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ABSTRACT

The application of graph Laplacian eigenvectors has been quite popular in the graph signal processing field: one
can use them as ingredients to design smooth multiscale basis. Our long-term goal is to study and understand
the dual geometry of graph Laplacian eigenvectors. In order to do that, it is necessary to define a certain metric
to measure the behavioral differences between each pair of the eigenvectors. Saito (2018) considered the ramified
optimal transportation (ROT) cost between the square of the eigenvectors as such a metric. Clonginger and
Steinerberger (2018) proposed a way to measure the affinity (or ‘similarity’) between the eigenvectors based on
their Hadamard (HAD) product. In this article, we propose a simplified ROT metric that is more computational
efficient and introduce two more ways to define the distance between the eigenvectors, i.e., the time-stepping
diffusion (TSD) metric and the difference of absolute gradient (DAG) pseudometric. The TSD metric measures
the cost of “flattening” the initial graph signal via diffusion process up to certain time, hence it can be viewed
as a time-dependent version of the ROT metric. The DAG pseudometric is the l2-distance between the feature
vectors derived from the eigenvectors, in particular, the absolute gradients of the eigenvectors. We then compare
the performance of ROT, HAD and the two new “metrics” on different kinds of graphs. Finally, we investigate
their relationship as well as their pros and cons.

Keywords: Graph Laplacian eigenvectors, metrics between orthonormal vectors, dual geometry of graph Lapla-
cian eigenvectors, multiscale basis dictionaries on graphs, heat diffusion on graphs, Wasserstein distance, optimal
transport

1. INTRODUCTION

The graph Laplacian eigenvectors and the ordering of the eigenvectors have been used as the two key ingredients
to design graph wavelets by the Littlewood-Paley type theory for graphs. For example, the Spectral Graph
Wavelet Transform (SGWT)5 orders the eigenvectors by the size of corresponding eigenvalues. However, this
ordering may lead to unexpected problems if the underlying graph is more complicated than 1D paths or cycles
as pointed out by Saito and his group.7,12 The “metrics” in this article are designed to detect the “behavioral
differences” between the eigenvectors on the graph so that we can order the eigenvectors more naturally than
using the size of the corresponding eigenvalues. Furthermore, these metrics help us design smooth multiscale
basis dictionaries that are quite important for many applications, e.g., efficiently approximating graph signals8

and solving differential equations on graphs.11,18

In this article, we study five “metrics”: the Ramified Optimal Transport (ROT) metric;12,20 the simplified
ROT (sROT) metric on trees; the affinity measure proposed by Cloninger and Steinerberger;2 the Time-Stepping
Diffusion (TSD) metric; and the Difference of Absolute Gradient (DAG) pseudometric, to quantify the difference
between the graph Laplacian eigenvectors and assemble the corresponding distance matrix by computing the
mutual distance between the eigenvectors. The sROT and latter two “metrics” are newly proposed in this
article. In order to examine the quality of these distance matrices, we use the classical multidimensional scaling
(MDS) method1 to embed the eigenvectors into low dimensional Euclidean space, i.e., Rd (d = 2, 3). Thus, we
can visualize the arrangement of the eigenvectors organized by the corresponding “metrics”.
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The TSD metric is based on the time evolution of the mass propagation via a diffusion process on a graph,
provided with the difference between two eigenvectors as the initial condition. The ROT metric does not explicitly
sense the “scale” information of the underlying graph: it only reflects the final and global transportation cost
between two eigenvectors. However, we are also interested in the intermediate situation of the transportation
process, i.e., where the mass “congestion” occurs during the transportation and how quickly the mass reaches a
specific region, etc. Thus, we can think of TSD as a time-evolving optimal transport-like metric.

The DAG pseudometric is designed for characterizing oscillation patterns of the graph Laplacian eigenvectors.
Intuitively speaking, we take the view that the gradient of the eigenvectors contains more direct information of
the oscillations than the eigenvectors themselves. In addition, since we study undirected graphs G = (V,E), it
is natural to consider the absolute value of the gradient on each edge e ∈ E as features. We then compute the
ℓ2-distance between the feature vectors as the behavioral distance between corresponding eigenvectors. Under
this pseudometric, we expect the eigenvectors with similar oscillation pattern are close and those with distinct
oscillation behaviors are far apart. For example, the eigenvectors oscillate in one direction and those oscillate in
another direction on a 2D lattice graph have orthogonal absolute gradient feature vectors, which would lead to
a larger DAG distance as expected.

The structure of this article is the following. First, we review the two existing “metrics”, i.e., the ROT
metric12,20 and the affinity measure of Cloninger and Steinerberger.2 We then introduce the sROT metric on
tree graphs and propose our two new “metrics”, i.e., TSD and DAG. We also analyze the relationship between
some of the above “metrics”. Finally, we conclude with the performance of all the “metrics” on different type of
graphs and provide further discussion on them.

2. NOTATION AND REVIEWS

In this section, we will introduce some basic notation about graphs that will be used through out this article. We
then review the two existing behavioral “metrics” of graph Laplacian eigenvectors and also introduce a method
to simplify the ROT on trees for less computational cost.

2.1 Basics of Graphs

First, we review some background knowledge about graphs as discussed in papers.7,10,12–14 A graph G =
(V,E,W ) consists of a set of vertices (or nodes) V = {v1, v2, · · · , vn}, a set of edges E = {e1, e2, · · · , em}
connecting some pairs of vertices in V and a weight matrix W ∈ R

n×n.

If the number of vertices is finite, i.e., |V | < ∞, then we call G a finite graph. If any e ∈ E does not have a
direction, then the graph is undirected. If any two vertices vi, vj ∈ V are connected by a sequence of head-tail
edges, then the graph is connected. Furthermore, if there is no edge connecting a vertex to itself or there are no
multiple edges between any pair of vertices, then we call G a simple graph. In this article, we only deal with
finite undirected connected simple graphs.

Next, we introduce the associated matrices on graphs.

Definition 2.1 (Graph Laplacian matrix). Let G = (V,E,W ), n = |V |. Denote its weighted adjacency
matrix W = W (G) = (wij) ∈ R

n×n, its degree matrix D = D(G) = diag(d1, d2, · · · , dn) ∈ R
n×n, and its

unnormalized Laplacian matrix L = L(G) ∈ R
n×n, whose entries are defined by the following,

wij :=

{

W (i, j) if e = (vi, vj) ∈ E(G);

0 otherwise.
di = d(vi) :=

n
∑

j=1

wij L(G) := D(G)−W (G)

Also, for unweighted graphs G = (V,E), W is automatically defined by W (i, j) :=

{

1 if e = (vi, vj) ∈ E(G);

0 otherwise.

Observe that L is a real symmetric positive semi-definite matrix, so the eigenvalues of L are nonnegative. More-
over, thanks to the connectivity of graphs, λ0 = 0 is an eigenvalue of L with multiplicity 1 and its corresponding
eigenvector φ0 is a constant vector, which is usually called the DC component (vector). The eigenvector φ1 (with
the first nonzero eigenvalue) is called the Fielder vector, which plays an important role in graph partitioning.7,19



Also, the eigenvectors {φl}n−1
l=0 form an orthonormal basis (ONB) of L2(V ). If the multiplicity of the eigenvalue

is more than 1, the choice of corresponding eigenvectors is not unique. So for simplicity, we only deal with the
case when L has different eigenvalues, i.e., 0 = λ0 < λ1 < λ2 < · · · < λn−1. In the following contexts when we
talk eigenvectors, we mean the eigenvectors of the unnormalized graph Laplacian L, denoted as {φl}n−1

l=0 .

Definition 2.2 (Incidence matrix). The incidence matrix of a directed graph G = (V,E) is a n × m

matrix Q where n = |V | and m = |E|, such that

Q(i, j) :=











−1 ej ∈ E leaves vertex vi ∈ V ;

1 ej ∈ E enters vertex vi ∈ V ;

0 otherwise.

If G = (V,E) is undirected, we randomly assign a direction for each edge.

Definition 2.3 (Graph gradient). Given G = (V,E) and f ∈ L2(V ), the graph gradient denoted as
∇Gf(or df) ∈ L2(E) is defined in the following way. For any edge e = (vi, vj), vi, vj ∈ V , we have

∇Gf(e) = f(vj)− f(vi) = QTf |∇Gf |(e) = |f(vj)− f(vi)| |∇Gf | = abs .(QTf) ∈ R
|E| (1)

where abs . is the operation of taking absolute value in a component-wise manner and Q is the incidence matrix of
G. The reason we are interested in |∇Gf | over ∇Gf is because the absolute value will get rid of the randomness
when we assign directions to each edge for undirected graphs.

2.2 Spectral Graph Theory

Let G = (V,E,W ) be a graph with |V | = n. The classical Fourier transform is the expansion of a function

f in terms of the eigenfunctions of the Laplace operator: f̂(ξ) = 〈f, e2πiξt〉. Analogously, the graph Fourier
transform16 of f ∈ L2(V ) is defined by the eigenvectors of the unnormalized graph Laplacian L:

f̂(l) = 〈f ,φl〉 for l = 0, 1, · · · , n− 1

where φl ∈ R
n is the l-th eigenvector of L.

If the underlying graph is a simple undirected path, then the eigenvectors of its Laplacian matrix are nothing
but the Discrete Cosine Transform (DCT) type II basis vectors,10 which has been widely used in classical Fourier
theory and signal analysis.17 This is one of the reasons why people often use the eigenvalues and eigenvectors of
the graph (unnormalized) Laplacian L as an analysis tool on graphs, such as the spectral graph wavelet transform
(SGWT)5 and other graph wavelets discussed in the survey.15

When the underlying graph is more complicated (not an undirected path or cycle), one may encounter serious
problems if the eigenvectors are ordered and organized based on the size of the corresponding eigenvalues. In
complicated graphs, there is no well-defined notion of “frequency” unlike in the case of simple path graphs since
some eigenvectors may not have a global oscillation structure. The relations between eigenvectors and eigenvalues
become more subtle.10,12,14 Thus, one solution of this problem is to come up with some “metrics” of the graph
Laplacian eigenvectors so that the eigenvectors can be organized based on their behaviors on graphs. We note
that the usual ℓ2-distance between the graph Laplacian eigenvectors does not work since ‖φi − φj‖2 ≡

√
2δij

where δij is the Kronecker delta.

2.3 Ramified Optimal Transport (ROT) Metric

The ROT metric12 is presented as follows. First, we convert each eigenvector to a probability mass function
(pmf) on the input graph G = (V,E,W ) with |V | = n and |E| = m (e.g., squaring an eigenvector φi elementwise
turns it to a pmf φ2

i , which can be interpreted as the energy distribution of the eigenvector), and define the
metric between a pair of the eigenvectors by the minimal cost to move the probability mass from one pmf p to
the other pmf q.

˜̃
Qw = q − p, w ∈ R

2m
≥0 , (2)



where ˜̃
Q ∈ R

n×2m is the incidence matrix of the bidirected graph ˜̃
G generated from the undirected original graph

G, i.e., each edge in E(G) becomes two directed edges in E( ˜̃G), so that the probability “mass” can move in
either directions. Note that any w satisfying Eq. (2) represents a transportation path (or plan) from p to q, and
there may be multiple solutions. Hence, we first define the cost of a transport path P ∈ Path(p, q) as:

Mα(P ) :=
∑

e∈E(P )

w(e)α length(e), α ∈ [0, 1].

where length(e) is the “length” of the edge e ∈ E(P ), which may be the Euclidean distance between the two
nodes associated with e, or the inverse of the original edge weight of the input graph G if the original edge
weight represents the affinity between those two nodes. Now, we can define the minimum transportation cost

dROT(p, q;α) := min
P∈Path(p,q)

Mα(P ).

Xia proved that this is a metric on the space of pmfs.20

2.4 Simplified ROT (sROT) Metric

If the underlying graph is a tree (connected graph without any loop), we can develop a computational efficient
simplified ROT (sROT) metric. Notice that there are only three types of vertices in a tree: terminal vertices
(degree 1); internal vertices (degree 2); and junction vertices (degree greater than 2). When we consider the
pmf’s of the eigenvectors (i.e., Φ.2 = [φ2

0,φ
2
1, · · · ,φ2

n−1] ∈ R
n×n) for the ordering and organization purposes,

we are mainly analyzing how the probability mass distributed on different branches (consisting of terminal and
internal vertices) and junctions.

Therefore, we decompose the tree into branches and junctions. In order to do that, we first find all the junction
vertices of the tree by checking the degree of each vertex. Then, we use the junction vertices to chop the tree into
several branches and junctions (i.e., subgraphs). In particular, the junction vertices corresponds to a bunch of one-
vertex subgraphs. After this process, we get J disconnected subgraphs Gl = (V l, El) (l = 1, 2, · · · , J) including
all the branches and junctions of the tree. We also get a graph of the subgraphs, denoted as Gs = (Vs, Es),
which describes how the subgraphs related with each other. Intuitively speaking, we compress the branches of
the tree graph G as one vertex in Gs.

Next, we define sROTmetric between eigenvectors. Like the first step of ROT, we convert the eigenvectors into
its energy form Φ.2 (elementwise square). But then instead of computing the ROT distance directly between
φ2

i and φ2
j , we perform a preprocessing step. We compute the mass of φ2

i on each subgraph Gl = (V l, El)

(l = 1, 2, · · · , J). In other words, if Gl is a junction one-vertex (i.e., V = {v}) subgraph, we just preserve the
value of φ2

i at vertex v; if Gl corresponds to a branch subgraph, we sum probability mass of φ2
i over the subgraph

vertices. In the end, we get a J dimensional vector for each eigenvector φi (i = 0, 1, · · · , n − 1). These vectors
can be viewed as energy distribution feature vectors over J different subgraphs. Denote these feature vectors by
Θ := [θ0, θ1, · · · , θn−1] ∈ R

M×n(J ≪ n) where θi(l) :=
∑

v∈V l φ
2
i (v) for l = 1, 2, · · · , J . Notice that each θi

is a low dimensional pmf representation of φi. We then compute the ROT distance between θi and θj on the
graph of subgraphs, i.e., dROT(θi, θj ;α) on Gs, which will reduce the computational cost a lot compared to the
original ROT, i.e., dROT(φ

2
i ,φ

2
j ;α) on G. We call this distance as the sROT metric between eigenvectors φi and

φj , denoted as

dsROT(φ
2
i ,φ

2
j ;α) := dROT(θi, θj ;α) (3)

2.5 Hadamard (HAD) Product Affinity Measure

The affinity measure between eigenvectors is introduced by Cloninger and Steinerberger,2 which deals with the
general setting, i.e., on a compact Riemannian manifold (M, g) as:

aHAD(φi, φj)
2 := ‖φiφj‖−2

2

∫

M

(

∫

M

p(t, x, y)(φi(y)− φi(x))(φj(y)− φj(x))dy)
2dx, (4)



where (λi, φi)i is an eigenpair of the Laplace-Beltrami operator ∆ on M, p(t, x, y) is the classical heat kernel,4

and the value of t should satisfy e−tλi + e−tλj = 1. It can be interpreted as a global average of local correlation
between these two eigenfunctions. Further, it can be shown that for the same t above

aHAD(φi, φj) =
‖et∆(φiφj)‖L2

‖φiφj‖L2

(5)

This works well for Cartesian product graphs2 in terms of detecting the Cartesian product structure of such
graphs and the oscillation patterns of the eigenvectors.

3. OUR PROPOSED METRICS

3.1 Time-Stepping Diffusion (TSD) Metric

3.1.1 TSD metric on graphs

Given a graph G = (V,E,W ), consider the governing heat diffusion ODE system on the graph, which describes
the evolution of the graph signal f0 ∈ R

n:

d

dt
f(t) + L(G) · f(t) = 0 t ≥ 0, f(0) = f0 ∈ R

n. (6)

Since the graph Laplacian (i.e., L(G)) eigenvectors {φ0,φ1, · · · ,φn−1} form an ONB of Rn, we have:

f(t) =

n−1
∑

k=0

〈f0,φk〉e−λktφk (7)

At a certain time T > 0, we define the following functional:

K(f0, T ) :=

∫ T

0

‖∇Gf(t)‖1dt, (8)

where ∇Gf ∈ R
m is the graph gradient of f defined in Definition 2.3. This functional can be viewed as the cost

(or effort) to “flatten” the initial graph signal f0 via heat diffusion process up to the time T , and also as the
time-accumulated “anisotropic total variation norm” 6 of f0. Also, we can show that limT→∞ K(f0, T ) < ∞ for
any f0 ∈ R

n. After setting the input signal f0 = φi −φj , we define the TSD metric between the eigenvectors at
time T by

dTSD(φi,φj ;T ) := K(f0, T )

Furthermore, we can show the following lemma.

Lemma 3.1. For any T > 0 (including T = ∞), K(·, T ) is a norm on L2
0(V ) := {f ∈ L2(V )|

∑

x∈V f(x) = 0}.
Therefore, (L2

0(V ),K(·, T )) is a normed vector space. Furthermore, for any fixed T (including T = ∞), we can
get a metric vector space (L2

0(V ), dTSD) by defining

dTSD(f , g) := K(f − g, T ) f , g ∈ L2
0(V )

See Appendix A for the proof.

3.1.2 TSD metric on a compact Riemannian manifold M
Since the heat diffusion system, Eq. (6), can be defined on a compact Riemannian manifold M by the Laplace-
Beltrami operator, we can generalize TSD metric to a continuous setting.

We consider the heat diffusion on M with Neumann boundary conditions and the corresponding eigenfunc-
tions −∆φ = λφ with ‖φ‖2 = 1. So given a initial signal f0 ∈ L2

0(M) := {f ∈ L2(M) :
∫

M
f(x)dµ(x) = 0},

where dµ is the measure on M, the TSD functional can be defined by:

K(f0, T ) :=

∫ T

0

∫

M

|∇xu(x, t)|dµ(x)dt



There is a natural upper bound of this functional as shown in the following theorem.

Theorem 3.2. For any T > 0 and f0 ∈ L2
0(M),

K(f0, T ) ≤
∞
∑

k=1

1√
λk

|f̂0(k)| ·
√

Vol(M), (9)

where λk’s are the positive eigenvalues of Laplace-Beltrami operator and f̂0(k) = 〈φk, f0〉 are the Fourier coeffi-
cients of f0.

See Appendix B.1 for the proof. Therefore, the TSD metric with parameter T (including T = ∞) on M
between eigenfunctions (except the DC component) φi and φj is well defined by

dTSD(φi, φj ;T ) := K(φi − φj , T ) ≤ (
1√
λi

+
1

√

λj

)
√

Vol(M) < ∞

3.2 Difference of Absolute Gradient (DAG) Pseudometric

We use the absolute gradient vector of an eigenvector as its feature vector describing its behavior. More precisely,
see Eq. (1) in Definition 2.3. We then define:

dDAG(φi,φj) := ‖|∇G|φi − |∇G|φj‖2 = ‖ abs .(QTφi)− abs .(QTφj)‖2

This quantity is a pseudometric since the identity of discernible in the axioms of metric is not satisfied (e.g.,
adding constants to φi and φj clearly does not change the absolute gradient values) but the other axioms, i.e.,
the non-negativity, symmetry and triangle inequality, are satisfied. One of the biggest advantages of the DAG
metric is its lower computational cost than the others, because it only involves multiplications of the eigenvectors
by the sparse matrix QT.

4. RELATIONS BETWEEN METRICS

4.1 The ROT and the TSD Metrics

The purpose of the TSD metric is to construct time-evolving optimal transport-like metric. As T → ∞, we expect
dROT(φ

2
i ,φ

2
j ;α = 1) ≤ dTSD(φ

2
i ,φ

2
j ;T = ∞) ≤ C(G) · dROT(φ

2
i ,φ

2
j ;α = 1), where C(G) is a constant depending

on the graph G. Moreover, we observe that if f, g are pmfs on graphs, then dROT(f, g;α = 1) = W1(f, g),
the 1st Wasserstein distance on graphs. Thus, we can also generalize the dROT metric on graphs to a compact
Riemannian manifold M by the generalized W1 on manifolds.

Conjecture 4.1. Given any two probability mass functions (pmfs) p, q on a connected graph G = (V,E,W )
with graph geodesic distance metric d : V × V → R≥0, i.e., the minimum sum of edge weights over all the paths
connecting two input vertices,

W1(p, q) ≤ K(p− q,∞) ≤ C ′ ·W1(p, q)

where W1(p, q) := infγ∈Γ(p,q)

∫

V×V
d(x, y)dγ(x, y), where Γ(p, q) denotes the collection of all measures on V ×V

with marginals p and q in the first and second factors respectively and C ′ is a constant depends on G and K(·, ·)
is defined in Eq. (8).

There is also the manifold version of this conjecture. If the underlying manifold is M = [0, 1] or M = T,
where the explicit expression of W1 is known,9 then we can show the first inequality of the conjecture as follows.

Theorem 4.2. Given two probability density functions f, g on [0, 2π],

W1(f, g) ≤ K(f − g,∞)

in which W1 is the 1st Wasserstein distance, a.k.a., the earth mover distance.

See Appendix B.2 for the proof. Since there is no explicit formula of W1 on other complicated manifolds or
discrete graphs, the proof even for the first inequality of the conjecture is hard to proceed.





















APPENDIX B. PROOF OF THEOREMS

B.1 Proof of Theorem 3.2

Proof.

K(f0, T ) =

∫ T

0

∫

M

|∇xu(x, t)| dxdt

=

∫ T

0

∫

M

∣

∣

∣

∣

∣

∇x

∞
∑

k=0

〈φk, f0〉e−λktφk(x)

∣

∣

∣

∣

∣

dxdt

=

∫ T

0

∫

M

∣

∣

∣

∣

∣

∇x

∞
∑

k=1

〈φk, f0〉e−λktφk(x)

∣

∣

∣

∣

∣

dxdt

≤
∫ T

0

∫

M

∞
∑

k=1

∣

∣〈φk, f0〉e−λkt∇φk(x)
∣

∣ dxdt (triangle ineq.)

=

∞
∑

k=1

∫ T

0

e−λktdt ·
∫

M

|〈φk, f0〉∇φk(x)| dx

≤
∞
∑

k=1

1

λk

|f̂0(k)| ·
∫

M

|∇φk(x)| dx (T → ∞)

≤
∞
∑

k=1

1

λk

|f̂0(k)| · ‖∇φk‖2 ·
√

Vol(M) (Cauchy Schwarz ineq.)

=
∞
∑

k=1

1√
λk

|f̂0(k)| ·
√

Vol(M) (‖∇φk‖2 =
√

λk by Green’s formula)

B.2 Proof of Theorem 4.2

The heat diffusion PDE on T:










∂
∂t
u(x, t)− ∂2

∂x2u(x, t) = 0 x ∈ [0, 2π]

u(x, 0) = f0 ∈ L2
0([0, 2π]) I.C.

∂
∂x

u(0, t) = ∂
∂x

u(2π, t) = 0 B.C.

and its general solution using Laplacian eigenfunctions φn:

u(x, t) =

∞
∑

n=0

〈φn, f0〉e−λntφn(x) in which φn(x) =
1√
π
cos

(n

2
x
)

and λn =
1

4
n2.

Now, Eq. (8) becomes

K(f0, T ) =

∫ T

0

∫ 2π

0

∣

∣

∣

∣

∂

∂x
u(x, t)

∣

∣

∣

∣

dxdt



Proof.

K(f − g,∞) =

∫ ∞

0

∫ 2π

0

∣

∣

∣

∣

∣

∞
∑

n=0

〈φn, f − g〉e−λntφ′
n(x)

∣

∣

∣

∣

∣

dxdt

=

∫ ∞

0

∫ 2π

0

∣

∣

∣

∣

∣

∞
∑

n=1

〈φn, f − g〉e−λntφ′
n(x)

∣

∣

∣

∣

∣

dxdt

=

∫ 2π

0

∫ ∞

0

∣

∣

∣

∣

∣

∞
∑

n=1

〈φn, f − g〉e−λntφ′
n(x)

∣

∣

∣

∣

∣

dtdx (Fubini theorem)

≥
∫ 2π

0

∣

∣

∣

∣

∣

∫ ∞

0

∞
∑

n=1

〈φn, f − g〉e−λntφ′
n(x)dt

∣

∣

∣

∣

∣

dx (triangle ineq.)

=

∫ 2π

0

∣

∣

∣

∣

∣

∞
∑

n=1

〈φn, f − g〉 1

λn

φ′
n(x)

∣

∣

∣

∣

∣

dx

=

∫ 2π

0

∣

∣

∣

∣

∣

∞
∑

n=1

〈φn, f − g〉
∫ x

0

φn(s)ds

∣

∣

∣

∣

∣

dx (−φ′′
n = λnφn)

=

∫ 2π

0

∣

∣

∣

∣

∫ x

0

f(s)− g(s)ds

∣

∣

∣

∣

dx = W1(f, g)

For the last equation, we used the explicit formula of W1 in R.9
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