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Abstract. While nonlinear stochastic partial differential
equations arise naturally in spatiotemporal modeling, infer-
ence for such systems often faces two major  challenges:
sparse noisy data and ill-posedness of the inverse problem
of parameter estimation. To overcome the challenges, we in-
troduce a strongly regularized posterior by normalizing the
likelihood and by imposing physical constraints through pri-
ors of the parameters and states.

We investigate joint parameter-state estimation by the
regularized posterior in a physically motivated nonlinear
stochastic energy balance model (SEBM) for paleoclimate
reconstruction. The high-dimensional posterior is sampled
by a particle Gibbs sampler that combines a Markov chain
Monte Carlo (MCMC) method with an optimal particle fil-
ter exploiting the structure of the SEBM. In tests using ei-
ther Gaussian or uniform priors based on the physical range
of parameters, the regularized posteriors overcome the ill-
posedness and lead to samples within physical ranges, quan-
tifying the uncertainty in estimation. Due to the ill-posedness
and the regularization, the posterior of parameters presents a
relatively large uncertainty, and consequently, the maximum
of the posterior, which is the minimizer in a variational ap-
proach, can have a large variation. In contrast, the posterior
of states generally concentrates near the truth, substantially
filtering out observation noise and reducing uncertainty in the
unconstrained SEBM.

1 Introduction

Physically motivated nonlinear stochastic (partial) differen-
tial equations (SDEs and SPDEs) are natural models of spa-
tiotemporal processes with uncertainty in geoscience. In par-
ticular, such models arise in the problem of reconstruct-
ing geophysical fields from sparse and noisy data (see, e.g.,
Sigrist et al., 2015; Guillot et al., 2015; Tingley et al., 2012,
and the references therein). The nonlinear differential equa-
tions, derived from physical principles, often come with un-
known but physically constrained parameters also to be de-
termined from data. This promotes the problem of joint state-
parameter estimation from sparse and noisy data. When the
parameters are interrelated, which is often the case in non-
linear models, their estimation can be an ill-posed inverse
problem. Physical constraints on the parameters must then
be taken into account. In variational approaches, physical
constraints are imposed using a regularization term in a cost
function, whose minimizer provides an estimator of the pa-
rameters and states. In a Bayesian approach, the physical
constraints are encoded in prior distributions, extending the
regularized cost function in the variational approach to a
posterior and quantifying the estimation uncertainty. When
the true parameters are known, the Bayesian approach has
demonstrated great success in state estimation, thanks to the
developments in Monte Carlo sampling and data assimila-
tion techniques (see, e.g., Carrassi et al., 2018; Law et al.,
2015; Vetra-Carvalho et al., 2018). However, the problem of
joint state-parameter estimation, especially when the param-
eter estimation is ill-posed, has had relatively little success in
nonlinear cases and remains a challenge (Kantas et al., 2009).
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In this paper, we investigate a Bayesian approach for
joint state and parameter estimation of a nonlinear two-
dimensional stochastic energy balance model (SEBM) in the
context of spatial-temporal paleoclimate reconstructions of
temperature fields from sparse and noisy data (Tingley and
Huybers, 2010; Steiger et al., 2014; Fang and Li, 2016;
Goosse et al., 2010). In particular, we consider a model of
the energy balance of the atmosphere similar to those often
used in idealized climate models (e.g., Fanning and Weaver,
1996; Weaver et al., 2001; Rypdal et al., 2015) to study cli-
mate variability and climate sensitivity. The use of such a
model in paleoclimate reconstruction aims at improving the
physical consistency of temperature reconstructions during,
e.g., the last deglaciation and the Holocene by combining
indirect observations, so-called proxy data, with physically
motivated stochastic models.

The SEBM models surface air temperature, explicitly tak-
ing into account sinks, sources, and horizontal transport of
energy in the atmosphere, with an additive stochastic forcing
incorporated to account for unresolved processes and scales.
The model takes the form of a nonlinear SPDE with unknown
parameters to be inferred from data. These unknown parame-
ters are associated with processes in the energy budget (e.g.,
radiative transfer, air—sea energy exchange) that are repre-
sented in a simplified manner in the SEBM, and may change
with a changing climate. The parameters must fall in a pre-
scribed range such that the SEBM is physically meaningful.
Specifically, they must be in sufficiently close balance for the
stationary temperature of the SEBM to be within a physically
realistic range. As we will show, the parametric terms aris-
ing from this physically based model are strongly correlated,
leading to a Fisher information matrix that is ill-conditioned.
Therefore, the parameter estimation is an ill-posed inverse
problem, and the maximum likelihood estimators of individ-
ual parameters have large variations and often fall out of the
physical range.

To overcome the ill-posedness in parameter estimation, we
introduce a new strongly regularized posterior by normaliz-
ing the likelihood and by imposing the physical constraints
through priors on the parameters and the states,  based on
physical constraints and the climatological distribution. In
the regularized posterior, the prior has the same weight as the
normalized likelihood to enforce the support of the posterior
to be in the physical range. Such a regularized posterior is a
natural extension of the regularized cost function in a varia-
tional approach: the maximum of the posterior (MAP) is the
same as the minimizer of the regularized cost function, but
the posterior quantifies the uncertainty in the estimator.

The regularized posterior of the states and parameters is
high-dimensional and non-Gaussian. It is represented by its
samples, which provide an empirical approximation of the
distribution and allow efficient computation of quantities of
interest such as posterior means. The samples are drawn us-
ing a particle Gibbs sampler with ancestor sampling (PGAS,
Lindsten et al., 2014), a special sampler in the family of par-
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ticle Markov chain Monte Carlo (MCMC) methods (Andrieu
et al., 2010) that combines the strengths of both MCMC and
sequential Monte Carlo methods (see, e.g., Doucet and Jo-
hansen, 2011) to ensure the convergence of the empirical ap-
proximation to the high-dimensional posterior. In the PGAS,
we use an optimal particle filter that exploits the forward
structure of the SEBM.

We consider two priors for the parameters, each based
on their physical ranges: a uniform prior and a Gaussian
prior with 3 standard deviations inside the range. =~ We im-
pose a prior for the states based on their overall climatolog-
ical distribution. Tests show that the regularized posteriors
overcome the ill-posedness and lead to samples of param-
eters and states within the physical ranges, quantifying the
uncertainty in their estimation. Due to the regularization, the
posterior of the parameters is supported on a relatively large
range. Consequently, the MAP of the parameters has a large
variation, and it is important to use the posterior to assess
the uncertainty. In contrast, the posterior of the states gen-
erally concentrates near the truth, substantially filtering out
the observational noise and reducing the uncertainty in state
reconstruction.

Tests also show that the regularized posterior is robust
to spatial sparsity of observations, with sparser observations
leading to larger uncertainties. However, due to the need for
regularization to overcome ill-posedness, the uncertainty in
the posterior of the parameters can not be eliminated by in-
creasing the number of observations in time. Therefore, we
suggest alternative approaches, such as re-parametrization of
the nonlinear function according to the climatological distri-
bution or nonparametric Bayesian inference (see, e.g., Miiller
and Mitra, 2013; Ghosal and Van der Vaart, 2017), to avoid
ill-posedness.

The rest of the paper is organized as follows. Section 2
introduces the SEBM and its discretization, and formulates
a state-space model. We also outline in this  section the
Bayesian approach to the joint  parameter-state estimation
and the particle MCMC samplers.  Section 3 analyzes the
ill-posedness of the parameter estimation problem and in-
troduces the regularized posterior. The regularized posterior
is sampled by PGAS and numerical results are presented in
Sect. 4. Discussions and conclusions are presented in Sects. 5
and 6. Technical details of the estimation procedure are de-
scribed in Appendix A.

2 State-space model formulation

After providing a brief physical introduction to the SEBM,
we present its discretization and the observation model by
representing them as a state-space model suitable for appli-
cation of sequential Monte Carlo methods in Bayesian infer-
ence.
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2.1 The stochastic energy balance model

The SEBM describes the evolution in space (both latitude

and longitude) and time of the surface air temperaturau(t , & )

ault, &) —wt &) =g+ f(t &) (1)

where & € [—m, a|X[—n2, 7/2]is the two-dimensional co-
ordinate on the sphere and the solution  u(t , &s)periodic
in longitude. Horizontal energy transport is represented as
diffusion with diffusivity v, while sources and sinks of at-
mospheric internal energy are represented by the nonlinear
function gy(u):

(u) = ¢+ qu + Af, Q)

with the unknown parameters 6. Upper and lower bounds of
these three parameters, shown in Table 1, are derived from
the energy balance model in Fanning and Weaver (1996),
adjusted to current estimates of the Earth’s global energy
budget from Trenberth et al. (2009) using appropriate sim-
plifications. The equilibrium solution of the SEBM for the
average values of the parameters approximates the current
global mean temperature closely, and the magnitude of sinks
and sources approximates the respective magnitudes in Tren-
berth et al. (2009) well. The physical ranges of the param-
eters are very conservative and cover current  estimates of
the global mean temperature during the Quaternary (Snyder,
2016). The state variable and the parameters in the model
have been nondimensionalized so that the equilibrium solu-
tion of Eq. (1) with f = 0 is approximately equal to 1 and 1
time unit represents a year.

The nonlinear function gy(u) aggregates parametrizations
from Fanning and Weaver (1996) for incoming short-wave
radiation, outgoing long-wave radiation, radiative air—surface
flux, sensible air—surface heat flux, and the latent heat flux
into the atmosphere according to their polynomial order. The
quartic nonlinearity of the function gy(u) arises from the
Stefan—Boltzmann dependence of long-wave radiative fluxes
on atmospheric temperature, while a linear feedback is in-
cluded to represent state dependence of, e.g., surface energy
fluxes and albedo. Inclusion of quadratic and cubic nonlin-
earities in gp(u) (to account for nonlinearities in the feed-
backs just noted) was found to exacerbate the ill-posedness of
the model without qualitatively changing the character of the
model dynamics within the parameter range appropriate for
the study of Quaternary climate variability (e.g., without ad-
mitting multiple deterministic equilibria associated with the
ice—albedo feedback). In reality, the diffusivity v and the pa-
rameters 6, j = 0, 1,4) will depend on latitude, longitude,
and time. We will neglect this complexity in our idealized
analysis.

The stochastic term £ (t , Swhich models the net effect of
unresolved or oversimplified processes in the energy budget,
is a centered Gaussian field that is white in time and colored
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Table 1. The physical upper and lower bounds of the parameters in
the SEBM.

tb gl b4

Upper bound 3257 —-22.70 —4.80
Lower bound 27.64 —25.46 —6.00

in space, specified by an isotropic Matérn covariance func-
tion with order ¢ =1 and scale p >0. That is,

E f(t. &)f(s. m o(t — s)C1E — nl). 3)

with the covariance kernel C(r) being the Matérn covariance
kernel given by

1-a a
Cur) = 327 V2l "k, V3l @

() o o
where is the gamma function, p is a scaling factor, and K,
is the modified Bessel function of the second kind. We fo-
cus on the estimation of the parameters 6 and assume that v
and the parameters of f are known. Estimating v in energy
balance models with data assimilation methods is studied in
Annan et al. (2005), whereas estimation of parameters off in
the context of linear SPDEs is covered for example in Lind-
gren et al. (2011).

In a paleoclimate context, temperature observations are
sparse (in space and time) and derived from climatic prox-
ies, such as pollen assemblages, isotopic compositions, and
tree rings, which are indirect measures of the climate state.
To simplify our analysis, we neglect the potentially nonlinear
transformations associated with the proxies and focus on the
effect of observational sparseness. This is a common strategy
in the testing of climate field reconstruction methods (e.g.,
Werner et al., 2013). As such, we take the data to be noisy
observations of the solution at d, locations:

yi(t) = Hlu(t ) +i(t ) = u(t)& j(t ), Q)

forji =1, . . o, @hereeach &€ [—n, a] X [—2/ aR2] is
a location of observation, H is the observation operator, and

i(t) ~N (0, 3 )are independent identically distributed (iid)
Gaussian noise. The data are sparse in the sense that only a
small number of the spatial locations are observed.

2.2 State-space model representation

In practice, the differential equations are represented by
their discretized systems and the observations are discrete

in time; therefore, we consider only the state-space model
based on a discretization of the SEBM. We refer the reader to
Prakasa Rao (2001), Apte et al. (2007), Hairer et al. (2007),
Maslowski and Tudor (2013), and Llopis et al. (2018) for
studies about inference of SPDEs in a continuous-time set-
ting.
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2.2.1 The state model

We discretize the SPDE Eq. (1) using linear finite elements
in space and a semi-backward Euler method in time, using
the computationally efficient Gaussian Markov random field
approximation of the Gaussian field by Lindgren et al. (2011)
(see details in Sect. A1). We write the discretized equation as
a standard state-space model:

Une1 = W(Un) + W, (6)

where /g : R% 5 R% is the deterministic function and{ W;)
is a sequence of iid Gaussian noise with mean zero and co-
variance R described in more detail in Eq. (A19). Here the
subscript 1 is a time index. Therefore, the transition proba-
bility density pg(Un+1| ), the probability density of Ups1
conditional on Up and 6, is

Po(Uns | th) =det2zR)™12

_ (U1 = o(up)) "R (uner = poun)

exp >

(7

2.2.2 The observation model

In discrete form, we assume that the locations of observa-
tion are the nodes of the finite elements. ~ Then the obser-
vation function in Eq.  (5) is simply H;(U,) = Uk;, with
ki€ {1, . . ., @ktjoting the index of the node under obser-
vation, for / =1, . . 4, dnd we can write the observation
model as
Yo=HUy+ n, W €R, (8)
where H € R%*% s called the observation matrix and| p] is
a sequence of iid Gaussian noise with distribution N (0, Q),
where Q = Diag{c?}. Equivalently, the probability of ob-
serving ; given state U, is

plyalth) =det27Q) "

_ (yn - HUn)TQ_1 (yn - HUrl)
5 .

exp

)

2.3 Bayesian inference for SSM

Given observations yj.n := ( M, .. N ){ our goal is to
jointly estimate the state Up.n := (U, . . ..n{/and the pa-
rameter vector 6 := (@ @, §) inthe state-space model
Egs. (6)—(9). The Bayesian approach estimates the joint dis-
tribution of (U;.n, 6 ¢onditional on the observations by
drawing samples to form an empirical approximation of
the high-dimensional posterior. The empirical posterior ef-
ficiently quantifies the uncertainty in the estimation. There-
fore, the Bayesian approach has been widely used (see the
review of Kantas et al., 2009, and the references therein).
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Following Bayes’ rule, the joint posterior distribution of
(Uy.n, 6 chn be written as

NIPo(yin|UN)
Po (ylzN)
where p(6 Jis the prior of the parameters and ~ pg(yi:n) =
pg(u1;N)p9(y1;N | Uj;N)dul;N is the unknown marginal
probability density function of the observations. In the im-
portance sampling approximation to the posterior, we do not
need to know the value ofpy(yi.n ), because as a normalizing
constant it will be cancelled out in the importance weights
of samples. The quantity pg(y1:n|t:n ) is the likelihood of
the observations yj.n conditional on the state Uj.n and the
parameter 6, which can be explicitly derived from the obser-
vation model Eq. (8):

PO, 4.nlyi:n) = p(ﬁ(u“ , (10)

plyalth), (11)

n

po(vinlu:n) = plyn|u:n) =

with p(ya|th) given in Eq. (9). Finally, the probability den-
sity function of the state U).n given parameter 6 can be de-
rived from the state model Eq. (6):

N-1
po(tin) = plt)  Poltnei|th), (12)

n=1

with pg(Un+1 | th) specified by Eq. (7).
2.4 Sampling the posterior by particle MCMC methods

In practice, we are interested in the expectation of quantities
of interest or the probability of certain events. These com-
putations involve integrations of the posterior that can nei-
ther be computed analytically nor by numerical quadrature
methods due to the curse of dimensionality: the posterior is a
high-dimensional non-Gaussian distribution involving vari-
ables with a dimension at the scale of thousands to millions.
Monte Carlo methods generate samples to approximate the
posterior by the empirical distribution, so that quantities of
interest can be computed efficiently.

MCMC methods are popular Monte Carlo methods (see,
e.g., Liu, 2001) that generate samples along a Markov chain
with the posterior as the invariant measure. For joint distribu-
tions of parameters and states, a standard MCMC method is
Gibbs sampling which consists of alternatively updating the
state variable U].y conditional on 6 and 1.y by sampling

) _ Po(th:n)Po(yi:n|t:n)

Po(vi:n)

and then updating the parameter 6 conditional on U;.n =
Uy by sampling the marginal posterior of 6

p(0 lun. yn) = p(6 In) = p6)p(uin). (14)

Due to the high dimensionality of U,.n, a major difficulty
in sampling p(ui:n|6 ,1)) is the design of efficient pro-
posal densities that can effectively explore the support of
pluin1O ,1¥).

plui:n16 1) (13)
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Another group of rapidly developing MC methods are se-
quential Monte Carlo (SMC) methods (Cappé et al., 2005;
Doucet and Johansen, 2011) that exploit the sequential struc-
ture of state-space models to approximate the posterior densi-
ties p(Uy.n| 0 1)) sequentially. SMC methods are efficient
but suffer from the well-known problem of depletion (or de-
generacy), in which the marginal distribution p(un|6 ,1¥)
becomes concentrated on a single sample as N — increases
(see Sect. A2 for more details).

The particle MCMC methods introduced in Andrieu et al.
(2010) provide a framework for  systematically combin-
ing SMC methods with MCMC methods, exploiting the
strengths of both techniques. In the particle MCMC sam-
plers, SMC algorithms provide high-dimensional proposal
distributions, and Markov transitions guide the SMC ensem-
ble to sufficiently explore the target distribution. The transi-
tion is realized by a conditional SMC technique, in which a
reference trajectory from the previous step is kept throughout
the current step of SMC sampling.

In this study, we sample the posterior by PGAS (Lind-
sten et al., 2014), a particle MCMC method that enhances
the mixing of the Markov chain by sampling the ancestor
of the reference trajectory. For the SMC, we use an optimal
particle filter, which takes advantage of the linear Gaussian
observation model and the Gaussian transition density of the
state variables in our current SEBM. More generally, when
the observation model is nonlinear and the transition density
is non-Gaussian, the optimal particle filter can be replaced
by implicit particle filters (Chorin and Tu, 2009; Morzfeld
et al., 2012) or local particle filters (Penny and Miyoshi,
2016; Poterjoy, 2016; Farchi and Bocquet, 2018); we refer
the reader to Carrassi et al. (2018), Law et al. (2015), and
Vetra-Carvalho et al. (2018) for other data assimilation tech-
niques. The details of the algorithm are provided in Sect. A3.

3 Ill-posedness and regularized posteriors

In this section, we first demonstrate and then analyze the fail-
ure of standard Bayesian inference of the parameters with

the posteriors in Eq. (10). The standard Bayesian inference
of the parameters fails in the sense that the posterior Eq. (10)
tends to have a large probability mass at  non-physical pa-
rameter values. In the process of approximating the posterior
by samples, the values of these samples often either hit the
(upper or lower) bounds in Table 1 when we use a uniform
prior or exceed these bounds when we use a Gaussian prior.
As we shall show next, the standard Bayesian inverse prob-
lem is numerically ill-posed because the Fisher information
matrix is ill-conditioned, which makes the inference numeri-
cally unreliable. Following the idea of regularization in vari-
ational approaches, we propose using regularized posteriors
in the Bayesian inference. This approach unifies the Bayesian
and variational approaches: the MAP is the minimizer of the
regularized cost function in the variational approach, but the
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Table 2. The priors of & = (§ §, @) based on the physical con-
straints in Table 1.

Uniform prior  [27.64, 32.57]X[—25.46, —22.70]X

[—6.00, —4.80]

mean = $0.11,— 24.08,— 5.40)
covariance = Diag(0.822, 0.462, 0.202)

Gaussian prior

Table 3. The settings of the stochastic energy balance model and its
discretization.

v =0.1 Diffusion constant

o=0.1 Scale of the stochastic forcing
t =0.01 Time step size

a, =12 Number of total nodes

d=6 Number of observed nodes

o = 0.01 SD of the observation noise

Bayesian approach quantifies the uncertainty of the estimator
by the posterior.

3.1 Model settings and tests

Based on the physical upper and lower bounds in Table 1, we
consider two priors for the parameters: a uniform distribu-
tion on these intervals and a Gaussian distribution centered
at the median and with 3 standard deviations in the interval,
as listed in Table 2.

Throughout this study, we shall consider a relatively small
numerical mesh for the SPDE with only 12 nodes for the
finite elements. Such a small mesh provides a toy model
that can neatly represent the spatial structure on the sphere
while allowing for systematic assessments of statistical prop-
erties of the Bayesian inference with moderate computa-
tional costs. Numerical tests show that the above FEM
semi-backward Euler scheme is stable for a time step size

t =0.01 and a stochastic forcing with scale of = 0.1 (see
Sect. Al for more details about the discretization). A typical
realization of the solution is shown in Fig. 1 (panels a and b),
where we present the solution on the sphere at a fixed time
with the 12-node finite-element mesh, as well as the trajecto-
ries of all 12 nodes.

The standard deviation of  the observation noise is set
to o = 0.01, i.e., 1 order of magnitude smaller than the
stochastic forcing and 2 orders of magnitude smaller than the
climatological mean.

We first assume that 6 out of the 12 nodes are observed; we
discuss results obtained using sparser or denser observations
in the discussion section. Figure 1 also shows the climato-
logical probability histogram of the true state variables and
the partial noisy observations. The climatological distribu-
tion of the observations is close to that of the true state vari-
ables (with a slightly larger variance due to the noise). The
histograms show that the state variables are centered around

Nonlin. Processes Geophys., 26, 227-250, 2019



232

(a) Solution at time step n =10

(b) Trajectories of all 12 nodes 0.14

F. Lu et al.: Joint state-parameter estimation

1 106 1.06 Observations
[ True states
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1 05 0 05 1 0 20 40 60 80 100 0.9 0.95 1 1.05

Time step n State variable

Figure 1. A typical realization of the solution to the SEBM. (a) The solution at time step? =10 on the sphere with the 12-node finite-element
mesh. (b) The trajectories of all 12 nodes over 100 time steps. (¢) Histogram estimates of the climatological probability distribution of all

nodes of the true states (salmon) and the observations (blue).

1 and vary mostly in the interval [0.92,1.05]. We shall use
a Gaussian approximation based on the climatological distri-
bution of the partial noisy observations as a prior to constrain
the state variables.

We summarize the settings of numerical tests in Table 3.

3.2 Ill-posedness of the standard Bayesian inference of
parameters

By the Bernstein—von Mises theorem (see,  e.g., Van der
Vaart, 2000, chap. 10), the posterior distribution of the pa-
rameters conditional on the true state data approaches the
likelihood distribution as the data size increases. That is,
p(0 |un) in Eq. (14) becomes close to the likelihood dis-
tribution p(uy.n|6 (which can be viewed as a distribution
of 0) as the data size increases. Therefore, if the likelihood
distribution is numerically degenerate (in the sense that some
components are undetermined), then the Bayesian posterior
will also become close to degenerate, so that the Bayesian in-
ference for parameter estimation will be ill-posed. In the fol-
lowing, we show that for this model the likelihood is degen-
erate even if the full states are observed with zero observa-
tion noise and that the maximum likelihood estimators have
large nonphysical fluctuations (particularly when the states
are noisy). As a consequence, the standard Bayesian param-
eter inference fails by yielding nonphysical samples.

We show first that the likelihood distribution is numeri-
cally degenerate because the Fisher information matrix is ill-
conditioned. Following the transition density Eq. (7), the log
likelihood of the state { th.n} is

1 N

10, w)=c= (Upi— H?(un))TRil

[\

n=1
(Uns1 — W(Un)), (15)

where Cis a constant independent of (6 , ¢y ). Since pg(-) is
linear in 6 (cf. Eq. A19), the likelihood function is quadratic
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in 6 and the corresponding scaled Fisher information matrix
is

N

Fny = Gy ,l"(/L/n)7—1171 Go ,[Un) 5

n=1 k,1=0,1,4

: 16
5 (16)

where the vectors Gy fup) €ER% are defined in
Eq. (A20). As N » oo, the Fisher information matrix
converges, by ergodicity of the system, to its expectation

t ¢°E[(Aup) AT CTCAT (Aup)°] 014

the matrices A, AT and C, arising in the spatial-temporal
discretization, are defined in Sect. Al. Intuitively, ne-
glecting these matrices and viewing the vector up as
a scalar, this expectation matrix could be reduced to
(to T*E[ukul])ki=0,1.4, which is ill-conditioned because
Up has a distribution concentrated near 1 with a standard
deviation at the scale of 1072 (see Fig. 1).

Figure 2 shows the means and standard deviations of the
condition numbers (the ratio between the maximum and the
minimum singular values) of the Fisher information matrices
from 100 independent simulations. Each of these simulations
generates a long trajectory of length 10 ° using a parameter
drawn randomly from the prior and computes the Fisher in-
formation matrices using the true trajectory of all 12 nodes,
for subsamples of lengths N ranging from 102 to 10°. For
both the Gaussian and uniform priors, the condition numbers
are on the scale of 10 3-10'! and therefore the Fisher infor-
mation matrix is ill-conditioned. In particular, the condition
number increases as the data size increased, due to the ill-
posedness of the inverse problem of parameter estimation.

The ill-conditioned Fisher information  matrix
leads to highly wvariable maximum likelihood es-
timators (MLEs), computed from Fy6 = g with

by = 71V ﬁ:l Go Kun) R (U — M_}Mo Un)
which follows from Eq. (A20).

where

k=0,1,4’

www.nonlin-processes-geophys.net/26/227/2019/
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Condition number (Log10)
©
”

2 3 4 5
Data size (log,,N)

(a) Gaussian prior

2 3 4 5
Data size (log,(N)

(b) Uniform prior

Figure 2. The mean and standard deviation of the condition numbers of the Fisher information matrices, computed using true trajectories,
out of 100 simulations of length ranging fromN = 102 to 10°. The condition numbers are at the scale of 1°—1011, indicating that the Fisher

information matrix is ill-conditioned.

The ill-posedness is particularly problematic when { t.n/}
is observed with noise, as the ill-conditioned Fisher informa-
tion matrix amplifies the noise in observations and leads to
nonphysical estimators. Figure 3 shows the means and stan-
dard deviations of errors of MLEs computed from true and
noisy trajectories in 100 independent simulations. In each
of these simulations, the “noisy” trajectory is obtained by
adding a white noise with standard deviation o = 0.01 to
a “true” trajectory generated from the system with a true pa-
rameter randomly drawn from the prior. For both Gaussian
and uniform priors, the standard deviations and means of the
errors of the MLE from the noisy trajectories are 1 order of
magnitude larger than those from true trajectories. In partic-
ular, the variations are large when the data size is small. For
example, when N =100, the standard deviation of the MLE
for & from noisy observations is on the order of lé, 2 orders
of magnitude larger than its physical range in Table 2.

The standard deviations \gle_crease as the data size increases,
at the expected rate of 1 / N. However, the errors are too
large to be practically reduced by increasing the size of the
data: for example, a data size N =10'° is needed to reduce
the standard deviation of € to less than 0.1 (which is about
10 % the size of the physical range [—6.00,— 4.80] as spec-
ified in Table 2). In summary, the ill-posedness leads to pa-
rameter estimators with large variations that are far outside
the physical ranges of the parameters.

3.3 Regularized posteriors

To overcome the ill-posedness of the parameter estimation
problem, we introduce strongly regularized posteriors by
normalizing the likelihood function. In addition, to prevent
unphysical values of the states, we further regularize the state
variables in the likelihood by an uninformative climatologi-
cal prior. That is, consider the regularized posterior:

1
PN, winn) = =p(0 )

P (urn Jpolurn Jpolvin| un) N
Po(yi:N)

, an
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/N
where Z := p(6) p‘/ule)pgl(th(;}/;/l{%(yl;N|M;N) dodu. N

is a normalizing constant and p(uy.n ) is the prior of the
states estimated from a Gaussian fit to climatological statis-
tics of the observations, neglecting correlations. That is, we
set p¢(u:n) as

N
p(un) =

n=1

|t —wl
20% ’

! a Xp (18)
2n0¢

with oc =2 03 — 3, where T and 0, are the mean and
standard deviation of the observations over all states. Here
the multiplicative factor 2 aims for a larger band to avoid an
overly narrow prior for the states.

This prior can be viewed as a joint distribution of the state
variables assuming all components are independent identi-
cally Gaussian distributed with mean ~ ¥c and variance oZ.
Clearly, it uses the minimum amount of information about
the state variables, and we expect it can be improved by tak-
ing into consideration spatial correlations or additional field
knowledge in practice.

The regularized posterior can be viewed as an extension
of the regularized cost function in the variational approach.
In fact, the negative logarithm of the regularized posterior
is the same (up to a multiplicative factor 7lv and an additive
constant log Z —ﬁ log Pa(y1:n)) as the cost function in vari-
ational approaches with regularization. More precisely, we
have

1
_logpN(H D 1“\/|MZN) = NCyl:N(H s ILN)

1
+logZ —Nlogpa(ylzN), (19)

where Cy, (6 , 1) is the cost function with regularization:

N
Cun(0 . 1) = —  log pluplth-1, 6 Jpptin)

n=1

— Mogp(6) —log p“(ur.n). (20)
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Figure 3. The standard deviations and means of the errors of the MLEs, computed from true and noisy trajectories, out of 100 independent
simulations with true parameters sampled from the Gaussian and uniform priors. In all cases, the deviations and biases (i.e., means of errors)
are large. In particular, in the case of noisy observations, the deviations are on orders ranging from 10 to 1000, far beyond the physical ranges
of the parameters in Table 1. Though the deviations decrease as data size increases, an impractically large data size is needed to reduce them
to a physical range. Also, the means of errors are larger than the size of physical ranges of the parameters, with values that decay slowly as

data size increases.

When the prior is Gaussian, the regularization corresponds to
Tikhonov regularization. Therefore, the regularized posterior
extends the regularized cost function to a probability distri-
bution, with the MAP being the minimizer of the regularized
cost function.

The regularized posterior normalizes the likelihood by
an exponent 1/N. This normalization allows for a larger
weight (more trust) on the prior, which can then suffi-
ciently regularize the singularity in the likelihood and there-
fore reduces the probability of nonphysical samples. In-
tuitively, it avoids the shrinking of the likelihood as the
data size increases. When the system is ergodic, the sum
~ N 1og po(un| th-1)p(Vn|th) converges to the spatial
average E[log po(Un|Un—1)p(yn|Un)) with respect to the
invariant measure as N increases. While being effective, this
factor may not be optimal (O’Leary, 2001), and we leave the
exploration of optimal regularization factors to future work.

In the sampling of the regularized posterior, = we update
the state variable Uj.n conditional on 6 and y;.n by sam-
pling p(ur.n Jpo(ui:n 16 136 ) (with pe(tr:n| 6 ,136) spec-
ified in Eq. 13) using SMC methods. Compared to the stan-
dard PMCMC algorithm outlined in Sect. 2.4, the only dif-
ference occurs when we update the parameter 6 conditional
on the estimated states uj.n. Instead of Eq. (14), we draw a
sample of 6 from the regularized posterior

N (O lun. wn) < p(0 falunn)™N. @1

4 Bayesian inference with regularized posteriors

The regularized posteriors are approximated by the empirical
distribution of samples drawn using particle MCMC meth-
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ods, specifically PGAS (see Sect. A3) in combination with
SMC using optimal importance sampling (see Sect. A2). In
the following section, we first diagnose the Markov chain and
choose a reasonable chain length for subsequent  analyses.
We then present the results of parameter estimation and state
estimation.

In all the tests presented in this study, we use only M =5
particles for the SMC, as we can be confident of the Markov
chain produced by the particle MCMC methods converging
to the target distribution based on theoretical results (see An-
drieu et al., 2010; Lindsten et al., 2014). In general, the more
particles are used, the better the SMC algorithm (and hence
the particle MCMC methods) will perform, at the price of
increased computational cost.

4.1 Diagnosis of the Markov chain Monte Carlo
algorithm

To ensure that the Markov chain generated by PGAS is well-
mixed and to find a length for the chain such that the poste-
rior is acceptably approximated, we shall assess the Markov
chain by three criteria: the update rate of states; the corre-
lation length of the Markov chain; and the convergence of
the marginal posteriors of the parameters. These empirical
criteria are convenient and, as we discuss below, have found
to be effective in our study. We refer to Cowles and Carlin
(1996) for a detailed review of various criteria for diagnos-
ing MCMC.

The update rate of states is computed at each time of the
state trajectory u;.n along the Markov chain. That is, at each
time, we say the state is updated from the previous step of
the Markov chain if any entry of the state vector changes.

www.nonlin-processes-geophys.net/26/227/2019/
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Figure 4. The update rate of the states at different times along the trajectory. The high update rate at time ¢ =1 is due to the initialization of
the particles near the equilibrium and the ancestor sampling. The high update rate at the end time is due to the nature of the SMC filter. Note

that the uniform prior has update rates close to 1 at all times.
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Figure 5. The empirical autocorrelation functions (ACFs) of the Markov chain of parameters
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(6, §, ) and states Upk at times n =

{1040, 90} and nodes k = 1, 8}, computed from a Markov chain with length 10 000. The ACFs fall within a threshold of 0.1 around zero
within a time lag of about 25 for the Gaussian prior, and a time lag of about 5 for the uniform prior.

The update rate measures the mixing of the Markov chain. In
general, an update rate above 0.5 is preferred, but a high rate
close to 1 is not necessarily the best. Figure 4 shows the up-
date rates of typical simulations for both the Gaussian prior
and the uniform prior. For both priors, the update rates are
above 0.5, indicating a fast mixing of the chain. The rates
tend to increase with time (except for the first time step) to a
value close to 1 at the end of the trajectory. This phenomenon
agrees with the particle depletion nature of the SMC filter:
when tracing back in time to sample the ancestors, there are
fewer particles and therefore the update rate is lower.  The
high update rate at the time ¢ =1 step is due to our initial-
ization of the particles near the equilibrium, which increases
the possibility of ancestor updates in PGAS. We also note
that the uniform prior has update rates close to 1 at all times,
much higher than the rates of the Gaussian prior. Higher up-
date rates occur for the uniform prior because the deviations
of parameter samples from the previous values are larger, re-
sulting in an increased probability of updating the reference
trajectory in the conditional SMC.

www.nonlin-processes-geophys.net/26/227/2019/

Table 4. The settings of the particle MCMC using SMC with opti-
mal importance densities.

M =5 Number particles in SMC
L =10*  Length of the Markov chain
N =100 Number of time steps of observations.

We test the correlation length of the Markov chain by find-
ing the smallest lag at which the empirical autocorrelation
functions (ACFs) of the states and the parameters are close
to zero.

Figure 5 shows the empirical ~ ACFs of the parameters
and states at representative nodes, computed using a Markov
chain with length 10 000. The ACFs approach zero within a
time lag of around 40 (based on a threshold value of 0.1) for
the Gaussian prior, and within a time lag of around 5 for the
uniform prior. The smaller correlation length in the uniform
prior case is again due to the larger parameter variation in the
uniform prior case than the Gaussian prior case.

Nonlin. Processes Geophys., 26, 227-250, 2019
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Figure 6. The empirical marginal distributions of the samples from the posterior as the length of the Markov chain increases.
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Note that

the marginal posteriors converge rapidly as the length of the chain increases. In particular, a chain with length 1000 provides a reasonable
approximation to the posterior, capturing the shape and spread of the distribution.

The relatively small decorrelation length of the Markov
chain indicates that we can accurately approximate the pos-
terior by a chain of a relatively short length. This result is
demonstrated in Fig. 6, where we plot the empirical marginal
posteriors of the parameters, using Markov chains of three
different lengths: L =1000, 5000, and 10 000. The marginal
posteriors with L =1000 are reasonably close to those with
L =10* and those with L =35000 are almost identical to
those with L =10*. In particular, the marginal posteriors
with L =10> capture the shape and spread of the distribu-
tions for L =10*. Therefore, a Markov chain with length
L =10*provides a reasonably accurate approximation of the
posterior. Hence, we use Markov chains with length L =10*
in all simulations from here on. This choice of chain length
may be longer than necessary, but allows for confidence that
the results are robust.

In summary, based on the above diagnosis of the Markov
chain generated by PMCMC, to run many simulations for
statistical analysis of the algorithm within a limited compu-
tation cost, we use chains with length L =10* to approxi-
mate the posterior. For the SMC algorithm, we use only five
particles. The number of observations in time is N =100.

4.2 Parameter estimation

One of the main goals in Bayesian inference is to quantify
the uncertainty in the parameter-state estimation by the pos-
terior. We access the parameter estimation by examining the
samples of the posterior in a typical simulation, for which
we consider the scatter plots and marginal distributions, the
MAP, and the posterior mean. We also examine the statistics
of the MAP and the posterior mean in 100 independent sim-
ulations. In each simulation, the parameters are drawn from
the prior distribution of 6. Then, a realization of the SEBM is

Nonlin. Processes Geophys., 26, 227-250, 2019

simulated. Finally, observations are created by applying the
observation model to the SEBM realization.

The empirical marginal posteriors of the parameters 6 =
(6, @, &) in two typical simulations, for the Gaussian and
uniform priors, are shown in Fig. 7. The top row presents
scatter plots of samples along with the true values of the pa-
rameters (asterisks) and the bottom row presents the marginal
posteriors for each parameter in comparison with the priors.

In the case of the Gaussian prior, the scatter plots show a
posterior that is far from Gaussian, with clear nonlinear de-
pendence between & and the other parameters. The marginal
posteriors of & and 6 are close to their priors, with larger
tails (to the left for &) and to the right for 6;). The marginal
distribution of @ concentrates near the center of the prior
with a larger tail to the right. The posterior has the most prob-
ability mass near the true values of @ and 6, which are in
the high-probability region of the prior. However, it has no
probability mass near the true value of 63 — which is of a low
probability in the prior.

In the case of the uniform prior, the scatter plots show a
concentration of probability near the boundaries of the phys-
ical range. The marginal posteriors of & and 6 clearly devi-
ate from the priors, concentrating near the parameter bounds
(the upper bound for & and the lower bound for 6 in this
realization); the marginal posterior of € is close to the prior,
with slightly more probability mass for large values.

Further tests show that the posterior is not sensitive to
changes in the true values of the parameters. ~ This fact is
demonstrated in Fig. 8, which presents the marginal distri-
butions for another set of true values of the parameters (but
without changing the priors). Though the data change when
the true parameters change, the posteriors, in comparison
with those in Fig. 7, change little for both cases of Gaussian
and uniform prior.

www.nonlin-processes-geophys.net/26/227/2019/
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Figure 7. Posteriors of the parameters in a typical simulation, with both the Gaussian and the uniform prior. The true values of the parameters,
as well as the data trajectory, are the same for both priors. The top row displays scatter plots of the samples (blue dots), with the true values of
the parameters shown by asterisks. The bottom row displays the marginal posteriors (blue lines) of each component of the parameters and the
priors (black dash-dot lines), with the posterior mean marked by diamonds and the true values marked by asterisks. The posterior correlations
are pg1 = 0.20, pog = —0.19, and p14 = 0.57 in the case of the Gaussian prior and py; = -0.23, pp4 = -0.01, and pj4 = —0.05 in the case

of the uniform prior.

The non-Gaussianity of the posterior (including the con-
centration near the boundaries), its insensitivity to changes
in the true parameter, and its limited reduction of uncertainty
from the prior (Figs. 7-8) are due to the degeneracy of the
likelihood distribution and to the strong regularization. Re-
call that the degenerate likelihood leads to MLEs with large
variations and biases, with the standard deviation of the es-
timators of & and 6 being about 10 times larger than those
of 6 (see Fig. 3). As a result, when regularized by the Gaus-
sian prior, the components & and 6, which are more under-
determined by the likelihood, are constrained mainly by the
Gaussian prior, and therefore their marginal posteriors are
close to their marginal priors. In contrast, the component 6
is forced to concentrate around the center of the prior but with
a large tail. While dramatically reducing the large uncertainty
of & and 6 in the ill-conditioned likelihood, the regularized

www.nonlin-processes-geophys.net/26/227/2019/

posterior still exhibits a slightly larger uncertainty than the
prior for these two components.

In the case of the uniform prior, it is particularly notewor-
thy that the marginal posteriors of & and 6 differ more from
their priors than the parameter 6. These results are the op-
posite of what was found for the Gaussian prior. ~ Such dif-
ferences are due to the different mechanism of “regulariza-
tion” by the two priors. The Gaussian prior eliminates the
ill-posedness by regularizing the ill-conditioned Fisher infor:
mation matrix with the covariance of the prior. So, the infor-
mation in the likelihood, e.g., the bias and the correlations
between (&, §)and @, is preserved in the regularized poste-
rior. The uniform prior, on the other hand, cuts the support of
the degenerate likelihood and rejects out-of-range samples.
As a result, the correlation between &) and 6 is preserved in
the regularized posterior because they feature similar varia-
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Figure 8. The marginal posteriors with a different set of true values for the parameters. The marginal posteriors change little from those in

Fig. 7.

tions, but the correlations between 6 and & as well as 6, are
weakened (Fig. 7).

In practice, one is often interested in a point estimate of
parameters. Commonly used point estimators are the MAP
and the posterior mean. Figures 7-8 show that both the MAP
and the posterior mean can be far away from the truth for
Gaussian as well as uniform priors. In particular, in the case
of the uniform prior, the MAP values are further away from
the truth than the posterior mean. In the case of the Gaussian
prior, the MAP values do not present a clear advantage or
disadvantage over the posterior mean.

Table 5a shows the means and standard deviations of the
errors of the posterior mean and MAP from 100 independent
simulations. In each simulation and for each prior, we drew
a parameter sample from the prior and generated a trajec-
tory of observations, and then estimated jointly the parame-
ters and states. The table shows that both posterior mean and
MAP estimates are generally biased, consistent with the bi-
ases in Figs. 7 and 8. More specifically, in the case of the
Gaussian prior, the MAP has slightly smaller biases than the
posterior mean, but the two have almost the same variances.
Both are negatively biased for &) and slightly positively bi-
ased for 6 and 6. In the case of the uniform prior, the MAP
features biases and standard deviations which are about 50 %
larger than those of the posterior mean. Both estimators ex-
hibit large positive biases in 6, large negative biases in 4,
and small positive biases in 6.

4.3 State estimates
The state estimation aims both to filter out the noise from
the observed nodes and to estimate the states of unobserved

nodes. We access the state estimation by examining the en-
semble of the posterior trajectories in a typical simulation, for
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which we consider the marginal distributions and the cover-
age probability of 90 % credible intervals. We also examine
the statistics of these quantities in 100 independent simula-
tions.

We present the ensemble of posterior trajectories at an ob-
served node in Fig. 9 and at an unobserved node in Fig. 10.
In each of these figures, we present the ensemble mean with
a l-standard-deviation band, in comparison with the true tra-
jectories, superimposed on the ensembles of all sample tra-
jectories at these nodes. We also present histograms of sam-
ples at three instants of time: ¢ =20, ¢ =60, and £ =100.

Figure 9 shows that the trajectory of the observed node is
well estimated by the ensemble mean, with a relative error
0f 0.7 %. Recall that the observation noise leads to a rela-
tive error of about 1 %, so the posterior filters out 30 % of
the noise. Also note that the ensemble quantifies the uncer-
tainty of the estimation, with the true trajectory being mostly
enclosed within a 1-standard-deviation band around the en-
semble mean. Further, the histograms of samples at the three
time instants show that the ensemble generally concentrates
near the truth. In the Gaussian prior case, the peak of the his-
togram decreases as time increases, partially due to the de-
generacy of SMC when we trace back the particles in time.
In the uniform prior case, the ensembles are less concentrated
than those in the Gaussian case, due to the wide spread of the
parameter samples (Fig. 7).

Figure 10 shows sample trajectories of ~ an unobserved
node. Despite the fact that the node is unobserved, the pos-
terior means have relative errors of 0.8 % and 3.3 % in the
cases of Gaussian and uniform priors, respectively, with a 1-
standard-deviation band covering the true trajectory at most
times. While the sparse observations do cause large uncer-
tainties for both posteriors, the histograms of samples show
that the ensembles concentrate near the truth.  Particularly,
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Table 5. Means and standard deviations of the errors of the posterior mean and MAP in 100 independent simulations.

(a) The case of observing 6 of the 12 nodes

& & o
G or Posterior mean  —0.44 = 0.58 0.09 +0.42 0.11 +£0.20
auss prio MAP —0.32+0.61  0.02+042  0.03+0.21
Uniform prior Posterior mean 0.75+x1.06 —-031=x+1.07 -0.02=*0.35
P MAP 1.02+£1.53 —051+149 0.15+0.43

(b)The case of observing 2 of the 12 nodes.
& & o
Gauss prior Posterior mean —0.32+0.61 —0.03 +0.37 0.10 £0.20
p MAP —0.19+0.67 —0.10+0.38  0.02+0.20
Unif . Posterior mean 0.77x1.12 —-0.39+1.00 0.07 +0.36
MHOTMPHIOT \rap 1.06£1.55 —0.61+1.42 0.27+0.42

11 Sample trajectories of node 1. Relative error of mean = 0.007
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Figure 9. The ensemble of sample trajectories of the state at an observed node. Top row: the sample trajectories (in cyan) concentrate around
the true trajectory (in black dash-asterisk). The true trajectory is well-estimated by the ensemble mean (in blue dash-diamond) and is mostly
enclosed by the 1-standard-deviation band (in magenta dash-dot lines). The relative error of the ensemble mean along the trajectory is 0.7 %
and 0.8 %, filtering out 30 % and 20 % of the observation noise, respectively. Bottom row: histograms of samples at three instants of time:

t =20, t =60, and t =100. The histograms show that the samples concentrate around the true states.

in the case of Gaussian priors, the peaks of the histogram
are close to the true states, even when the histograms form a
multi-modal distribution due to the degeneracy of SMC.

We find that the posterior is able to filter out the noise in
the observed nodes and reduce the uncertainty in the unob-
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served nodes from the climatological distribution. In partic-
ular, in the case of the Gaussian prior, the ensemble of poste-
rior samples concentrates near the true state at both observed
and unobserved nodes and substantially reduces the uncer-
tainty. In the case of the uniform prior, the ensemble of pos-
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Sample trajectories of node 2. Relative error of mean = 0.033
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Figure 10. The ensemble of sample trajectories of the state at an unobserved node. The ensembles exhibit a large uncertainty in both cases
of priors, but the posterior means achieve relative errors of 0.8 % and 3.3 % in the cases of Gaussian and uniform priors, respectively. The
1-standard-deviation band covers the true trajectory at most times. Bottom row: the histogram of samples at three time instants, showing that
the samples concentrate around the true states. Particularly, in the case of the Gaussian prior, the peaks of the histogram are close to the true

states, even when the histograms form a multi-mode distribution.

terior samples spreads more widely and only slightly reduces
the uncertainty.

The coverage probability (CP), the proportion of the states
whose 90 % credible intervals contain the true values, is
95 % in the Gaussian prior case and 92 % for the uniform
prior in the above simulation. The target probability is 90 %,
as in this case 90 % of the true values would be covered
by 90 % credible intervals. The values indicate statistically
meaningful uncertainty estimates, for example larger uncer-
tainty ranges at nodes with higher mean errors. The slight
over-dispersiveness, i.e., higher CPs than the target probabil-
ities, might be a result of the large uncertainty in the param-
eter estimates.

Table 6 shows the means and standard deviations of the
relative errors and CPs in state estimation by the posterior
mean in 100 independent simulations, averaging over ob-
served and unobserved notes. The relative errors at each time
t are computed by averaging the error of the ensemble mean
(relative to the true value) over all the nodes. The relative er-
ror of the trajectory is the average over all times along the
trajectory. The relative errors are 1.14 % and 2.39 %, respec-
tively, for the cases of Gaussian and uniform priors. These
numbers are a result of averaging over the observed and un-
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observed nodes. Note that the relative errors are similar at
different times t = 20, 60, 100), indicating that the MCMC
is able to ameliorate the degeneracy of the SMC to faithfully
sample the posterior of the states.

In the Gaussian prior case, the CPs are above the target
probability in the 100 independent simulations, with a mean
of 96 %. This supports the finding from above that the poste-
riors are slightly over-dispersive due to the large uncertainty
in the parameter estimates. The standard deviation is very
small, with 2 %, which indicates the robustness of the Gaus-
sian prior model. In the uniform prior case, the CPs are much
lower, with a mean of 73 %. This might be a result of larger
biases compared to the Gaussian prior case which are not
compensated by larger uncertainty estimates. In addition, the
standard deviation is much higher in the uniform prior case,
with 31 %. This shows that this case is less robust than the
Gaussian prior case.

www.nonlin-processes-geophys.net/26/227/2019/



F. Lu et al.: Joint state-parameter estimation

241

Table 6. Means and standard deviations of the relative errors of the posterior mean trajectories of all nodes and the relative errors at three
instants of time, computed from 100 independent simulations. In the last column, the mean and standard deviations of CPs are given in

percent.

(a) The case of observing 6 out of the 12 nodes.

Trajectory t =20 t =60 t =100 CP
Gaussian prior (%) 1.14+0.41 1.11x047 1.09+047 1.07x046 96=*2
Uniform prior (%) 2.39+1.59 244+1.64 242+1.66 241+1.63 73+31
(b) The case of observing 2 out of the 12 nodes.

Trajectory t =20 t =60 t =100 CP
Gaussian prior (%) 1.43+0.44 138+0.53 143+0.51 1.33+0.54 92+6
Uniform prior (%) 2.46+128 247+1.35 249+133 247+1.34 75=+25

5 Discussion
5.1 Observing fewer nodes

We tested the consequences of having sparser observations
in space, e.g., observing only 2 out of the 12 nodes. In the
Gaussian prior case, in a typical simulation with the same
true parameters and observation data as in Sect. 4.2, the rela-
tive error in state estimation increases slightly, from 0.7 % to
0.8 % for the observed node and from 0.8 % to 1.1 % for the
unobserved node. As a result, the overall error increases. The
parameter estimates show small but noticeable changes (see
Fig. 11): the posteriors of the parameters have slightly wider
support and the posterior means and MAPs exhibit slightly
larger errors than those in Sect. 4.2.

We also ran 100 independent  simulations to investigate
sampling variability in the state and parameter  estimates.
Table 6b reports the means and standard deviations of the
relative errors of the posterior mean trajectory, and CPs for
state estimation in these simulations. The Gaussian prior case
shows small increases in both the means and the standard de-
viations of errors, as well as slightly lower and less robust
CPs. This confirms the results quoted above for a typical sim-
ulation. The uniform prior case shows almost negligible error
and CP increases. Table 5b reports the means and standard
deviations of the posterior means and MAP for parameter es-
timation in these simulations. Small changes in comparison
to the results in Table 5a are found. These small changes are
due to the strong regularization that has been introduced to
overcome the degeneracy of the likelihood.

5.2 Observing a longer trajectory

When the length N of the trajectory of observation in-
creases, the exponent of the regularized posterior Eq. (19),
viewed as a function of @ only, tends to its expectation

with respect to the ergodic measure of  the system, i.e.,

N~
2 Cun (0 . ) ==——B{Cy (0 . 1)) almost surely. As

aresult, the marginal posterior tends to be stable as N in-
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creases. This result indicates that an increase in data size
has a limited effect on the regularized posterior of parame-
ters. This fact is verified by numerical tests with N =1000,
in which the marginal posteriors only have a slightly wider
support than those in Fig. 7 with N =100.

In general, the number of observations needed for the pos-
terior to reach a steady state depends on the dimension of
the parameters and the speed of convergence to the ergodic
measure of the system. Here we have only three parameters
and the SEBM converges to its stationary measure exponen-
tially (in fewer than 10 time steps);  therefore, N =100 is
large enough to make the posterior be close to the steady
state.

When the trajectory is long, a major issue is the compu-
tational cost from sampling the posterior of the states. Note
that as N increases, the dimension of the states in the poste-
rior increases, demanding a longer Markov chain to explore
the target distribution. In numerical tests with N =1000, the
correlation length of the Markov chain is at least 100, about
4 times the correlation length found for N =100. Therefore,
to obtain the same number of effective samples as before, we
would need a Markov chain with length at least 4 times the
previous length, say, L =4 X 10*. The computational cost
increases linearly in  NL , with each step requiring an inte-
gration of the SPDE. The high computational cost, an in-
stance of the well-known “curse of dimensionality”, renders
the direct sampling of the posterior unfeasible. Two groups of
methods could reduce the computational cost and make the
Bayesian inference feasible. The first group of methods, dy-
namical model reduction, exploits the low-dimensional struc-
ture of the stochastic process to develop low-dimensional dy-
namical models which efficiently reproduce the statistical—
dynamical properties needed in the SMC (see, e.g., Chorin
and Lu, 2015; Luet al., 2017; Chekroun and Kondrashov,
2017; Khouider et al., 2003, and the references therein). The
other group of methods approximates the marginal posterior
of the parameter by reduced-order models for the response of
the data to parameters (see, e.g., Marzouk and Najm, 2009;
Branicki and Majda, 2013; Cui et al., 2015; Chorin et al.,
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Figure 11. The case of observing 2 out of the 12 nodes: marginal posteriors of 6. With the same true parameters and the same observation
dataset as in Fig. 7, the marginal posteriors have slightly wider supports.

2016; Lu et al., 2015; Jiang and Harlim, 2018). In a paleo-
climate reconstruction context, the number of observations
will generally be determined by available observations and
the length of the reconstruction period rather than by compu-
tational considerations. We leave these further developments
of efficient sampling methods for long trajectories as a direc-
tion of future research.

5.3 Estimates of the nonlinear function

One goal of parameter estimation is to identify the nonlinear
function gp (specified in Eq. 2) in the SEBM. The posterior
of the parameters also quantifies the uncertainty in the iden-
tification of gy. Figure 12 shows the nonlinear function gy
associated with the true parameters and with the MAPs and
posterior means presented in Fig. 7, superposed on an ensem-
ble of the nonlinear function evaluated with all the samples.
Note that in the Gaussian prior case, the true and estimated
functions gy are close even though € is estimated with large
biases by either the posterior mean or by the MAP. In the uni-
form prior case, the posterior mean has a smaller error than
the MAP and leads to a better estimate of the nonlinear func-
tion. In either case, the large band of the ensemble represents
a large uncertainty in the estimates.

For the Gaussian prior, neither the posterior distribution
of the equilibrium state ¢ (for which gy(te) =0) nor of the
feedback strength d gg/du(t ) is substantially changed from
the corresponding priors. Both experience only a small re-
duction of uncertainty. In contrast, the posterior distributions
are narrower than the priors for the uniform prior case — al-
though the posterior means and MAPs are both biased.

Nonlin. Processes Geophys., 26, 227-250, 2019

5.4 Implications for paleoclimate reconstructions

Our analysis shows that assessing the well-posedness of the
inverse problem of parameter estimation is a necessary first
step for paleoclimate reconstructions making use of physi-
cally motivated parametric models. When the problem is ill-
posed, a straightforward Bayesian inference will lead to bi-
ased and unphysical parameter estimates. We overcome this
issue by using regularized posteriors, resulting in parameter
estimates in the physically reasonable range with quantified
uncertainty. However, it should be kept in mind that this ap-
proach relies strongly on high-quality prior distributions.

The ill-posedness of the parameter estimation problem for
the model we have considered is of particular interest  be-
cause the form of the nonlinear function gy (u) is not arbi-
trary but is motivated by the physics of the energy budget of
the atmosphere. The fact that wide ranges of the parameters
6 are consistent with the “observations” even in this highly
idealized setting indicates that surface temperature observa-
tions themselves may not be sufficient to constrain physi-
cally important parameters such as albedo, graybody ther-
mal emissivity, or air—sea exchange coefficients separately.
While state-space modeling approaches allow reconstruction
of past surface climate states, it may be the case that the asso-
ciated climate forcing may not contain sufficient information
to extract the relative contributions of the individual physical
processes that produced it. Further research will be neces-
sary to understand whether the contribution of, e.g., a single
process like graybody thermal emissivity can be reliably es-
timated from the observations if regularized posteriors are
used to constrain the other parameters of gy(U).

If the purpose of using the SEBM is to introduce physical
structure into the state reconstructions without specific con-
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Figure 12. Top row: the true nonlinear function gy and its estimators using the posterior mean and MAP, superposed on the ensemble of all
estimators using the samples. Bottom row: the distribution of the equilibrium state e (i.e., the zero of the nonlinear function gy(*)) and the

distribution of % (Ue), with 0 being samples of the prior and of the posterior.

cern regarding the parametric form of g, re-parametrization
or nonparametric Bayesian inference can be used to esti-
mate the form of the nonlinear function g but avoid the ill-
posedness of the parameter estimation problem. This is an
option if the interest is in the posterior of the climate state
and not in the individual contributions of energy sink and
source processes.

State-of-the-art observation operators in paleoclimatol-
ogy are often nonlinear and contain non-Gaussian elements
(Haslett et al., 2006; Tolwinski-Ward et al., 2011). A lo-
cally linearized observation model with data coming from
the interpolation of proxy data can be used in the modeling
framework we have considered, along with the assumption
of Gaussian observation noise. Alternatively, it is also pos-
sible to first compute offline point-wise reconstructions by
inverting the full observation operator, potentially interpo-
lating the results in time, and using a Gaussian approxima-
tion of the point-wise posterior distributions as observations
in the SEBM (e.g., Parnell et al., 2016). We anticipate that
such simplified observation operators will limit the accuracy
of the parameter estimation but that the regularized poste-
rior would still be able to distinguish the most likely states
and quantify the uncertainty in the estimation. Directly us-
ing nonlinear, non-Gaussian observation operators requires
a more sophisticated particle filter as optimal filtering is no
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longer possible. Such approaches will increase the computa-
tional cost and face difficulties in avoiding filter degeneracy.

6 Conclusions and future work

We have investigated the joint state-parameter estimation of
a nonlinear stochastic energy balance model (SEBM) mo-
tivated by the problem of spatial-temporal paleoclimate re-
construction from sparse and noisy data, for which parame-
ter estimation is an ill-posed inverse problem. We introduced
strongly regularized posteriors to overcome the ill-posedness
by restricting the parameters and states to physical — ranges
and by normalizing the likelihood function. We considered
both a uniform prior and a more informative Gaussian prior
based on the physical ranges of the parameters. We sam-
pled the regularized high-dimensional posteriors by a parti-
cle Gibbs with ancestor sampling (PGAS) sampler that com-
bines Markov chain Monte Carlo (MCMC) with an optimal
particle filter to exploit the forward structure of the SEBM.
Results show that the regularization overcomes the ill-

posedness in parameter estimation and leads to physical pos-
teriors quantifying the uncertainty in parameter-state estima-
tion. Due to the ill-posedness, the posterior of the parame-
ters features a relatively large uncertainty. This result implies
that there can be a large uncertainty in point estimators such

Nonlin. Processes Geophys., 26, 227-250, 2019
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as the posterior mean or the maximum a posteriori (MAP),
the latter of which corresponds to the minimizer in a varia-
tional approach with regularization. Despite the large uncer-
tainty in parameter estimation, the marginal posteriors of the
states generally concentrate near the truth, reducing the un-
certainty in state reconstruction. In particular, the more infor-
mative Gaussian prior leads to much better estimations than
the uniform prior: the uncertainty in the posterior is smaller,
the MAP and posterior mean have smaller errors in both state
and parameter estimates, and the coverage probabilities are
higher and more robust.

Results also show that the regularized posterior is robust
to spatial sparsity of observations, with sparser observations
leading to slightly larger uncertainties due to less informa-
tion. However, due to the need for regularization to over-
come ill-posedness, the uncertainty in the posterior of the
parameters cannot be eliminated by increasing the number of
observations in time. Therefore, we suggest alternative ap-
proaches, such as re-parametrization of the nonlinear func-
tion according to the climatological distribution or nonpara-
metric Bayesian inference (see, e.g., Miiller and Mitra, 2013;
Ghosal and Van der Vaart, 2017), to avoid ill-posedness.

This work shows that it is necessary to assess the well-
posedness of the inverse problem of parameter estimation
when reconstructing paleoclimate fields with physically mo-
tivated parametric stochastic models. In our case, the natural
physical formulation of the SEBM is ill-posed. While climate
states can be reconstructed, values of individual parameters
are not strongly constrained by the observations. Regularized
posteriors are a way to overcome the ill-posedness but retain
a specific parametric form of the nonlinear function repre-
senting the climate forcings.

Data availability. The paper runs synthetic simulations, so there
are no data to be accessed. The MATLAB codes for the numerical
simulations are available at GitHub: https://github.com/feilumath/
InferSEBM.git (last access: 12 August 2019).
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Appendix A: Technical details of the estimation
procedure

Al Discretization of the SEBM
Al.1 Finite-element representation in space

We discretize the SEBM in space by finite-element  meth-
ods (see, e.g., Alberty et al., 1999). Denote by { ¢, (& )fiz’l the
finite-element basis functions, and approximate the solution

a
vt £) = uft e )

=1

(A1)

The coefficients wu; are determined by the following weak
Galerkin projection of the SEBM Eq. (1):

t

ug(t, -). ¢ = @ ¢ — v Vug(s, -) Vs
0
t t

+  golug(s, -)), @ls +
0 0

(s ). ¢ (A2)

where ¢ is a continuously differentiable compactly supported
test function and the integral | f (s, +), dis an Itd integral.

For convenience, we write this Galerkin approximate sys-
tem in vector notation. Denote

Ut)=ut) .. q4u), (A3)
E)=9c) . a), (A4)
ug(t &) =")x) = T(xU (t ). (A5)

Taking ¢ = ¢,j =1, . . j id Eq. (A2) and using the sym-
metry of the inner product, we obtain a stochastic integral
equation for the coefficient U () &R%:

CTuw=, Tueg)-vv VT

t t t

U (sds +  go(Uy ),
0 0 0

ds + f (s, -) (A6)

To simplify notation, we denote the mass and stiffness matri-
ces by

M= , ', M=vVV T, (A7)

which are symmetric, tri-diagonal, positive definite matrices
in Rd’xd’, and we denote the nonlinear term as

Go(U (1) := g(U'(t )

(A8)
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The above stochastic integral equation can then be written
as

t t
U (sds +
0 0

MoU (t) MoU ¢) M,

Go(U (t))

ds + f (s, ) (A9)

0

The mesh on the sphere and the matrices M ¢ and M| are
computed with R package INLA (Lindgren and Rue, 2015;
Bakka et al., 2018).

Al.2 Representation of the nonlinear term

The parametric nonlinear functional Gu(U (t )i approxi-
mated using the finite elements. We approximate each spatial
integration over an element triangle in gy(U ,Z— ), bythe
volume of the triangular pyramid whose height is the value
of the nonlinear function at the center of the element triangle
T, ie.,

goluft, & e de ~ Areall)

Tycsupp(p1)

RUGEI (A10)

!

where §,f is the center of the triangle T. In the discretized
system, we assume that this approximation has a negligible

error and take it as our nonlinear functional. In vector nota-

tion, it reads

Go(U (1) = Ago(AU (1)), (A1)

with AT = Ar%(rk) € R%*4 with d denoting the num-

ber of triangle elements and the matrix A = ¢;(Ef) €
R%*& such that the function (AU (t jik interpreted as
an element-wise evaluation. For the nonlinear function gy in
Eq. (2), we can write the above nonlinear term as

Go(U (t) =

k=0,1,4

AT (AU (t )f (A12)

where © kdenotes the entry-wise product of the array.
Al1.3 Representation of the stochastic forcing
Following Lindgren et al. (2011), the stochastic forcing

f (t , §shpproximated by its linear finite-element trunca-
tion,

d
f(t &)= ¢ils )f(t).

i=1

(A13)
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with the stochastic processes ( fj(t ), i & . . »|deing spa-
tially correlated and white in time. Note that for v =0.1 and
p >0 in the Matérn covariance Eq. (4), the processf (t , & )
the stationary solution of the stochastic Laplace equation

(2= v )f(t &) =W &)

where W is a spatio-temporal white noise (Whittle, 1954,
1963). Computationally efficient approximations of the forc-
ing process are obtained using the =~ GMRF approxima-
tion of Lindgrenet al. (2011) which generates F (t) =

fi(t ), At ), . .q(f )bysolving Eq. (Al4). Thatis, us-
ing the above finite-element notation, we solve for each time
t the linear system

(07 Mo+ M) F (t) =0 , W(t, "), (A15)

where the random vector , Wt =
1, W(t, ), od,. W (t, -) is Gaussian with mean
0 and covariance My. Solving Eq. (A15) yields

(A14)

F (t) ~N 0, M, 'MM," | (A16)

where M, := (0 *Mo + My ).
Al.4 Semi-backward Euler time integration

Equation (A9) is integrated in time by a semi-backward Euler
scheme:

Vv _
M [Un+] :M()Un+ t Ca(Un) + tMOFn, (A]7)

where Uy, is the approximation of U (ﬁ) with t, = nt , and
[ Fp} is a sequence of iid random vectors with distribution
N o, q}M;l MOM/_,] , with the matrix M ¢ denoting

M =M+ t M,. (A18)

Al.5 Efficient generation of the Gaussian field

It follows from Eq. (A15) that Mo F , is Gaussian with mean
zero and covariance M OM;1 MoM;lMo. Note that while
M,, is a sparse matrix, its inverse matrix M ;1 isnot. To
efficiently use the sparseness of M), following Lindgren
et al. (2011), we approximate My by My := diag( ¢, 1 )and
compute the noise M oF by C ~'N (0, 4), where C is the
Cholesky factorization of the inverse of the covariance ma-
trix (called the precision matrix) M 1M,(M(; 1M,(Ma ! The
precision matrix is a sparse representation of the inverse of
the covariance. Therefore, the matrix C is also sparse and the
noise sequence can be efficiently generated.

In summary, we can write the discretized SEBM in the
form

Uner = t(Un) + W, (A19)

where the deterministic function yy(-) is given by

Ho(Un) =M™ Mo Up+ kGo AUn). (A20)
k=0,1,4
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with Gg Un) := tM LAT (AUp)° K and {W4) is ase-
quence of iid Gaussian noise with mean 0 and covariance
R:

R=¢ ™ lc'lc ™M ] (A21)

A2 SMC with optimal importance sampling

SMC methods approximate the target density pg(Ui-n|¥:N)
sequentially by weighted random samples called particles
(hereafter we drop the subindex 6 to simplify notation):

M
pluin|vin) == wydym (dun.n).

m=l1

(A22)

with %:1 wi' = 1. These weighted samples are drawn se-
quentially by importance sampling based on the recurrent
formation

p(“l:n“’f:n) = p((r/.nfl“'I:nfl)
P (Yalth)p(tn|th-1)
pYalYin1)

(A23)

More precisely, suppose that at time 1, we have weighted
samples (U™ |, v ,}M_ . One first draws a sample U’
from an easy-to-sample importance density q(un|yn, U ,)
that approximates the “incremental density” which is pro-

portional to p (Va|th)p(ta|UT", ) foreach m =1, . . ., aWd

computes incremental weights

e p(UTIUT, Jp(ynl UT)
" aUilw 4',)

which account for the discrepancy between the two densities.
One then assigns normalized weights [ w7 oc W /7)™

nJm=l
to the concatenated sample trajectories { U[T|M_ .

A clear drawback of the above procedure is that  all but
one of the weights {W/} will become close to zero as
the number of iterations increases, due to the multiplica-
tion and normalization operations. To avoid this, one re-
places the unevenly weighted samples { (U], W', )| with
uniformly weighted samples from the approximate density
Po(Un—1|yi:N=1). This is the well-known resampling tech-
nique. In summary, the above operations are carried out as
follows:

(A24)

i. draw random indices [A™ |M_ according to the dis-
crete probability distribution F(-|w;M) onthe set
{1, . . ., Mvhich is defined as

F(An1 = kIWM) = W fork =1, . . ., M y(A25)

Am
ii. for each m draw asample U/ from q(un|yn U,",")
Am
and set U := (U, U);
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iii. compute and normalize the weights
PIUTIUS" Jplynl UF)
o= w(Uf) ===
a(Ugly 4")
oy’

N E—
k=1 O

W= (A26)

The above SMC sampling procedure is called sequen-
tial importance sampling with resampling (SIR) (see, e.g.,
Doucet and Johansen, 2011) and is summarized in Algo-
rithm 1.

A2.1 Optimal importance sampling

Note that the conditional transition density of the states
Po(Un+1|tn) in Eq. (7) is Gaussian and the observation
model in Eq. (8) is linear and Gaussian. These facts allow
for a Gaussian optimal importance density q(upn|yn, U ,)
that is proportional to p(yu|th)p(un|UT ) foreach m =
L, ...,:M

qlunlyn, Y2,) ~N (w7, ), (A27)
with the mean p//7" and the covariance  given by
pr= pU,) +RATQ (y,—HU(U] ), (A28)
-1
=R—-RH’ Q+ HRH’ HR. (A29)

A2.2 Drawbacks of SMC

While the resampling technique prevents W/ from being de-
generate at each current time 1, SMC algorithms suffer from
the degeneracy (or particle depletion) problem: the marginal
distribution p(uUn| (yi:n)) becomes concentrated on a single

particle as N — fincreases because each resampling step re-
duces the number of distinct particles of up. As a result, the
estimate of the joint density p(uy.n|Yi:n) of the trajectory

deteriorates as time N increases.

A3 Particle Gibbs and PGAS

The framework of particle MCMC introduced in Andrieu

et al. (2010) is a systematic combination of SMC and MCMC
methods, exploiting the strengths of both techniques. Among
the various particle MCMC methods, we focus on the parti-
cle Gibbs sampler (PG) that uses a novel conditional SMC
update (Andrieu et al., 2010), as well as its variant, the parti-
cle Gibbs with ancestor sampling (PGAS) sampler (Lindsten
et al., 2014), because they are best fit for sampling our joint
parameter and state posterior.

The PG and PGAS samplers use a conditional SMC up-
date step to realize the transition between two steps of the
Markov chain while ensuring that the target distribution will
be the stationary distribution of the Markov chain. The basic
procedure of a PG sampler is as follows.
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— Initialization: draw 6 ¥) from the prior distribution
p(6 ) Run an SMC algorithm to generate weighted
samples { U™, WIM_, for pg y)(th.n|¥:n) and draw
Uy.n (1) from these weighted samples.

— Markov chain iteration: for / =1, - - -, [l,—

a. sample 6 (/ 4) fromthe marginal posterior
p(0 |¥n, U:n(l)) given by Eq. (14);

b. run a conditional SMC algorithm, conditioned on
Ui.n (1), which is called the reference trajectory.
That is, in the SMC algorithm, the Mth particle
is required to move along the reference trajectory
by setting UM = (4 (/). Draw other samples from
the importance density, and normalize the weights
and resample all the particles as usual. This leads
to weighted samples (U™, W{}M_, with UM, =
Ur:n(1); and

c. draw U;.N (/ +1 ) from the above weighted samples.

— Return the Markov chain (6 (1), Un(I)}L .

The conditional SMC algorithm is the core of PG sam-
plers. It retains the reference path throughout  the resam-
pling steps by deterministically setting UM, = U.n(/) and
AM = Mfor all nwhile sampling the remaining M —1 par-
ticles according to a standard SMC algorithm. The reference
path interacts with the other paths by contributing a weight
I/I/,'{’. This is the key to ensuring that the PG Markov chain
converges to the target distribution. A potential risk of the
PG sampler is that it yields a poorly mixed Markov chain,
because the reference trajectory tends to dominate the SMC
ensemble trajectories.

The PGAS sampler increases the mixing of the chain by
connecting the reference path to the history of other parti-
cles by assigning an ancestor to the reference particle at each
time. This is accomplished by drawing a sample for the an-
cestor index Af{’_l of the reference particle, which is referred
to as ancestor sampling. The distribution of the index Af;’_
is determined by the likelihood of connecting Uy (/) to the

particles { U™ }M_ in other words, according to weights

an11n= VL1 Po (1) (Un(DIUZ P (val Uh(1)),

m
I/l/nn—l\n:

e (A30)
k=1%n—1
The above weight o || Can be seen as a posterior
probability, where the importance weight W)’ s the
prior probability of the particle U, andthe product
Po (14)(Un ()| UT, )p(va| Un(1)) is the likelihood that Uy (1)
originates from U, ,'771 | conditional on observation yj. In short,
the PGAS sampler assigns the reference particle Up(/) an an-
cestor AnM_1 that is drawn from the distribution F(An"”_1 =

KM ) = Wy,
The above conditional SMC with ancestor
within PGAS is summarized in Algorithm 2.

sampling

Nonlin. Processes Geophys., 26, 227-250, 2019
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Algorithm 1 Sequential importance sampling with resampling (SIR).

Require: Observation yi.x and ensemble size M. For the SEBM, we use the optimal importance density ¢ in (A27). Each step is for

Ensure: Weighted samples { (U7, wi )}V _ ;.
1: Draw samples U™ ~ q(u1|y1).
. . H ol com _ pre(UM)pe(y1|UTY)) mo__ ol
2: Compute and normalize the weights: o} = i](U{"\m) L2 wit = ZM,I oF
3: forn=2:N do
4:  Draw samples A;"_ | ~ F(-|u 717,”1) with F defined in (A25).

~ q(tn |y, U0 ) and set U, o= (U772 U,

n—1

m

5:  Draw samples U,
6:  Compute the normalized weights w;," according to (A26).

7: end for

Algorithm 2 Conditional SMC with ancestor sampling for PGAS sampler.

Require: Uy.n(l)and @ :=6({+1).
Ensure: Uq.ny(141).
Initialize the particles in SMC:

1: Set UM = Ui (1) and draw samples {U7" Y21 ~ gy (1 |y ).
1 m __ pe(U m)l’)Q(yllL‘rim)) ot C\‘Tln . T
2s Compute the weights o} = (U Tu1) , Wi = TH o form=1:M.

3: forn=2:Ndo

4:  Draw samples {A™  }M -1 o F([wiM).
:

on

Set UM = U,,(1) and draw samples U™ ~ g(2,, [y, U :' T form=1:M-1.
6:  Draw AM | ~F(|@l? 1|n) where the weights in 'u'n;\{‘n are computed in (A30).
7. SetUP, := (Uir=1 U™ form=1:M.

8:  Compute the normalized weights w;," according to (A26).

9: end for

10: Draw An with F(-|wk).

11 return Ug.ny(I+1) = (1”\‘[
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