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Figure 1: Examples of the (top) 4 input datasets (see section 4 for a description of the data). TopoLines results are shown for (middle)
low and (bottom) high levels of smoothing, defined by the percent of local extrema removed. TopoLines works by preserving high amplitude
extrema and flattening low amplitude ones while maintaining low residual error. See the supplement for the measures described in section 3.

Abstract

Line charts are commonly used to visualize a series of data values. When the data are noisy, smoothing is applied to
make the signal more apparent. Conventional methods used to smooth line charts, e.g., using subsampling or filters,
such as median, Gaussian, or low-pass, each optimize for different properties of the data. The properties generally do
not include retaining peaks (i.e., local minima and maxima) in the data, which is an important feature for certain visual
analytics tasks. We present TopoLines, a method for smoothing line charts using techniques from Topological Data Analysis.
The design goal of TopoLines is to maintain prominent peaks in the data while minimizing any residual error. We evaluate
TopoLines for 2 visual analytics tasks by comparing to 5 popular line smoothing methods with data from 4 application domains.

CCS Concepts

o Human-centered computing — Information visualization; Visualization design and evaluation methods;

1. Introduction

Line charts are used to analyze data in a variety of applications,
including identifying stock trends, tracking weather changes, un-
derstanding brain activity, etc. While significant increases in data
availability allow users to create plots with many data points, reliev-
ing visual clutter requires performing additional data processing,
such as smoothing. However, the way smoothing modifies the data
can have an impact on the performance of visual analytics tasks. We
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consider smoothing in the context of 2 low-level tasks [AES05],
finding extrema (i.e., local minima and maxima) and retrieving a
value. These tasks, in essence, require that any smoothing method
both retain extrema and minimize any residual error they introduce
(i.e., the difference between the input and output data).

A variety of smoothing techniques are available. Uniform sub-
sampling, for example, skips data on a regular interval, and while
trivial to implement, the output optimizes upon no particular qual-
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Figure 2: (a) Input line chart
(b) after removing an extrema pair.

ity of the input. Other common methods, such as median, Gaussian,
and low-pass cutoff filters, retain low-frequency aspects of the data
but potentially lose extrema in the data. Irregular sampling, such
as Douglas-Peucker [Ram72, DP73], does a better job preserving
extrema, but it retains little detail in the smoothing process.

We address the weaknesses of prior approaches by applying
Topological Data Analysis (TDA) to line chart smoothing. We do
this by using TDA to capture a hierarchical relationship between
extrema that allows removing those of “low importance”. At the
same time, TopoLines minimizes the residual error between ex-
trema, retaining much of the detail from the input data.

Previously, Kozlov and Weinkauf released PersistencelD,
a TDA-based class for filtering 1D data using their persis-
tence [KW14]. There has also been work done regarding topo-
logical smoothing of 2D and 3D functions [CSvdP10, EMPO6,
RSM*19, TFL*17]. However, we could find no prior studies that
compared topological smoothing to conventional techniques in line
charts. Therefore, our contributions are: 1) a description of 1D
topological smoothing; 2) optimizations of topological smoothing
for the visual analytics tasks of retrieving a value and finding ex-
trema; and 3) an analytical evaluation of the effectiveness of Topo-
Lines and 5 conventional smoothing methods on 4 dataset types.

Our results show that TopoLines is the most effective approach
for many, but not all, combinations of data type and task. Almost
as important, our results demonstrate the general ineffectiveness
of several conventional methods, including median filters, cutoff
filters, and uniform subsampling in the tasks and data evaluated.

2. TopoLines: Topologically Smoothed Line Charts

TopoLines smoothing requires 2 steps: 1) extraction of the topology
of the data using persistent homology, and 2) smoothing the output
by removing extrema based upon a user-selectable threshold.

2.1. Persistent Homology of a Line Chart

We provide a practical description of persistent homology using
the line chart in Figure 2 and 3 as an example while leaving further
details and theoretical justifications to [EHOS].

We use the lower-star filtration of the simplicial complex, F, i.e.,
the points and edges, on the function f : 7 — R. The lower-star
filtration of the data tracks the creation and merging of connected
components of the sublevelset | F|; = f~!(—oo, fi], as f; is swept
from —oo — oo, represented by the blue region in Figure 3. The
filtration is calculated by first sorting the points of f in increasing
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Figure 3: Six steps of a lower-star filtration (left) and merge tree construction (right) on the line chart.
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order. Then, points are inserted into |F| one at a time. An edge is
added between any neighboring points already in |F|;.

The relationship between connected components is tracked using
a merge tree parameterized by f. When a component first appears
at f;, caused by a local minimum, a leaf node is added to the merge
tree at f;. For example in Figure 3(a), the orange connected com-
ponent is formed at ®, and an equivalent leaf node is created in
the merge tree. As the plane is swept higher, as in Figure 3(b), new
connected components—@) in yellow and © in green—are created.

When 2 components merge, representing a local maximum, a
merge node is created in the merge tree at f; and connected to the
merged components. In Figure 3(c)/3(d), the green and orange con-
nected components merge at ®, a local maximum. The connected
components are combined, in orange, and a merge node is added to
the merge tree. When a merge node is created, it is also paired with
a leaf node (i.e., a local maximum is paired with a local minimum).
In particular, it is paired with the minimum from the two merging
components with the larger value. Referring to Figure 3(c)/3(d),
the point ® is paired with the minimum from the green and or-
ange components with the larger value, in this case point ©. In
other words, f(©) > f(®), therefore, [©,®) form an extrema pair.
The new merged component in orange continues with minimum
®. Similarly, in Figure 3(d)/3(e), at ®, the value of the minimum
of yellow f(®) and orange f(®) are compared, and [®,®) are
paired. The output of the operation is the set of all extrema pairs,
C ={[bo,do),[b1,d}),..-, [bm,dm)}., where b; and d; are the local
minimum and maximum, respectively, and m is the number of pairs.

Boundaries require special handling, as notable in Figure 3. If
a boundary point is a local minimum, e.g., @), it is connected to a
point at +oo. Similarly, a local maximum boundary point is con-
nected to —oo, e.g., ®. The additional points ensure all extrema
are paired. The algorithm has O(nlogn) complexity by using the
disjoint-set data structure to track connected components. The com-
plexity improves to O(n + mlogm) by removing all non-extrema
from the input before merge tree construction.

2.2. Topological Simplification

The set of extrema pairs, C, is used to guide smoothing, as follows.
For each pair, a measure known as persistence is calculated, which
is simply the difference in function value between the local mini-
mum and local maximum of the pair, i.e., p; = |f(d;) — f(b;)|. In
effect, this measures the peak-to-peak amplitude.

The simplification is controlled by removing extrema pairs from
the output through either a user-specified persistence threshold, ¢, to
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Figure 4: Conventional smoothing on Climate 17/18 with approximate entropy similar to Figure 1(b)(middle and bottom).

remove pairs, {C;|p; < t}, or by removing a percentage, g, of pairs
by ranking/sorting them, {C;|rank(C;) < q-m}. To reconstruct the
line, the extrema that are not removed, in addition to the boundary
points, are first placed into the output. For Figure 2(b), this includes
®), ®, ®, and ®. Next, the intermediate data is calculated.

As pointed out by prior work on 2D manifolds [EMP06] and
contour trees [CSvdP10], removing a pair of critical points from
the function is as simple as “flattening” the function. For a 1D
function, this equates to making the function monotonic between
neighboring extrema. For example, in Figure 2(b), removing the
[©,®) critical point pair requires modifying the function such that
it is monotonically decreasing between critical points ® and ®.

The design space of possible modifications is quite broad—any
monotonic function satisfies the topological constraint. We apply
the additional constraint that the remainder of the function is mod-
ified as little as possible. To accomplish this, we use isotonic re-
gression [Bar72], which is a monotonic regression technique that
minimizes the least square error. The time complexity of isotonic
regression and our reconstruction is O(n).

3. Evaluation
We compare TopoLines to 5 other smoothing methods:

e A MEDIAN FILTER (see Figure 4(a)) is a nonlinear rank fil-
ter, which is particularly good at removing salt-and-pepper
noise [Arc05]. For each input datum, the filter extracts a sur-
rounding neighborhood window and outputs its median value.
Smoothing is increased by enlarging the window size.

e The GAUSSIAN FILTER (see Figure 4(b)) a commonly used con-
volutional filter in signal and image processing [KS11]. The ap-
proach applies a stencil, whose weights come from a normal
distribution, to an input neighborhood. The smoothing level is
changed by adjusting the standard deviation of the distribution.

e A low-pass CUTOFF FILTER (see Figure 4(c)) converts the scalar
data into the frequency domain via Discrete Fourier Transform
(DFT) [CT65], zeros frequencies above a cutoff threshold, and
computes the new scalar values with an inverse DFT. The level
of smoothing is adjusted by modifying the cutoff frequency.

e UNIFORM SUBSAMPLING (see Figure 4(d)) selects points at reg-
ular intervals. Between selected points, linear interpolation is
used. The smoothing level is increased by sampling fewer points.

e DOUGLAS-PEUCKER [Ram72,DP73] (see Figure 4(e)) is a non-
uniform subsampling approach that optimizes the /°°-norm of
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the residual error. The algorithm starts by selecting the bound-
ary points of the input and connects them with linear interpola-
tion. Points are then iteratively added by inserting the input point
with the largest distance to the output. The process repeats until
a user-specified threshold distance is reached.

3.1. Task Analysis

We considered a variety of low-level tasks based upon the taxon-
omy of Amar et al. [AES05] and settled upon 2 tasks that we hy-
pothesized TopoLines would perform well. For each, we only con-
sider the resulting impact on the modification of the data, not the
perceptual impact of the smoothing (see future work in section 5).
For each task, we provide a brief description along with average
and worst case analytical measures of performance.

Retrieve Value is a task focused on finding a specific function
value on a given chart. An example query would be, “What was
the GOOG stock (Figure 1(d)) price on April 15, 2018?” The accu-
racy of retrieving a value is dependent upon how closely the values
of the smoothed data reflect the values in the input data. We mea-
sure this by considering the residual error between the original and
smoothed data using vector norms.

For the average case performance, we consider the [/ _norm:
M, =X, |x,- — x}|, which measures the sum of the absolute value
of errors. Since the data length is fixed, comparing the sum of er-
rors is equivalent to comparing the average error. For the worst
case performance, we consider the /°°-norm: ||1f| ., = max |xi —x;

bl

which measures only the point of the largest difference between the
input and output data.

Find Extrema task is concerned with identifying minima and
maxima in the data. An example query would be, “What are the
dates of the top 3 peaks of GOOG (Figure 1(d))?” The perfor-
mance of this task requires that in smoothing, extrema remain in
the data. To measure the performance, we calculated the topologi-
cal difference between the input and smoothed data using methods
from TDA [EH10]. First, the persistent homology of the original
and smoothed data are calculated, as described in subsection 2.1,
to create 2 sets of extrema pairs C and C’, respectively. For tech-
nical reasons, all pairs with infinite persistence are removed, and
all pairs of O-persistence [c,c) are added to make the cardinality
infinite [KMN17]. Let 1 be a bijection between the 2 sets.
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Figure 5: Ranking of all methods for all data and both tasks. Overall rank is determined by the average rank for the connected datasets/tasks.

The average case is measured using the 1-Wasserstein distance,
wi(C,C') = Cinfc Leeclle —mn(c)]|, between the input and out-
n:C—=C’

put extrema pairs, which identifies the average perturbation of
extrema. The worst case is measured using Bottleneck distance,
Woo (C,C") = infy.cscr supecc lle =M (c) || o, Which only returns
the difference in the extrema with the largest distortion.

Baseline. Each smoothing method offers an adjustable simplifica-
tion parameter, whose interpretation and output are approach de-
pendent. This variation prevents us from directly using the thresh-
old for comparing methods. Instead, we use approximate entropy
as a calibration measure since it has been shown to be a good proxy
for line chart complexity [RMCW19] (see Figure 4).

Comparison. To compare methods, we evaluated each technique
using the 4 metrics, described above, across the full range of ap-
proximate entropy values. Each technique/metric then had the best
fit line calculated, and the approaches were ranked by their area un-
der the curve from smallest to largest. In other words, for a given
measure, the methods are ranked by which produces the lowest er-
ror across the range of entropy values. See the supplemental mate-
rials for all measures and best fit lines.

4. Results and Discussion

We test our method using 4 application domains (see Figure 1)
of 5 datasets each. Radio astronomy data are 5 spectral “lines”
that measure the frequency and amplitude of radio waves emit-
ted by extraterrestrial matter (i.e., gas and dust) and was down-
loaded from [alm]. Climate is a measure of daily high temperature
recorded from July to July over 5 periods (20-13/14 through 20-
17/18) at a large metropolitan airport downloaded from [YKI*18].
The EEG data each contain a window from 5 (of 32 total) chan-
nels of a single subject undergoing a visual attention task and was
acquired from [Del]. Stock trends contain daily closing values for
5 companies (Amazon, Google, Intel, Toyota, and Tesla) over 5
years, starting in February 2015, collected from Yahoo Finance.
All results are available in our supplementary materials.

The results for all data, measures, and smoothing approaches are
summarized in Figure 5. For all datasets, TopoLines performed best
in both average and worst case for the retrieve value task, with the
only exception being a second-best finish for average case with the
stock data. For the find extrema task, TopoLines performed best or
second-best in the average and worst cases for astro and climate
data. For the EEG and stock data, TopoLines performed mostly un-
remarkably. Our best guess as to this result is that the high fre-
quency of the noise makes many of the local extrema that Topo-
Lines is trying to preserve unimportant for these data.

Among the conventional smoothing methods, it is relevant to
note that for the retrieve value task, Gaussian smoothing performed
reasonably well overall, and for finding extrema, Douglas-Peucker
performed well. Among the other methods, uniform subsampling,
cutoff filter, and median filter, none performed consistently well at
either task on multiple data types. We, therefore, recommend care
in choosing to use them, at least for the tasks we evaluated.

5. Conclusions

In conclusion, we presented a topology-based line chart smoothing
method called TopoLines. In the process, we showed that Topo-
Lines has the potential to perform well for certain visual analysis
tasks. However, all of these methods, including TopoLines, would
benefit from an evaluation framework that considers a broader set
of tasks and perceptual differences resulting from their use. In the
future, we would like to build upon our current tasks list and run
user studies to evaluate how the effect of smoothing on line charts
are perceived. We hope to formulate a set of guidelines, based on
these studies, that would be helpful for deciding which smoothing
methods are best to use in practice.
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