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Factors Affecting Network-Based Gene Prediction
Across Diverse Diseases
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Abstract—There are many current efforts to integrate bio-
logical interaction data with disease information in order to
predict new genes associated with complex diseases. Network-
based learning methods such as logistic regression can utilize this
information to identify disease genes, and are typically applied to
protein-protein interaction networks. However, little is reported
about what factors influence the performance of these network-
based methods. Here, we explore features that affect network-
based disease gene prediction performance. We devise two cross-
validation schemes to evaluate the impact of various parameters,
settings and disease qualities across a wide range of diseases.
We demonstrate that including gene regulatory interactions and
including low-confidence disease genes improves disease gene
prediction performance. Further, network connectivity among
high-confidence disease genes is a strong indicator of prediction
performance. We demonstrate that network and input features
can have a dramatic effect on prediction performance, and these
should be carefully considered when designing network-based
algorithms to find new disease genes.

I. INTRODUCTION

Predicting the genetic variants that underlie disease has
been a long-standing area of research, and high-throughput
Genome Wide Association studies (GWAS) provide tens of
thousands to millions of such candidates for complex dis-
eases [1]. However, many of these mutations are not causal
to the disease of interest, and further, some genes affect the
disease at the transcriptional or translational level [2]. Over
the past decade, researchers have developed approaches that
leverage the hypothesis mutated genes typically do not act
alone in complex diseases, but rather work together within
a network of interactions to alter a particular phenotype [3]–
[8]. Network-based approaches have become incredibly useful
extracting causal variants, particularly for complex diseases
such as cancer [6], [9], [10] and neurological diseases [11]–
[13].

Alongside the development of these network-based meth-
ods, there have been major efforts to catalog lists of known
genetic variants for multiple diseases. Resources such as the
Online Mendelian Inheritance in Man [14], [15], NCBI’s
dbGAP [16], [17], and the Comparative Toxicogenomics
Database [18], [19] have become critical benchmarks for
different types of diseases. More recently, DisGeNet [20], [21]
aims to encompass mendelian, environmental, and complex
diseases into a single resource with a consistent methodology
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for disease gene identification. DisGeNet has already been
used for disease gene prediction with networks using random
walks [22], [23]. It has also been used to benchmark dozens
of different networks for disease gene prediction [7], [8] and
as a means to evaluate functional similarity in human gene
networks [24], illustrating DisGeNet’s use as a comprehensive
resource for such analyses.

Despite DisGeNet’s promise for assessment in developing
new disease gene association methods, the current approaches
that use DisGeNet evaluate the prediction task on protein-
protein interaction networks. Many methods include gene
regulatory information in functional interactomes through co-
expression networks or shared transcription-factor informa-
tion in bayesian networks [25]–[27]. However, physical gene
regulatory interactions have been underutilized in interaction
networks, which can be important mechanisms for many
known diseases. Further, established approaches have typically
adopted a belief propagation or random-walk methodologi-
cal approach [7], [22], [23], [27] (though there are notable
exceptions [8], [12]). In this paper, we evaluate the effect
of regulatory interactions on the disease gene association
problem in multiple experimental settings using DisGeNet as
an assessment framework. We make three contributions:

1) Network of protein and regulatory interactions: We con-
struct an interaction network that consists of protein-protein
interactions as well as gene regulatory interactions such as
transcription factor targets, transcript-transcript interactions,
and RNA-binding protein interactions. This network integrates
protein-protein interactions from the STRING databases with
regulatory interactions from four databases.

2) Pan-Disease assessment: We use logistic regression to
predict novel disease genes given a set of high-confidence
disease genes across 49 diseases in DisGeNet. We control
for the number of disease genes in DisGeNet by capping the
number of disease genes to 100. We show that, despite having
the same number of positive examples, different disease types
perform better than others. This performance is independent
of using the DisGeNet score, and it is correlated with the
connectivity of the positives within the network. We also show
that including gene regulatory interactions generally benefits
disease gene prediction performance.

3) Disease class assessment: We then consider classifying
neoplasms using all available DisGeNet genes as positive
examples. We find that using all DisGeNet genes achieves
better performance across the board compared to using the top
100 positives. Strikingly, this performance is also independent
of using the DisGeNet score, meaning that the high-confidence
and low-confidence positives are weighted equally.
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These highly generalizable findings can be used to optimize
disease gene prediction in a variety of diseases.

II. METHODS

A. Network Construction

We collated existing databases of curated data, high-
throughput experiments, and computationally predicted inter-
actions to create two weighted networks: a protein-protein in-
teraction (PPI) network of physical interactions, and a Molecu-
lar Atlas of Phenomenon (MAP) that includes regulatory inter-
actions and physical interactions (Fig. 1A). We first collected
protein-protein interactions from the STRING database [25].
To ensure that only biochemical/genetic interaction informa-
tion was used in gene prediction, we retained interactions from
STRING’s “experimental” channel (and their experimental
confidence scores). This collection of STRING interactions
formed a directed, weighted protein-protein interactome (PPI)
consisting of 17,844 nodes and 4,441,009 edges.

Additional gene regulatory interactions were collected from
various sources and combined with the PPI for the MAP
(Table I). RNA associated interactions were collected from
the RNA Association Interaction Database (RAID) [28]. Con-
fidence scores for each interaction were taken from the RAID
entries, which are categorized as “strong experimental evi-
dence,” “weak experimental evidence,” and “computationally-
predicted evidence.”. Gene regulatory interactions were also
collected from three other databases: the Transcriptional Regu-
latory Relationships Unraveled by Sentence-based Textmining
(TRRUST) database [29], RegNetwork [30] and the Open-
access Repository of Transcriptional Interactions (ORTI) [31].
For consistency with the RAID scoring methodology, each
interaction from these data sources was labeled with a “strong
experimental evidence” score under the RAID scoring method.
We took the maximum score for any interaction that appeared
in multiple regulatory databases. Regulatory interactions were
added to the PPI by adding the regulatory score to an existing
edge if one existed, and creating a new edge if one did
not exist. In total, the MAP consists of 17,844 nodes and
5,178,891 edges. All data was gathered in November 2018.

B. Annotated Disease Gene Dataset

Disease-gene annotations were gathered from
DisGeNet [21]. Diseases were classified according to Unified
Medical Language System (UMLS) semantic types, which is
described in more detail in the DisGeNet publication [21].

Interaction Set Source Number of Edges
PPI 4,441,009

STRING [25] 4,441,009
Gene Regulation 737,882

RAID [28] 685,762
ORTI [31] 36,510

RegNetwork [30] 9,701
TRRUST [29] 5,909

MAP 5,178,891
TABLE I

SOURCES OF INTERACTIONS CONTRIBUTED TO THE MAP. THE BOLDED
ROWS ARE THE SUMS OF THE EDGES FOR EACH INTERACTION SET.

We will call these types disease classes. Only diseases
with a disease class of “Mental or Behavioral Dysfunction”,
“Neoplastic Process”, or “Diseases or Syndrome” were used.
Further, diseases with at least 100 genes with a confidence
score over 0.2 were considered. In total, we considered 7
“Mental or Behavioral Dysfunction” diseases, 17 “Neoplastic
Process” diseases, and 25 diseases labeled as“Disease or
Syndrome” (totaling 49 diseases).

C. Machine Learning Methods

We are given a weighted, directed graph G = (V,E,w),
where the nodes V are genes and the edges E are interactions
between genes with weights w. We also have a set of labeled
nodes L ⊂ V that contains genes associated with a disease
(positives, L+) and randomly selected genes not associated
with the disease (negatives, L−) such that L = L+ ∪L−
and L+ ∩ L− = ∅. Recent work has found that supervised
learning approaches outperform label propagation methods for
gene classification [8]. Thus, we trained a logistic regression
classifier using the labeled nodes as our training set. For a
given node v, we generate a feature vector x(v) of length |L|
that represents the incoming labeled neighbors. The features
x
(v)
u for each u ∈ L correspond to the edge weight from v’s

incoming labeled nodes:

x(v)u =

{
wuv if (u, v) ∈ E
0 otherwise.

(1)

Each labeled node u ∈ L has a regression coefficient βu, and
these coefficients are fitted to predict the probability pv that
node v is a disease positive, such that

logit(pv) = β0 +
∑
u∈L

βux
(v)
u . (2)

We call this the unweighted logistic regression classifier be-
cause the labels L are not weighted.

We also apply weighted logistic regression, wherein we
consider the score of the node labels L. The weights for
each positive L+ is the node’s DisGeNet disease association
score (which may change depending on the disease). We
assigned a weight of 0.2 to each negative L−, corresponding
to the minimum score possible in the pan-disease evaluation.
Logistic regression was implemented using Python’s sci-kit
learn package [32].

D. Evaluation

We describe two experimental settings which require dif-
ferent numbers of DisGeNet diseases, different number of
positive nodes, and different validation frameworks (Fig. 1B).
Each experimental setting aims to answer a different question.

1) Pan-Disease: In the pan-disease experimental setting,
we compare disease gene prediction performance across di-
verse diseases and focus on whether regulatory interactions
(e.g. the MAP) affect this performance. We control for the
number of genes in the gold standards for each disease, using
the top 100 annotated disease genes as positives and randomly
selecting 100 genes not annotated to the particular disease as
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Fig. 1. Networks and Validation Frameworks. (A) Network Construction. (B)
General validation framework: for each DisGeNet disease, we define two sets
of positives: the 100 top-scoring DisGeNet genes, and all DisGeNet genes.
We sample negatives randomly from the remaining genes not associated with
the disease. (C) Experimental settings. In the pan-disease setting, we use
5-fold cross validation on the top 100 DisGeNet positives and 100 randomly-
sampled negatives. In the disease class setting, we use all DisGeNet positives
for training, but use stratified 5-fold cross validation to ensure that we test on
the exact same positives as in the pan-disease setting.

negatives (Fig. 1C). We trained a weighted and an unweighted
logistic regression classifier on the PPI and the MAP using
these positive and negative sets, resulting in four different runs
(weighted and unweighted; PPI and MAP).

We use 5-fold cross validation, wherein 80 positive nodes
and 80 negative nodes were used as training examples and each
model was assessed on its ability to prioritize the remaining
20 positive genes. In practice, there are typically many more
genes not associated with a disease than genes associated
with a disease. For a more realistic scenario, we tested 1,000
negatives, including the 20 hidden negatives from training and
980 nodes not associated with the given disease that were
randomly selected (Fig. 1C). We computed precision and
recall for the ranked list of predictions for five validation
iterations (corresponding to 5× 5 = 25 runs), and consider
the area under the precision recall curve (AUPRC) when
comparing across diseases. For this and other experimental
settings, we use precision and recall rather than ROC curves
due to the imbalanced positive and negative sets used in
testing [33].

2) Disease Class: In the disease class experimental setting,
we compare disease gene prediction performance for neoplas-
tic processes and focus on whether adding low-confidence dis-
ease genes affect this performance. Here, all DisGeNet genes
annotated to each cancer were used for training. However,
we wanted to assess the exact same 100 positives as in the
pan-disease setting Thus, we stratified the training positives
into two groups: the top 100 disease genes and the remaining
disease genes. We then performed stratified cross-validation
such that one-fifth of each group were hidden (Fig. 1C).
We assessed the unweighted MAP classifier on the hidden
genes from the top 100 positives and 1,000 negatives were
constructed as in the pan-disease setting.

III. RESULTS

A. Pan-Disease Assessment

We ran all four methods (weighted and unweighted logistic
regression on the PPI and the MAP) on the 49 DisGeNet
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Fig. 2. Performance of the Four Classifiers (columns) for each Disease (rows).
Area under the precision-recall curve (AUPRC) values were averaged across
25 iterations (5 runs of 5-fold cross validation) and plotted on a log-scale.
Diseases are ordered by average AUPRC, and boxes denote the largest AUPRC
for each row.
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Leukodystrophy
Arthrogryposis
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Congestive heart failure
Asthma
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Fig. 3. Difference in Performance from the MAP Unweighted Classifier. The
average AUPRC of the MAP unweighted classifier was subtracted from the
average AUPRC of all other classifiers for each disease; bars to the left of
0 are worse than the MAP unweighted classifier. Diseases are ordered as in
Fig. 2.
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Feature Type Feature Estimate S.E. t p
Intercept 7.438e-03 3.324e-03 2.237 2.530e-02

Network PPI vs. MAP 1.354e-02 2.354e-03 5.754 9.252e-09
Node Labels Weighted -4.596e-03 2.354e-03 -1.953 5.092e-02
Disease Genes Subnetwork Density 1.573 3.634e-02 43.281 <2e-16
Disease Genes Regulatory Density 0.2669 3.601e-02 7.410 1.484e-13
Disease Class MBD -2.918e-02 3.573e-03 -8.167 3.983e-16
Disease Class NP 3.431e-03 3.609e-03 0.9506 0.3418

TABLE II
LINEAR MODEL OF DISEASE GENE PREDICTION PERFORMANCE (PAN-DISEASE ASSESSMENT).

diseases with at least 100 positives that had a score greater than
0.2. In terms of area under the precision recall curve (AUPRC),
34 of the 49 diseases had better performance using the MAP
compared to the PPI (Fig. 2). Thus, including regulatory
information helped in nearly 70% of the diseases. Further,
25 of the 34 diseases with improved MAP performance
had the best average AUPRC using the unweighted logistic
regression classifier, indicating that weighting the nodes by
disease association score decreased performance (Fig. 2).
The magnitude of the performance differences compared to
the MAP unweighted classifier were generally larger for the
diseases with the best overall performance, and when the MAP
unweighted classifier was not the best, its average AUPRC was
within 0.05 of the best-performing classifier (Fig. 3).

Next, we wanted to assess whether network features or
disease classes were contributing to the performance differ-
ences among the classifiers. We calculated two statistics to
describe the general network properties of the disease positives
by considering the induced subgraph of the top 100 positives
used for training. We calculated the subnetwork density (the
number of edges divided by the number of possible edges.) and
the regulatory density (the proportion of edges in induced sub-
graph that included a regulatory interaction between a positive
node and a gene’s transcript). Diseases may be classified as
one “Mental or Behavioral Dysfunction” (abbreviated MBD)
or “Neoplastic Process” (abbreviated NP).

We performed multiple linear regression to predict AUPRC
based on five features related to the classifier, the network,
and the disease (Table II). We found a significant regression
equation (F (6, 4893) = 737.5, p < 2.2 × 10−16), with an
adjusted R2 of 0.4749. As expected, the network type (MAP
or PPI) was a significant predictor, while weighting the labeled
positives had a p-value of about 0.05. The disease classifi-
cation of “Mental or Behavioral Dysfunction” was a more
significant predictor than “Neoplastic Process,” illustrating that
the performance increase for cancers could be explained by
the other terms in the equation. Both the subnetwork density
and regulatory density were significant predictors of AUPRC
(examples of this trend for the unweighted MAP classifier are
shown in Fig. 4).

Since the MAP performed better overall than the PPI,
and weighting was not a significant predictor of AUPRC,
we used five-fold cross-validation on the MAP with un-
weighted logistic regression to compare all diseases. We found
that gene-prediction performance varied across diseases, with
neoplastic processes generally outperforming other diseases
(Fig. 5). There was significant variation in AUPRC between
disease classes for this classifier (Kruskal-Wallis rank sum,
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Fig. 4. DisGeNet gene prediction performance compared to subnetwork
density (left) and regulatory density (right) for the unweighted MAP classifier.
Each light gray point represents the AUPRC for one cross-validation run from
one of the 49 diseases, and the black points represent average AUPRC across
25 runs.

chi-squared = 1057.6, p < 2.2× 10−16).
Finally, we measured the correlation between performance

and the features in the linear model while removing the
effect of possible confounders. We identified three additional
DisGeNet features (number of disease publications, number of
publications for all disease genes, and total number of disease
genes) and two additional features of the disease gene induced
subgraph (average degree and weighted average degree) as
possible confounders. We calcuated the partial correlation
of the PRAUC and each feature type while controlling for
each one of these confounders individually (Table III). Here,
the “Disease Class” feature is categorical (e.g., the colors in
Fig. 5). All features remained significant when controlling for
individual confounders except for the weighted labels. Sur-
prisingly, when controlling for all confounders simultaneously,
the regulatory density is no longer significant (last column in
Table III).

Running time: We found that with only 100 disease positive
labeled nodes and only 100 disease negative nodes, our
method runs relatively quickly. With the MAP loaded in a
NetworkX graph, it takes a late-2016 8 GB Macbook Pro
one minute to assemble the input tables for the classifier, and
it takes approximately seven seconds for it to complete one
cross-validation run, which includes both the weighted and
unweighted classifiers for the MAP.

B. Disease Class Assessment

We then evaluated the complete DisGeNet positive sets
for diseases in the “Neoplastic Process” disease class. These
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Potential Confounders
# Disease # Disease Gene Total # Subnetwork Subnetwork Weighted All

Feature Publications Publications Disease Genes Average Degree Average Degree Confounders
PPI vs. MAP 2.72e-05 1.873e-05 2.620e-08 1.056e-07 1.276e-06 2.442e-09
Weighted 0.155 0.147 0.059 0.072 0.101 0.0225
Subnetwork Density <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 1.624e-07
Regulatory Density <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 0.5232
Disease Class <2e-16 <2e-16 <2e-16 0.006 <2e-16 7.626e-10

TABLE III
PARTIAL CORRELATION p-VALUES FOR DISEASE GENE PREDICTION (PAN-DISEASE ASSESSMENT). ENTRIES REPRESENT THE PARTIAL CORRELATION

p-VALUE BETWEEN AUPRC AND THE FEATURE (ROW) WHEN CONTROLLING FOR THE POTENTIAL CONFOUNDER (COLUMN).

diseases had the largest AUPRC values in the pan-disease
assessment (Fig. 5). To compare the disease class assessment
to the pan-disease assessment, we tested on the same positives
using stratified 5-fold cross validation (See Methods). When
we consider all disease genes instead of the top 100, we see a
marked improvement in performance (Fig. 6, Wilcoxon rank
sum test, W = 997,420, p < 2.2× 10−16). Thirteen of the 17
cancers have better performance with Wilcoxon rank sum test
p < 0.01. Fig. 7 shows the disease gene performance of four
classifiers on the two validation settings for three example
cancers: lung, liver, and skin. In these examples, there is a
visual effect of including all disease genes, improving the
MAP classifiers in particular (yellow and green lines.)

As before, we used multiple linear regression to predict
AUPRC based on network features (Table IV). A significant
regression equation was found (F (4, 1663) = 476.3, p < 2.2×
10−16), with an adjusted R2 of 0.5328. Similar to the pan-
disease setting, the network type (PPI vs. MAP), subnetwork
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Fig. 6. Five-fold cross-validation performance (unweighted MAP classifier)
of DisGeNet gene prediction for neoplastic processes. “100 direct”: classifier
trained on 100 positives; “direct”: classifier trained on all positives. (Wilcoxon
rank sum test, ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001,
****: p < 0.0001).
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Lung Adenocarcinoma Lung Adenocarcinoma

Pan-Disease: Top 100 Disease Genes Disease Class: All Disease Genes

Liver Carcinoma Liver Carcinoma

Squamous Cell Carcinoma Squamous Cell Carcinoma

Fig. 7. Performance of all four classifiers trained on the top 100 genes in the
pan-disease setting (left) or all genes in the disease class setting (right) for
Lung Adenocarcinoma (top), Liver Carcinoma (middle) and Squamous Cell
Carcinoma (bottom). Thin lines represent each of the 25 cross-validation runs
for each classifier and the thick line is the median precision-recall curve by
AUPRC value. “PPTTPTI” in the legend indicates the MAP network.

density, and regulatory density were all significant predictors
for performance, whereas the weighted gene labels were not
as significant (Table IV). However, when we controlled for the
number of DisGeNet genes, the correlation between AUPRC
and subnetwork density disappears (Table V). Further, the
correlation between AUPRC and regulatory density is not
significant when controlling for all confounders.

Running time: We noticed that runtime increased propor-
tionally with the increase in disease genes. With the PPI loaded
in a NetworkX graph, it takes a late-2016 8 GB Macbook
Pro 17 minutes to assemble the input tables for the classifier
for Alzheimer’s Disease, which has 1826 disease genes. It
takes approximately 75 seconds for it to complete one cross-
validation run, not including the weighted classifier. For Liver
carcinoma, which has 3226 genes, it takes 44 minutes to
assemble the input tables and about 11 minutes to complete
one cross-validation run.

IV. CONCLUSION

In this study, we demonstrated that including gene regu-
latory interaction data in network-based disease gene predic-
tion significantly improves prediction performance over not
including it (Fig. 2 and Fig. 3). While a handful of the

diseases performed better under the PPI, most performed better
under the MAP. These results underscore the importance of
creating holistic models of molecular biology in computational
inference of diseases.

In the pan-disease assessment, using the top 100 disease
positives controlled for the difference in gene set size between
diseases. In this evaluation, the subnetwork density of the
top 100 disease genes was the best predictor of prediction
performance in a multiple linear regression model (Table II).
Recent work has found that, for the disease gene prediction
problem, network density is correlated with PRAUC perfor-
mance for multiple interaction networks, supporting our results
that density is associated with classifier performance [8].
Partial correlation also showed that this relationship is not
the result of how well the disease or the disease genes have
been studied (Table III). The effect of density is significant
even when accounting for the average disease gene degree,
meaning that this feature is not accounted for by the general
connectivity to the network at large. Because density was
calculated based on the training nodes for each cross-validation
run, density is reflective of the training set’s connectivity to
itself, rather than its connectivity to the test set. With these
possible confounders accounted for, these results suggest that
the density of the top 100 genes associated with a disease is
indicative of how well network connectivity learning methods
can inform us about whether or not a gene is a disease gene.

We also showed that including more disease data signifi-
cantly improves disease gene prediction (Fig. 6). Surprisingly,
we also show that weighting disease positives does not provide
any observable benefit to prediction performance, despite
the positive sets sometimes containing thousands of genes
(Table IV). This might be due to the fitting process of logistic
regression, wherein the regression coefficients change in order
to optimize performance on the supervised set, effectively
weighting the positives and negatives without additional data.
However, established supervised learning weighting mecha-
nisms involve weighting how much a gene’s status as a positive
or a negative affects the fitting process, rather than weighting
its effect on other genes [32]. It is possible that including
the additional positives simply leads to more ways that the
network can train itself to recognize positives, rather than
actually providing additional information. If this were the case,
then any particular nodes could be added to the positive set and
they would improve performance. However, Krishnan et. al.
demonstrated that adding random positives does not improve
performance when predicting autism disease genes [12].

We emphasize that we are not striving to create an optimal
classifier for disease gene prediction. Instead, we are exploring
how network features correlate with performance of logistic re-
gression, focusing on different characteristics of the input data
(the network and disease gene positives). We and others have
worked on designing network-based algorithms to optimally
predict disease genes [6]–[13], and there are many approaches
beyond unregularized logistic regression that perform well.
However, we felt that keeping the classifier simple helped us
explore network features that may contribute to performance
variation across diverse diseases. When predicting disease
genes for a particular disease of interest, it is also important
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Feature Type Feature Estimate S.E. t p
Intercept 0.7156 0.0113 63.330 <2e-16

Network PPI vs. MAP 0.0619 0.0060 10.249 <2e-16
Node Labels Weighted -0.0136 0.0060 -2.266 0.0236
Disease Genes Subnetwork Density -8.9776 0.2487 -36.090 <2e-16
Disease Genes Regulatory Density 2.7616 0.2624 -1.953 <2e-16

TABLE IV
LINEAR MODEL OF DISEASE GENE PREDICTION PERFORMANCE (DISEASE CLASS ASSESSMENT).

Potential Confounders
# Disease # Disease Gene Total # Subnetwork Subnetwork Weighted All

Feature Publications Publications Disease Genes Average Degree Average Degree Confounders
PPI vs. MAP 1.553e-12 4.381e-18 1.557e-34 4.511e-21 2.376e-16 5.629e-39
Weighted Labels 0.1207 0.0579 0.0080 0.0397 0.0725 0.0048
Subnetwork Density 5.221e-261 8.21e-134 0.5365 3.559e-178 1.242e-223 2.085e-26
Regulatory Density 1.105e-63 3.739e-13 0.0002 6.597e-86 1.003e-100 0.9101

TABLE V
PARTIAL CORRELATION p-VALUES FOR DISEASE GENE PREDICTION (DISEASE CLASS ASSESSMENT). ENTRIES REPRESENT THE PARTIAL CORRELATION

p-VALUE BETWEEN AUPRC AND THE FEATURE (ROW) WHEN CONTROLLING FOR THE POTENTIAL CONFOUNDER (COLUMN).

to generate a null distribution of performance values (e.g.
AUPRCs) from randomized data to have confidence in the
gene classifications [12].

As we collect and aggregate information about diverse
disease for disease gene prediction, it is important to consider
the associations between the input features and a classifier’s
performance. Using logistic regression, we have shown that
network-based features have the ability to distinguish perfor-
mance among diverse disease types, and may offer a first
step to indicate which classifiers are well-suited for different
diseases.
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