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Inferring the laws of interaction in agent-based systems from
observational data is a fundamental challenge in a wide vari-
ety of disciplines. We propose a nonparametric statistical learn-
ing approach for distance-based interactions, with no reference
or assumption on their analytical form, given data consist-
ing of sampled trajectories of interacting agents. We demon-
strate the effectiveness of our estimators both by providing
theoretical guarantees that avoid the curse of dimensional-
ity and by testing them on a variety of prototypical systems
used in various disciplines. These systems include homoge-
neous and heterogeneous agent systems, ranging from par-
ticle systems in fundamental physics to agent-based systems
that model opinion dynamics under the social influence, prey–
predator dynamics, flocking and swarming, and phototaxis in cell
dynamics.

data-driven modeling | dynamical systems | agent-based systems

1. Introduction
Systems of interacting agents arise in a wide variety of disci-
plines, including Physics, Biology, Ecology, Neurobiology, Social
Sciences, and Economics (e.g., refs. 1–4 and references therein).
Agents may represent particles, atoms, cells, animals, neurons,
people, rational agents, opinions, etc. The understanding of
agent interactions at the appropriate scale in these systems is as
fundamental a problem as the understanding of interaction laws
of particles in Physics.

How can laws of interaction between agents be discovered? In
Physics, vast knowledge and intuition exist to formulate hypothe-
ses about the form of interactions, inspiring careful experiments
and accurate measurements, that together lead to the inference
of interaction laws. This is a classical area of research, dating
back to at least Gauss, Lagrange, and Laplace (5), that plays
a fundamental role in many disciplines. In the context of inter-
acting agents at the scale of complex organisms, there are fewer
controlled experiments possible and few “canonical” choices for
modeling the interactions. Different types and models of inter-
actions have been proposed in different scientific fields and fit
to experimental data, which in turn may suggest new modeling
approaches, in a model–data validation loop. Often, the form
of governing interaction laws is chosen a priori, within perhaps
a small parametric family, and the aim is often to reproduce
only qualitatively, and not quantitatively, some of the macro-
scopic features of the observed dynamics, such as the formation
of certain patterns.

Our work fits at the boundary between statistical/machine
learning and dynamical systems, where equations are estimated
from observed trajectory data, and inference takes into account
assumptions about the form of the equations governing the
dynamics. Since the past decade, the rapidly increasing acqui-
sition of data, due to decreasing costs of sensors and measure-
ments, has made the learning of large and complex systems pos-
sible, and there has been an increasing interest in inference tech-
niques that are model-agnostic and scalable to high-dimensional
systems and large datasets.

We establish statistically sound, dynamically accurate, com-
putationally efficient techniques∗ for inferring these interac-
tion laws from trajectory data. We propose a nonparametric
approach for learning interaction laws in particle and agent sys-
tems, based on observations of trajectories of the states (e.g.,
position, opinion, etc.) of the systems, on the assumption that
the interaction kernel depends on pairwise distances only, unlike
recent efforts that either require feature libraries or parametric
forms for such interactions (6–10), or aim at identifying only the
type of interaction from a small set of possible types (11–13). We
consider a least-squares (LS) estimator, classical in the area of
inverse problems (dating back to Legendre and Gauss), suitably
regularized and tuned to the learning of the interaction kernel in
agent-based systems.

The unknown is the interaction kernel, a function of pair-
wise distances between agents of the systems. While the values
of this function are not observed, in contrast to the standard
regression problems, we are able to show that our estimator
converges at an optimal rate as if we were in the 1D regres-
sion setting. In particular, the learning rate has no dependency
on the dimension of the state space of the system, therefore
avoiding any curse of dimensionality, and making these estima-
tors well-suited for the modern high-dimensional data regime. It
may be easily extended to a variety of complex systems; here,
we consider first- and second-order models, with single and
multiple types of agents, and with interactions with simple envi-
ronments. We demonstrate with examples that the theoretical
guarantees on the performance of the estimator make it suit-
able for testing hypotheses on underlying models of interactions,
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assisting an investigator in choosing among different possible
(nonparametric) models.

Finally, our estimator is constructed with algorithms that are
computationally efficient (with complexity O(LN 2M ) when the
interaction kernel is Lipschitz; SI Appendix, section 2F) and
may be implemented in a streaming fashion: It is, therefore,
well-suited for large datasets.

2. Learning Interaction Kernels
We start with a model that is used in a wide variety of interacting
agent systems [e.g., physical particles or influence propagation
in a population (14, 15)]: Consider N > 1 agents {xi}Ni=1 in
Rd , evolving according to the system of ordinary differential
equations (ODEs)

ẋi(t) =
1

N

N∑
i′=1

φ(‖xi′(t)− xi(t)‖)(xi′(t)− xi(t)), [1]

where ẋi(t) = d
dt

xi(t); ‖·‖ is the Euclidean norm, and φ :R+→R
is the interaction kernel. In other words, every agent’s velocity is
obtained by superimposing the interactions with all of the other
agents, each weighted in a way dependent on the distance to the
interacting agent. In a prototypical example—e.g., arising in par-
ticle systems (Section 2B) and flocking systems—the interaction
kernel may be negative for small distances, inducing repulsion,
and attractive for large distances. Let X := (xi)Ni=1 ∈RdN be the
state vector for all of the agents, rii′(t) := xi′(t)− xi(t) and
rii′(t) := ‖rii′(t)‖. The evolution Eq. 1 is the gradient flow for
the potential energy U(X(t)) := 1

2N

∑
i 6=i′ Φ(rii′(t)), with φ(·) =

Φ′(·)/·. The function φ(·)· reappears naturally below, the funda-
mental reason being its relationship with U and Φ. Our obser-
vations are positions along trajectories: Xtr := {Xm(tl)}L,M

l=1,m=1,
with 0 = t1 < . . .< tL =T being the times at which observations
occur, and m indexing M different trajectories. Velocities Ẋ

m
(tl)

are approximated by finite differences. The M initial conditions
(ICs) Xm

0 := Xm(0) are drawn independently at random from a
probability measure µ0 on RdN .

Our goal is to infer, in a nonparametric fashion, the inter-
action kernel φ, by constructing an estimator φ̂ from training
data. A fundamental statistical problem that involves estimat-
ing a function is regression: Given samples (zi , g(zi))

n
i=1, with

the zi ’s independent and identically distributed (i.i.d.) samples
from an (unknown) measure ρZ in RD , and g a suitably regu-
lar (say, Hölder s) unknown function RD→R, one constructs an
estimator ĝ such that ‖ĝ − g‖L2(ρZ ) .n−

s
2s+D , with high prob-

ability (over the zi ’s). This rate is optimal in a minimax sense
(16), and its dramatic degradation with D is a manifestation of
the curse of dimensionality. Upon rewriting Eq. 1 as Ẋ = fφ(X),
our observations (with either approximated or directly observed
velocities) resemble those needed for regression if we thought
of Z = X as a random variable, and g = fφ. However, our obser-
vations are not i.i.d. samples of X with respect to any probability
measure, the lack of independence being the most glaring aspect.
If we nevertheless pursued this line of thought, we would be hit
with the curse of dimensionality in trying to learn the target func-
tion g = fφ on the state space RdN , leading to a rate n−O(1/dN )

for regression. This renders this approach useless in practice as
soon as, say, dN ≥ 20. A direct application of existing approaches
(e.g., refs. 6–8), developed for low-dimensional systems, go in
this direction, These works would try to ameliorate this curse
of dimensionality by requiring fφ to be well-approximated by a
linear combination of a small number of functions in a known
large dictionary. While such dictionaries may be known for spe-
cific problems, they are usually not given in the case of complex,
agent-based systems. Finally, such dictionaries typically grow

dramatically in size with the dimension (here, dN ), and existing
guarantees that avoid the curse of dimensionality require further,
strong assumptions on the measurements or the dynamics.

We proceed in a different direction, aiming for the flexibil-
ity of a nonparametric model while exploiting the structure of
the system in Eq. 1. The target function φ depends on just one
variable (pairwise distance), but it is observed through a collec-
tion of nonindependent linear measurements (the left-hand side
of Eq. 1), at locations rmii′(tl) = ‖xmi′ (tl)− xmi (tl)‖, with coeffi-
cients rmii′(tl) = xmi′ (tl)− xmi (tl), as in the right-hand side of Eq. 1.
When the tl ’s are equidistant in time, we consider an estimator
minimizing the empirical error functional

EL,M (ϕ) :=
1

LMN

L,M ,N∑
l,m,i=1

∥∥ẋmi (tl)− fϕ(xm(tl))i
∥∥2

, [2]

φ̂= φ̂L,M ,H := arg min
ϕ∈H

EL,M (ϕ), [3]

whereH is a hypothesis space of functions R+→R, of dimension
n (we will choose n dependent on M ). We introduce a natu-
ral probability measure ρT on R+ adapted to the dynamics: It
can be thought of as an “occupancy” measure, in the sense that
for any interval I , ρT (I ) is the probability (over the random ICs
distributed according to µ0) of seeing a pair of agents with a dis-
tance between them being a value in I , averaged over the time
interval [0,T ]; see Eq. 4 for a formal definition.

We measure the performance of φ̂ in terms of the error
‖φ̂(·) · −φ(·) · ‖L2(ρT ). Theorem (Thm.) 3.3, our main result, will
bound this error by Õ(M−s/(2s+1)) if φ is Hölder s: This is the
optimal exponent for learning φ if we were in the (more favor-
able) 1D regression setting! We therefore completely avoid the
curse of dimensionality. In fact, we show under some rather
general assumptions that not only the rate, but even the con-
stants in the bound are independent of N , making the bounds
essentially dimension-free. It is crucial that ρT has wide sup-
port in order for the error to be informative. When the system
is ergodic, we expect ρT to have a large support for large T ,
as the system explores its ergodic distribution. However, many
deterministic systems of interest may reach a stationary state
(as in the cases of the Lennard–Jones or opinion dynamics, to
be considered momentarily), in which case ρT becomes highly
concentrated on a finite set for large T : In these cases, it
may be more relevant to consider T small compared with the
relaxation time.

We are also interested in whether trajectories X(t) of the true
system are well-approximated by trajectories X̂(t) of the system
governed by the interaction kernel φ̂, on both the “training”
time interval [0,T ] and after time T . Proposition (Prop.)
3.4 below bounds supt∈[0,T ′] ‖X̂(t)− X(t)‖ in terms of
‖φ̂(·) · −φ(·) · ‖L2(ρT ), at least for T ′ not too large; this further
validates the use of L2(ρT ). We will report on this distance for
both T ′=T and T ′>T (“prediction” regime).

Finally, while the error ‖φ̂(·) · −φ(·) · ‖L2(ρT ) is unknown in
practice (since φ is unknown), our results give guarantees on its
size, which in turn imply guarantees on accuracy of trajectory
predictions. Proxies for the error on trajectories, for example,
by holding out portions of trajectories during the training phase,
may be derived from data. These measures of error may be used
to test and validate different models of the dynamics: Too large
an error with one model may invalidate it and suggest that a dif-
ferent one (e.g., second vs. first order or multiple vs. single agent
types) should be used (Section 5).

A. Different Sampling Regimes and Randomness. The total num-
ber of observations is (number of ICs)× (number of temporal
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observations in [0,T ]) =M ×L, each in RdN . We will consider
several regimes:
Many short time trajectories. T is small, L is small (e.g., L= 1),
and M is large (many ICs sampled from µ0);
Single large time trajectory. T is large (even comparable to the
relaxation time of the system if applicable), L is large, and M = 1
(or very small);
Intermediate time scale. T , L and M are all not small, but
none is very large, corresponding to multiple “medium”-length
trajectories, with several different ICs.

Randomness is injected via the ICs, and in our main results in
Section 3, the sample size will be M . If the system is ergodic, the
regimes above are partially related to each other, at least when
the ICs are sampled from the ergodic distribution µerg. Indeed,
at times much larger than the mixing time Tmix, the state of
the system becomes indistinguishable from a random sample of
µerg, and we may interpret the subsequent part of the trajectory
as a new trajectory with that IC. The M observed trajectories
of length T�Tmix are then equivalent to M ×T/Tmix tra-
jectories of length Tmix, to which our results apply. In regimes
when M is very small or µ0 is very concentrated, there is little
randomness: The problem is close to a fixed-design inverse prob-
lem, which is solvable if the dynamics produces different-enough
pairwise distances.

B. Example: Interacting Particles with the Lennard–Jones Poten-
tial. We illustrate the learning procedure on a particle system
with N = 7 particles in R2, interacting according to Eq. 1 with
φ(r) = Φ′LJ (r)/r , where ΦLJ (r) := 4ε

(
(σ/r)12− (σ/r)6

)
is the

Lennard–Jones potential, consisting of a strong near-field repul-
sion and a long-range attraction. The system converges quickly
to equilibrium configurations, which often consist of ordered,
crystal-like structures. This example is challenging for various
reasons: the Interaction kernel is unbounded, has unbounded
support, and equilibrium is reached quickly, reducing the amount
of information in trajectories. SI Appendix, section 3B contains
a detailed description of the experiments. Fig. 1 demonstrates
that the estimators approximate the true kernel well in differ-
ent sampling regimes and that the trajectories of the true system
are well-approximated by those of the learned system both in
the “training” interval ([t0,T ]) and in the “prediction” inter-
val ([T , 50T ] and [T , 2T ] respectively for the two regimes). We
also show, as a simple example of transfer learning, that we
can use the interaction kernel learned on the system with N
particles to accurately predict trajectories of a system with 4N
particles.

The rate of decay of the estimation error is close to the
optimal rate in Thm. 3.3 (Fig. 2); this is a consequence of
two factors: the use of an empirical approximation to ρLT and
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Fig. 1. Interaction kernel estimation and trajectory prediction for the Lennard–Jones system. (A and B) Estimators φ̂ (in blue) of the true interaction kernel
φ (in black) in two sampling regimes: many short-time trajectories (A) and a few large-time trajectories (B). The proposed nonparametric estimators perform
extremely well—the means and SDs of the relative L2(ρL

T ) errors are 6.6 · 10−2± 5.0 · 10−3 and 7.2 · 10−2± 1.0 · 10−2, respectively, over 10 independent
learning runs. The SD (dashed) lines on the estimated kernel are so small to be barely visible. In both cases, we superimpose histograms of ρL

T (estimated
from a large number of trajectories, outside of training data) and ρL,M

T (estimated from the M training data trajectories; SI Appendix, Eq. 5). The estimators
belong to a hypothesis space Hn of piecewise linear functions with equidistant knots and yield accurate estimators in L2(ρL

T ). Note that we observe the
dynamics starting from a suitable t0 > 0, due to the singularity of Lennard–Jones kernel at r = 0. See SI Appendix, section 3B for details about the setup and
results. (C and D) The true and predicted trajectories for the N-particle system (Upper) and a 4N-particle system (Lower) with interaction kernels learned
on the N-particle system, for randomly sampled ICs. C and D show true and predicted trajectories for systems with interaction kernels learned in A and B,
respectively. The blue-to-green color gradient indicates the movement of particles in time (see color scales on the side). We achieve small errors in predicting
the trajectories in all cases, even when we transfer the interaction kernel learned on an N-particle system to predict trajectories of a system with 4N particles.
Coord., coordinates.
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Fig. 2. Learning rate in M for the Lennard–Jones system. The estimation
error in L2(ρL

T ) decays at rate 0.36, close to the optimal rate 0.4 for admissible
kernels; Thm. 3.3.

the blowup at 0 of ΦLJ , which is not an admissible kernel
as in Thm. 3.3 (see SI Appendix, Section 3B for a detailed
discussion).

Fig. 3 shows the behavior of the error of the estimators as
both L and M are increased. It indicates that a single long trajec-
tory may not contain enough “information” to learn the kernel,
at least for deterministic systems approaching a steady state. It
also shows the behavior predicted by Thm. 3.3—namely, for each
fixed L the error decreases as M increases.

3. Learning Theory
We introduce an error functional based on the structure
of the dynamical system Ẋ = fφ(X), whose minimizer will be
our estimator of the interaction kernel φ. We consider ker-
nels in the admissible set KR,S : ={φ∈C 1(R+) : supp(φ)⊂
[0,R], supr∈[0,R] |φ(r) |+|φ′(r) |≤S}, for some R,S > 0. The
boundedness of φ and φ′ ensures the global well-posedness of
the system in Eq. 1. The restriction supp(φ)⊂ [0,R] models the
finite range of interaction between agents, and it may be relaxed
to φ∈W 1,∞(R+) with a suitable decay.

A. Probability Measures Adapted to the Dynamics. To measure the
quality of the estimator of the interaction kernel φ, we introduce
two probability measures on R+, the space of pairwise distances
rmii′(tl) = ‖xmi′ (tl)− xmi (tl)‖. We consider the expectation of the
empirical measure of pairwise distances, for continuous and
discrete time observations, respectively:

ρT (r) :=
1(

N
2

)
T

∫ T

t=0

EX0∼µ0

 N∑
i,i′=1,i<i′

δrii′ (t)(r) dt

, [4]

ρLT (r) :=
1(

N
2

)
L

L∑
l=1

EX0∼µ0

 N∑
i,i′=1,i<i′

δrii′ (tl )(r)

. [5]

The expectations are over the ICs, with distribution µ0. The
measure ρT is intrinsic to the dynamical system, dependent
on µ0 and the time scale T , and independent of the observa-
tion data. ρLT depends also on the sampling scheme {tl}Ll=1 in
time. Both are Borel probability measures on R+ (SI Appendix,
Lemma 1.1), measuring how much regions of R+ on average
(over the observed times and ICs) are explored by the system.
Highly explored regions are where the learning process ought to
be more accurate, as they are populated by more “samples” of
pairwise distances. We will measure the estimation error of our
estimators in L2(ρT ) or L2(ρLT ).

We report here on the analysis in the discrete-time observation
case, most relevant in practice, with ρLT ; the arguments, however,
also apply to continuous-time observations, with ρT .

B. Learnability: The Coercivity Condition. A fundamental question
is the learnability of the kernel, i.e., the convergence of the esti-
mator φ̂L,M ,H defined in Eq. 3 to the true kernel φ as the sample
size increases (i.e., M →∞) and H increases in a suitable way.
The following condition, similar to the one introduced in ref. 17
for studying the mean field limit (N →∞), ensures learnability
and well-posedness of the estimation.

Definition 3.1. The dynamical system in Eq. 1, with IC sampled
from µ0 on RdN , satisfies the coercivity condition on a set H if
there exists a constant cL,N ,H> 0 such that for all ϕ∈H with
ϕ(·)· ∈L2(ρLT ),

cL,N ,H‖ϕ(·) · ‖2L2(ρLT )≤
1

NL

L,N∑
l,i=1

E

∥∥∥∥∥ 1

N

N∑
i′=1

ϕ(rii′(tl))rii′(tl)

∥∥∥∥∥
2

.

[6]

The coercivity condition ensures learnability, by implying the
uniqueness of minimizer of EL,∞(ϕ) : =E[EL,M (ϕ)] and, even-
tually, the convergence of estimators through a control of the
error of the estimator in L2(ρLT ) (SI Appendix, Thm. 1.2 and
Prop. 1.3). Thm. 3.1 proves that the coercivity condition holds
under suitable hypotheses, even independently of N ; numeri-
cal tests suggest that it holds generically over larger classes of
interaction kernels and distributions of ICs, for large L, and as
long as ρLT is not degenerate (SI Appendix, Fig. S6). Finally,
cL,N ,H also controls the condition number of the matrix in the
LS problem yielding the estimator (see SI Appendix, Prop. 2.1 for
details).

We prove that coercivity holds when µ0 is exchangeable (i.e.,
the distribution is invariant under permutation of components),
Gaussian, and L= 1. Numerical tests (SI Appendix, Fig. S6) sug-
gest that the coercivity condition holds true for a larger class
of interaction kernels, for various initial distributions including
Gaussian and uniform distributions, and for large L, as long as
ρLT is not degenerate. We conjecture that the coercivity condition
holds true in much greater generality (but not always!), leaving a
detailed investigation to future work.

Theorem 3.1. Suppose L= 1,N > 1 and assume that the distri-
bution of X(t1) = (x1(t1), . . . , xN (t1)) is exchangeable Gaussian
with cov(X i)− cov(X i , xi′) =λId for a constant λ> 0. Then, the

125 250 500 1000 2000 4000 8000
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Fig. 3. The relative error of the estimated kernel as a function of M, L for
the Lennard–Jones system. The relative error, in log10 scale, of φ̂ decreases
both in L and M, in fact, roughly in the product ML, at least when M and L
are not too small. M = 1 does not seem to suffice, no matter how large L is,
due to the limited amount of “information” contained in a single trajectory.

4 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1822012116 Lu et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1822012116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1822012116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1822012116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1822012116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1822012116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1822012116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1822012116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1822012116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1822012116


A
PP

LI
ED

M
A

TH
EM

A
TI

CS

coercivity condition holds true with cL,N ,H= (N−1)(N−2)

N2 cH+
N−1
N2 , where cH is independent of N , is positive for any compact
H⊂L2(ρLT ), and is zero for H=L2(ρLT ).

In this setting, the analysis of the coercivity constant cL,N ,H
is based on the exchangeability of the initial distribution of the
agents and relates coercivity to a positive integral kernel:

Lemma 3.2. Let X ,Y ,Z be exchangeable Gaussian random
vectors in Rd with cov(X )− cov(X ,Y ) =λId for a constant
λ> 0. Suppose L= 1. Then, there is a positive definite integral
kernel K(r , s) :R+×R+→R such that for any g ∈L2(ρLT )

E [g(|X −Y |)g(|X −Z |)〈X −Y ,X −Z 〉]

=

∫∫
g(r)rg(s)sK(r , s)drds,

where ρLT (r)∝ rd−1e−r2/3, since L= 1. Therefore, there exists
cH≥ 0, depending only onH⊂L2(ρLT ), such that for g ∈H∫∫

g(r)rg(s)sK(r , s)drds ≥ cH‖g(·) · ‖2L2(ρLT ),

and cH> 0 if H is compact in L2(ρLT ).
We conclude that under the assumptions of Thm. 3.1, if H is

compact, then cL,N ,H is bounded below uniformly in N .

C. Optimal Rates of Convergence. The classical bias–variance
trade-off in statistical estimation guides the selection of a hypoth-
esis space H, whose dimension will depend on M , the number
of observed trajectories. On the one hand, H should be large
so that the bias (distance between the true kernel φ and H) is
small; on the other hand, H should be small so that variance
of the estimator is small. In the extreme case where H=KR,S ,
the bias is 0, the variance of the estimator dominates, and we
obtain the bound E[‖φ̂L,M ,H(·) · −φ(·) · ‖L2(ρLT )]≤CM−1/4 (SI
Appendix, Prop. 1.5). In fact, significantly better rates may be
achieved for regular φ’s:

Theorem 3.3. Assume that φ∈KR,S . Let {Hn}n be a
sequence of subspaces of L∞([0,R]), with dim(Hn)≤ c0n and
infϕ∈Hn ‖ϕ−φ‖L∞([0,R])≤ c1n

−s , for some constants c0, c1, s >

0. Assume that the coercivity condition holds on H : =∪∞n=1Hn .
Such a sequence exists, for example, if φ is s-Hölder regu-
lar, and can be chosen so that H is compact in L2(ρLT ).
Choose n∗= (M /logM )1/(2s+1). Then, there exists a constant
C =C (c0, c1,R,S) such that

E
[
‖φ̂L,M ,Hn∗ (·) · −φ(·) · ‖

L2(ρLT )

]
≤ C

cL,N ,H

(
logM

M

) s
2s+1

. [7]

The rate [i.e., the exponent s/(2s + 1)] we achieve is opti-
mal: It coincides with the minimax rate in the classical regres-
sion setting, where one can observe directly noisy values of
an s-Hölder regression function at the sample points. We
obtain this optimal rate, even if we do not observe the val-
ues {φ(rmii′(tl))}l,i,i′,m , but a “mixture” of them in the observed
trajectory data. Many choices of {Hn} are consistent with the
requirements in the theorem, e.g., splines on increasingly finer
grids, or band-limited functions with increasing frequency limits.
These choices affect the constants in Eq. 7, the computational
complexity of computing φ̂L,M ,Hn∗ , but not the rate in M .
While the rate is independent of the dimension dN of the state
space, the constant may depend on d and N via cL,N ,H. How-
ever, we expect that under rather general conditions, beyond
those in Thm. 3.1, cL,N ,H is, in fact, lower-bounded indepen-
dently of N for any compact subset H of L2(ρLT ) and is a
fundamental property of the mean field limit (N →∞) of the
system.

One shortcoming of our result is that the rate is not a func-
tion of the total number of observations, which is O(LN 2M )
(we have LN 2/2 pairwise distances for each of the M tra-
jectories), but only of M , the number of random samples.
Numerical experiments (see Fig. 3 and similar experiments for
the other systems, reported in SI Appendix) suggest that the
estimator improves as L increases, at least to a point, lim-
ited by the “information” in a single trajectory. Comparing to
ref. 17, where the mean field limit N →∞, M = 1, is studied,
we see the rates in ref. 17 seem no better than N−1/d , i.e.,
they are cursed by dimension. So are sparsity-based inference
techniques such as those in refs. 6–8, 11, and 18, which also
require a good dictionary of template functions, are not non-
parametric (at least in the form therein presented), and lack
performance guarantees, except in some cases under stringent
assumptions.

Our work here may be compared with the classical parame-
ter estimation problem for the ODE models (19–22), where one
is interested in estimating the vector parameter θ in the ODE
model Ẋ = f (X(t), t ,θ) from the observation of a single noisy
trajectory. Our error functional, in spirit, is the same with the
gradient-matching method (also called the two-stage method)
used in the parameter-estimation problems (23–27). A chal-
lenging problem is the identifiability of θ. We refer the reader
(28) for the statistical analysis and (29) (and references therein)
for a comprehensive survey of this topic. However, the prob-
lem and approach we considered here are different from the
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Fig. 4. Opinion dynamics. (Upper) Comparison between true and estimated
interaction kernel, together with histograms for ρL

T and ρL,M
T . The mean and

SD of the relative error for the interaction kernel are 1.6 · 10−1± 2.3 · 10−3

over 10 independent learning runs. The SD lines (in dashed lines) on the esti-
mated kernel are so small to be barely visible. (Lower) Trajectories X(t) and
X̂(t) obtained with φ and φ̂, respectively, for an IC in the training data (top
row) and an IC randomly chosen (bottom row). The black dashed vertical line
at t = T divides the “training” interval [0, T] from the “prediction” interval
[T , Tf ] (which in this case, Tf = 2T). We achieve small errors in all cases, in
particular predicting number and location of clusters for large time.
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Fig. 5. Estimation of interaction kernels and trajectory prediction for predator–swarm first- and second-order systems. Results for the first-order (A) and
second-order (B) predator–swarm systems, as described in Sections 4 and 5, are shown. For each system (corresponding to each column), Upper represents
φk,k′ and φ̂k,k′ , superimposed with the histograms of ρL

T (estimated from a large number of trajectories, outside of training data) and ρL,M
T (estimated from

the M training data trajectories; SI Appendix, Eq. 5). Lower shows trajectories X(t) and X̂(t) of the corresponding (original and estimated) systems, evolved
from the same ICs as the training data (third row) and newly sampled ICs (fourth row), over both the training time interval [0, T] and in the future [T , 2T]
(color bars; the black dots in the trajectories correspond to t = T). For trajectories generated by the predator–swarm system, red-to-yellow lines indicate the
movement of predators, whereas the blue-to-green lines indicate the movement of prey. The color gradients indicate time; see the color scales on the side
of the plots. The estimators φ̂k,k′ perform extremely well: with negligible differences in the regions with large ρL

T and with possibly larger errors in regions
with small ρL

T (where the SDs over 10 independent learning runs become visible). The L2(ρL
T ) errors of the estimators are reported numerically in SI Appendix,

section 3. Note that they are truncated to a constant while preserving continuity, when there are no samples (e.g., r near 0 or r very large). The measure
ρL

T is quite smooth but can have interesting features; ρL,M
T is typically a noisy version of ρL

T . The trajectories of the estimated system are typically good
approximations to those of the original system, on both ICs in the training data and newly sampled ICs. The error of the estimated trajectories increases
with time, as expected, albeit it still typically excellent also in the “prediction” time interval [T , 2T], showing that the bounds in Prop. 3.4, while sharp in
general, may be overly pessimistic in some practical cases. Some slightly larger errors are present in some trajectories, e.g., when prey and predators get
much closer to each other than they did in the training data. Coord., coordinates.

parameter-estimation problem in several aspects. First of all, our
state variable X enters into the domain of the φ (via its “pro-
jection” onto pairwise distance), while the parameter vector θ
is decoupled from the state variable X . Moreover, our estima-
tor is nonparametric—i.e., the goal is to estimate a function
φ (a vector infinite dimensions) instead of a finite-dimensional
vector θ of parameters. Finally, we establish identifiability condi-
tions for φ from the perspective that the observations are i.i.d.
trajectories with random ICs, in contrast with the identifiabil-
ity of θ from observations along a fixed single trajectory with
i.i.d. noise. We would like to mention the different, but related,
problem of inferring potentials from ground states and unstable
modes (for example, ref. 30), as well as recent results on exis-
tence and properties of ground states for systems with nonlocal
interactions (31).

D. Trajectory-Based Performance Measures. It is important not only
that φ̂ is close to φ, but also that the dynamics of the system gov-
erned by φ̂ approximate well the original dynamics. The error
in prediction may be bounded trajectory-wise by a continuous-
time version of the error functional and bounded in average by
the L2(ρT ) error of the estimated kernel (further evidence of the
usefulness of ρT ):

Proposition 3.4. Assume φ̂(‖ · ‖)· ∈Lip(Rd), with Lipschitz
constant CLip. Let X̂(t) and X(t) be the solutions of systems with
kernels φ̂ and φ, respectively, started from the same IC. Then, for
each trajectory

sup
t∈[0,T ]

‖X̂(t)− X(t)‖
2
≤ 2Te8T2C2

Lip

T∫
0

∥∥Ẋ(t)− fϕ̂(X(t))
∥∥2

dt ,

and on average with respect to the distribution µ0 of ICs:

Eµ0

[
sup

t∈[0,T ]

‖X̂(t)− X(t)‖

]
≤C
√
N ‖φ̂(·) · −φ(·) · ‖L2(ρT ),

where the measure ρT is defined in Eq. 4 and C =C (T ,CLip).

4. Extensions: Heterogeneous Agent Systems, First and
Second Order
The method proposed extends naturally to a large variety of
interacting agent systems arising in a multitude of applications
(4), including systems with multiple types of agents, driven
by second-order equations, and including interactions with an
environment. For detailed discussions of related topics on
self-organized dynamics, we refer the readers to refs. 3 and 32–35
and the recent surveys (36, 37).
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Fig. 6. Estimation of interaction kernels (Upper) and trajectory prediction
(Lower) for the Phototaxis system. Results for the Phototaxis systems, as
described in Sections 4 and 5, are shown. (Upper) Left represents φA vs. φ̂A

(top row), and φξ vs. φ̂ξ (bottom row), superimposed with the histograms
of ρL

T ,r and, respectively, ρL,M
T ,r . Right shows the comparison of the marginal

distributions, ρL
T ,ṙ vs. ρL,M

T ,ṙ and ρL
T ,ξ vs. ρL,M

T ,ξ . (Lower) Left represents the tra-
jectories generated from true interaction kernels, whereas Right shows the
trajectories generated by the estimated kernels, generated from training IC
data (top row) and from a new random IC (bottom row). In this system, the
interaction kernels φA and φξ are the same; the corresponding estimators
φ̂A and φ̂ξ are both learned accurately, but note that they are being learned
from two different sets of data, (r, ṙ) and (r, ξ), respectively. In both cases,
data are scarce or missing for large values r, leading to estimators tapering
to 0 faster than the true interaction kernels. However, despite the undesired
tail-end behavior of our estimators, the estimators perform extremely well
in regenerating the trajectories. See SI Appendix, section 3 for more details.
Coord., coordinate.

A. First-Order Heterogeneous Agents Systems. Let the agents be
divided into K disjoint sets {Ck}Kk=1 (“types”), with different
interaction kernels for each ordered pair of types:

ẋi(t) =

N∑
i′=1

1

Nki′
φki ki′ (rii′(t))rii′(t), [8]

where ki is the index of the type of agent i—i.e., i ∈Cki ; Nki′ is
the number of agents in type Cki′ ; rii′ = xi′ − xi and rii′ = ‖rii′‖;
φkk′ :R+→R is the interaction kernel governing how agents in
typeCk′ influence agents in typeCk . As usual we let X := (xi)Ni=1 ∈
RdN be the vector describing the state of the system. We assume
that the interaction kernels φki ki′ ’s are the only unknown factors
in the model; in particular, we know the sets Ck ’s (i.e., the type of
each agent is known). The goal is to infer the interaction kernels
φkk′ from observations {Xm(tl)}L,M

l,m=1 with 0 = t1 < . . .< tl =T

and with the ICs Xm(0) = Xm
0 randomly sampled from µ0.

Let fφ(Xm)∈RdN be the vectorization of the right hand sides
of Eq. 8, and φ= (φkk′)

K
k ,k′=1. Dropping from the notation of

quantities that are assumed known, we rewrite the equations
for the dynamics in Eq. 8 as Ẋ

m
= fφ(Xm). We use an error

functional similar to Eq. 2, with a weighted norm, to define the
estimators:

φ̂ := argmin
ϕ∈H

1

ML

M ,L∑
m=1,l=1

∥∥∥Ẋ
m

(tl)− fϕ(xm(tl))
∥∥∥2

S
, [9]

where ϕ= (ϕkk′)
K
k ,k′=1, φ̂= (φ̂kk′)

K
k ,k′=1 and ‖X‖2S :=

∑N
i=1

1
Nki
‖xi‖2. The weighted norm ‖·‖2S is introduced so that, when

different types of agents have significantly different cardinali-
ties (e.g., a large number of preys vs. a single predator), the
error functional will take into suitable consideration the least
numerous type. Otherwise, only the interaction kernel of the
most numerous type of agents would be accurately learned.
Other more general weighting strategies may be considered, with
minimal changes to the algorithm.

The generalization of ρLT in Eq. 5 (similarly for ρT ) to the
heterogeneous-agent case is the family, indexed by ordered pairs
{(k , k ′)}k ,k′∈{1,...,K}, of probability measures on R+

ρL,kk′

T (r) =
1

LNkk′

L∑
l=1

EX0∼µ0

∑
i∈Ck ,i′∈Ck′ ,i 6=i′

δrii′ (tl )(r), [10]

where Nkk′ =NkNk′ when k 6= k ′ and Nkk′ =
(
Nk
2

)
when k = k ′

(for Nk > 1, otherwise there is no interaction kernel to
learn). The error of an estimator, φ̂kk′ , will be measured by∥∥∥φ̂kk′(·) · −φkk′(·)·

∥∥∥
L2(ρ

L,kk′
T )

.

While this case requires learning multiple interaction kernels,
it turns out that the learning theory developed for the single-type
agent systems can be generalized, and the estimator in Eq. 9 still
achieves optimal rates of convergence, and a similar control on
the error of predicted trajectories can be obtained.

B. Second-Order Heterogeneous Agent Systems. Here, we focus on
a broad family of second-order multitype agent systems (not
included, even when rewritten as first-order systems, in the family
discussed above). We consider systems with K types of agents:
mi ẍi =F v

i (ẋi , ξi) +

N∑
i′=1

1

Nki′

(
φE
ki ki′

(rii′)rii′ +φA
ki ki′

(rii′)ṙii′
)

ξ̇i =F ξi (ξi) +

N∑
i′=1

1

Nki′
φξki ki′

(rii′)ξii′ ,

[11]

for i = 1, . . . ,N . Here ki ∈{1, . . . ,K} is the type of agent i ,
ξi ∈R is a variable modeling the agent’s response to the environ-
ment (e.g., food/light source), ξii′ = ξi′ − ξi , and mi , Nk , mass of
agent i and number of agents of type k ; F v

i , F ξi , noncollective
influences on ẋi and ξi ; and φE

kk′ , φ
A
kk′ , φ

ξ
kk′ , energy-, alignment-,

and ξ−type interaction kernels.
Note that here each agent is influenced by a weighted sum

of different influences over agents of different types, leading
to a rich family of models (including but not limited to prey–
predator, leader–follower, and cars–pedestrian models). Using
vector notation, let fφE (Xm) and fφA(Xm , Ẋ

m
)∈RdN be the col-

lection of the energy and alignment induced interaction terms
respectively, and F v(Ẋ

m
, Ξm)i =F v

i (ẋi , ξi) (similar setup for
Fξ(Ξm) and fφξ (Xm , Ξm)) we can rewrite the equations as:{

Ẍ
m

=F v(Ẋ
m

, Ξm) + fφE (Xm) + fφA(Xm , Ẋ
m

)

Ξ̇m =Fξ(Ξm) + fφξ (Xm , Ξm) ,
[12]
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Table 1. Model selection: First- vs. second-order

Learned as Learned as
System first order second order

First-order system 0.01± 0.002 1.6 ± 1.1
Second-order system 1.7 ± 0.3 0.2± 0.06

The table shows the mean and SD of the errors of estimated trajectories,
over M = 250 train-test runs, with random ICs in each case. Small errors,
consistent with our theory that the errors are on a scale of M−2/5, indicate
a correct model. The order is correctly identified in each case (highlighted
in bold).

where φE = {φE
kk′}, φA = {φA

kk′} and φξ = {φξkk′}, with k , k ′=
1, . . . ,K . We assume that the interaction kernels are the only
unknowns in the model, to be estimated from the observa-
tions {Xm(tl), Ẋ

m
(tl), Ξm(tl)}L,M

l,m=1, with M ICs Xm
0 := Xm(0),

Ẋ
m
0 := Ẋ

m
(0), and Ξm

0 := Ξm(0) sampled independently from µX
0 ,

µẊ
0 , and µΞ

0 , respectively. With Ẍ
m

(tl) approximated by finite
difference, we construct estimators similar to those in Eq. 2

(φ̂
E

, φ̂
A

) := argmin
ϕE ,ϕA∈Hv

1

ML

M ,L∑
m,l=1

∥∥∥Ẍ
m

(tl)−F v(Ẋ
m

(tl), Ξm(tl))

−fϕE (Xm(tl))− fϕA(Xm(tl), Ẋ
m

(tl))
∥∥∥2

S
, [13]

and the interactions acting on the auxiliary variable ξi can be
obtained separately as

φ̂
ξ

:= arg min
φξ∈Hξ

1

ML

M ,L∑
m=1,l=2

‖Ξ̇m
l −Fξ(Ξm

l )− fφξ (Xm
l , Ξm

l )‖2S ,

where Ξ̇m
l = Ẋ

m
(tl), Xm

l = Xm(tl), Ξm
l = Ξm(tl), φ̂

ξ
=

{φ̂ξkk′}
K
k ,k′=1, and the state space norm ‖ · ‖S is defined similarly

to the first-order case. Here, we are using a vectorized notation
for ϕE ,ϕA, Hv (a suitable product hypothesis space). To mea-
sure performance, for each pair (k , k ′), we define a probability
measure on R+×R+

ρkk
′

T (r , ṙ) =
1

TNkk′

T∫
t=0

E
∑

i∈Ck ,i′∈Ck′ i 6=i′

δrii′ (t),ṙii′ (t)(r , ṙ)dt ,

and another probability measure on R+×R+,

ρL,kk′

T ,r ,ξ(r , ξ) =
1

LNkk′

L∑
l=1

E
∑

i∈Ck ,i′∈Ck′ ,i 6=i′

δrii′ (tl ),ξii′ (t)(r , ξ),

where the expectation is with respect to ICs distributed accord-
ing to µX

0 ×µẊ
0 ×µΞ

0 , and we let ṙ = ‖ṙ‖ (with abuse of notation),
ξii′(t) =

∣∣ξi′(t)− ξi(t)∣∣, Nkk′ =NkNk′ if k 6= k ′ and Nkk′ =
(
Nk
2

)
if k = k ′ (and Nk > 1, as there is no kernel to learn if Nk = 1).
Let ρkk

′
T ,r be the marginal of ρkk

′
T with respect to r . We will mea-

sure the errors for φ̂E
kk′(r)r , φ̂A

kk′(r)ṙ , and φ̂
ξ

kk′(r)ξ in L2(ρkk
′

T ,r ),
L2(ρkk

′
T ), and L2(ρkk

′
T ,r ,ξ), respectively.

The algorithm to construct the estimator in Eq. 13 generalizes
that for the first-order single-type agent systems, and involves
a LS problem with a structured matrix with K 2 vertical bands
indexed by (k , k ′), accommodating the estimators for the inter-
action kernels. Note that such an LS problem takes into account,
as it should, the dependencies in learning the various interaction
kernels, all at once.

We note that while of course the second-order system may
be written as a first-order system in the variables xi and vi = ẋi ;
even when F v

i ≡ 0 and φA
ki ,ki′
≡ 0, the resulting equations for

(xi , vi) are different from those governing the first-order systems
considered above in Eq. 8.

5. Examples
We consider the learning of interaction kernels and the pre-
diction of trajectories for three canonical categories of exam-
ples of self-organized dynamics (see SI Appendix, section 3 for
details).

Opinion Dynamics These are first-order ODE systems with a
single type of agent, with bounded, discontinuous, compactly
supported, and attraction-only interaction kernels. They model
how the opinions of people influence each other and how con-
sensus is formed based on different kinds of influence functions
(refs. 14, 15, and 38 and references therein).

Predator–Swarm System We consider a first-order system with a
single predator and a swarm of prey, with the interaction kernels
(prey–prey, predator–prey, and prey–predator) similar to
Lennard–Jones kernels (with appropriate signs to model attrac-
tions and repulsions). Different chasing patterns arise depend-
ing on the relative interaction strength of predator–prey vs.
prey–predator interactions. We also consider a second-order
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Fig. 7. Model selection: energy-based vs. alignment-based. The estimated
interaction kernels for an energy-based model (A) and an alignment-based
model (B). For each model, we compute two estimators: an energy-based
interaction kernel φ̂E and an alignment-based interaction kernel φ̂A. Our
estimators correctly identify the type of model in each case: The L2(ρL

T ,r )
norm of φ̂E is significantly larger than that of φ̂A (means and SDs: 18.8 ± 0.4
vs. 6.5± 0.3) for the energy-based model, and the L2(ρL

T ,r ) norm of φ̂A is
larger than that of φ̂E (means and SDs: 27.6 ± 0.7 vs. 2.4 · 10−2± 0.1) for
the alignment-based model. Note that the y axes are on very different
scales.
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predator–swarm system, with the collective interaction acting
on accelerations, leading to even richer dynamics and chasing
patterns (e.g., refs. 39–41).

Phototaxis This is a second-order ODE system with a single
type of agents interacting in an environment, modeling photo-
tactic bacteria moving toward a far-away fixed light source. The
response of the bacteria to the light source is represented in the
auxiliary variable ξi as the excitation level for each bacteria i
(e.g., refs. 42–44). Another example which we do not pursue here
is the Vicsek model (45), which fits perfectly in our model upon
choosing ξi = θi (θi : moving direction of agent i).

In our experiments, we report the measure ρL,M
T estimated

from the training data, our estimator, and similarly in the case
of noisy observations; we measure performance in terms of (rel-
ative) L2(ρLT ) error of the kernel estimators and of distance
between true trajectories X(t) and estimated trajectories X̂(t),
on both the “training” interval [0,T ] (where observations were
given) and in the future [T , 2T ] (predictions). See Prop. 3.4,
where the bounds may be overly pessimistic, especially for sys-
tems tending to stable configurations. Our estimator performs
extremely well in all these examples: The interaction kernels
are accurately estimated, and the trajectories are accurately pre-
dicted. We refer the reader to Fig. 4 for the results of the opinion
dynamics, Fig. 5 for the results of the predator–swarm dynamics,
Fig. 6 for the results of the phototaxis, and SI Appendix, sec-
tion 3 for further details on the setup for the experiments and
a comprehensive report of all of the results, as well as a detailed
description of the final algorithm and its computation complexity
in SI Appendix, section 2.
Model Selection and Transfer Learning. We also consider the
use of our method for model selection, where the theoretical
guarantees on learning the interaction kernels and on predict-
ing trajectories are used to decide between different models
for the dynamics. We consider two examples of model selec-
tion, to test whether: (i) a second-order system is driven by
energy-based or alignment-based interactions; or (ii) a hetero-
geneous agent system is driven by first- or second-order ODEs.
For each of them, we construct two estimators assuming either
case and then select models according to the performance of
the estimators in predicting trajectories. See Table 1 and Fig. 7
for results and discussions and SI Appendix, section 3E for
details.

As a simple example of transfer learning, we use the inter-
action kernel learned on a system with N agents to accurately
predict trajectories of the same type of system but with more
agents (4N in our simulations); the interaction kernel acts as a
sort of “latent variable” that seamlessly enables transfer across
such related systems. In SI Appendix, section 3, we report the
corresponding results, for all of the systems considered (see,
however, Fig. 1 for the Lennard–Jones system).
Noisy Observations. Our estimators appear robust under obser-
vation noise, namely, if the observed positions and derivatives
are corrupted by noise. Fig. 8 demonstrates the kernel estimation
and trajectory prediction for the first-order predator–swarm sys-
tem when only noisy observations are available. Similar results
(reported in SI Appendix, section 3) are obtained in all of the
other systems considered.
Choice of the Basis of the Hypothesis Space. Our learning
approach is robust to the choice of hypothesis space H, as long
as the coercivity condition is satisfied byH (or the sequenceHn).
Additionally, different well-conditioned bases may be used in H
to compute the projection onto H, implying, together with the
coercivity condition, a control of the condition number of the LS
problem (SI Appendix, Prop. 2.1). To demonstrate this numeri-
cally, we compare the B-splines linear basis with the piecewise
polynomial basis on the 1st -order predator–swarm system, with
results shown in SI Appendix, Fig. S8.
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Fig. 8. Kernel estimation for PS1st from noisy observations. (Upper) Inter-
action kernels learned with Unif.([−σ,σ]) multiplicative noise with σ= 0.1
in the observed positions and velocities, with parameters as in SI Appendix,
Table S9. The estimated kernels are minimally affected and only in regions
with small ρL

T . (Lower) One of the observed trajectories before and after
being perturbed by noise. The solid lines represent the true trajectory,
the dashed semitransparent lines represent the noisy trajectory used as
training data (together with noisy observations of the derivative), and the
dashed-dotted lines are the predicted trajectory learned from the noisy
trajectory.

6. Discussion and Conclusion
We proposed a nonparametric estimator for learning interac-
tion kernels from observations of agent systems, implemented
by computationally efficient algorithms. We applied the estima-
tor to several classes of systems, including first- and second-
order, with single- and multiple-type agents, and with simple
environments. We have also considered observation data from
different sampling regimes: many short-time trajectories, a single
large-time trajectory, and intermediate time scales.

Our inference approach is nonparametric, does not rely on
a dictionary of hypotheses (such as in refs. 6–8), exploits the
structure of dynamics, and enjoys optimal rates of convergence
(which we proved here for first-order systems), independent of
the dimension of the state space of the system. Having techniques
with solid statistical guarantees is fundamental in establishing
trust in data-driven models for these systems and in using them
as an aide to the researcher in formulating and testing conjec-
tures about models underlying observed systems. In this vein,
we presented two examples of model selection, showing that
our estimators can reliably identify the order of a system and
identify whether a system is driven by energy- or alignment-type
interactions.

We expect further generalizations to the case of stochastic
dynamical systems and to the cases of more general interac-
tion kernels that depend on more general types of interaction
between agents, beyond pairwise, distance-based interactions.
Other future directions include (but are not limited to) a
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better understanding of learnability, model selection based on
the theory, learning from partial observations, and learning
reduced models for large systems.
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