p,5 = 1

ε8

(
1

72

)
+ 1

ε6

(
−13

72
ζ2

)
+ 1

ε5

(
−577

216
ζ3

)
+ 1

ε4

(
−887

120
ζ 2

2

)

+ 1

ε3

(
−21109

360
ζ5 − 4

27
ζ3ζ2

)
+ 1

ε2

(
193721

648
ζ 2

3 − 2897

30
ζ 3

2

)
+O

(
ε−1) (4.5)

I(6)
p,6 = 1

ε8

(
1

576

)
+ 1

ε6

(
7

144
ζ2

)
+ 1

ε5

(
169

864
ζ3

)
+ 1

ε4

(
713

1440
ζ 2

2

)

+ 1

ε3

(
3013

1440
ζ5 + 115

216
ζ3ζ2

)
+ 1

ε2

(
−13919

2592
ζ 2

3 + 1759

7560
ζ 3

2

)
+O

(
ε−1) (4.6)

I(7)
p,7 = 1

ε8

(
11

576

)
+ 1

ε6

(
11

48
ζ2

)
+ 1

ε5

(
1937

864
ζ3

)
+ 1

ε4

(
487

360
ζ 2

2

)

+ 1

ε3

(
94313

1440
ζ5 − 1505

48
ζ3ζ2

)
+ 1

ε2

(
−14483

324
ζ 2

3 + 35053

1260
ζ 3

2

)
+O

(
ε−1) (4.7)

I(9)
p,8 = 1

ε8

(
1

576

)
+ 1

ε6

(
1

24
ζ2

)
+ 1

ε5

(
163

864
ζ3

)
+ 1

ε4

(
161

160
ζ 2

2

)
+ 1

ε3

(
5803

1440
ζ5 + 253

36
ζ3ζ2

)

+ 1

ε2

(
59509

2592
ζ 2

3 + 119

6
ζ 3

2

)
+O

(
ε−1) (4.8)

I(10)
p,9 = 1

ε8

(
− 13

576

)
+ 1

ε6

(
5

48
ζ2

)
+ 1

ε5

(
743

864
ζ3

)
+ 1

ε4

(
167

480
ζ 2

2

)

+ 1

ε3

(
82931

1440
ζ5 − 179

9
ζ3ζ2

)
+ 1

ε2

(
425345

2592
ζ 2

3 + 4163

90
ζ 3

2

)
+O

(
ε−1) (4.9)

I(12)
p,10 = 1

ε8

(
− 1

72

)
+ 1

ε6

(
− 29

144
ζ2

)
+ 1

ε5

(
−577

432
ζ3

)
+ 1

ε4

(
31

240
ζ 2

2

)

+ 1

ε3

(
−36367

720
ζ5 + 4019

108
ζ3ζ2

)
+ 1

ε2

(
128729

1296
ζ 2

3 − 4741

252
ζ 3

2

)
+O

(
ε−1) (4.10)

I(12)
p,11 = 1

8

(
1

)
+ 1

6

(
− 1

ζ2

)
+ 1

5

(
− 1

ζ3

)
+ 1

4

(
57

ζ 2
2

)

ε 144 ε 144 ε 432 ε 80
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+ 1

ε3

(
−38149

720
ζ5 + 1061

54
ζ3ζ2

)
+ 1

ε2

(
−237775

1296
ζ 2

3 − 37363

2520
ζ 3

2

)
+O

(
ε−1) (4.11)

I(13)
p,12 = 1

ε8

(
1

576

)
+ 1

ε6

(
1

24
ζ2

)
+ 1

ε5

(
181

864
ζ3

)
+ 1

ε4

(
57

80
ζ 2

2

)
+ 1

ε3

(
5833

1440
ζ5 + 595

144
ζ3ζ2

)

+ 1

ε2

(
2083

162
ζ 2

3 + 33163

2520
ζ 3

2

)
+O

(
ε−1) (4.12)

I(14)
p,13 = 1

ε8

(
23

576

)
+ 1

ε6

(
− 47

144
ζ2

)
+ 1

ε5

(
−1789

864
ζ3

)
+ 1

ε4

(
−433

288
ζ 2

2

)

+ 1

ε3

(
−60961

1440
ζ5 + 4765

216
ζ3ζ2

)
+ 1

ε2

(
134567

2592
ζ 2

3 − 52957

2520
ζ 3

2

)
+O

(
ε−1) (4.13)

I(17)
p,14 = 1

ε8

(
− 3

64

)
+ 1

ε6

(
31

96
ζ2

)
+ 1

ε5

(
3

4
ζ3

)
+ 1

ε4

(
−6541

1440
ζ 2

2

)

+ 1

ε3

(
−1063

20
ζ5 − 781

36
ζ3ζ2

)
+ 1

ε2

(
2741

144
ζ 2

3 − 192937

2016
ζ 3

2

)
+O

(
ε−1) (4.14)

I(17)
p,15 = 1

ε8

(
1

576

)
+ 1

ε6

(
−1

8
ζ2

)
+ 1

ε5

(
−319

432
ζ3

)
+ 1

ε4

(
1201

2880
ζ 2

2

)

+ 1

ε3

(
−1373

360
ζ5 + 2353

144
ζ3ζ2

)
+ 1

ε2

(
7328

81
ζ 2

3 + 67729

4032
ζ 3

2

)
+O

(
ε−1) (4.15)

I(19)
p,16 = 1

ε8

(
− 1

96

)
+ 1

ε6

(
− 53

288
ζ2

)
+ 1

ε5

(
−337

288
ζ3

)
+ 1

ε4

(
−637

240
ζ 2

2

)

+ 1

ε3

(
−27601

480
ζ5 + 1541

216
ζ3ζ2

)
+ 1

ε2

(
−4069

288
ζ 2

3 − 524371

10080
ζ 3

2

)
+O

(
ε−1) (4.16)

I(19)
p,17 = 1

ε8

(
5

288

)
+ 1

ε6

(
−139

288
ζ2

)
+ 1

ε5

(
−3809

864
ζ3

)
+ 1

ε4

(
−2609

240
ζ 2

2

)

+ 1

ε3

(
−56425

288
ζ5 + 10235

432
ζ3ζ2

)
+ 1

ε2

(
80651

1296
ζ 2

3 − 184073

1008
ζ 3

2

)
+O

(
ε−1) (4.17)

I(21)
p,18 = 1

ε8

(
1

576

)
+ 1

ε6

(
1

36
ζ2

)
+ 1

ε5

(
151

864
ζ3

)
+ 1

ε4

(
173

288
ζ 2

2

)
+ 1

ε3

(
5503

1440
ζ5 + 505

216
ζ3ζ2

)

+ 1

ε2

(
9895

2592
ζ 2

3 + 6317

720
ζ 3

2

)
+O

(
ε−1) (4.18)

I(25)
p,19 = 1

ε8

(
1

288

)
+ 1

ε6

(
1

144
ζ2

)
+ 1

ε5

(
209

216
ζ3

)
+ 1

ε4

(
623

120
ζ 2

2

)

+ 1

ε3

(
39449

360
ζ5 − 205

108
ζ3ζ2

)
+ 1

ε2

(
11621

162
ζ 2

3 + 38501

315
ζ 3

2

)
+O

(
ε−1) (4.19)

I(30)
p,20 = 1

ε8

(
1

288

)
+ 1

ε6

(
− 1

32
ζ2

)
+ 1

ε5

(
−187

864
ζ3

)
+ 1

ε4

(
−403

720
ζ 2

2

)

+ 1

ε3

(
−38659

1440
ζ5 + 191

36
ζ3ζ2

)
+ 1

ε2

(
−14047

2592
ζ 2

3 − 284189

10080
ζ 3

2

)
+O

(
ε−1) (4.20)

I(13)
p,21 = 1

ε5

(
1

24
ζ3

)
+ 1

ε3

(
7

12
ζ5 − 5

12
ζ3ζ2

)
+ 1

ε2

(
−193

72
ζ 2

3 + 6389

2520
ζ 3

2

)
+O

(
ε−1) (4.21)

I(14)
p,22 = 1

ε6

(
1

48
ζ2

)
+ 1

ε5

(
− 7

48
ζ3

)
+ 1

ε4

(
− 13

240
ζ 2

2

)
+ 1

ε3

(
−281

48
ζ5 + 17

9
ζ3ζ2

)

+ 1

ε2

(
439

144
ζ 2

3 − 8053

2520
ζ 3

2

)
+O

(
ε−1) (4.22)

I(14)
p,23 = 1

ε4

(
− 7

20
ζ 2

2

)
+ 1

ε3

(
−377

24
ζ5 + 97

12
ζ3ζ2

)
+ 1

ε2

(
433

24
ζ 2

3 − 8531

840
ζ 3

2

)
+O

(
ε−1) (4.23)

I(14)
p,24 = 1

ε8

(
5

48

)
+ 1

ε6

(
−65

72
ζ2

)
+ 1

ε5

(
−293

48
ζ3

)
+ 1

ε4

(
−2171

480
ζ 2

2

)

+ 1

ε3

(
−4019

48
ζ5 + 11495

216
ζ3ζ2

)
+ 1

ε2

(
82361

432
ζ 2

3 − 163871

10080
ζ 3

2

)
+O

(
ε−1) (4.24)

I(17)
p,25 = 1

8

(
1

)
+ 1

6

(
−11

ζ2

)
+ 1

5

(
−11

ζ3

)
+ 1

4

(
−2743

ζ 2
2

)

ε 96 ε 96 ε 9 ε 960
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+ 1

ε3

(
−2329

80
ζ5 − 11

36
ζ3ζ2

)
+ 1

ε2

(
26141

864
ζ 2

3 − 642007

20160
ζ 3

2

)
+O

(
ε−1) (4.25)

I(17)
p,26 = 1

ε8

(
5

144

)
+ 1

ε6

(
−2

9
ζ2

)
+ 1

ε5

(
−331

216
ζ3

)
+ 1

ε4

(
1171

240
ζ 2

2

)

+ 1

ε3

(
3857

36
ζ5 + 2041

216
ζ3ζ2

)
+ 1

ε2

(
72223

1296
ζ 2

3 + 67171

504
ζ 3

2

)
+O

(
ε−1) (4.26)

I(17)
p,27 = 1

ε5

(
1

48
ζ3

)
+ 1

ε4

(
− 7

160
ζ 2

2

)
+ 1

ε3

(
91

48
ζ5 − 113

48
ζ3ζ2

)

+ 1

ε2

(
1063

288
ζ 2

3 − 13751

5040
ζ 3

2

)
+O

(
ε−1) (4.27)

I(17)
p,28 = 1

ε6

(
1

24
ζ2

)
+ 1

ε5

(
−1

8
ζ3

)
+ 1

ε4

(
1

60
ζ 2

2

)
+ 1

ε3

(
20

3
ζ5 − 29

36
ζ3ζ2

)

+ 1

ε2

(
703

24
ζ 2

3 + 11281

1260
ζ 3

2

)
+O

(
ε−1) (4.28)

I(19)
p,29 = 1

ε8

(
− 1

36

)
+ 1

ε6

(
− 1

16
ζ2

)
+ 1

ε5

(
−107

432
ζ3

)
+ 1

ε4

(
9

2
ζ 2

2

)

+ 1

ε3

(
18091

720
ζ5 + 467

12
ζ3ζ2

)
+ 1

ε2

(
155179

1296
ζ 2

3 + 348347

5040
ζ 3

2

)
+O

(
ε−1) (4.29)

I(19)
p,30 = 1

ε5

(
− 7

24
ζ3

)
+ 1

ε4

(
− 5

48
ζ 2

2

)
+ 1

ε3

(
69

8
ζ5 + 7

4
ζ3ζ2

)

+ 1

ε2

(
1885

72
ζ 2

3 + 8131

1008
ζ 3

2

)
+O

(
ε−1) (4.30)

I(19)
p,31 = 1

ε8

(
− 11

288

)
+ 1

ε6

(
65

288
ζ2

)
+ 1

ε5

(
−2005

864
ζ3

)
+ 1

ε4

(
63

80
ζ 2

2

)

+ 1

ε3

(
115559

1440
ζ5 − 4519

432
ζ3ζ2

)
+ 1

ε2

(
18203

162
ζ 2

3 + 22915

252
ζ 3

2

)
+O

(
ε−1) (4.31)

I(30)
p,32 = 1

ε8

(
− 1

12

)
+ 1

ε6

(
35

48
ζ2

)
+ 1

ε5

(
445

144
ζ3

)
+ 1

ε4

(
−269

240
ζ 2

2

)

+ 1

ε3

(
2767

80
ζ5 − 1433

36
ζ3ζ2

)
+ 1

ε2

(
−14051

432
ζ 2

3 − 8363

630
ζ 3

2

)
+O

(
ε−1) (4.32)

I(21)
1 = I(21)

p,18 (4.33)

I(22)
2 = 1

ε8

(
1

192

)
+ 1

ε6

(
−19

72
ζ2

)
+ 1

ε5

(
−61

32
ζ3

)
+ 1

ε4

(
−5089

1440
ζ 2

2

)

+ 1

ε3

(
−41237

480
ζ5 + 4111

216
ζ3ζ2

)
+ 1

ε2

(
−2881

864
ζ 2

3 − 8259

112
ζ 3

2

)
+O

(
ε−1) (4.34)

I(23)
3 = 1

ε8

(
1

144

)
+ 1

ε6

(
− 5

18
ζ2

)
+ 1

ε5

(
−401

216
ζ3

)
+ 1

ε4

(
19

16
ζ 2

2

)

+ 1

ε3

(
−16277

360
ζ5 + 13151

216
ζ3ζ2

)
+ 1

ε2

(
248513

1296
ζ 2

3 + 751

45
ζ 3

2

)
+O

(
ε−1) (4.35)

I(24)
4 = 1

ε8

(
− 5

576

)
+ 1

ε6

(
65

144
ζ2

)
+ 1

ε5

(
1645

864
ζ3

)
+ 1

ε4

(
−109

40
ζ 2

2

)

+ 1

ε3

(
2093

288
ζ5 − 9361

216
ζ3ζ2

)
+ 1

ε2

(
−166229

2592
ζ 2

3 − 289223

10080
ζ 3

2

)
+O

(
ε−1) (4.36)

I(25)
5 = I(25)

p,19 (4.37)

I(26)
6 = 1

ε8

(
− 25

576

)
+ 1

ε6

(
313

288
ζ2

)
+ 1

ε5

(
1241

216
ζ3

)
+ 1

ε4

(
−3671

720
ζ 2

2

)

+ 1

ε3

(
275

9
ζ5 − 7033

54
ζ3ζ2

)
+ 1

ε2

(
−210031

648
ζ 2

3 − 9349

105
ζ 3

2

)
+O

(
ε−1) (4.38)

I(26)
7 = 1

ε8

(
1

288

)
+ 1

ε6

(
1

144
ζ2

)
+ 1

ε5

(
209

216
ζ3

)
+ 1

ε4

(
43

40
ζ 2

2

)

+ 1
3

(
−5761

ζ5 + 59
ζ3ζ2

)
+ 1

2

(
27179

ζ 2
3 − 17501

ζ 3
2

)
+O

(
ε−1) (4.39)
ε 360 27 ε 648 2520
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I(27)
8 = 1

ε8

(
− 1

64

)
+ 1

ε6

(
5

24
ζ2

)
+ 1

ε5

(
55

48
ζ3

)
+ 1

ε4

(
49

320
ζ 2

2

)

+ 1

ε3

(
1183

240
ζ5 − 3395

288
ζ3ζ2

)
+ 1

ε2

(
−20561

576
ζ 2

3 − 39377

1680
ζ 3

2

)
+O

(
ε−1) (4.40)

I(28)
9 = 1

ε8

(
− 1

96

)
+ 1

ε6

(
97

288
ζ2

)
+ 1

ε5

(
271

144
ζ3

)
+ 1

ε4

(
−3793

2880
ζ 2

2

)

+ 1

ε3

(
4291

120
ζ5 − 21359

432
ζ3ζ2

)
+ 1

ε2

(
−19235

144
ζ 2

3 + 1397

576
ζ 3

2

)
+O

(
ε−1) (4.41)

I(29)
10 = 1

ε8

(
− 1

1152

)
+ 1

ε6

(
− 1

576
ζ2

)
+ 1

ε5

(
− 13

1728
ζ3

)
+ 1

ε4

(
169

640
ζ 2

2

)

+ 1

ε3

(
26357

2880
ζ5 + 685

1728
ζ3ζ2

)
+ 1

ε2

(
186637

10368
ζ 2

3 + 57191

5040
ζ 3

2

)
+O

(
ε−1) (4.42)

I(30)
11 = I(30)

p,20 (4.43)

I(27)
12 = 1

ε8

(
35

1152

)
+ 1

ε6

(
− 73

192
ζ2

)
+ 1

ε5

(
−1015

432
ζ3

)
+ 1

ε4

(
−4069

1440
ζ 2

2

)

+ 1

ε3

(
−8693

144
ζ5 + 5809

288
ζ3ζ2

)
+ 1

ε2

(
260783

5184
ζ 2

3 − 36499

2240
ζ 3

2

)
+O

(
ε−1) (4.44)

I(28)
13 = 1

ε8

(
− 13

1152

)
+ 1

ε6

(
35

192
ζ2

)
+ 1

ε5

(
305

432
ζ3

)
+ 1

ε4

(
461

1440
ζ 2

2

)

+ 1

ε3

(
4001

180
ζ5 − 461

72
ζ3ζ2

)
+ 1

ε2

(
11243

324
ζ 2

3 + 4295

336
ζ 3

2

)
+O

(
ε−1) (4.45)

I(29)
14 = 1

ε5

(
− 1

32
ζ3

)
+ 1

ε4

(
9

320
ζ 2

2

)
+ 1

ε3

(
−371

96
ζ5 + 91

48
ζ3ζ2

)

+ 1

ε2

(
−223

96
ζ 2

3 + 653

576
ζ 3

2

)
+O

(
ε−1) (4.46)

I(29)
15 = 1

ε8

(
− 1

18

)
+ 1

ε6

(
53

48
ζ2

)
+ 1

ε5

(
2621

432
ζ3

)
+ 1

ε4

(
−1423

1440
ζ 2

2

)

+ 1

ε3

(
54437

720
ζ5 − 7751

72
ζ3ζ2

)
+ 1

ε2

(
−413683

1296
ζ 2

3 − 410153

10080
ζ 3

2

)
+O

(
ε−1) (4.47)

I(30)
16 = 1

ε8

(
7

192

)
+ 1

ε6

(
−35

96
ζ2

)
+ 1

ε5

(
−271

144
ζ3

)
+ 1

ε4

(
− 49

160
ζ 2

2

)

+ 1

ε3

(
−6037

240
ζ5 + 3343

144
ζ3ζ2

)
+ 1

ε2

(
42271

864
ζ 2

3 + 1711

315
ζ 3

2

)
+O

(
ε−1) (4.48)

I(30)
17 = 1

ε5

(
− 1

32
ζ3

)
+ 1

ε4

(
37

960
ζ 2

2

)
+ 1

ε3

(
49

96
ζ5 + 9

16
ζ3ζ2

)

+ 1

ε2

(
−625

96
ζ 2

3 + 81401

20160
ζ 3

2

)
+O

(
ε−1) (4.49)

I(30)
18 = 1

ε8

(
1

288

)
+ 1

ε6

(
11

288
ζ2

)
+ 1

ε5

(
− 1

864
ζ3

)
+ 1

ε4

(
−241

160
ζ 2

2

)

+ 1

ε3

(
−18559

1440
ζ5 − 9749

864
ζ3ζ2

)
+ 1

ε2

(
−153467

5184
ζ 2

3 − 763019

20160
ζ 3

2

)
+O

(
ε−1) (4.50)

I(22)
19 = 1

ε8

(
1

576

)
+ 1

ε6

(
29

288
ζ2

)
+ 1

ε5

(
269

432
ζ3

)
+ 1

ε4

(
553

360
ζ 2

2

)

+ 1

ε3

(
43109

720
ζ5 − 349

27
ζ3ζ2

)
+ 1

ε2

(
57485

1296
ζ 2

3 + 142267

2520
ζ 3

2

)
+O

(
ε−1) (4.51)

I(22)
20 = 1

ε2

(
1

4
ζ 2

3 + 31

140
ζ 3

2

)
+O

(
ε−1) (4.52)

I(24)
21 = 1

ε8

(
5

576

)
+ 1

ε6

(
37

288
ζ2

)
+ 1

ε5

(
229

432
ζ3

)
+ 1

ε4

(
−541

360
ζ 2

2

)

+ 1
3

(
1799

ζ5 − 13385
ζ3ζ2

)
+ 1

2

(
−259405

ζ 2
3 − 222371

ζ 3
2

)
+O

(
ε−1) (4.53)
ε 144 432 ε 2592 10080
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I(24)
22 = 1

ε8

(
1

144

)
+ 1

ε6

(
− 1

18
ζ2

)
+ 1

ε5

(
−263

216
ζ3

)
+ 1

ε4

(
−3127

720
ζ 2

2

)

+ 1

ε3

(
−27287

360
ζ5 + 683

108
ζ3ζ2

)
+ 1

ε2

(
35743

648
ζ 2

3 − 71705

1008
ζ 3

2

)
+O

(
ε−1) (4.54)

I(28)
23 = 1

ε4

(
1

4
ζ 2

2

)
+ 1

ε3

(
5

4
ζ5 + 3

4
ζ3ζ2

)
+ 1

ε2

(
117

8
ζ 2

3 − 659

168
ζ 3

2

)
+O

(
ε−1) (4.55)

The above expressions were derived from results for finite master integrals calculated in reference [35] for the determination of the 
cusp anomalous dimensions of massless QCD. A key feature of the finite integral analysis is that the most complicated, non-linearly 
reducible master integrals, e.g. I(19)

p,16, I(19)
p,17, I(26)

6 , and I(26)
7 , may be computed through to weight six by judiciously choosing finite integrals 

in the relevant integral topologies which first contribute to the form factor at transcendental weight seven (i.e. at the level of the ε−1

pole). The finite integrals were defined allowing for shifted dimensions and additional powers of the propagators (dots) [30,31,36,37]
using the integral finder in Reduze 2 [38] and, in linearly-reducible cases, integrated in the Feynman parametric representation using
HyperInt [39]. In order to express the above 55 integrals from reference [6] in terms of finite integrals, linear relations between integrals 
were computed using finite field arithmetic [22,40]. Moreover, syzygies were employed to avoid numerators in the reductions of integrals 
with many dots [25,41,42]. Note that analytic results for a subset of the integrals discussed here were presented in previous works [21,23,
25–27].

5. Results

5.1. The N = 4 four-loop Sudakov form factor to weight six

Combining the formulae contained in Sections 3 and 4, we find

F (4) = 1

ε8

(
2

3

)
+ 1

ε6

(
2

3
ζ2

)
+ 1

ε5

(
−38

9
ζ3

)
+ 1

ε4

(
5

18
ζ 2

2

)
+ 1

ε3

(
1082

15
ζ5 + 23

3
ζ3ζ2

)

+ 1

ε2

(
10853

54
ζ 2

3 + 95477

945
ζ 3

2

)
+ 1

N2
c

[
1

ε2

(
18ζ 2

3 + 372

35
ζ 3

2

)]
+O

(
ε−1) . (5.1)

It is worth pointing out that, via the principle of maximal transcendentality [43,44], the ε−8 − ε−3 poles may be inferred in a straight-
forward manner from the renormalization group predictions of reference [29] for the four-loop quark form factor of massless QCD. 
Alternatively, they can be predicted by the requirement that the logarithm of the form factor has at most a double pole in ε .

5.2. The N = 4 four-loop cusp anomalous dimension

The renormalization group analysis of references [29,45], together with the known higher-order-in-ε results for the one-, two-, and 
three-loop form factors [16], we see that the ε−2 pole of the N = 4 Sudakov form factor must be

− 1

32
�N=4

4 + 10799

54
ζ 2

3 + 89564

945
ζ 3

2 , (5.2)

where �N=4
4 is the four-loop cusp anomalous dimension of the N = 4 model. Its relation to γ (4)

cusp defined in [5,6] is γ (4)
cusp = 2 �N=4

4 . By 
comparing to Eq. (5.1) above, we see immediately that

�N=4
4 = −32ζ 2

3 − 7008

35
ζ 3

2 + 1

N2
c

[
− 576ζ 2

3 − 11904

35
ζ 3

2

]
. (5.3)

While the leading-color part of Eq. (5.3) has long been known [11–13], our calculation of �N=4
4 provides a strong check on the original 

numerical analysis of the N = 4 form factor [5,6] and on the analytic four-loop N = 4 Wilson loop analysis in [14].

6. Conclusions

We calculated the full four-loop cusp anomalous dimension of N = 4 supersymmetric Yang-Mills theory analytically. Our result was 
derived from the four-loop Sudakov form factor using parametric integrations of finite master integrals calculated in [35] for the determi-
nation of the cusp anomalous dimensions in QCD. In our approach, the most complicated integral topologies decouple from the calculation 
of the cusp because their finite master integrals may be judiciously selected to first contribute to the ε−1 pole of the Sudakov form factor. 
Our calculation confirms the result of the very recent independent calculation of the N = 4 cusp anomalous dimension in [14] based on 
the Wilson loop picture. Our findings are in agreement with the earlier semi-numerical analysis of [5,6] at the level of the master inte-
grals, for which we provide uniformly transcendental analytic results through to weight six. The analytic results for the master integrals 
strongly suggest that the full four-loop form factor in N = 4 super Yang-Mills is uniformly transcendental.
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