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Abstract. When using boundary integral equation methods to solve a boundary value prob-
lem, the evaluation of the solution near the boundary is challenging to compute because the layer
potentials that represent the solution are nearly singular integrals. To address this close evaluation
problem, we develop a new numerical method by applying an asymptotic analysis of these nearly sin-
gular integrals and obtaining an asymptotic approximation. We derive the asymptotic approximation
for the case of the double-layer potential in two and three dimensions, representing the solution of
the interior Dirichlet problem for Laplace’s equation. By doing so, we obtain an asymptotic approx-
imation given by the Dirichlet data at the boundary point nearest to the interior evaluation point
plus a nonlocal correction. We present the numerical methods using this asymptotic approximation,
and we demonstrate the efficiency and accuracy of these methods and the asymptotic approximation
through several examples. These examples show that the numerical method based on the asymp-
totic approximation accurately approximates the close evaluation of the double-layer potential while
requiring only modest computational resources.
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1. Introduction. The close evaluation problem refers to the nonuniform error
produced by high-order quadrature rules used in boundary integral equation methods.
High-order quadrature rules attain spectral accuracy when computing the solution,
represented by layer potentials, far from the boundary but incur a very large er-
ror when computing the solution close to the boundary. This large error incurred
when evaluating layer potentials close to the boundary is called the close evaluation
problem. It is well understood that this growth in error is due to the fact that the
integrand of the layer potentials becomes increasingly peaked as the point of evalu-
ation approaches the boundary. In fact, when the distance between the evaluation
point and its closest boundary point is smaller than the distance between quadra-
ture points on the boundary for a fixed-order quadrature rule, the quadrature points
do not adequately resolve the peak of the integrand and therefore produce an O(1)
erTor.

Accurate evaluations of layer potentials close to the boundary of the domain are
needed for a wide range of applications, including the modeling of swimming micro-
organisms, droplet suspensions, and blood cells in Stokes flow [8, 17, 23, 30], and
to predict accurate measurements of the electromagnetic near-field in the field of
plasmonics [22] for nanoantennas [3, 26] and sensors [24, 28].
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Several computational methods have been developed to address this close eval-
uation problem. Schwab and Wendland [29] have developed a boundary extraction
method based on a Taylor series expansion of the layer potentials. Beale and Lai [10]
have developed a method that first regularizes the nearly singular kernel of the layer
potential and then adds corrections for both the discretization and the regulariza-
tion. Beale, Ying, and Wilson [11] have extended the regularization method to three-
dimensional problems. Helsing and Ojala [15] developed a method that combines a
globally compensated quadrature rule and interpolation to achieve very accurate re-
sults over all regions of the domain. Barnett [9] has used surrogate local expansions
with centers placed near but not on the boundary. Klockner et al. [20] introduced
Quadrature by Expansion (QBX), which uses expansions about accurate evaluation
points far away from the boundary to compute accurate evaluations close to it. There
have been several subsequent studies of QBX [1, 2, 13, 27, 31] that have extended its
use and characterized its behavior.

Recently, the authors have applied asymptotic analysis to study the close evalu-
ation problem. For two-dimensional problems, the authors developed a method that
used matched asymptotic expansions for the kernel of the layer potential [12]. In that
method, the asymptotic expansion that captures the peaked behavior of the kernel
(namely, the peaked behavior of the integrand of the layer potential) can be integrated
exactly, and the relatively smooth remainder is integrated numerically, resulting in a
highly accurate method. For three-dimensional problems, the authors have developed
a simple three-step method for computing layer potentials [18]. This method involves
first rotating the spherical coordinate system used to compute the layer potential so
that the boundary point at which the integrand becomes singular is aligned with the
north pole. By studying the asymptotic behavior of the integral, they found that
integration with respect to the azimuthal angle after the initial rotation is a natural
averaging operation that regularizes the integral and allows for a high-order quadra-
ture rule to be used for the integral with respect to the polar angle. This numerical
method was shown to achieve an error that decays quadratically with the distance to
the boundary provided that the underlying boundary integral equation for the density
is sufficiently resolved.

In this work, we carry out an asymptotic analysis of the close evaluation of the
double-layer potential for the interior Dirichlet problem for Laplace’s equation in two
and three dimensions. By doing so, we derive asymptotic approximations that provide
valuable insight into the inherent challenges of the close evaluation problem. These
asymptotic approximations are given by the Dirichlet data at the boundary point
closest to the evaluation point plus a nonlocal correction. It is the nonlocal correc-
tion that makes the close evaluation problem challenging to address. The asymptotic
analysis leads to an explicit expression for this nonlocal correction and suggests a nat-
ural way to accurately and efficiently compute it. We develop new, explicit numerical
methods for computing the close evaluation using these asymptotic approximations.
We provide several examples that demonstrate that these methods are consistent with
the expected accuracy from the asymptotic analysis.

The remainder of this paper is as follows. We precisely define the close evaluation
problem for the double-layer potential and state the expected leading-order asymp-
totic behavior of the double-layer potential in section 2. We give the derivation in
two dimensions in section 3 and three dimensions in section 4. We describe the new
numerical methods using the asymptotic approximations for the close evaluation of
the double-layer potential in section 5. We give several examples demonstrating the
accuracy of this numerical method in section 6. Section 7 gives our conclusions. The
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appendices provide details of the computations used throughout this paper: Appendix
A establishes additional results we have used to justify the obtained asymptotic ap-
proximations of sections 3 and 4, Appendix B gives details of how we rotate spherical
integrals, and Appendix C gives a useful derivation of the spherical Laplacian.

2. Motivation and results of asymptotic analysis. Consider a simply con-
nected, open set, denoted by D C R™ with n = 2,3, with an analytic close boundary,
B, and let D = DU B. Given some smooth data f € C?(B), we write the function
u € C%(D) N CY(D) satisfying the interior Dirichlet problem,

(2.1a) Au=0 in D,
(2.1b) u=f on B,
as the double-layer potential,
1 vy - (z—y)
(2.2) u(z) = 1 /B Z— g w(y)doy, €D, n=23.

Here, v, denotes the unit outward normal at y € B, do, denotes the boundary
element, and p € C?(B) denotes the density. The double-layer potential given by
(2.2) satisfies (2.1a). To require that (2.2) satisfies (2.1b), we first recognize that it
satisfies the following jump condition [14, 21]:
(2.3)
lim ! / vy (@ y)u(y)day - ! / Yy y)u(y)day - 1u(y*).
B B

z—y*eB 21 | —y|™ on=lg ly* —y|™ 2
x€D

In light of the jump condition (2.3) and the boundary condition (2.1b), i satisfies the
boundary integral equation:

1 vy - (y* — 1
e g [ e, - gul) = f), v e B

2.1. The close evaluation problem. The close evaluation problem refers to
the large error resulting from computing the solution close to the boundary using a
high-order quadrature rule at a fixed order. The close evaluation problem for (2.1)
can be understood intuitively. Laplace’s equation has no intrinsic finite length scale.
This lack of finite length scale is manifest in the kernel of (2.4), which is singular at
y = y*. When one introduces a finite discretization of the boundary, one effectively is
introducing a finite length scale into the problem. Let As denote this finite length scale
corresponding to the boundary discretization. For evaluation points in the domain
farther than As from the boundary, the kernel of (2.2) is smooth, and a fixed As
boundary discretization adequately resolves it. In contrast, for evaluation points in
the domain closer than As from the boundary, the kernel is nearly singular and cannot
be adequately resolved by this fixed boundary grid. Figure 1 shows these differences.
This description of the close evaluation problem provides valuable insight. First, we
understand that the size of the region exhibiting the close evaluation problem scales
with the boundary discretization. Hence, in the limit, as the number of boundary
points grows, this region shrinks proportionally, which is simply a consequence of
the convergence of the numerical method. However, we also understand that the
close evaluation problem exists for any fized boundary discretization and is therefore
unavoidable for any practical calculation.

As stated in the introduction, there have been several methods developed that suc-
cessfully address the close evaluation problem. However, because the close evaluation
problem is an intrinsic property of the boundary integral equation formulation and
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Fic. 1. Two-dimensional sketch showing the finite length scale, As, of the discretization for
(2.1) which leads to the close evaluation problem. For the point x1 which is farther than As from
the boundary, we find that the kernel is well resolved with the boundary grid. However, for the same
boundary grid, we find that the kernel is poorly resolved for xa, which is closer to the boundary than
As. In each plot on the right, the kernel K(z; — y(s)) := %, i = 1,2, is plotted in blue,
and a piecewise linear approzimation using a fired As grid is plotted in dashed orange.

because close evaluations near the boundary are important for many physical applica-
tions, we are motivated to consider an alternative method to study the close evaluation
problem. The method presented here closely follows the intuitive explanation above in
which the discretization introduces a finite length scale into the problem. In particular,
we apply asymptotic analysis to study the evaluation of the double-layer potential in
the limit as the evaluation point z approaches a point on the boundary y* and use this
analysis to develop an accurate numerical method for these close evaluation points.

2.2. Preliminaries. To prepare to state our results of the asymptotic analysis,
we introduce some notation. We refer the reader to Definition 1.1 (“Big-oh”), Defini-
tion 1.2 (“Big-oh” near z), Definition 1.4 (“Little-oh”), Definition 1.9 (Asymptotic
sequence), and Definition 1.10 (Asymptotic expansion) from Miller’s text [25] and
to [16, section 2.5] for more details. Given some functions f and g defined over some
set D, we will use the notation f < g to indicate that f(z) = o(g(x)) whenever x € D
and x tends to some xg € D [25, Definition 1.4]. Given a function f, we construct an
asymptotic expansion of the form

o0

f@)~ Y € fulx), €0

n=0

In other words, we only consider the asymptotic sequence {€"}°, as e — 01 [25,
Definition 1.10]. We will make use of the notation f(z) = fo(z) + efi(x) + O(e?)
to denote the “asymptotic approximation of f(z) to order €2 in the limit as e —
0T.” With these definitions and notations established, we state the formal asymptotic
analysis in the next subsection.

2.3. Results of asymptotic analysis. To study the close evaluation of (2.2),
we introduce the parameter € in the evaluation point = according to

(2.5) =y —elv”
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«T

B

F1G. 2. Sketch of the quantities introduced in (2.5) to study evaluation points close to the
boundary in two dimensions (left) and in three dimensions (right).

and consider the asymptotic limit of ¢ — 0. Here, y* € B denotes the closest point
to z on the boundary; v* denotes the unit, outward normal at y*; and ¢ denotes a
characteristic length of the problem, like the radius of curvature at y* (see Figure 2).
Since the solution of (2.1) continuously approaches its boundary data from within D,

(2.6) u(z) = u(y” —eltv™) = f(y") + U(y"; €).

To determine an expression for U, we substitute (2.2) evaluated at (2.5) for u(y*—elv*)
and (2.4) for f(y*) into (2.6) and find that

[t 1 vy - (ya — €lv*) vy -yq
2.7) Uy e) =€t { *) + / { Y - Y doy, |,
( ) (y ) 2/1“(3/ ) on—1, B ‘yd . Egl/*|n ‘yd|n :u’(y) Yy

where we have introduced the notation, y4 = y* — y. Next, we make use of Gauss’s
theorem [14],

1 ( ) -1 zeD,
(2.8) /”y L= Y4g,={ -1 zeB,
277,717-r B |1,7y|n £ 2 _
0 z¢D,
to write
1

Suyt) = ply”) — %u(y*)

2
1 Vy'(ydfegl/*) 1 / Vy'yd
= - *)d — *Vdo,,.
2"—17T/B lya — elv*|™ ply")doy + 27 g |ya™ Hly™)dey

(2.9)

Substituting (2.9) into (2.7) yields

1 vy (ya —ev*) vy yg
2.1 * . — 1 Y _ 7y _ * .
210) U0 = gy [t [T e ) e,

Let
1 vy (ya—€elv)

(2.11) K(ya, )

~on—ig |ya — elv*|™

Then (2.10) can be rewritten as

(2.12) Uly*;e) = /B oa©) ~ Ky, 0) (1(y) — p(y*)ldoy,

€
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which reveals that the kernel of U (y*; €) is proportional to 9./C(yq,0). This observation
motivates us to seek asymptotic expansions for U(y*; €). Note that U(y*;€) is a weakly
singular integral that provides an important contribution to the double-layer potential
off and on the boundary. The asymptotic analysis results of this paper are stated in
the two conjectures below.

CONJECTURE 2.1 (two-dimensional asymptotic approximation). Consider a
bounded open set D C R? with an analytic closed boundary B that can be param-
eterized as y = y(t) for 0 <t < 2w. Let y* = y(0). For f € C*(B), the solution of
(2.1) at x = y* — elv* is given by u(y* —elv*) = f(y*)+eU(y*;¢€), and the asymptotic
approzimation of U(y*;€) to O(€?) is

(213) U(y*;e) = La[pl(y*) + eLa[u](y™)
6€2y’(0)~y”(0)du(3~/(t)) e 2 d?u(y(t)) +0()

4y’ (0)[* dt |y AOF  d |,
with
(2.14) Ll[u](y*)ZE/BQ(Vy'yd)(y* .|yy§|)4yy.y*yd| [u(y) — n(y*)] doy,
and
(2.15)

Lo[u](y*) = 42/ (vy - ya) [4(v* - ya)?] = 2lyal*(vy - v*)(v* - ya)

i yalf (1(y) — pu(y*)] doy,.

By replacing U in u(y* — elv*) = f(y*) + eU(y*;€) with (2.13), we obtain the
asymptotic approximation of u(y* — efv*) to O(e?).

CONJECTURE 2.2 (three-dimensional asymptotic approximation). Consider a
bounded open set D C R? with an analytic closed and oriented surface B that can
be mapped to S? via an analytic diffeomorphism and that can be parameterized as
y =vy(s,t) for s € [0,x], t € [-m,w]. Let y* = y(0,-) = limy_,o+ % ffﬂ y(0,p)dp be
the spherical mean. For f € C%(B), the solution of (2.1) at x = y* — elv* is given
by u(y* — elv*) = f(y*) + eU(y*;€), and the asymptotic approzimation of U(y*;¢) to
O(e) is

(2.16) U(y*;e) = La[p](y*) + O(e)
with
I e el V" 1)~ () do,

By replacing U in u(y* — elv*) = f(y*) + eU(y*;€) with (2.16), we obtain the
asymptotic approximation of u(y* — efv*) to O(€?).

We give the following remarks:

e We consider smooth boundaries (analytic, closed) for which we can have an
explicit parameterization. Note that the parameterization enables us to work with
integrals defined on a circle or a sphere. In other words the results hold for any
boundary that can be mapped to S"~! via an analytic diffeomorphism. Denoting this
diffeomorphism by ¢ : S"~! — B, we consider the parameterization y = 1 o ygn-1
with ygn—1 denoting the parameterization defined on S™~!. In principle, one could
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extend similar results on patches by locally applying some mapping to an arc or a
spherical cap. However, this extension is not within the scope of this paper.

e One could obtain higher-order results provided that f,u € C*(B) for k > 2.
On the other hand, one could investigate the problem with less required regularity.
However, we do not investigate that aspect of the problem here. In what follows, we
take advantage of spectral methods to compute higher-order derivatives.

e As is shown in the next sections, computations to obtain asymptotic approxima-
tions can be tedious, especially for higher-order terms, and for the three-dimensional
case. It is for this reason that we only consider the O(e?) approximation for the
three-dimensional case.

e In Conjecture 2.1, results are written for y* being at ¢ = 0 for simplicity.
However, these results hold for any y* = y(t*) with t* € [0,2x] through a rotation.
Denoting this rotation by R : S* — S, we then consider y := R o) o yg1.

e Similarly, in Conjecture 2.2, results are written for y* situated at the north
pole (s = 0) of the unit sphere. For other evaluation points, one simply rotates the
coordinate system to arrive at this configuration. Details for this rotation can be
found in Appendix B.

e From a numerical point of view, it is desirable to achieve spectral accuracy
for u, so that the main source of error is due to the close evaluation of the double-
layer potential. When this is done, we compute derivatives of u needed for the two-
dimensional asymptotic approximation using spectral differentiation methods.

The next two sections give a derivation of these two conjectures based on a careful
and systematic asymptotic analysis. This derivation is formal because we do not
rigorously prove one technical point in it. This technicality is discussed in detail for
the specific case of the unit circle in Appendix A, where calculations are explicit and
the proof is given. Rather than focus on the technicalities for general cases, we proceed
with these two conjectures, develop new numerical methods based on them, and test
their accuracy on several examples. Since we make use of explicit parameterization
for B, we consider the two- and three-dimensional problems separately.

3. Asymptotic approximations in two dimensions. We give a derivation of
the O(€) term in Conjecture 2.1, i.e., L1 [u](y*) defined in (2.14), and then comment
on how to compute the O(e?) terms in Conjecture 2.1. As stated in Conjecture 2.1, we
assume B to be an analytic, closed curve on the plane. We introduce the parameter
t € [—m, ] such that y = y(t) and y* = y(0). In terms of this parameterization, (2.10)
is given by

(3.1) Uly's) = o= [ ROl — (O

with 7i(t) = p(y(?)) and fi(0) = p(y(0)) = u(y*) and

v(t) - — elv* v(t) -
(3:2) K(t;g):[ (ﬁz/d((f)d(—t)efu*P )_ (;)d(ngt) /)

with 7(t) = v(y(t)), ya(t) = y(0) — y(t), and J(t) = |¢'(t)|- Note that v* = (0).
To determine the asymptotic expansion for U, we write

(3-3) Uly*se) =UM(y"5e) + U™ (y"5¢)
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with the inner expansion, U™, and the outer expansion, U°", given by

) 1 Ve/2
(3.42) Ui =5 [ TR [a6) - mO) dt
T -y
—Ve/2
Uy =g [ K () - (o)
(3.4b) - L
b [ R ()~ ao)
T Je/2

The inner expansion involves integration over an O(e'/2) portion of the boundary
about y*, whereas the outer expansion involves integration over the remaining portion
of the boundary. The following results also hold if one considers an O(e%*) portion
of the boundary with 0 < a < 1. Since the inner and outer expansions come from
splitting the integral over the boundary, we refer to this procedure as an integral
splitting method for computing the asymptotic expansion for the close evaluation of
the double-layer potential.

We determine the leading-order asymptotic behaviors of U™ and U°" in the sub-
sections below. Then, we combine those results to obtain the asymptotic approxima-
tion for the double-layer potential in two dimensions and discuss higher-order asymp-
totic approximations. The procedure we use here follows that by Hinch [16, section 3].
We have developed Mathematica notebooks that contain the presented calculations,
available in a GitHub repository [19]. In what follows we assume that K and f have
asymptotic expansions in the limit as ¢ — 07 (as described in section 2.2) and that
the remainder of the asymptotic approximation to O(€") with n > 1 yields an O(e" 1)
after integration. Details of the proof are given for the unit circle in Appendix A.

3.1. Inner expansion. To determine the leading-order asymptotic behavior of
U™, we substitute ¢ = €T into (3.4a) and obtain

_ 1 [Y/@Ve) ~ _

(35) UMt = 5n [ KT [aleD) - ().
mJ-1/2ve

Recognizing that 7(eT') = v*+O0(e) and yq(eT) = —eTy'(0)+O(e?) with v*-y/(0) = 0,

we find by expanding K (eT’; €) about e = 0 that

e 10J(0)

(3.6) K(eT;e) = TTER(0) 1 2

+0(1).

Using the fact that this leading-order behavior is even in 7' and expanding i about
e = 0, we substitute these expansions into (3.5) to get

| VEVE [ 1
U0 = 5 [4“”+ouﬂm&ﬂ—ﬂmmw

") yege L TPT0) 42
ENC N -
37 ) % /(v Z_T;ffg)(i)p +O(1)] (T + B(=eT) = 20(0)} 4T
N % 0 __q%m + 0(1)] [2T21"(0) + O(*)] AT
- % 01/(2@ :—jmﬂ”(o) +O(62)] dr.
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Above, we have obtained an asymptotic approximation of the integrand to O(€?) (see
section 2.2). Following the procedure given by Hinch [16, section 3.4], after integrating
(see [19] and Appendix A) and expanding about ¢ = 0, we find the leading-order
asymptotic behavior of U™ to be

NG
47 J(0)

(3.8) U™ (y*5e) = A"(0) +O(e).

Remark 1. The obtained asymptotic expansion used in (3.7) is nonuniform. One
needs to establish uniform convergence to rigorously prove that the remainder of the
asymptotic approximation to order €2, after integration, is O(e). Obtaining this result
in general is not straightforward. We give details of the proof for the case of the unit
circle in Appendix A.

3.2. Outer expansion. To determine the leading-order asymptotic behavior of
U°ut, we expand K (t;€) about € = 0 and find that K (t;¢) = [eKy(t) +O(e?)]J (t) with

_ 200) - ya() (" - ya(?) — #() - v*|ya(t)]®
lya(t)]* '

Substituting this expansion into (3.4b), we find that

(3.9) Ky (t)

1 —Ve/2
(310) U™(y7se) / Ky () [A(t) — (0)] J (£t

zg_ﬂ'

To eliminate /€ from the integration limits, we rewrite (3.10) as

(3.11) U (i) = o /7r Ky (t) [(t) — f(0)] J()dt — Vo (y*s€) + O(e)

:% .

with

1 Ve/2
(3.12) ety = o- | PRCICOR ORI

Note that ¢ — K7 (t) [(t) — #(0)] J(¢) can be integrated, as a Cauchy principal value,
allowing us to write (3.11) with (3.12).

To determine the leading-order behavior for Vo, we proceed exactly as in section
3.1. We substitute ¢t = €T into (3.12) and obtain

1 Y (2ve)
(3.13) V(e = o / o ATV H(T) = O)] J(ET)edT

Again, by recognizing that 7(eT) = v* + O(e) and yq(eT') = —eT'y'(0) + O(€?) with
v*-y'(0) = 0, we find that

672
(3.14) Ki(eT) = TQﬂfO) +O0(e™h).
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Using the fact that this leading-order behavior is even in T and that J(eT') = J(0)
+ O(e), when we substitute it into (3.13), we find, after expanding about ¢ = 0, that

(3.15)
NGRS 11//(;@ [ijo) +0(e)| [H(er) = O} (Teat
_ % 01/<2¢€) :_T;;jf()) +O(e_1)} [i(eT) + fu(—€eT) — 2/(0)] [J(0) + O(e)] edT
= 01/(2@ o+ OW)] [T ) + o) ar
_ % 01/(2@ :— ;(f))ﬁ”(O) +0(e2)} T
= —4;?(60) fi” (0) + O(e).

Substituting this result into (3.11), we find that the leading-order asymptotic
behavior for U°% is given by
1 (" Vel
3.16 Ut (y*; — [ Ki(t) [a(t) — p(0)] J(t)dt
(3.16) (') O ()~ 0)) ()t + Vo

“or o

" (0) + O(e).

3.3. Two-dimensional asymptotic approximation. We obtain an asymp-
totic approximation for U by summing the leading-order behaviors obtained for U™
and U°" given in (3.8) and (3.16), respectively, which gives

(3.17) Uly"se) = — /Tr K1 (8) [a(t) = a(0)] J()dE + O(e):= La[p] + O(e),

2 J_,
where K7 is given by (3.9). It follows that the asymptotic approximation for u(y* —
elv*) to O(e?) is

(3.18) u(y* — elv*) = f(y*) + eLa[u] + O(€*).

This result gives the leading-order asymptotic behavior of U(y*;¢) as e — 0. The
obtained asymptotic approximation does not have any terms of O(el/ 2) because those
terms in (3.8) and (3.16) vanish identically. Asymptotic approximation (3.18) gives
an explicit approximation for the close evaluation of the double-layer potential in
two dimensions. According to the asymptotic analysis, the expected error of this
approximation is O(e?). It gives the double-layer potential as the Dirichlet data at
the boundary point y* closest to the evaluation point z plus a nonlocal correction.
This nonlocal correction is consistent with the fact that solutions to elliptic partial
differential equations have a global dependence on their boundary data. The leading-
order asymptotic expansion indicates that the nonlocal correction only comes from
the outer expansion, and the inner expansion does not contribute to the lower-order
terms.

As stated in Remark 1, we do not establish the uniform convergence that is
needed to rigorously justify this asymptotic error, and we proceed with this asymptotic
analysis as conjecture. We show in the numerical examples below that this expression
yields approximations with the expected asymptotic error estimate, thereby indicating
that the conjecture is correct.
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3.4. Higher-order asymptotic approximations. By continuing on to higher-
order terms in the expansions for U™ and U°", we can obtain higher-order asymptotic
approximations. Details can be found in the Mathematica notebooks [19]. The result
from these calculations is the asymptotic approximation

319) UG5 = Ll + ¢ [l - L0 Do) + 0] + o)
with Ly[y] as in (3.17) and

(3.20) Lol i= 5 [ K0} [3(0) - RO S0

where

(3.21) Kolt) = 2 (v - ya) [A0" - ya)? = |yal*] = 2lyal* (v - v*) (" - ya)

|yal®

It follows that the asymptotic approximation for u(y* — e/v*) to O(€®) is given by

(822) uly* —etv*) = f(y*) + eLalu]
YOO L

i) PO+ O] + 0.

+ € | La[y]

In addition to nonlocal terms, this approximation includes local contributions made
by first and second derivatives of the density, i, evaluated at the boundary point y*.
These local contributions come from the inner expansion.

4. Asymptotic approximations in three dimensions. As stated in Conjec-
ture 2.2, we assume B to be an analytic, closed, and oriented surface that can be
parameterized by y = y(s,t) for s € [0,7] and ¢t € [—m,n]. This implies that the
double-layer potential is a surface integral in a spherical coordinate system, which
we will explicitly make use of in what follows. We assume that y(s, —m) = y(s, )
Vs € [0, 7] and that y* = y(0, ), where y(0, -) := limg_, g+ % ffﬂ y(0, p)dp denotes the
spherical mean. In other words, we consider y* to be at the north pole of the sphere
corresponding to s = 0. One can always arrive at this configuration by rotating the
local spherical system (see Appendix B). In terms of this parameterization, (2.10) is

given by
@y U0 =g [ [ R0 a0 - 0. ) sin(s)dsds

with fi(s, t) = p(y(s,t)) and (0, -) = p(y(0,-)) and

U(s,t) - (ya(s,t) —elv*)  D(s,t)  ya(s,t)
lya(s,t) — elv*[? lya(s, t)|®

with D(s,t) = vy, ya(s,t) = y(0,-) — y(s,t), and J(s,t) = |ys(s,t) X ye(s,t)|/ sin(s).
The integral (4.1) is written as a surface integral in a spherical coordinate system. In
this integral, we have explicitly included the spherical Jacobian, sin(s). It follows that
J(s,t)sin(s) for this integral is always bounded. Note also that v* = (0, ). Write

(4.2) K(s,t;€) = [ J(s,1)

(4.3) Uly*se) =UM(y"5e) + U™ (y"5¢)
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with the inner expansion, U™, and the outer expansion, U°", given by
(4.4a) U™ (y*; e = / / e 1K (s, t;€) [i(s, t) — (0, )] sin(s)dsdt,
T

(4.4b) Ut (y*; e =0 /_ ) / e 1K (s,t;€) [fi(s, t) — (0, -)] sin(s)dsdt.

We once again assume that K and g have asymptotic expansions as ¢ — 07 and
that the remainder of the asymptotic approximation to O(e") with n > 1 is O(e"™1)
after integration. We determine the leading-order asymptotic behaviors for U™ and
U°Y separately. Then, we combine those results to obtain an asymptotic approxi-
mation for the close evaluation of the double-layer potential in three dimensions and
discuss higher-order asymptotic approximations. The procedure follows [16, section
3]. Details can be found in the Mathematica notebook available on GitHub [19].

4.1. Inner expansion. To find the leading-order asymptotic behavior of U™,
we substitute s = €S into (4.4a) and obtain

1V
(4.5) Un(y = / / K(eS,t;€) [(eS, t) — 1(0, -)] sin(eS)dSdt.

Recognizing that 0(eS,t) = v* + O(e) and y4(eS, t) —eSys(0,-) + O(e?) with the
vector ys(0, -) lying on the plane tangent to B at y*, we find by expanding K (€S, t; €)
about € = 0 that

€ 20J(0,-)

(4.5) S5O = Ty, o, ) + 2y

+0(e™).

Since this leading-order asymptotic behavior for K (eS,t;¢) is independent of ¢, we
write

e 1T VE €20J(0,") _
an oo =g [0 e e o
[2(eS,t) + (S, t + ) — 27(0, -)] sin(eS)dSdt.

Next, we use the regularity of fi over the north pole to substitute fi(eS,t + 7) =
ii(—eS,t) so that

(4.8) (S, t) + fi(eS,t + ) — 2j1(0, ) = fi(eS, t) + fi(—eS, t) — 21(0, )
. = €25%[1,5(0,-) + O(eh).

Thus, we find after substituting (4.8) and sin(eS) = €S + O(€?) into (4.7) that

U i) = = / /W[ Sgyf&)ﬂi +)€2)3/Qusq< )+ 0 )]det

1/ve €S3 5
- 8 Asw(y*)/o [(52|ys( )2+ £2)3/2 O )] 45

where we have used the fact that

1 [ 1 N
(4.10) 2| 0,9t = S Aty
0

(4.9)

™
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with Ag2pu(y*) denoting the spherical Laplacian of p evaluated at y* (see Appendix
C). Note that the Laplace—Beltrami operator Agz appears due to the use of a local
spherical coordinate system. Furthermore, following the procedure given by Hinch [16,
section 3.4] (see [19] and Appendix A), when expanding about e = 0, we have

1/ ve S° 2 _ Ve
(4.11) / [<52|ys<o,->|2 ey O] 45 = g oE OO,

and therefore

Vet (0, )
~ 8Jys(0,)1

This result gives the leading-order asymptotic behavior of U™,

(4.12) U™(y*5€,0) = —o— =L Agapu(y*) + O(e).

Remark 2. One needs again to establish uniform convergence to rigorously prove
that the remainder of the asymptotic approximation to O(e?), after integration, is
O(e). One could obtain the results in the case of the unit sphere, proceeding similarly
as in Appendix A.

4.2. Outer expansion. To determine the leading-order asymptotic behavior of
U°", we expand K (s, t;€) about € = 0 and find K(s,t;€) = [eK1(s,t) + O(e?)] J(s, 1)
with

(s, t) - ) (v* - t)) — t)|20(s, t) -
(413) Kl(s,t) :ES(V(S’ ) yd(sa ))(V yd(s7 ))5 |yd(s> )| I/(S, ) v
ya(s, t)|
Substituting this expansion into (4.4b), we obtain

) o= - [ /f K (5.2) [i(s,£) — (0, )] J (s, ) sin(s)dsdt + O(e).

To eliminate /€ as a limit of integration in (4.14), we write

(4.15) U°"(y*;e) = % /:r /077 Kiq(s,t) [a(s,t) — @(0,-)] J(s,¢) sin(s)dsdt
_ Vout(y*; 6) + O(E)
with
1 [" [Ve
(4.16) VOUt(y*;e) = E/_ /0 Ki(s,t) [a(s,t) — (0, )] J(s,¢) sin(s)dsdt.

Note that (s,t) — Ki(s,t) [ii(s,t) — @(0,-)] J(s,t) sin(s) can be integrated, as a Cauchy
principal value, allowing us to write (4.15) with (4.16). To determine the leading-order

asymptotic behavior of VU (y*; €), we proceed as in section 4.1. We substitute s = €9
into (4.16) and obtain
(4.17)
1/ xf
Ve = o / / (€5, 1) [fi(€S, £) — (0, )] J(eS, ) sin(eS)ed Sdt.

Recognizing that o(eS,t) = v* + O(e) and yq(eS, t) —€eSys(0,-) + O(e?) with the
vector ys(0, ) lying on the plane tangent to B at y*, we find by expanding K (€S, )
about € = 0 that

e3¢

(4.18) Ki(e8,0) = g 035

+0(e7?).
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Since the leading-order behavior of K is independent of ¢, we use (4.8) plus knowing
that J(eS,t) = J(0,-) + O(e) and sin(eS) = €S + O(e3) to obtain (see [19] for details)

PO (s c 47T/ /1M[ Hu 0,) +O(2) | dsat

ys(0
Vet (0, )
= =g s As2ay”) + O(e).
8y (0, )P
Note that we have used (4.10) in the last step. Substituting this result into (4.15),
we find that

(4.19)

(4.20) U (y*:e,0) = i K i /0 " K5, 8) [, 1) — (0, )] (s, £) sin(s)dsdt

+x/8| E ))|3Asw(y*)+0(€)-

This result gives the leading-order asymptotic behavior of U°".

4.3. Three-dimensional asymptotic approximation. We obtain an asymp-
totic approximation for U by summing the leading-order behaviors obtained for U™
and U°" given in (4.12) and (4.20), respectively, which yields

U(y*;e) = L / Ki(s,t) (s, t) — (0, )] J(s,t) sin(s)dsdt + O(e)
(121) = Lo+

with K given in (4.18). It follows that the asymptotic approximation of u(y* — efv*)
to O(€?) is given by

(4.22) u(y* — etv*) = f(y*) + eLafu] + O(E).

The structure of this asymptotic approximation for the close evaluation of the double-
layer potential in three dimensions is exactly the same as what we found for the two-
dimensional case: The leading-order asymptotic approximation is composed of the
Dirichlet data and a nonlocal term coming from the outer expansion. Similarly, high-
order asymptotic approximations could be obtained by continuing on to higher-order
terms in the expansions U™ and U°"t.

5. Numerical methods. We now use the results of the asymptotic analysis
above to develop new numerical methods for the close evaluation problem. Numerical
methods to compute the asymptotic approximations for the close evaluation of the
double-layer potential must be sufficiently accurate in comparison to O(e). Otherwise,
the error made by the numerical method will dominate over the error of the asymp-
totic approximation. On the other hand, if the numerical method requires restrictively
high resolution to compute the asymptotic approximation to sufficient accuracy, the
numerical method suffers from the very issue of the close evaluation problem. In what
follows, we describe numerical methods to compute the asymptotic approximations
derived above at high accuracy with modest resolution requirements. From the com-
putation of the asymptotic expansions, we found that splitting the integral into two
parts (“close” to y* and “far” from y*) was crucial for obtaining the leading-order
behavior. We use the same integral splitting procedure in the numerical methods that
follow.
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5.1. Two dimensions. Suppose we have parameterized B by y = y(¢) with
—7 < ¢ <7 with y* = y(¢*). For that case, we need to compute

(5.1) % (y*) = % /j Fi(p; 9*)de with
(5.2) Fi(p;9%) = Ki(e)J(¢) [i(p) — ()],

where K7 is given in (3.9). The function, K7, is singular at ¢ = ¢*. Consequently,
applying a high-order accurate numerical quadrature rule to compute %4 will be
limited in its accuracy even though Fj vanishes identically at ¢ = ¢* due to the
factor of fi(¢) — fi(p*). To improve the accuracy of a numerical evaluation of (5.1),
we revisit the asymptotic expansion obtained for V°U (y*; €) in (3.13)—(3.15). We split
the integral according to

1 5/2 5/2
U (y*) = 271'/ Fi(p; )dw+f/ Fi(p;0 )ds0+/6/2F1 ©; 0" )de,

where § is a chosen constant (for numerical purposes, one can set ¢ to be the dis-

cretization step size). The last integral is analogous to V°U(y*;¢). Using the results
from section 3.2, we find that
1 /2 5 gﬁ“(@*)
5.3 — Fip;o*)dp ~ ——-—2T 2 ¢ 0",
53 LA S T ()

This result suggests the following method to compute % (y*) numerically using the
N-point periodic trapezoid rule (PTR). Suppose we are given the grid function, fi(y;)
for j =1,...,N with ¢; = —7 + 27(j — 1)/N, and suppose ¢* = ¢, is one of the
quadrature points. We introduce the numerical approximation

o LR (ox)
(5.4) Wy = U #ZkFl ) T N T (o)

where we have replaced the quadrature around ¢* with (5.3), and we have set 6 =
27 /N. We compute [i”(¢) with spectral accuracy using fast Fourier transform meth-
ods. Using this numerical approximation, we compute the O(e?) asymptotic approxi-
mation for the close evaluation of the double-layer potential in two dimensions through
evaluation of

(5:5) uly” — etv*) = f(y*) + UL () + O(2).

To compute the O(e?) asymptotic approximation, in addition to %4, we need to
compute

(5. %) = 5= [ Raleee
where
(5.7) Fay(p;90%) = Ka(p)J () [i1(p) — fi(¢")]

and K, given in (3.21). By using the higher-order asymptotic expansion for V°ut
(computed in the Mathematica notebook available on the GitHub repository [19]), we
apply the same method used for % (y*) and arrive at

62 * N(‘Pk)

X 1
(5.8) Us(y*) = Uy’ = NZB(%W”“) AN J (k)

7k
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with k* denoting the signed curvature at y*. Using this numerical approximation, we
compute the O(e®) asymptotic approximation for the close evaluation of the double-
layer potential in two dimensions through evaluation of

(5.9) uly” —elv*) = f(y*) + U7 (y")

+é UQN(?/*) - ! yl(;?zx)(;;{;(w*) i (") + 3452”((;0:)) + 0(63)~

Since the boundary is given, we are able to compute 3’ (¢) and y” () explicitly. We use
fast Fourier transform methods to compute i'(¢) and " (¢) with spectral accuracy.

The numerical method we propose (i) uses the asymptotic approximations as
an alternative to a given quadrature rule (here PTR) when computing the solution
for close evaluation points and (ii) takes advantage of the integral splitting method
to determine corrections of the quadrature rule used to numerically compute the
asymptotic approximations. In the numerical examples that follow, we will study the
error made by the numerical evaluation of the asymptotic approximations with respect
to €, not with respect to N. Nonetheless, let us make some comments about how the
integral splitting affects the quadrature rule (point (ii)). It has been shown that PTR
has an exponential rate of convergence; however, for ¢ < 1/N one always encounters
an O(1) error [9]. By splitting the integral as we have done, we disrupt this spectral
convergence for close evaluation points but maintain at least an O(N~2) convergence
rate with the trapezoid rule if the peaked behavior of the integrand is addressed. This
is precisely what happens with (5.4)—(5.8). Further, one could consider applying the
integral splitting method over multiple quadrature points, i.e., § = j27/N for some
7> 1.

5.2. Three dimensions. Suppose we have parameterized B by y = y(6, p) with
6 € [0,7] and ¢ € [—m, w] with y* = y(6*, ¢*). For that case, we seek to compute

(5.10) U (y*) = % /j /U7T F1(0,¢; 0%, ¢*) sin(6)d0de
with
(5'11) Fl(ea ®s 9*7 (P*) = Kl (07 L)0)‘](97 (P) [ﬂ(97 (P) - ﬁ(9*> 50*)] )

where K7 is given in (4.13). Just as with the two-dimensional case, the function K;
is singular at (6, ) = (6%, ¢*), so any attempt to apply a quadrature rule to compute
7, will be limited in its accuracy even though F) vanishes identically at (6*,¢*) due
to the factor of (0, ) — (0%, ¢*).

To numerically evaluate (5.10), we apply a three-step method developed by the
authors [18]. This method has been shown to be effective for computing layer poten-
tials in three dimensions. We first rotate this integral to another spherical coordinate
system in which y* is aligned with the north pole (see Appendix B). This leads to
0 = 0(s,t) and ¢ = @(s,t) with s € [0,7] and ¢t € [—m, 7], where 0% = 6(0,-) and
©* = ¢(0,-). We apply this rotation and find that

(5.12) Wy = i /_ g /O " F(s,t) sin(s)dsdt

with F(s,t) = Fi(0(s,t),¢(s,1);0*,¢*). Now K;(0(s,t),¢(s,t)) is singular at the
north pole of this rotated coordinate system corresponding to s = 0. To improve
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the accuracy of a numerical evaluation of (5.12), we revisit the asymptotic expansion
obtained for Vo (y*; ¢) in (4.19). By rewriting that result for the present context, we
find that

171 ™ - T 2J(0,-)
5.13 7/ [ Fs,tdt]sinsds:/ |:—7A2 *)| ds + O(e),
613) 5 [ |55 | Pl natfsinas = [ |- mESs Au(y)]| ds +0(0)
where § is a chosen constant (for numerical purposes, one can set d to be the dis-
cretization step size). Suppose we compute

_ 1 4

(5.14) F(s) = o [W F(s,t)dt.
The result in (5.13) suggests that F'(s) smoothly limits to a finite value as s — 0.
Although we could use this result to evaluate F'(s) in a numerical quadrature scheme,
it will suffice to consider an open quadrature rule for s that does not include the point
s = 0 such as the Gauss-Legendre quadrature. This result suggests the following
three-step method to compute %4 (y*) numerically.

Let ty = —m+7n(k—1)/N for k=1,...,2N, and let z; and w; for j =1,...,N
denote the N-point Gauss—Legendre quadrature abscissas and weights, respectively,
such that

N

1
(5.15) [1 fl@)ydz = f(z)w;.

=1

We perform the mapping, s; = w(z; +1)/2 for j = 1,..., N, and make appropriate
adjustments to the weights as shown below. For the first step, we rotate the spherical
coordinate system so that y* is aligned with its north pole as described in Appendix
B. For the second step, we compute

2N
_ _ 1 - .
(5.16) F(sj) ~ FY = N > F(sj,te), j=1,...,N.
k=1

For the third step, we compute the numerical approximation
N

(5.17) Wy 2 U y) = 5 D w;
j=1

In (5.17), a factor of 7/2 is introduced to scale the quadrature weights due to the
mapping from z; to s;, and a factor of 1/2 remains from the factor of 1/47 in (5.10).

Using the numerical approximation Ui¥, we compute the O(e?) asymptotic ap-
proximation for the close evaluation of the double-layer potential in three dimensions
through evaluation of

(5.18) uly” — etv*) = f(y*) + Ul (y*) + O(?).

The integral operator in the asymptotic approximation in three dimensions is
better behaved than those in two dimensions. As a result, using an open quadrature
rule for s circumvents the need to explicitly perform the integral splitting method.
Nonetheless, the integral splitting method gives the insight needed to derive the three-
step method described above. In the numerical examples that follow, we will study
the error made by the numerical evaluation of the asymptotic approximation with
respect to € for close evaluation points, not with respect to V.
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6. Numerical results. We present results that show the accuracy and efficiency
of the numerical methods based on the asymptotic approximations for the close eval-
uation of the double-layer potential. For all of the examples shown, we prescribe
Dirichlet data corresponding to a particular harmonic function. With those Dirichlet
data, we solve the boundary integral equation (2.4) numerically to obtain the density,
. We use that density to compute the double-layer potential using different methods
for comparison. The results below show the error made in computing the harmonic
function at close evaluation points. The MATLAB codes used to compute all of the
following examples are available in a GitHub repository [19].

When the boundary integral equation for p is resolved with limited resolution,
standard numerical methods to compute the double-layer potential will inherit the
error. How that error interacts with the error in the asymptotic approximation must
then be considered. We will consider such an example for the three-dimensional case.

6.1. Two dimensions. For the two-dimensional examples, we use the harmonic
function

1

(6.1) u(x) = . log |z — x|

with 2o € R?\ D and prescribe Dirichlet data by evaluating this function on the
boundary (the Dirichlet data are then C*°). We solve the boundary integral equation
(2.4) using the Nystrom method with the N-point PTR resulting in the numerical
approximation for the density, fi; ~ fi(yp;) with ¢; = —7 4+ 2(j — 1)7/N for j =
1,...,N. We compute the close evaluation of the double-layer potential at points,
x = y* — ev* (from now on we set £ = 1), using the following four methods:

1. PTR method—Compute the double-layer potential,

L [Ty (Y —ea —y)
U * l/* — Yy
(" =) 27r/ ly* — ev* — y|?

p(y)doy,

—T

using the same N-point PTR used to solve (2.4).
2. Subtraction method—Compute the modified double-layer potential,

1 /7r vy - (Y —evt —y)

2r ly* — evr —yP?

u(y” —ev’) = —p(y*) + [1(y) — pu(y*)] doy,

—T
using the same N-point PTR used to solve (2.4).

3. O(€2) asymptotic approvimation—Compute the O(e?) asymptotic approxima-
tion given by (3.18) using the new numerical method given in (5.5) using the same
N-point PTR used to solve (2.4).

4. O(€®) asymptotic approzimation—Compute the O(e3) asymptotic approxima-
tion given by (3.22) using the new numerical method given in (5.9) using the same
N-point PTR used to solve (2.4).

We consider two different domains, D:

e A kite domain whose boundary, B, is given by

(6.2) y(t) = (cost + 0.65cos 2t — 0.65,1.5sint), —w <t <.
e A star domain whose boundary, B, is given by

(6.3) y(t) =r(t)(cost,sint), r(t)=1+40.3cosdt, —mw<t<m.
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FiG. 3. Plots of log,q of the error for the evaluation of the double-layer potential in the kite
domain defined by (6.2) using four methods: the PTR method (upper left), the subtraction method
(upper Tight), the O(e2) asymptotic approzimation method (lower left), and the O(e3) asymptotic ap-
prozimation method (lower right). In each of these plots, boundary points y4 = (—1.3571, —1.0607)
and yp = (0.0571,1.0607) are plotted as red x’s.

10° " 10°
100 100
N N
3 3
I 105} I 107 2
= 2
2 ~a z
T 0-10 T 10
= 10 r = 10
5 5
- -
o o
—e—PTR —e—PTR
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Fi1G. 4. Log-log plots of the errors made in computing the double-layer potential by the four
methods shown in Figure 3 at ya —eva (left) and at yp — evp (right) for 1076 < e <1071,

For both examples, we pick xg = (1.85,1.65), which lies outside the domains. We
consider N fixed, N = 128, and study the dependence of the error on € as € — 0.

In Figure 3, we show results for the kite domain. The error, using a log scale, is
presented for each of the four methods described above. The results show that the
PTR method exhibits an O(1) error as ¢ — 0%. The subtraction method and the
asymptotic approximations all show substantially smaller errors.

To compare the four methods more quantitatively, in Figure 4, we plot the errors
made by the four methods at y4—ev4 (left) and yp—evp (right) with 1076 < e <1071,
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FiG. 5. Estimated order of accuracy in computing the double-layer potential in the kite domain
when using the subtraction method (blue o), the O(e?) asymptotic approzimation method (red x ),
and the O(e3) asymptotic approzimation method (yellow +) for varying values of t.

where v4 and vp are the unit outward normals at y4 = (—1.3571,—1.0607) and
yp = (0.0571,1.0607), respectively. The points y4 and yp are shown in each plot of
Figure 3. From the results in Figure 4, we observe that the error when using the PTR
method increases as € — 07, while the error in the other three methods decreases.
The errors made by the asymptotic approximations are monotonically decreasing as
e — 07. However, the error made by the subtraction method presents a different
behavior: It reaches a maximum at € ~ 1072, after which it decreases as e increases.
For larger values of €, the double-layer potential is no longer nearly singular, so the N-
point PTR (and therefore methods 1 and 2) become more accurate. The error is at a
maximum for the subtraction method when ¢ = O(1/N), which is why we observe the
maximum error occurring at € ~ 1072, The results in Figure 4 show a clear difference
in the rate at which the errors vanish as ¢ — 0™ between the subtraction method and
the asymptotic approximation methods. The O(e?) asymptotic approximation decays
the fastest, followed by the O(e?) asymptotic approximation and then the subtraction
method. For € < 1074, the error incurred by the O(€®) asymptotic approximation
levels out at machine precision. We estimate the rate at which the subtraction method
and the asymptotic approximation methods decay with respect to e from the slope of
the best-fit line through the log-log plot of the error versus € in Figure 5. We compute
the slope for each evaluation point y(t;) — ev(t;), where t; = —w + 2(j — 1)n/N for
j =1,...,N, and we vary e. For the subtraction method, we consider e values
such that 1076 < € < 1072, and for the O(e?) and O(e3) asymptotic approximation
methods, we consider the same range but only include values where the error is greater
than 10~1°. The results shown in Figure 5 indicate that the subtraction method decays
linearly with €, and the rates of the asymptotic approximations are consistent with
the analysis presented in section 3.

For the second example of computing the double-layer potential in the star do-
main, Figures 6-8 are analogous to Figures 3-5 for the kite domain. The character-
istics of the errors for this second domain are exactly the same as described for the
kite domain.

Summary of the results. In the case of two-dimensional problems, the sub-
traction method yields a method whose error decays linearly with the distance away
from the boundary. The O(e?) and O(e3) asymptotic approximations methods are
much more accurate for close evaluation points. Moreover, only relatively modest
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Fi1G. 6. Plots of log,y of the error for the evaluation of the double-layer potential in the star
domain defined by (6.3) using four methods: the PTR method (upper left), the subtraction method
(upper Tight), the O(e2) asymptotic approzimation method (lower left), and the O(e3) asymptotic ap-
prozimation method (lower right). In each of these plots, boundary points y4 = (—1.3571, —1.0607)

and yp = (0.0571,1.0607) are plotted as red x’s.
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F1c. 7. Log-log plots of the errors made in computing the double-layer potential by the four
methods shown in Figure 6 at ya —eva (left) and at yp — evp (right) for 1076 < e <1071,

resolution is required for these asymptotic approximations to be effective. However,
the errors for these asymptotic approximations are monotonically increasing with the
distance to the boundary, so they are not accurate for points farther away from the
boundary. The results given by the asymptotic analysis provide guidance on where
to apply these asymptotic approximations effectively. For all of these reasons, we find
that the asymptotic approximations and corresponding numerical methods are useful
for two-dimensional problems.
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Subtraction

)
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estimated order

Fic. 8. Estimated order of accuracy in computing the double-layer potential in the star domain
when using the subtraction method (blue o), the O(e2) asymptotic approzimation method (red x ),
and the O(e®) asymptotic approzimation method (yellow *) for varying values of t.
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Fic. 9. The boundary surface defined by (6.5) that is used to exemplify the evaluation of the
double-layer potential in three dimensions (left) and the intersections of this boundary with the
z1x3-plane (center) and xixz2-plane (right).

6.2. Three dimensions. Let (z1,z2,z3) denote an ordered triple in a Cartesian
coordinate system. To study the computation of the double-layer potential in three
dimensions, we consider the harmonic function

1
V(@1 —5)2 + (z2 — 4)2 + (w3 — 3)2
in the domain whose boundary is given by, for 8 € [0, 7|, ¢ € [—m, 7],

1
2 —
1+ 100(1 — cos9)

(6.4) u(zy, w2, 3) =

(6.5)  y(0,¢) =

2] (sin @ cos ¢, 2 sin 6 sin ¢, cos ).

This boundary surface is shown in Figure 9 (left) along with its intersection with the
vertical 1 x3-plane (center) and the horizontal z;z2-plane (right). We solve boundary
integral equation (2.4) using the Galerkin method [4, 5, 6, 7]. The Galerkin method
approximates the density according to

N-—1 n
(6.6) i0,0) = iV 0,0) =D > finmYum (6, )

n=0 m=—

with {Y},,,} denoting the orthonormal set of spherical harmonics. For these results, we
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have set N = 48. We have computed the close evaluation of the double-layer potential
at points x = y* — ev*, using the following two different methods for comparison.
1. Numerical approximation—Compute the modified double-layer potential,

* * * 1 Vy'(y*fel/*fy) *
— )= - — — p(y")] doy,
u(y* —ev*) = —pu(y*) + 47T/B W—F [1(y) — p(y*))doy

using the three-step numerical method described in [18]. For the first step, the mod-
ified double-layer potential is written in spherical coordinates that have been rotated
so that y* is aligned with the north pole. For the second step, the 2N-point PTR is
used to compute the integral in the azimuthal angle. For the third step, the N-point
Gauss—Legendre quadrature rule mapped to [0, 7] is used to compute the integral in
the polar angle.

2. O(e®) Asymptotic approzimation—Compute the asymptotic approximation
given by (4.22) using the method given in (5.18) (with N = 48).

The error of the numerical method has been shown to decay quadratically with
€ when € <« 1/N [18]. This quadratic error decay occurs because, in the rotated
coordinate system, the azimuthal integration acts as an averaging operation yielding
a smooth function of the polar angle that is computed to high order using Gaussian
quadrature. However, this asymptotic error estimate is valid only when the numerical
approximation of the density is sufficiently resolved. If N in (6.6) is not sufficiently
large that |finm,| for n > N is negligibly small, then the truncation error associated
with (6.6) may interrupt this quadratic error decay. For the domain here, with N = 48,
we find that the estimated truncation error for (6.6) is approximately 1078. While
this error is relatively small, it is not small enough to observe the error’s quadratic
rate of decay. We would have to consider a much larger value of N to observe that
decay rate. However, computing the numerical solution of boundary integral equation
(2.4) with N > 48 becomes restrictively large. For this case, a question emerges about
how well the asymptotic approximations perform when one has limited resolution for
the density. In what follows, we evaluate what the subtraction method and the O(e?)
asymptotic approximation method do in this limited resolution situation.

Error results for the computation of the double-layer potential in this domain for
each of the two methods described above appear in Figure 10. The top row shows
the error on the slice of the domain through the vertical z;z3-plane for the numerical
method (left) and the O(€?) asymptotic approximation method (right). The point
ya = (1.7830,0,0.8390) is plotted as a red x symbol in both plots. The bottom
row shows the errors of the same methods (left for the numerical method, right for
the O(e?) asymptotic approximation method) on the slice of the domain through the
horizontal zjxoe-plane. The point yp = (1.7439,1.19175,0) is plotted as a red X
symbol in both plots.

In Figure 11, we show the errors computed at y4 — evy (left) and yp — evp
(right) for varying €, where v4 and vp are the unit outward normals at y4 and yp,
respectively. In contrast to the two-dimensional results, we find that the error for
the numerical method is approximately 10~® for all values of e. This error is due
to the truncation error made by the Galerkin method. Because the truncation error
dominates at this resolution, we are not able to see its quadratic decay as ¢ — 0. If a
higher-resolution computation were used to solve the boundary integral equation, the
error of the numerical method would exhibit a similar behavior to that made by the
subtraction method for the two-dimensional examples. In particular, the error would
have a maximum at € = O(1/N) about which the error decays. We observe that the
O(€?) asymptotic method decays monotonically with € even when N = 48,
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FiG. 10. Plots of log,y of the error made in computing the double-layer potential by the nu-
merical approzimation (left column) and the O(e?) asymptotic approzimation (right column) in the
domain whose boundary is shown in Figure 9. The top row of plots show the error on the rixs3-
plane, and the bottom row of plots show the error on the xix2-plane. In the top row of plots,
the point ya = (1.7830,0,0.8390) is plotted as a red X, and in the bottom row of plots, the point
yp = (1.7439,1.19175,0) is plotted as a red X.
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Fic. 11. Log-log plots of the errors made by the two methods shown in Figure 10 at ya — eva
(left) and at yg — evp (right) for 1076 < € < 0.5.

We estimate the order of accuracy in Figure 12. The results for the estimated
order of accuracy over the points intersecting the vertical x;x3-plane are shown in
the left plot of Figure 12. For those results, we determine the estimated order of
accuracy by determining the best-fit line through the log-log plot of the error versus e
for several values of the extended polar angle, so € [0, 27]. This extended polar angle
parameterizes the circle on the unit sphere lying on the zixs3-plane that starts and
ends at the north pole. The results for the estimated order of accuracy over the points
intersecting the horizontal xjzo-plane are shown in the right plot of Figure 12. For
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F1G. 12. Estimated order of accuracy for the numerical approzimation (blue o) and the O(€?)
asymptotic approximation (red x ) on the x1x3-plane (left plot) and on the zixz2-plane (right plot).
Results on the x1x3-plane are given in terms of the extended polar angle, so € [0, 2w], which param-
eterizes the circle on the unit sphere lying on the xix3-plane that starts and ends at the north pole.
Results on the xiz2-plane are given in terms of the azimuthal angle, to € [0, 27].

those results, we determine the estimated order of accuracy by determining the best-
fit line through the log-log plot of the error versus e for several values of the azimuthal
angle, tp € [0,2n]. Because of the resolution limitation in the Galerkin method, we
are not able to see that the order of accuracy for the numerical method is two. In fact,
the error is nearly uniform with respect to € because it is the truncation error of (6.6)
that is dominating. Despite the resolution limitation in the Galerkin method, we find
that the O(€?) asymptotic approximation has an order accuracy of nearly two. These
results suggest that the asymptotic approximation offers an effective alternative when
the resolution of the boundary integral equation is limited.

Summary of the results. For three-dimensional problems, the subtraction
method is more effective when computed in an appropriate rotated coordinate system
than for two-dimensional problems. The subtraction method is more effective in three
dimensions because in this rotated coordinate system, integration with respect to the
azimuthal angle is a natural averaging operation that regularizes the integral, thereby
allowing for the use of a high-order quadrature rules for integration with respect to the
polar angle. Provided that the density is sufficiently resolved, the subtraction method
has been shown to decay quadratically with the distance away from the boundary [18].
The O(€?) asymptotic approximation also decays quadratically. However, it is not as
sensitive to the accuracy of the density. For this reason, we find that the asymptotic
approximation is a good alternative for three-dimensional problems, especially when
the density is not highly resolved.

7. Conclusion. We have evaluated the leading-order asymptotic behavior for
the close evaluation of the double-layer potential in two and three dimensions. By
developing new numerical methods using these asymptotic approximations, we ob-
tain accurate and effective methods for computing double-layer potentials at close
evaluation points. Our numerical examples demonstrate the effectiveness of these
asymptotic approximations and corresponding numerical methods.

The key to this methodology of using the asymptotic analysis is the insight it
provides. The leading-order asymptotic behavior of the close evaluation of the double-
layer potential is given by its local Dirichlet data plus a correction that is nonlocal. It
is this nonlocal term that makes the close evaluation problem challenging to address
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using only numerical methods. It is consistent with the fact that solutions of boundary
value problems for elliptic partial differential equations have a global dependence
on their boundary data. By explicitly computing this correction using asymptotic
analysis, we have been able to develop an effective numerical method for the close
evaluation problem. Moreover, the asymptotic error estimates provide guidance on
where to apply these approximations, namely, for evaluation points closer to the
boundary than the boundary mesh spacing. The result of this work is an accurate
and efficient method for computing the close evaluation of the double-layer potential.

Future work includes rigorously proving the assumptions we have made in the
asymptotic analysis conjectures. Then, the asymptotic approximation method can be
extended to other layer potentials and other boundary value problems. Future work
will include extending these methods to applications of Stokes flow, plasmonics, and
others.

Appendix A. Uniform bounds for nonuniform asymptotic expansions.
In this section we provide justification for the order of the asymptotic expansions after
integration for (3.8), (3.15), (4.12), and (4.19). Throughout the paper, we assume that
the general boundary B is an analytic closed boundary that can be mapped to S™~1,
n = 2,3 (with an analytic diffeomorphism). Therefore, we establish the result for the
unit circle (where calculations are explicit) and for the integrand of (3.5). To obtain
(3.15), (4.12), and (4.19) one proceeds similarly. One can check that in this case the
integrand of (3.5) becomes

L(el —2) 1
D 2 el =)+ 2l = 1) cosr) M) —H(O)

(A1) F(te) =

with the abuse of notation pu(t) = u(y(t)).

LEMMA A.1 (nonuniform expansion with uniform bounds on the unit circle).

Ve 1/\f N
/ F(t;e)dt = / F(eT;€e)dT = g " ay, + O(eN)
Ve e —~

for F given by (A.1) with (ak)y depending on p and its derivatives at 0.

Proof. The proof is divided into three steps.

Step 1: Write F(eT;¢e) = Zg:_l *Fp(T) + O(eNTL), and provide an explicit
expression for Fi(T). We define G(t;¢) = 2 + el(el — 2) + 2(el — 1) cos(t). By
substituting t = €T" and expanding about € = 0, we get

2T2 4T4
G(eT;E):2+€2€2—2€€+2(€€—1)|:1—€2 +64l +..l7
242 2 T? 2
=€ (z +T)|:1—€W+€ P(G,T):l,

where P(e,T') is a polynomial in € and a sum of rational functions in T'. Then, after
expanding and rearranging the terms, we have

1
G(eT;e) (52 +1717?)

1
€2+T2 Z

)

Sl
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where
2m-+4

Z OéjTj
Jj=m+1

(2 + T2)m+3

with o; € R, j € N polynomial coefficients. From here on, we will still denote «;
while the value can change after each operation. Plugging this expansion into F' and
expanding the density, u(t), we obtain, again after combining terms,

Z ka

Pm(T) =

N—-2

fet—2)[1 1 "
Fo === a@sm 2 <" Pn
m=—1

ETM
S R 0 = 3 R 0
k=—1
with
3(k+1) _
> oy(w)T?
Fk(T>:]fk+l

(2 F T2)kt2
k> 2, and a;(p) € R coefficients depending on p and its derivatives at 0. Fy and Fy
can be found in the Mathematica notebook [19].

Step 2:  Prove that f%}([ ML E(T)dT = O(e*) for all k > 0. One can

check that [~ 1{}(/ F_1(T)dT = 0, and a straightforward computation gives that

fi{)(/g FTLF(T)dT = O(€¥), k = 0,1. Details of calculations can be found in the
Mathematica notebook [19]. Note that some of the integrals are treated as a Cauchy

principal value. For k£ > 2, one has

3(k-+1)
|Fy(T)| < Z o ()| TP 24 < Z | ()| T
Jj=k+1 j=—k-3
It follows that
1/ . 2k+3 ey
FTLRA(T)dT| < a; L < Myek, My = 2(k+1)  max  |a;(y)],
/1/\/2 o(T) - Zl sle F F ( )je[[1,2k+3]]| il

leading to

1/e

/ TLEL(T)dT = O(e*) for all k > 0.
—1/Ve

Step 3: Establish uniform convergence. We have

Ve 1/+/€ 1/v/e
/ F(t;e)dt:/ eF (T} e)dT:/ 2 :€k+1Fk )+ O(e N+2) dT.
NG

~1/v/e 1/\/e

Using Tonelli’s theorem, it follows that
1/+/€ N 1/\/€ oo
‘/ F(eTye) = Y T FH(T)dT| = ‘/ ( > MTENT )dT
k=0 Ve \k=N+1

1/\/
S
Z Mké < MN+1€N+1 <1+2Mk6k> s
k=N+1 k=1

<
k=N+1

1/v/e
/ TLER(TYAT| <
—1/Ve
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leading to

1 € N
/ e (eF(eT; €) — Zek“F’“(T)> dT = O(eV+h).

~1/ve P 0

Appendix B. Rotations on the sphere. We give the explicit rotation formulas
over the sphere used in the numerical method for the asymptotic approximation in
three dimensions. Consider y,y* € S?. We introduce the parameters § € [0, 7] and
¢ € [-m, 7] and write

(B.1) y=1y(0,p) = sinf cos pi+sinfsinpj + cos O k.

The parameter values, 8* and ¢*, are set such that y* = y(6*, ¢*). We would like to
work in the rotated, uvw-coordinate system in which

0l = cos 0% cos * 1 + cos 0% sin p* j — sin 6* k,
(B.2) V= —sinp* 14 cos ],
W = sin 0* cos p* 1 + sin 6* sin ¢* j + cos 6* k.

Notice that w = y*. For this rotated coordinate system, we introduce the parameters
s € [0,7] and t € [—m, 7] such that

(B.3) y=1y(s,t) =sinscostli+sinssintv + cos sw.

It follows that y* = y(0,-). By equating (B.1) and (B.3) and substituting (B.2) into
that result, we obtain

sin 6 cos ¢ cos0* cos p*  —sinp*  sinf* cosp*| [sinscost
(B.4) sinfsingp| = [cosf*sinp* cosp* sinf*sinp* | [sinssint
cosf —sin 6* 0 cos 0* cos s

We rewrite (B.4) compactly as §(6, ) = R(0*, ¢*)§(s,t) with R(0*,¢*) denoting the
3 x 3 orthogonal rotation matrix. We now seek to write § = 6(s,t) and ¢ = (s, ).
To do so, we introduce

(B.5)  &(s,t;0%,0*) = cos 0* cos p* sin s cost — sin ¢* sin ssint + sin 6* cos ™ cos s,
(B.6) n(s,t,0%,¢") = cosf*sin p* sin s cost + cos ¢* sin ssint 4 sin §* sin p* cos s,

(B.7)  ((s,t,0%,¢") = —sinf* sinscost + cos 0" cos s.

From (B.4), we find that
21 2
(B.8) ) = arctan (@) and ¢ = arctan (Z) .

With these formulas, we can write 0 = 0(s,t) and ¢ = (s, ).

Appendix C. Spherical Laplacian. In this appendix, we establish the result
given in (4.10). We first seek an expression for 92[-]|s—o in terms of § and ¢. By the
chain rule, we find that

(1)
0s% |, " |\as/) 02 s ) 0p2 0s 0s 000 ~ 0s2 00 = 9s2 Oy o
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Using 6 and ¢ defined in (B.8), we find that

09(s,t) 0%0(s,t) cosB* .,
2 25U = RALACILZN R
(C.2) s |, cost, 9 |._, " sinor sin” ¢,
dp(s,t) sint D?¢(s,t) cosb* |
. = = — 2t.
(C3) s .o sing*’ 0s? .o sin2 g !

Note that at s = 0, we have 6* = . Substituting (C.2)—(C.3) into (C.1) and replacing
0* by 0, we obtain

02 0? 1 92 1 02
4) 21| =costt— 4 sin? 2 2costsint— ——
(C.4) 5‘52[]‘50 cos t5‘02 + sin tsin29 9.2 + COStsmtsin@aHag@
+ sin? tCOS o 2 — sin 2t7COS o E
sin 6 09 sin? 0 O’
from which it follows that
1 [T 92 1[0% cosh O 1 9?2 1
. - —[ dt = = | = — —| = -Ag
(C.5) 7w Jo 0s2 ] L_O 2 [892 sinf 90 sin? 6 02 275

which establishes the result.
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