

1 **Determination of biphasic core-shell droplet properties using aerosol
2 optical tweezers**

3 Kyle Gorkowski,¹ Neil M. Donahue,¹ Ryan C. Sullivan^{1*}

4 ¹Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA

5 *Corresponding Author: Ryan C. Sullivan; rsullivan@cmu.edu

6

7 **Abstract**

8 We present a new algorithm for the analysis of whispering gallery modes (WGMs)
9 found in the cavity enhanced Raman spectra retrieved from optically tweezed droplets.
10 Our algorithm improves the computational scaling when analyzing core-shell droplets
11 (i.e. phase-separated or biphasic droplets) in the aerosol optical tweezers (AOT), making
12 it computationally practical to analyze spectra collected at a few Hz over hours-long
13 experiments. This enables the determination of the size and refractive index of both the
14 core and shell phases with high accuracy, at 0.5 Hz time resolution. Phase-separated core-
15 shell droplets are common morphologies in a wide variety of biophysical, colloidal, and
16 aerosolized chemical systems, and have recently become a major focus in understanding
17 the atmospheric chemistry of particulate matter. Our new approach reduces the number
18 of parameters directly searched for, decreasing computational demands. We assess the
19 accuracy of the diameters and refractive indices retrieved from a homogeneous or core-
20 shell droplet. We demonstrate the performance of the new algorithm using experimental
21 data from a droplet of aqueous glycerol coated by squalane. We demonstrate that a shell
22 formation causes adjacent WGMs to split from each other in their wavenumber position
23 through the addition of a secondary organic aerosol shell around a NaCl(aq) droplet. Our
24 new algorithm paves the way for more in-depth physiochemical experiments into liquid-
25 liquid phase separation and their consequences for interfacial chemistry – a topic with
26 growing experimental needs for understanding the dynamics and chemistry of
27 atmospheric aerosol particles, and in biochemical systems.

28 **1. Introduction**

29 Liquid-liquid phase separation is an important phenomenon in many areas of
30 chemistry and biology due to the unique properties that result after phase separation. In
31 biochemistry, liquid-liquid phase separation (LLPS) can be used as a purification or
32 extraction process for biomolecules such as proteins, enzymes, and viruses.¹⁻⁷ The
33 concentration of solutes resulting from LLPS can lead to the sequestering of toxic
34 molecules or enhanced reaction rates.⁸ In the environment, LLPS can dramatically change
35 the near-surface concentrations of species, either enhancing or reducing their availability
36 for multiphase chemistry.^{3,9} For these reasons, accurate and direct measurements of LLPS
37 are an important observational need in biochemistry, environmental chemistry, and
38 atmospheric chemistry. This work uses the aerosol optical tweezers to probe LLPS of
39 atmospheric aerosols, but the new analysis method presented is not limited to
40 atmospheric systems.

41 The aerosol optical tweezers (AOT) has become a valuable technique to directly
42 determine key physicochemical properties of individual aerosols including viscosity,
43 diffusion coefficients, surface tension, morphology, optical properties, hygroscopic
44 growth factors, phase transitions, and heterogeneous chemical reactivity.¹⁰⁻³¹ In a typical
45 AOT system, a droplet is optically trapped by a focused laser beam, which also induces
46 a cavity enhanced Raman spectrum (CERS).²⁷ Accurate values for the droplet's size and
47 refractive index are retrieved from the wavelengths of the resonant Raman modes—
48 commonly called Whispering Gallery Modes (WGMs) or morphology dependent
49 resonances—in the droplet.^{21,24,32} The WGMs arise as Raman scattered light is amplified
50 in a spherically symmetrical droplet at discrete combinations of size, refractive index, and
51 wavelength while the optical trap holds the droplet in air, acting as a low-loss resonating
52 cavity. These two basic measurements of size and refractive index combined with the
53 stable trapping of a particle enable direct real-time studies of aerosol physical properties
54 with unprecedented precision and accuracy on levitated droplets surrounded by gas.
55 Most studies thus far have focused on homogeneous single-phase droplets so that the
56 existing data analysis algorithms developed by Preston and Reid can be employed.

57 However, there is evidence that a core-shell morphology is common in many aerosol
58 systems,^{7,19,24,27,33-40} demanding an effective way to accurately retrieve physical properties
59 from spherically symmetrical core-shell droplets.^{23,24,27,40} Core-shell morphologies
60 dramatically change the particle's interfacial chemistry and properties, thus altering its
61 interactions with radiation and reactive gases, its equilibration timescale with the gas-
62 phase, and its ability to uptake water. Water uptake is a critical component of direct light
63 scattering and also the activation of particles into cloud droplets and ice crystals.⁴¹⁻⁴⁴ Here
64 we present an efficient computational approach for retrieving the properties of core-shell
65 droplets that improves upon the methods we briefly described in Gorkowski et al.²⁴ and
66 rigorously test the accuracy of this new algorithm.

67 WGMs are morphological resonances inside a spherical droplet that form a standing
68 wave around the droplet's circumference. Since WGMs depend on the morphology of the
69 droplet, they can be used to distinguish between a homogeneous droplet and a core-shell
70 droplet. Further, the lack of WGMs can indicate a non-spherical partially-engulfed
71 morphology.^{15,16,19,27,39} However, studies of core-shell droplets have to-date been limited
72 to select cases with additional constraining information. A previous algorithm required
73 *a priori* WGM labels specifying the mode number, mode order, and electromagnetic wave
74 type (either transverse electric (TE) or transverse magnetic (TM)) for each WGM.⁴⁵
75 Another way to constrain the fit is to assign the refractive index (n) and chromatic
76 dispersion ($dn/d\lambda$) of the core and shell *a priori*, and then fit the diameter of the core and
77 shell, and the WGM labels.^{23,39} Clearly *a priori* knowledge of the droplet's properties is
78 not possible in many aerosol systems, especially realistic complex chemical systems.
79 Lastly, in our previous work we implemented an exhaustive direct search approach that
80 could fit an isolated set of WGMs with no additional constraints but which took 24 to 48
81 hours for each Raman spectral frame measured every 2 seconds.²⁷ This approach is too
82 computationally expensive to analyze AOT experimental datasets that are often acquired
83 over many hours. Here we present an improvement of our earlier algorithm that can now
84 fit an individual set of WGMs in one Raman frame in less than 10 minutes using a
85 personal computer. However, a typical AOT experiment lasting 6 hours generates 11,000

86 individual spectra, and so treating the entire experiment as a set of independent spectra
87 would still require approximately of 51 days to analyze. Since the spectra are not
88 independent, we use comprehensive fits of the WGMs in a small subset of the spectra to
89 then assign the WGM labels for the rest of the spectra collected, reducing the total
90 computation time to a day or less.

91 **2. Experimental**

92 **2.1 Whispering Gallery Mode Theory**

93 The solutions for Mie light scattering from homogeneous droplets and core-shell
94 droplets have been studied and used extensively.^{21,32,45-52} Using Lorenz-Mie scattering
95 theory, we numerically solve for the whispering gallery modes, which are sharp
96 resonances in the broader Mie scattering band. We follow the solution form presented in
97 Bohren and Huffman,⁵³ and shown in the Supplemental Information. The WGM
98 resonances correspond to standing electromagnetic waves with an integral number of
99 wavelengths that form around the circumference of a spherically symmetrical droplet.
100 When the spherical symmetry is broken, the standing waves do not exist.

101 The WGM resonances occur when the denominator of the Mie scattering
102 coefficient vanishes. Therefore, to find the resonance position, we set the denominator
103 equal to zero and solve for the Mie size parameter (χ) given a refractive index (m), mode
104 number (n), and mode order (o). The Mie size parameter is a dimensionless number
105 relating the circumference of the particle (πd_p) to the wavelength (λ) of the light: $\chi = \pi d_p / \lambda$.
106 The homogeneous case has an approximate analytical solution; however, we use this only
107 as a starting point for the numerical solution, as Preston and Reid²¹ demonstrated that
108 this analytical approximation has significant errors in the resulting resonance position.
109 However, it is sufficient to constrain the mode order, which usually has a small integer
110 range of $o = 1, 2$, or 3 (higher mode orders are typically too faint to measure). Given the
111 mode order, we then solve Eqn. (1) for the transverse magnetic and Eqn. (2) for the
112 transverse electric resonances for a homogeneous sphere. The solution utilizes Riccati-

113 Bessel functions ξ_n , ψ_n , and χ_n , with a prime indicating the first derivative with respect to
 114 the argument.

115
$$0 = m\psi_n(m\chi) \xi'_n(\chi) - \xi_n(\chi) \psi'_n(m\chi) \quad (1)$$

116
$$0 = \psi_n(m\chi) \xi'_n(\chi) - m\xi_n(\chi) \psi'_n(m\chi) \quad (2)$$

117 For a core-shell system, the standing wave propagates in two distinct dielectric
 118 materials, and the solution is very sensitive to both materials when the thickness of the
 119 shell is comparable to the wavelength of the resonating light. For the core-shell solution,
 120 we again set the scattering coefficient's denominator equal to zero. We then derive Eqn.
 121 (3) for the transverse magnetic resonance and Eqn. (4) for the transverse electric
 122 resonance. In the core-shell notation, we added subscripts for the shell (s) and core (c)
 123 refractive index, the core radial fraction (f_c), and the Mie size parameter (χ) is defined by
 124 the shell diameter. The influence of the core is folded into two additional terms A_n and B_n
 125 which are defined in Eqns. (5) and (6).

126
$$0 = \xi_n(\chi) [\psi'_n(m_s\chi) - A_n \chi'_n(m_s\chi)] - m_s \xi'_n(\chi) [\psi_n(m_s\chi) - A_n \chi_n(m_s\chi)] \quad (3)$$

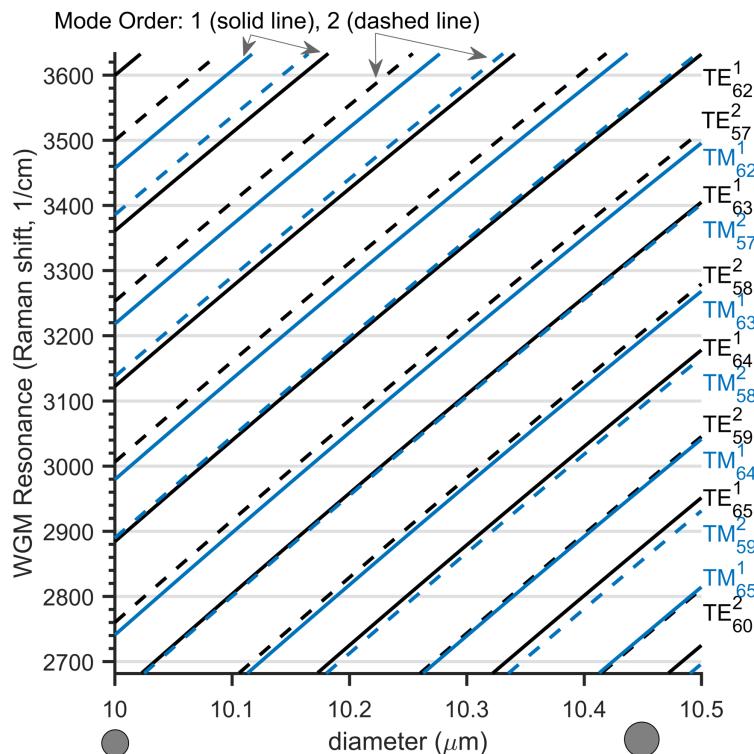
127
$$0 = m_s \xi_n(\chi) [\psi'_n(m_s\chi) - B_n \chi'_n(m_s\chi)] - \xi'_n(\chi) [\psi_n(m_s\chi) - B_n \chi_n(m_s\chi)] \quad (4)$$

128
$$A_n = \frac{m_s \psi_n(m_s\chi f_c) \psi'_n(m_c\chi f_c) - m_c \psi'_n(m_s\chi f_c) \psi_n(m_c\chi f_c)}{m_s \chi_n(m_s\chi f_c) \psi'_n(m_c\chi f_c) - m_c \chi'_n(m_s\chi f_c) \psi_n(m_c\chi f_c)} \quad (5)$$

129
$$B_n = \frac{m_s \psi_n(m_c\chi f_c) \psi'_n(m_s\chi f_c) - m_c \psi_n(m_s\chi f_c) \psi'_n(m_c\chi f_c)}{m_s \chi'_n(m_s\chi f_c) \psi_n(m_c\chi f_c) - m_c \psi'_n(m_c\chi f_c) \chi_n(m_s\chi f_c)} \quad (6)$$

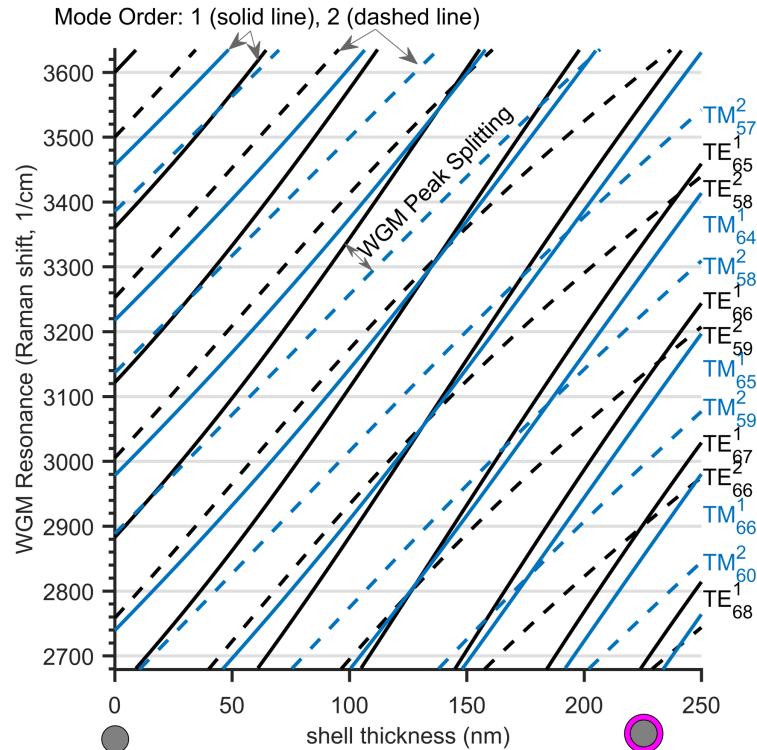
130 To initialize the numerical solution for the core-shell WGMs, we start with a core
 131 fraction of one and use the homogeneous solution. Then we incrementally decrease the
 132 core fraction in variable step sizes of 10^{-4} to 10^{-8} . We decrease the step size when the
 133 numerical solution results in a non-smooth change from the previous result.

134 Using the numerical solutions to Eqns. (1-6) we generate a database of Mie
 135 resonances for both droplet morphologies. The homogeneous database returns a Mie
 136 resonance given a refractive index (m) and WGM label (l), which corresponds to a specific
 137 transverse electric or transverse magnetic resonance, mode number, and mode order. The


138 mode number corresponds to the number of standing wave nodes that are along the
139 interior surface of the droplet. The mode order corresponds to the number of standing
140 wave nodes in the radial direction from the surface of the droplet - these are essentially
141 higher order resonances. Either the electric or the magnetic field can be transverse,
142 indicating which field of the electromagnetic wave is propagating parallel to the droplet's
143 surface. The core-shell database returns a Mie resonance given a shell-refractive index
144 (m_s), core-refractive index (m_c), core-fraction (f_c) and WGM label. The core-fraction
145 denotes where along the droplet's radial axis the refractive index changes between the
146 core and the shell phases. Refractive indexes change as a function of wavelength,
147 therefore to constrain the refractive index dependence on wavelength we use a chromatic
148 dispersion relation, Eqn. (7) following Preston and Reid,²¹ where m_0 is the refractive index
149 at a specified wavelength (typically 650 nm for a 532 nm trapping laser) and m_1 is the
150 dispersion term which accounts for the wavelength dependence. This refractive index
151 dependence on wavelength is also used in the inverse fitting to constrain the fit as the
152 WGM positions are measured across a range of wavelengths.

153

$$m_\lambda = m_0 + m_1 \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right) \quad (7)$$


154 Using the database for the homogeneous case, we can generate WGM values
155 simulating different experimental conditions. Shown in Figure 1 is a simulation of single-
156 phase particle growth at a constant refractive index. As the droplet grows, the WGM
157 resonant frequencies increase in Raman-shift wavelength uniformly; the curves showing
158 the resonances are parallel in the Figure. Nearly overlapping WGMs will result in merged
159 peaks in the measured data, but this is not detrimental to the fitting. While for any given
160 pair of indices the WGMs progress in sequence (i.e., TM^1_{62} , TM^1_{63} TM^1_{64} , ...), the overall
161 sequence of all of the WGM labels at a given diameter is not universal because the relative
162 positions depend on refractive index. We show a similar plot to Figure 1 in the
163 Supplemental Information for refractive index and chromatic dispersion dependencies.
164 For a homogeneous droplet, the diameter is the most sensitive parameter to WGM
165 position, with a change of 0.66 nm in the retrieved d_p per 1 cm⁻¹ change in the WGM's

166 Raman shift. The refractive index ($9.5 \times 10^{-5} (m_0)/\text{cm}^{-1}$) and a chromatic dispersion (0.004
 167 $\mu\text{m} (m_1)/\text{cm}^{-1}$) are less sensitive. These sensitivities are the average slopes of the WGMs
 168 across droplets of typical size and composition; see the Supplemental Information for
 169 more details.

Figure 1. Calculated whispering gallery mode (WGM) positions as a homogeneous 10 μm droplet grows by 500 nm in diameter, at a constant refractive index of 1.37. The WGM resonance wavelength is converted to a Raman shift from 532 nm incident light, consistent with standard AOT experiments. Select WGM labels are indicated by TE for transverse electric (black) and TM for transverse magnetic (blue). The superscript is the mode order and the subscript is the mode number. Solid lines are mode order 1 and dashed lines are mode order 2.

170 The parallel nature of the homogeneous WGM solutions shown in Figure 1 does
 171 not translate to the core-shell WGMs. We generated core-shell WGM values simulating
 172 the addition of a shell phase onto a core phase, shown in Figure 2. The WGM series do
 173 not evolve in parallel because the different mode orders of the standing wave have a
 174 different radial penetration depth and thus a different relative sensitivity to the dielectric
 175 properties of the shell and the core. This broken symmetry is a strong identifying
 176 characteristic of core-shell droplets. Mode order 1 is more sensitive to changes at the
 177 droplet's outer surface where the shell resides than mode order 2 is, as this mode order
 178 traverses more deeply into the droplet. The transverse electric WGMs have a sharper
 179 radial intensity distribution than the transverse magnetic modes, which also contributes
 180 to the non-parallel evolution. From Figure 2 we also observe that WGMs that were
 181 overlapping in the homogeneous spectrum become resolvable because they split in their
 182 Raman shift positions when the shell grows. This WGM peak splitting and non-parallel

Figure 2. Calculated WGM positions for a core-shell droplet with a constant 10 μm diameter core with a constant refractive index of 1.37, as in Fig. 1. Growth adds a shell with refractive index 1.45 and the thickness indicated on the x-axis. The WGM labels follow the same notation as Fig. 1.

183 WGM evolution with changing size are qualitative patterns that can be used to
184 distinguish core-shell WGMs from homogenous WGMs. More broadly, the non-parallel
185 evolution indicates a radial gradient in properties near the droplet surface with a length
186 scale of 10s to 100s of nm, smaller than the wavelength of the trapping laser.

187 **2.2 Inverse Algorithms for WGM Analysis: Overview**

188 We developed an inverse optimization algorithm that applies to both the
189 homogeneous and the core-shell morphology. The goal of the algorithm is to efficiently
190 and accurately match the WGM positions identified in the Raman spectrum to a specific
191 combination of diameter and refractive index using Mie theory. In this inverse problem
192 we are optimizing the diameter (d_p), the refractive index (m_0) along with dispersion (m_1)
193 as described in Eqn. 7, and the specific WGM labels (l) as displayed in Figures 1 and 2.
194 We first describe existing algorithms and how the problem scales geometrically as the
195 number of parameters increases. We then preceded to outlining the optimization of a
196 single spectral frame of data, starting with how to internalize optimization of d_p and
197 therefore decrease the parameters directly searched for by one. We then discuss how the
198 combinations of discrete WGM labels are found. Lastly, we present the procedure for
199 optimization of the refractive index parameters (m_0 , and m_1). We then take another step
200 back and discuss how we can use a full time series of WGMs to further constrain each
201 WGM label (l). As finding the optimum set of WGM labels constitutes a large fraction of
202 the computational time, avoiding this attribution for most data frames makes the analysis
203 significantly more efficient.

204 **2.3 Algorithm Optimization**

205 Existing algorithms for WGM analysis of homogeneous droplets are a
206 combination of direct search and least-squares minimization.^{21,23,32,54} In a direct search the
207 computation scales as the number of parameters (d_p , m_0 , m_1 , and l); for a homogeneous
208 droplet that is n^4 for a single spectral frame (n_{frame}). An improvement to this was first
209 proposed by Preston and Reid³². Their algorithm uses a low-resolution search and
210 subsequent refinement using an R-squared minimization. This results in a scaling of
211 approximately $(n^3+1)n_{frame}$, resulting in a one-second fit time per frame. To extend to a

212 core-shell parameter space using a fully direct search across all the fit parameters would
213 result in a $(n^7)n_{frame}$ scaling ($d_p, f_c, m_{C0}, m_{C1}, m_{S0}, m_{S1}$, and l). Our initial implementation of
214 this direct search resulted in a fit time of 24 to 48 hours per frame using a personal
215 computer depending on step size and parameter ranges, making this approach
216 unrealistic even if performed on a cluster. This geometric scaling of the direct search
217 algorithm makes the core-shell implementation unfeasible to analyze experimental data
218 sets routinely, as n_{frame} can typically exceed 10,000.

219 Our algorithm overcomes this computational challenge through three
220 innovations. First, we internalize the d_p search via the Mie size parameter ($\chi = \pi d_p / \lambda$) so
221 that it is now an internal constraint, thus decreasing the scaling by one factor. Second, we
222 employ a random search (n_{rand}) over $f_c, m_{C0}, m_{C1}, m_{S0}$, and m_{S1} to find possible sets of WGM
223 labels (n_{pWGM}). Third, we take the individual WGMs and group them temporally into
224 WGM sequences (n_{seq}), such that each sequence has a single WGM label (see the
225 Supplemental Information for an example). This results in an approximate single-frame
226 scaling for a homogeneous droplet of $(n_{rand}n_{seq} + n^2)n_{pWGM}$ and for a core-shell droplet of
227 $(n_{rand}n_{seq} + n^5)n_{pWGM}$. Once the labels are known for each of the n_{groups} then the scaling for
228 the time series is n^2n_{frame} for homogeneous droplets and n^5n_{frame} for core-shell droplets.
229 The resulting fit time for the homogeneous case is 2.6 seconds per frame for unlabeled
230 WGMs and 9 ms per frame for labeled WGMs. For the core-shell case, it is 6.8 minutes
231 per frame for unlabeled WGMs and 0.57 seconds per frame for labeled WGMs. We
232 provide an outline of the complete algorithm in the Supplemental Information.

233 2.4 Fitting a Single Raman Spectrum

234 Our first efficiency gain was to convert d_p into an internal constraint. This uses the
235 Mie size parameter (χ) to relate the given WGM positions to each other. As d_p can be
236 assumed to be constant in a single spectral frame the positions of the first WGM (λ_1) can
237 be related to another WGM (λ_i) as shown in Eqn. (8), where χ_i is the Mie resonance for
238 the i^{th} WGM, and χ_1 is a possible Mie resonance for the first WGM.

$$239 \quad \chi_i = \frac{\lambda_1}{\lambda_i} \chi_1 \quad (8)$$

240 The possible values for χ_1 are determined by the search space of WGM labels (l);
241 in this way, we constrain the range of possible d_p . This approach is very sensitive to the
242 accuracy of the initial λ_1 , which can be the location of any of the observed WGMs.
243 Consequently, we initialize the search with several λ_i values, up to the full set of observed
244 WGMs. In practice, a comprehensive search showed no systematic improvements over
245 using only the first WGM, but to be cautious we initialize the search with the three largest
246 amplitude WGMs. This method of relating one Mie resonance to another internalizes the
247 diameter constraint so that we only need to search across the possible WGM label
248 combinations.

249 The number of possible WGM labels combinations does not need to be exhaustive
250 as we only need to track the best possible combinations. Consequently, we initiate the
251 search with random values for m_0 and m_1 for a homogeneous droplet, or for m_{S0} , m_{S1} , m_{C0} ,
252 m_{C1} for core-shell droplets, and using a direct search for f_c . Then for each random guess
253 we start with all possible WGM labels for the first WGM, l_1 , and then sequentially find
254 the best label for the next WGM in the measured spectrum. The minimization for the next
255 l_i follows by calculating the squared error for each possible l by setting Eqn. (8) equal to
256 zero and squaring the result to get Eqn. (9). To account for neighboring WGM peaks, we
257 keep the 3-5 closest WGM labels that minimize the squared error. We then repeat this
258 process for the next WGM, etc. After a set number (i) of such WGM searches we remove
259 a fraction (0.5 to 0.8) of the poorest WGM label sets to reduce the computational load;
260 however, we keep a minimum of 100 WGM label sets. Consequently, the WGM sets that
261 result in a high error are rapidly removed and are not propagated through the rest of the
262 computation. This process results in the 100 best possible WGM-label sets for a given
263 random guess. The random guess is then repeated until the probability of finding a new
264 and unique WGM-label set is less than 0.25%. For a homogeneous system, we average
265 213 unique WGM-label sets and for a core-shell system we average 488 unique WGM-
266 label sets.

267 We then globally optimize each of the possible WGM label sets across their droplet
268 properties: m_0 and m_1 for a homogeneous droplet and m_{S0} , m_{S1} , m_{C0} , m_{C1} , and f_c . for a core-

269 shell droplet. The global optimization proceeds in two steps. The first is a gridded
 270 minimization finding the minimum based on the squared error of the Mie-size parameter:

$$271 \quad \text{squared error} = \sum_{i=2}^{WGM \, count} \left(\frac{\lambda_1}{\lambda_i} \chi_1 - \chi_i \right)^2 \quad (9)$$

272 We use a gridded search because the error landscape is non-smooth and non-
 273 convex with multiple local minima. We tested multiple gradient descent and global
 274 search algorithms, but to achieve reliable results they required more computational time
 275 than the simpler gridded search algorithm. We achieved an efficient gridded search for
 276 the many WGM-label combinations and higher dimensional parameter space in the core-
 277 shell fit using GPU computations instead of CPU computations as we found that a 4-core
 278 CPU desktop with a GPU was 39% faster than a cluster of 32 CPUs.

279 After we complete an initial global search we carry out a local refinement of the
 280 putative optimal solution using a gradient decent algorithm optimizing the reduced chi-
 281 squared value (χ^2_{red}) of the retrieved diameters (d_i) calculated from the Mie size
 282 parameter, shown in Eqn. (10). We find the optimal diameter (\bar{d}_p) by taking the average
 283 of each d_i calculated from each Mie size parameter. We propagate the measurement error
 284 (σ_i) from the Gaussian fit of the WGM resonance peak in the spectrum.

$$285 \quad \chi^2_{red.} = \frac{1}{WGM \, count - variable \, count} \sum_{i=1}^{WGM \, count} \left(\frac{d_i - \bar{d}_p}{\frac{\chi_i \sigma_i}{2\pi}} \right)^2 \quad (10)$$

286 The optimum WGM-label set can now be found by ranking the retrieved χ^2_{red} for
 287 each WGM-label set. From simulation results shown in Figure 3 the optimum WGM-label
 288 set is not always the correct one. Near the optimum each of the WGM-label sets tends to
 289 only have one or two WGMs of differing labels, leading to a multiple minimum with
 290 similar physical properties. To account for that we use multiple Raman spectral frames
 291 containing the same WGM sequences, which is described below, or we take an average
 292 result of the multiple minima. This averaged result is the mean of all WGM-label sets that
 293 have a χ^2_{red} error that is lower than the lowest χ^2_{red} error plus a 1σ critical value. This 10

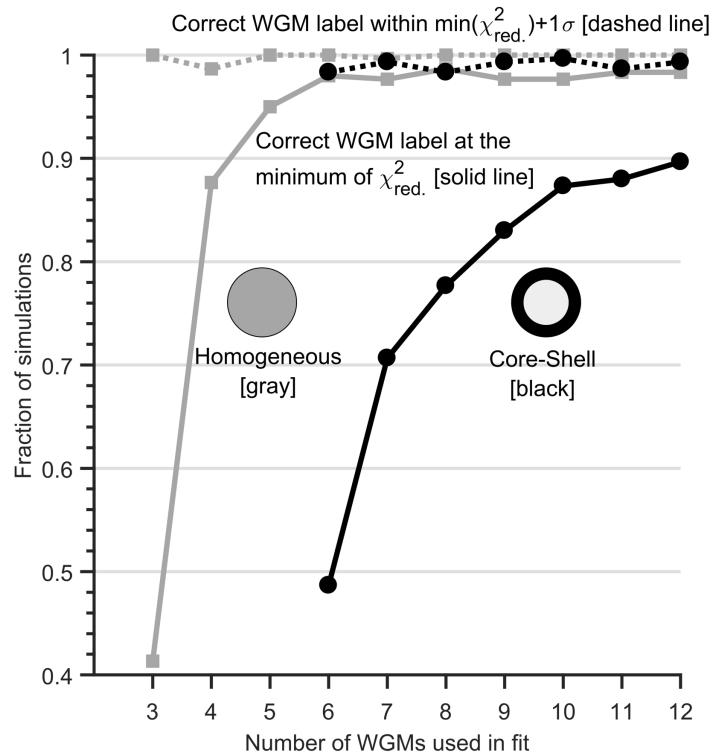
critical value is based on the degrees of freedom and the cumulative probability of a chi-squared distribution. For a homogeneous optimization, this 1σ critical value is 3.5 and for a core-shell optimization it is 7.0. We call this type of fitting the 1σ WGM labeled fit. This final averaging step in the 1σ WGM labeled fit increases the error in the fit but tends to gain a more self-consistent result because it averages the degenerate solutions caused by overlapping WGM labels.

2.5 Fitting a Full Raman Spectral Time Series

The last improvement to the optimization algorithm is to sort the individual WGMs into sequences. This process starts with the first frame of WGMs and places neighboring WGMs in the next frame into sequences based on the previous frame. If there is no sequence within the variable threshold (typically 0.2 nm), then that individual WGM creates a new sequence. This process is then repeated for the full experiment resulting in 100s to 1000s of WGM sequences; an example is shown in the Supplemental Information. The labeling of the WGM sequences follows the same random search process as described above, but in this case we average the χ^2_{red} value across multiple Raman spectra that contain the same set of WGM sequences, and therefore the same WGM-label sets. This averaging of χ^2_{red} helps resolve which WGM within the 1σ WGM labeled fit has a consistently low error across multiple frames and is thus more likely the correct label. For this averaging to be effective we typically use 10 frames for a homogeneous system and 50 frames for a core-shell system. Even with this averaging of multiple frames there are sometimes still multiple WGM-label sets within the 1σ critical value – this is where our algorithm can misidentify a WGM label due to it being too close to another WGM. Further work in incorporating additional information into the algorithm is being pursued, such as using the peak amplitude to constrain the possible WGM labels (TM peaks tend to be smaller than TE peaks) and using the initial fit to find additional WGMs of lower amplitude in the Raman spectrum.

Once the WGM series all have a WGM label, then we fit the full time series using the previously discussed global optimization of m_0 , m_1 , and d_p for a homogeneous droplet and of m_{S0} , m_{S1} , m_{C0} , m_{C1} , d_p and f_c for a core-shell droplet. Since fitting a set of core-shell

323 WGMs is much faster if the WGM labels are known, fitting the full time series can be
324 achieved when the WGMs are grouped into sequences. Using the WGM sequences results
325 there are fewer unlabeled fits that need to be completed.


326

327 **3. Results and Discussion**

328 **3.1 Assessment of Algorithm's Performance**

329 To assess our new inverse fitting algorithm, we generated WGM positions for a
330 simulated droplet and then added random Gaussian noise to the individual WGM
331 positions. Our random noise used a sigma of 0.01 nm, shown by Preston and Reid²¹ to be
332 typical for measured WGMs and consistent with the uncertainty of the Raman
333 spectrograph used (Princeton Acton). We simulated all possible WGM labels up to mode
334 order 2 between 620 nm and 660 nm, which is representative of our typical Raman
335 spectrum acquisition using a 532 nm trapping laser and a 1200 grooves/mm diffraction
336 grating.^{24,27} After finding all possible WGMs, we randomly selected a subset to use in the
337 fit. We progressively added WGMs to the initial random set to probe how the uncertainty
338 changes with the number of WGMs used in the fit. We then repeated this process 300
339 times by generating a new set of droplet properties randomly, based off of our typical
340 range of observed parameters (these are listed in the Supplemental Information). This
341 means that each simulation is a new droplet with a diameter between 9 μm to 11 μm and
342 a refractive index between 1.37 to 1.42. For this assessment, we used the algorithm to fit
343 a single Raman spectrum (frame) and did not incorporate any time evolution in the fit.
344 We describe the details of the simulation bounds as well as a comparison of computation
345 times in the Supplemental Information.

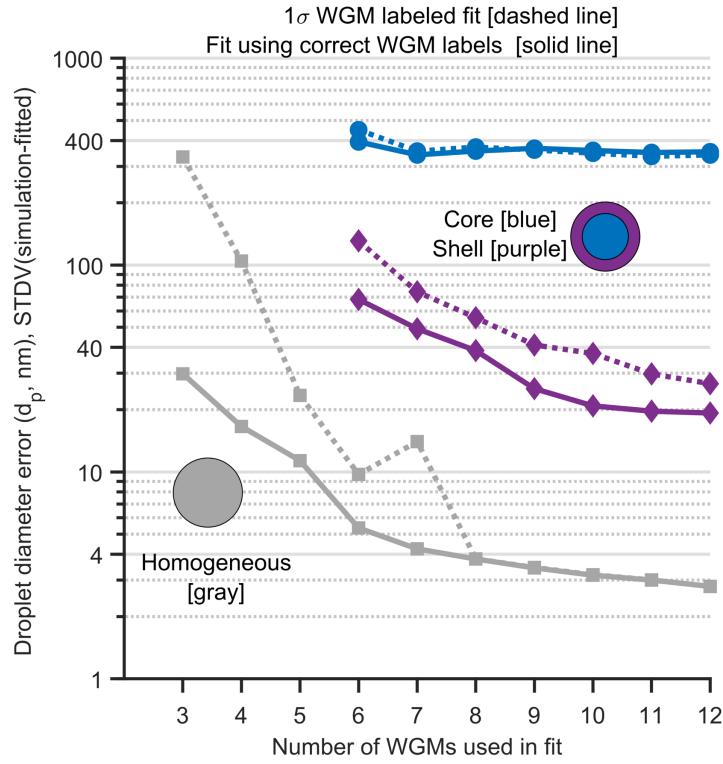

Using the simulation results we determined whether the calculated (presumably global) minimum fit gave the known correct WGM-label set. We also determined whether the correct WGM label set was within the 1σ critical value of the global χ^2_{red} minimum (defined above) regardless of whether it was the optimal fit. We show these two cases in Figure 3 for both a homogeneous and a core-shell droplet. The solid curves in Figure 3 indicate that the correct WGM label is not always at the minimum, but that the probability rises with the number of WGMs used in the fit. This result is less of a concern for a homogeneous droplet as there are usually more than 4 WGMs in a typical spectrum, where the attribution accuracy is over 95%. However, for the core-shell droplet the additional fit parameters increase the degeneracy in fitting incorrect WGM labels and the attribution accuracy remains below 90% for even 12 WGMs. The increased probability for the minimum of a core-shell droplet to be incorrectly labeled is why we implemented

Figure 3. WGM labeling results for simulated droplets with a homogeneous (gray) or core-shell (black) morphology. The fraction of simulated fits that had the correct WGM label set at the minimum χ^2_{red} error is shown with a solid line. The fraction of simulated fits that had the correct WGM label set within the minimum χ^2_{red} error plus 1σ is shown with a dashed line.

358 the 1σ critical range of the global χ^2_{red} minimum. Figure 3 also shows that the correct
359 WGM-label set is near the minimum even if it is not at the minimum due to noise added
360 and the inherent flexibility in the model. That is one reason why we implemented WGM
361 grouping as it helps resolve which WGM label is consistently the minimum across
362 multiple measured spectra.

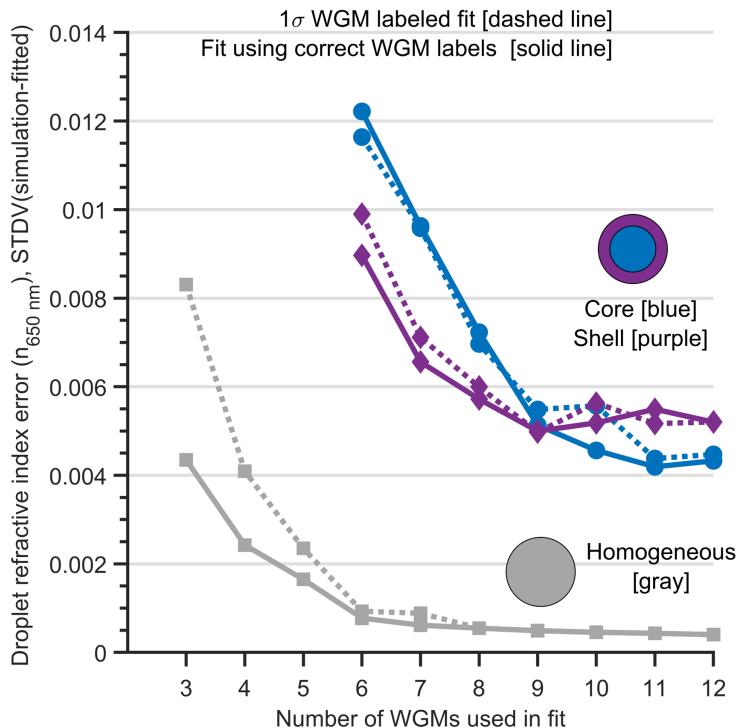
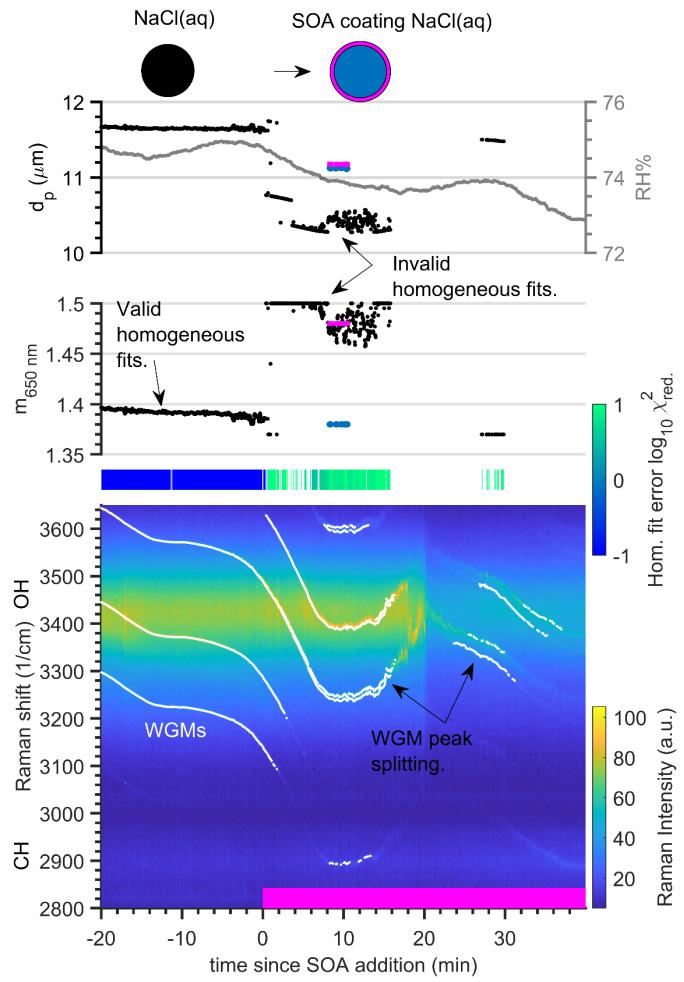

363 Using the simulated WGMs and their resulting fits we assessed the error in the
364 resulting droplet parameters retrieved by the algorithm: diameter (d_p) and refractive
365 index (m). We examined two cases: (1) with the correct WGM label assignments what is
366 the global minimum (solid lines); and (2) for all fit results that are within the 1σ critical
367 range of the global χ^2_{red} minimum (dashed lines), what is the average error. The first case
368 applies if, by using multiple measured spectra (frames), we can determine which WGM
369 label set is the most consistent, and therefore correct. The second case quantifies the
370 variability in the 1σ range of the global χ^2_{red} minimum. We report the error of the fitting
371 as the standard deviation of the difference between the simulated parameter and the
372 resulting fitted parameter. In Figure 4 we show the error in droplet diameter as a function
373 of WGMs used. The error in the homogeneous droplet is consistent with the algorithm
374 developed by Preston and Reid²¹, which achieved ± 2.2 nm when fitting 12 WGMs. We
375 now provide an error assessment of the core and shell diameters. Our error in the shell
376 diameter (the total droplet diameter) is similar in magnitude to the homogeneous case,
377 but the error in the core diameter (total diameter - shell thickness) is significantly higher.
378 We attribute the increased error to the additional flexibility in the core-shell model. For

Figure 4. The fit error of a droplet's retrieved diameter (d_p) in a homogeneous or core-shell droplet versus the number of WGMs used in the fit. The error is the standard deviation of 300 simulated droplets with a d_p between 9 μm to 11 μm at each set of WGMs used. The solid line is the minimum using the correct WGM labels. The dashed line represents the mean radius of the multiple minimum in the fits with a cut-off value of being everything within 1 σ of the global minimum.

379 experimental systems we try to fit data with at least 2 more WGMs than the minimum
 380 required. For a homogeneous droplet this means 5 or more WGMs, and for core-shell
 381 droplet this means 8 or more WGMs. Using that minimum threshold, we then averaged
 382 across the remaining fits to get a typical error for any one experiment, this is tabulated in
 383 the Supplemental Information. The fractional (percent) error of the various parameters
 384 puts them into context; for a homogeneous particle, the fractional error in d_p is 0.045%
 385 and for a core-shell particle, the fractional error in d_{shell} is 0.024% and the fractional error
 386 in d_{core} is 3.8%. When we fit experimental data we know the initial diameter of the
 387 homogeneous droplet and this helps to constrain the possible diameters of the core-shell
 388 fit once the outer shell phase has formed or been added.

389 We evaluated the error in retrieving the refractive index using the same procedure.
 390 Our refractive index dispersion model has two fit parameters to account for the small
 391 change in refractive index as a function of wavelength. In Figure 5 we plot the error in
 392 the first parameter, m_0 , which for our simulation is equivalent to the refractive index at
 393 650 nm, $m_{650\text{ nm}}$. We typically use $m_{650\text{ nm}}$ as that corresponds to our WGM observations of
 394 the broad O-H Raman mode with a Raman shift value of $\sim 3400\text{ cm}^{-1}$. The dispersion term
 395 (m_1) plays a necessary, yet minor role compared to m_0 and d_p . We provide a plot of the
 396 error in the dispersion term in the Supplemental Information. The error in the refractive
 397 index for the homogeneous droplet is consistent with Preston and Reid,²¹ which achieved
 398 ± 0.00033 with 12 WGMs. In the case of the core-shell droplet, after nine WGMs the level
 399 of improvement in the fit with each additional WGM diminishes. We interpret this as a


Figure 5. The refractive index (m_0) fit error of a homogeneous and core-shell droplet's WGMs versus the number of WGMs used. The error is the standard deviation (STDV) of 300 simulated droplets with a m_0 between 1.37 to 1.42 (homogeneous) at each set of WGMs used. The core-shell droplet had a m_{c0} between 1.37 to 1.42 and m_{s0} of 1.40 to 1.45. The solid line is the minimum using the correct WGM labels. The dashed line represents the mean radius of the multiple minimum fits with a cut off value of being everything within 1σ of the global minimum.

400 minimum error asymptotic limit determined by the simulated noise added to the WGM
401 positions. Some future improvements could incorporate the amplitude of the WGM as
402 well as the width of the WGM as additional information, which may further improve the
403 fit accuracy.

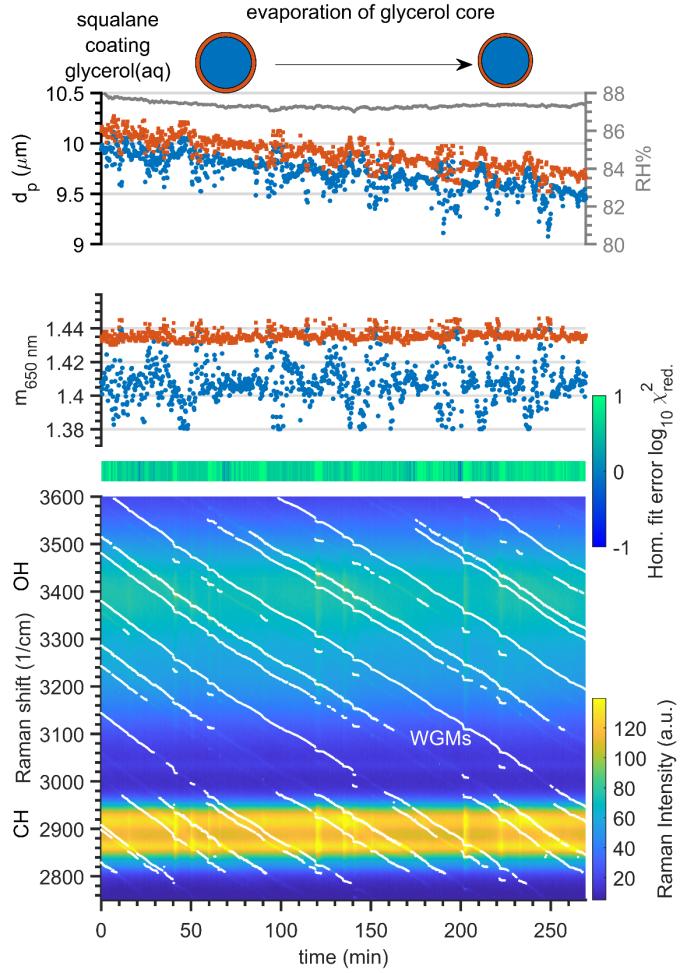
404 So far we have focused on simulations of data from the O-H Raman scattering
405 band. In some cases (i.e. a hydrophilic hydrocarbon shell) only the C-H Raman band
406 shows significant features. There are limitations to the fitting of WGMs when only the C-
407 H Raman scattering band common to organic carbon phases is measured (much narrower
408 than the broad O-H Raman mode for H₂O), leading to fewer WGMs available for the
409 fitting.^{24,27} To still gain some insight into the pure organic carbon systems we use *a priori*
410 information on the refractive index of the core phase to reduce the size of the feasible
411 parameter space, but even then the fits are not as well constrained as fits for systems with
412 the much broader O-H Raman signal present in aqueous phases.

413 **3.2 Spectral Response from Adding a Shell of Organic Carbon to an Aqueous 414 Inorganic Droplet**

415 We use the addition of α -pinene secondary organic aerosol (SOA) (formed by gas-
416 phase ozonolysis of α -pinene vapor) to an NaCl(aq) droplet to explore how the droplet's
417 Raman spectrum and WGMs transition from a homogeneous droplet to a core-shell
418 droplet when a second phase (the SOA) is added.²⁴ This experiment, shown in Figure 6,
419 clearly demonstrates how the homogeneous fit becomes unrealistic for a core-shell
420 droplet after just a thin shell forms on the droplet. Figure 6 also shows the WGM peak
421 splitting caused by the growth of a shell on a previously homogeneous core as predicted
422 from the theoretical results shown in Figure 2. The experiment began with a trapped
423 NaCl(aq) droplet at roughly 75% RH. We then flowed ozone (3.4 ppm) and α -pinene
424 vapor (182 ppm) into the chamber, forming SOA at t=0 minutes. The experimental
425 methods are described in the Supplemental Information, and in Gorkowski et al.²⁴ The
426 majority of the SOA shell growth was caused by coagulation of submicron SOA particles
427 onto the trapped NaCl(aq) droplet. A detailed assessment of this aerosol system was

Figure 6. Raman spectral time series for a tweezed aqueous NaCl droplet with the addition of an α -pinene SOA coating. Raman spectra are shown in the bottom graph, and the white points indicate the positions of detectable whispering gallery modes (WGMs). The decreasing slope of the WGM traces indicates the droplet is evaporating due to the RH decrease. The α -pinene SOA flow reaction started at 0 min, indicated by the pink bar. The droplet's effective refractive index ($m_{650\text{ nm}}$) and diameter (d_p) retrieved every two seconds from the WGM analysis are shown in the middle and top panels. The RH is shown in the top right panel. The decrease in the diameter of the droplet following coating is due to a decrease in the RH of the chamber, causing evaporation of water. The fit results of the WGM positions to a homogeneous Mie model are in the top two panel as black dots. The fit error for the homogeneous model is shown in the green/blue bar, where consistently blue indicates a valid fit and green indicates an invalid fit to the model. The core-shell fitting is then used to retrieve the properties of the NaCl(aq) core (blue points) and α -pinene SOA shell (pink points) at 10 min.

428 previously discussed in Gorkowski et al.²⁴ We use the core-shell fit results as guides for
 429 this system due to the limited number of WGMs (6 per frame) and limited total number


430 of frames (24) available to constrain the core-shell model. The retrieved refractive indices
431 are consistent with a NaCl(aq) core and SOA shell, when compared to our previous
432 work.²⁴ The retrieved shell thickness was ~25 nm, which highlights the resolving power
433 of the WGMs. In Figure 6 we should also note that the downward trend in WGM position
434 is also consistent with the decrease in size observed in the core-shell fit as well as the
435 decreasing RH. Lastly, the decreasing intensity of the WGMs after 15 minutes is
436 attributed to a formation of an emulsion of SOA in the aqueous NaCl core as discussed
437 in Gorkowski et al.²⁴

438 3.3 Evaporation of an Organic Carbon Core through an Organic Shell

439 We investigated our ability to measure phase-separated particles and the resulting
440 partitioning between the two phases using the coagulation of squalane ($C_{30}H_{62}$, a
441 hydrophobic long-chain hydrocarbon) onto an aqueous glycerol droplet. We observed
442 liquid-liquid phase-separation of these two compounds in beaker experiments, so we
443 expect phase-separation in the AOT. However, the actual morphology of the phase-
444 separated droplets remained unknown until our AOT experiments. The persistent
445 WGMs confirm a core-shell morphology (as opposed to a partially engulfing lens), with
446 glycerol forming the core.^{27,39}

447 In Figure 7 we show the core-shell fit results for an isolated part of the experiment
448 after we coagulated the squalane and coagulated additional glycerol to grow the droplet.
449 We used coagulational growth so that the droplet was large enough to identify more than
450 6 WGMs per frame. The fits shown in Figure 7 are for the 270 minutes (6603 spectral
451 frames) where the relative humidity (RH) was stable, and therefore composition was
452 constant. Under these stable RH conditions the core of the droplet is predominantly
453 glycerol, which continuously evaporates into the conditioned air due to its higher vapor
454 pressure; to a lesser extent the squalane shell also evaporates. This evaporation is
455 reflected in the fit as the diameter of the particle continuously decreases.

456 Our measurements are consistent with sparing but non-zero solubility of squalane
457 and glycerol. The average shell refractive index, $m_{650\text{nm}}$, was 1.4359 ± 0.0042 which is

Figure 7. Raman spectral time series for a tweezed aqueous glycerol droplet coated with squalane. The evaporation of the glycerol core is observed from the decreasing trend in droplet diameter (d_p). The panels follow the same format as in Fig. 6. The retrieved two-second Raman spectral frames are averaged to 15 seconds for clarity.

458 lower than pure squalane ($m_{589\text{nm}} = 1.4474 \pm 0.0002^{55}$). This indicates a measurable amount
 459 of the aqueous glycerol absorbed in the squalane shell phase. Though our measured
 460 refractive index is at a different wavelength than the reference value, these should still be
 461 comparable given that the difference in wavelengths is small and as such the dispersion
 462 would only decrease the refractive index by ~ 0.001 between 589 nm to 650 nm. The core
 463 is also not a just a glycerol and water solution as glycerol(aq). At 87.3% RH the pure
 464 solution has mass fractions of 0.6 for w_{water} and 0.4 for w_{glycerol} resulting in an effective
 465 $m_{589\text{nm}} = 1.384 \pm 0.008^{56}$. In contrast we observed a core with a higher effective refractive

466 index with at $m_{650\text{ nm}} = 1.4076 \pm 0.0128$ that must be due to mixing with squalane, which
467 would increase the effective refractive index. The higher uncertainty in m relative to the
468 simulated assessment (Fig. 7) is likely due to the simulation not matching the uncertainty
469 of determining the peak positions from the Raman spectrum.

470 We have used this same fitting algorithm in our previous work on the mixing of
471 secondary organic aerosol phases with aqueous NaCl, aqueous glycerol and squalane²⁴.
472 This algorithm allowed us to identify the morphology of the biphasic droplet and
473 determine the shell of SOA did not limit equilibration of the core. We are working
474 towards using the retrieved refractive indexes from the core-shell fitting to measure the
475 phase composition of both the core and the shell, to directly study phase partitioning and
476 solubility. Incorporation of a chemical thermodynamic equilibration model along with a
477 refractive index mixing model will extend this analysis to more components and complex
478 biphasic systems. With a method to determine the concentration of reactants we can
479 probe the feedback between chemical reaction rates, compositions, and morphology with
480 the biphasic system properties. This algorithm could probe the mechanisms behind the
481 salting out effect of polymers from an aqueous inorganic phase and the elucidate the
482 mechanisms behind the Hofmeister series that is widely-known in biochemical systems
483 for describing the salting-in/out of proteins.⁴ Similarly, biphasic pH measurements could
484 be performed with a sufficiently accurate refractive index model.⁵⁷ The combined AOT
485 measurement system and new core-shell algorithm facilitates biphasic studies of
486 compounds in supersaturated inorganic solutions, which are often difficult to access
487 experimentally.²⁷ Understanding how biphasic systems evolve and their effects is an
488 active research topic in environmental chemistry, biochemistry, and atmospheric
489 chemistry.

490

491 **4. Conclusions**

492 We have developed a practical and efficient algorithm for fitting WGMs for a core-
493 shell biphasic droplet. In the process, we have added to the understanding of how WGMs

494 change as a second shell phase forms around a previously homogeneous trapped droplet.
495 The major difference in WGMs in homogeneous and core-shell droplets is the peak
496 splitting of adjacent WGMs which was predicted in Figure 2 and then demonstrated
497 experimentally in Figure 6. We then tested our new fitting algorithm on simulated data
498 for a homogeneous droplet achieving accuracies of ± 4.6 nm (0.045%) in particle diameter
499 (d_p) for a ~ 10 μm droplet and ± 0.00067 (0.058%) in refractive index (m) for droplet with a
500 refractive index of ~ 1.395 . The same algorithm applied to a simulated core-shell droplet
501 achieved accuracies of ± 24 nm (0.24%) in shell d_p , ± 359 nm (3.8%) in core d_p , and ± 0.0055
502 (0.37%) in core and shell refractive indices. Using our new algorithm, we analyzed an
503 AOT experiment on a trapped core-shell droplet of squalane coating glycerol(aq). The
504 retrieved refractive indices of the core and shell phases were used to inform the chemical
505 composition of each phase. This improved efficient analysis method for core-shell
506 droplets opens the door to future experiments that study the physicochemical properties
507 and dynamics of biphasic droplets using aerosol optical tweezers, and the possibility for
508 analysis in real-time.

509 **Conflicts of Interest.** There are no conflicts to declare.

510 **Acknowledgements.** This research was supported by the National Science Foundation
511 (CHE-1554941). KG acknowledges support from the Bertucci Fellowship from the College
512 of Engineering at Carnegie Mellon University. Jonathan Reid and James Walker at the
513 University of Bristol provided valuable input regarding the evaluation of our new WGM
514 fitting algorithm.

515 **References**

516 1 M. Iqbal, Y. Tao, S. Xie, Y. Zhu, D. Chen, X. Wang, L. Huang, D. Peng, A. Sattar, M.
517 A. B. Shabbir, H. I. Hussain, S. Ahmed and Z. Yuan, Aqueous two-phase system
518 (ATPS): an overview and advances in its applications, *Biol. Proced. Online*, 2016, **18**,
519 1–18.

520 2 K. Mochizuki, T. Sumi and K. Koga, Liquid-liquid phase separation of N-
521 isopropylpropionamide aqueous solutions above the lower critical solution
522 temperature, *Sci. Rep.*, 2016, **6**, 1–10.

523 3 B. Monterroso, S. Zorrilla, M. Sobrinos-Sanguino, C. D. Keating and G. Rivas,
524 Microenvironments created by liquid-liquid phase transition control the dynamic
525 distribution of bacterial division FtsZ protein, *Sci. Rep.*, 2016, **6**, 1–13.

526 4 Y. Zhang and P. Cremer, Interactions between macromolecules and ions: the
527 Hofmeister series, *Curr. Opin. Chem. Biol.*, 2006, **10**, 658–663.

528 5 B. Bagchi, Water Dynamics in the Hydration Layer around Proteins and Micelles,
529 *Chem. Rev.*, 2005, **105**, 3197–3219.

530 6 J. Hirschfelder, D. Stevenson and H. Eyring, A Theory of Liquid Structure, *J. Chem.*
531 *Phys.*, 1937, **5**, 896–912.

532 7 M. A. Freedman, Phase separation in organic aerosol, *Chem. Soc. Rev.*, 2017, **46**,
533 7694–7705.

534 8 W. M. Aumiller and C. D. Keating, Experimental models for dynamic
535 compartmentalization of biomolecules in liquid organelles: Reversible formation
536 and partitioning in aqueous biphasic systems, *Adv. Colloid Interface Sci.*, 2017, **239**,
537 75–87.

538 9 A. Abe, J. Genzer, W. H. De Jeu, S. Kobayashi, L. Leibler, T. E. Long, I. Manners, E.
539 M. Terentjev, M. Vicent, B. Voit, G. Wegner and U. Wiesner, *Self Organized*

540 *Nanostructures of Amphiphilic Block Copolymers II*, Springer Berlin Heidelberg, Berlin,
541 Heidelberg, 2011, vol. 242.

542 10 C. Cai, D. J. Stewart, J. P. Reid, Y. Zhang, P. Ohm, C. S. Dutcher and S. L. Clegg,
543 Organic Component Vapor Pressures and Hygroscopicities of Aqueous Aerosol
544 Measured by Optical Tweezers, *J. Phys. Chem. A*, 2015, **119**, 704–718.

545 11 A. E. Haddrell, R. E. H. Miles, B. R. Bzdek, J. P. Reid, R. J. Hopkins and J. S. Walker,
546 Coalescence Sampling and Analysis of Aerosols using Aerosol Optical Tweezers,
547 *Anal. Chem.*, 2017, **89**, 2345–2352.

548 12 J. F. Davies, A. E. Haddrell, A. M. J. Rickards and J. P. Reid, Simultaneous analysis
549 of the equilibrium hygroscopicity and water transport kinetics of liquid aerosol.,
550 *Anal. Chem.*, 2013, **85**, 5819–26.

551 13 J. Buajarern, L. Mitchem and J. P. Reid, Characterizing the Formation of Organic
552 Layers on the Surface of Inorganic/Aqueous Aerosols by Raman Spectroscopy, *J.
553 Phys. Chem. A*, 2007, **111**, 11852–11859.

554 14 J. W. Lu, A. M. J. Rickards, J. S. Walker, K. J. Knox, R. E. H. Miles, J. P. Reid and R.
555 Signorell, Timescales of water transport in viscous aerosol: measurements on sub-
556 micron particles and dependence on conditioning history, *Phys. Chem. Chem. Phys.*,
557 2014, **16**, 9819–9830.

558 15 J. P. Reid, B. J. Dennis-Smither, N.-O. A. Kwamena, R. E. H. Miles, K. L. Hanford
559 and C. J. Homer, The morphology of aerosol particles consisting of hydrophobic
560 and hydrophilic phases: hydrocarbons, alcohols and fatty acids as the hydrophobic
561 component., *Phys. Chem. Chem. Phys.*, 2011, **13**, 15559–15572.

562 16 B. J. Dennis-Smither, K. L. Hanford, N. A. Kwamena, R. E. H. Miles and J. P. Reid,
563 Phase, morphology, and hygroscopicity of mixed oleic acid/sodium
564 chloride/water aerosol particles before and after ozonolysis., *J. Phys. Chem. A*, 2012,
565 **116**, 6159–68.

566 17 A. M. J. Rickards, R. E. H. Miles, J. F. Davies, F. H. Marshall and J. P. Reid,
567 Measurements of the sensitivity of aerosol hygroscopicity and the κ parameter to
568 the O/C ratio., *J. Phys. Chem. A*, 2013, **117**, 14120–31.

569 18 B. J. Dennis-Smither, F. H. Marshall, R. E. H. Miles, T. C. Preston and J. P. Reid,
570 Volatility and Oxidative Ageing of Aqueous Maleic Acid Aerosol Droplets and the
571 Dependence on Relative Humidity., *J. Phys. Chem. A*, , DOI:10.1021/jp504823j.

572 19 J. Buajarern, L. Mitchem and J. P. Reid, Characterizing Multiphase
573 Organic/Inorganic/Aqueous Aerosol Droplets, *J. Phys. Chem. A*, 2007, **111**, 9054–
574 9061.

575 20 C. Cai, D. J. Stewart, T. C. Preston, J. S. Walker, Y. H. Zhang and J. P. Reid, A new
576 approach to determine vapour pressures and hygroscopicities of aqueous aerosols
577 containing semi-volatile organic compounds., *Phys. Chem. Chem. Phys.*, 2014, **16**,
578 3162–72.

579 21 T. C. Preston and J. P. Reid, Accurate and efficient determination of the radius,
580 refractive index, and dispersion of weakly absorbing spherical particle using
581 whispering gallery modes, *J. Opt. Soc. Am. B-Optical Phys.*, 2013, **30**, 2113–2122.

582 22 R. Power, J. P. Reid, S. Anand, D. McGloin, a Almohammedi, a Almohamed, N.
583 S. Mistry and a J. Hudson, Observation of the binary coalescence and equilibration
584 of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force
585 optical trap., *J. Phys. Chem. A*, 2012, **116**, 8873–84.

586 23 A. Moridnejad, T. C. Preston and U. K. Krieger, Tracking Water Sorption in Glassy
587 Aerosol Particles using Morphology-Dependent Resonances, *J. Phys. Chem. A*, 2017,
588 **121**, 8176–8184.

589 24 K. Gorkowski, N. M. Donahue and R. C. Sullivan, Emulsified and Liquid-Liquid
590 Phase-Separated States of α -Pinene Secondary Organic Aerosol Determined Using
591 Aerosol Optical Tweezers, *Environ. Sci. Technol.*, 2017, **51**, 12154–12163.

592 25 G. Hargreaves, N.-O. a Kwamena, Y. H. Zhang, J. R. Butler, S. Rushworth, S. L.
593 Clegg and J. P. Reid, Measurements of the equilibrium size of supersaturated
594 aqueous sodium chloride droplets at low relative humidity using aerosol optical
595 tweezers and an electrodynamic balance., *J. Phys. Chem. A*, 2010, **114**, 1806–15.

596 26 B. R. Bzdek, L. Collard, J. E. Sprittles, A. J. Hudson and J. P. Reid, Dynamic
597 measurements and simulations of airborne picolitre-droplet coalescence in
598 holographic optical tweezers, *J. Chem. Phys.*, 2016, **145**, 054502.

599 27 K. Gorkowski, H. Beydoun, M. Aboff, J. S. Walker, J. P. Reid and R. C. Sullivan,
600 Advanced aerosol optical tweezers chamber design to facilitate phase-separation
601 and equilibration timescale experiments on complex droplets, *Aerosol Sci. Technol.*,
602 2016, **50**, 1327–1341.

603 28 R. M. Power and J. P. Reid, Probing the micro-rheological properties of aerosol
604 particles using optical tweezers, *Reports Prog. Phys.*, 2014, **77**, 074601.

605 29 R. E. H. Miles, J. S. Walker, D. R. Burnham and J. P. Reid, Retrieval of the complex
606 refractive index of aerosol droplets from optical tweezers measurements, *Phys.
607 Chem. Chem. Phys.*, 2012, **14**, 3037.

608 30 J. S. Walker, J. B. Wills, J. P. Reid, L. Wang, D. O. Topping, J. R. Butler and Y.-H.
609 Zhang, Direct comparison of the hygroscopic properties of ammonium sulfate and
610 sodium chloride aerosol at relative humidities approaching saturation., *J. Phys.
611 Chem. A*, 2010, **114**, 12682–12691.

612 31 B. J. Mason, S.-J. King, R. E. H. Miles, K. M. Manfred, A. M. J. Rickards, J. Kim, J. P.
613 Reid and A. J. Orr-Ewing, Comparison of the accuracy of aerosol refractive index
614 measurements from single particle and ensemble techniques., *J. Phys. Chem. A*,
615 2012, **116**, 8547–56.

616 32 T. C. Preston and J. P. Reid, Determining the size and refractive index of
617 microspheres using the mode assignments from Mie resonances, *J. Opt. Soc. Am. A*,

618 2015, **32**, 2210–2217.

619 33 N.-O. A. Kwamena, J. Buajarern and J. P. Reid, Equilibrium morphology of mixed
620 organic/inorganic/aqueous aerosol droplets: investigating the effect of relative
621 humidity and surfactants., *J. Phys. Chem. A*, 2010, **114**, 5787–95.

622 34 R. E. O'Brien, B. Wang, S. T. Kelly, N. Lundt, Y. You, A. K. Bertram, S. R. Leone, A.
623 Laskin, M. K. Gilles, R. E. O'Brien, B. Wang, S. T. Kelly, N. Lundt, Y. You, A. K.
624 Bertram, S. R. Leone, A. Laskin and M. K. Gilles, Liquid-Liquid Phase Separation
625 in Aerosol Particles: Imaging at the Nanometer Scale, *Environ. Sci. Technol.*, 2015,
626 **49**, 4995–5002.

627 35 Y. You, M. L. Smith, M. Song, S. T. Martin and A. K. Bertram, Liquid-liquid phase
628 separation in atmospherically relevant particles consisting of organic species and
629 inorganic salts, *Int. Rev. Phys. Chem.*, 2014, **33**, 43–77.

630 36 M. Shiraiwa, A. Zuend, A. K. Bertram and J. H. Seinfeld, Gas-particle partitioning
631 of atmospheric aerosols: interplay of physical state, non-ideal mixing and
632 morphology., *Phys. Chem. Chem. Phys.*, 2013, **15**, 11441–53.

633 37 L. Renbaum-Wolff, M. Song, C. Marcolli, Y. Zhang, P. F. Liu, J. W. Grayson, F. M.
634 Geiger, S. T. Martin and A. K. Bertram, Observations and implications of liquid-
635 liquid phase separation at high relative humidities in secondary organic material
636 produced by α -pinene ozonolysis without inorganic salts, *Atmos. Chem. Phys.*, 2016,
637 **16**, 7969–7979.

638 38 U. K. Krieger, C. Marcolli and J. P. Reid, Exploring the complexity of aerosol
639 particle properties and processes using single particle techniques, *Chem. Soc. Rev.*,
640 2012, **41**, 6631.

641 39 D. J. Stewart, C. Cai, J. Nayler, T. C. Preston, J. P. Reid, U. K. Krieger, C. Marcolli
642 and Y.-H. H. Zhang, Liquid-Liquid Phase Separation in Mixed Organic/Inorganic
643 Single Aqueous Aerosol Droplets, *J. Phys. Chem. A*, 2015, **119**, 4177–4190.

644 40 D. J. Stewart, C. Cai, J. Nayler, T. C. Preston, J. P. Reid, U. K. Krieger, C. Marcolli
645 and Y. H. Zhang, Liquid-Liquid Phase Separation in Mixed Organic/Inorganic
646 Single Aqueous Aerosol Droplets, *J. Phys. Chem. A*, 2015, **119**, 4177–4190.

647 41 A. Zuend and J. H. Seinfeld, A practical method for the calculation of liquid-liquid
648 equilibria in multicomponent organic-water-electrolyte systems using
649 physicochemical constraints, *Fluid Phase Equilib.*, 2013, **337**, 201–213.

650 42 J. Ovadnevaite, A. Zuend, A. Laaksonen, K. J. Sanchez, G. Roberts, D. Ceburnis, S.
651 Decesari, M. Rinaldi, N. Hodas, M. C. Facchini, J. H. Seinfeld and C. O' Dowd,
652 Surface tension prevails over solute effect in organic-influenced cloud droplet
653 activation, *Nature*, 2017, **546**, 637–641.

654 43 A. Zuend and J. H. Seinfeld, Modeling the gas-particle partitioning of secondary
655 organic aerosol: The importance of liquid-liquid phase separation, *Atmos. Chem.
656 Phys.*, 2012, **12**, 3857–3882.

657 44 A. Zuend, C. Marcolli, A. M. Booth, D. M. Lienhard, V. Soonsin, U. K. Krieger, D.
658 O. Topping, G. McFiggans, T. Peter and J. H. Seinfeld, New and extended
659 parameterization of the thermodynamic model AIOMFAC: Calculation of activity
660 coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl,
661 carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups, *Atmos. Chem.
662 Phys.*, 2011, **11**, 9155–9206.

663 45 A. K. Ray and R. Nandakumar, Simultaneous determination of size and
664 wavelength-dependent refractive indices of thin-layered droplets from optical
665 resonances., *Appl. Opt.*, 1995, **34**, 7759–7770.

666 46 O. B. Toon and T. P. Ackerman, Algorithms for the calculation of scattering by
667 stratified spheres, *Appl. Opt.*, 1981, **20**, 3657–3660.

668 47 J. B. Snow, S. X. Qian and R. K. Chang, Stimulated Raman scattering from
669 individual water and ethanol droplets at morphology-dependent resonances., *Opt.*

670 *Lett.*, 1985, **10**, 37–39.

671 48 J. Popp, M. Lankers, K. Schaschek, W. Kiefer and J. T. Hodges, Observation of
672 sudden temperature jumps in optically levitated microdroplets due to
673 morphology-dependent input resonances., *Appl. Opt.*, 1995, **34**, 2380–6.

674 49 J. F. Owen, P. W. Barber, B. J. Messinger and R. K. Chang, Determination of optical-
675 fiber diameter from resonances in the elastic scattering spectrum, *Opt. Lett.*, 1981,
676 **6**, 272.

677 50 V. S. Ilchenko, A. a Savchenkov, A. B. Matsko and L. Maleki, Dispersion
678 compensation in whispering gallery modes, *J. Opt. Soc. Am. A*, 2003, **20**, 157–162.

679 51 S. C. Hill, C. K. Rushforth, R. E. Benner and P. R. Conwell, Sizing dielectric spheres
680 and cylinders by aligning measured and computed resonance locations: algorithm
681 for multiple orders, *Appl. Opt.*, 1985, **24**, 2380.

682 52 R. L. Hightower and C. B. Richardson, Resonant Mie scattering from a layered
683 sphere., *Appl. Opt.*, 1988, **27**, 4850–5.

684 53 C. F. Bohren and D. R. Huffman, *Absorption and Scattering of Light by Small Particles*,
685 Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998.

686 54 P. R. Conwell, C. K. Rushforth, R. E. Benner and S. C. Hill, Efficient automated
687 algorithm for the sizing of dielectric microspheres using the resonance spectrum, *J.*
688 *Opt. Soc. Am. A*, 1984, **1**, 1181.

689 55 G. P. Dubey, N. Tripathi and S. C. Bhatia, Refractive index of ternary liquid systems
690 of squalane (+ hexane + benzene; + cyclohexane + benzene and + hexane +
691 cyclohexane), *Indian J. Pure Appl. Phys.*, 2005, **43**, 175–179.

692 56 Haynes W. M., *CRC Handbook of Chemistry and Physics*, 97th Edition, 2017.

693 57 D. J. Losey, R. G. Parker and M. A. Freedman, pH Dependence of Liquid-Liquid

694

Phase Separation in Organic Aerosol, *J. Phys. Chem. Lett.*, 2016, **7**, 3861–3865.

695