

1
2 **FRONT MATTER**
3

4 **Excited State Intramolecular Proton Transfer in Hydroxyanthraquinones: Towards
5 Predicting Fading of Organic Red Colorants in Art**

6
7 **Authors**

8 J.A. Berenbeim,¹ S. Boldissar,^{1§} S. Owens,¹ M.R. Haggmark,¹ G. Gate,¹ F.M. Siouri,¹ T. Cohen,¹
9 M. F. Rode,² C. Schmidt Patterson,³ and M.S. de Vries^{1*}

10
11 **Affiliations**

12 ¹ Department of Chemistry and Biochemistry, University of California Santa Barbara,
13 California, USA.

14 ² Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46 02-668, Warszawa
15 Poland.

16 ³ Getty Conservation Institute, 1200 Getty Center Drive, Suite 700, Los Angeles, California,
17 USA.

18 * E-mail: devries@chem.ucsb.edu

19
20 **Abstract**

21 Compositionally similar organic red colorants in the anthraquinone family, whose
22 photodegradation can cause irreversible color and stability changes, have long been used in works
23 of art. Different organic reds, and their multiple chromophores, suffer degradation disparately.
24 Understanding the details of these molecules' degradation, therefore, provides a window into their
25 behavior in works of art, and may assist the development of improved conservation methods.
26 According to one proposed model of photodegradation dynamics, intramolecular proton transfer
27 provides a kinetically favored decay pathway in some photo-excited chromophores, preventing
28 degradation-promoting electron transfer (ET). To further test this model, we measured excited state
29 lifetimes of substituted gas phase anthraquinones, utilizing high-level theory to explain the
30 experimental results. The data show a general structural trend: anthraquinones with 1,4-OH
31 substitution are long-lived and prone to damaging ET, while excited state intramolecular proton
32 transfers promote efficient quenching for hydroxyanthraquinones that lack this motif.

33
34 **Introduction**

35 Exposure to light degrades many molecules when absorption of ultraviolet and visible wavelength
36 photons places them in an energetically excited state prone to chemical and physical change.
37 Molecules susceptible to photodegradation are ubiquitous in both natural and synthetic systems and
38 undesired effects of such degradation can include a wide range of phenomena, such as the

[§] Samuel Boldissar tragically
passed away following a rock
climbing accident.

39 appearance of abnormal skin cells marking melanoma, and the drop of efficiency in polymer solar
40 cells via photo-bleaching. One notable form of organic photodegradation with relevance to the
41 broad field of cultural heritage research is the fading of certain chromophores in works of art, which
42 leads to visual change in a medium where meaning and value is often predicated on color.

43 Natural organic red colorants of either plant or scale-insect origin are important traditional sources
44 of red hues.(1) These colorants have high tinting strength and are therefore present on artifacts in
45 low concentration; as little as subnanogram concentrations of these colorants may be required to
46 achieve a desired color saturation.(2) Many traditional organic red colorants (including madder,
47 alizarin, cochineal, lac dye, brazilwood, and dragonsblood) are compositionally similar: these
48 anthraquinones (AQ) and hydroxyanthraquinones (HAQ) have long been used as lake pigments and
49 contain primarily hydroxyl, carboxylic acid, and carbonyl moieties on a conjugated aromatic
50 backbone. While commercial interest in AQs and HAQs has recently expanded to include
51 pharmaceutical applications,(3, 4) the use of natural AQ derivatives (see Fig. 1) as lake dyes
52 (insoluble dye-mordant complexes, typically precipitated with Al or Ca cations) has long attracted
53 the attention of fine artists and craftsmen, and these pigments continue to be used today. The
54 irreversible fading of organic red colorants in art is well-documented, and greatly affects the
55 perception of masterpieces from antiquity to the present day. Recent publications, for example,
56 have highlighted alteration of organic red colorants in objects as disparate as medieval manuscript
57 illuminations to paintings by Vincent van Gogh.(5-7)

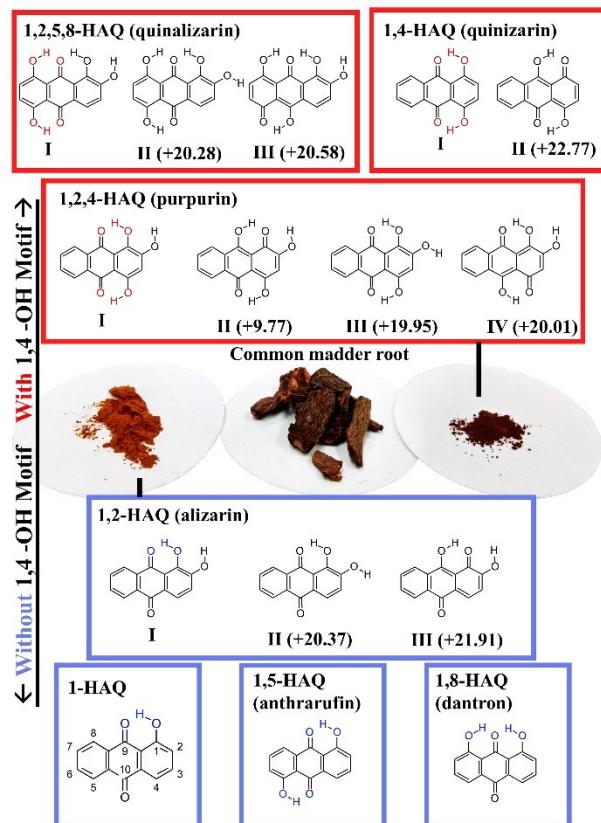
58 One of the simplest HAQ molecules to be used as a lake pigment is 1,2-dihydroxyanthraquinone
59 (1,2-HAQ), also known as alizarin. Alizarin is produced naturally by multiple species related to
60 *Rubia tinctorum* (common madder) where it is a primary chromophore along with 1,2,4-
61 trihydroxyanthraquinone (1,2,4-HAQ), also known as purpurin.(1) It is well documented in the
62 cultural heritage and condensed phase scientific communities that alizarin is more photostable than
63 purpurin.(8-11) Condensed phase photodynamics studies of these AQs suggests that the difference
64 in photostability may stem from an excited state pathway, specifically an excited state
65 intramolecular proton transfer (ESIPT), in alizarin which dissipates photonic energy to regain a
66 stable ground state structure on a timescale much faster than the reaction rates of degradation.(11,
67 12)

68 ESIPT constitutes one of the fastest reactions known,(13, 14) and planar organic molecules
69 containing acidic and basic functional groups connected by an intramolecular hydrogen bond often
70 have photophysics driven by such proton transfer. In such molecules, excited state tautomerization
71 occurs through the excitation of the ground state enol-form to an electronically excited intermediate
72 where a rapid (sub-picosecond timescale), often energetically barrierless, enol to keto proton
73 transfer takes place. Radiationless decay follows this transfer, bringing the excited keto form back
74 to the ground state, and the stable ground state enol reforms through a barrierless back proton
75 transfer.(15) Molecules which undergo ESIPT are typically identified by dual band fluorescence
76 with a large degree of Stokes shift from the ESIPT lower well equilibrium geometry.

77 Formative work examining this mechanism in AQs/HAQs was done in the 1980s (16); laser induced
78 fluorescent spectroscopy studies (17), including by Flom and Barbara, (15) determined that the
79 presence of a dual 1,4- electron donating group (e.g. -OH) precludes dual fluorescence, likely
80 indicating a high barrier towards ESIPT. This qualitative result was later supported by the nodal-
81 plane model by Nagaoka.(18) More recent transient spectroscopic work has measured the rate of
82 ESIPT (19-21) as a femtosecond process and correlated this with pigment fading (11, 22). However
83 these are all condensed phase experiments where the effects of secondary molecules, such as solvent
84 molecules or other pigment components, cannot be completely excluded, which is particularly
85 important since intermolecular effects are widely known to affect relaxation.(20, 23) To measure

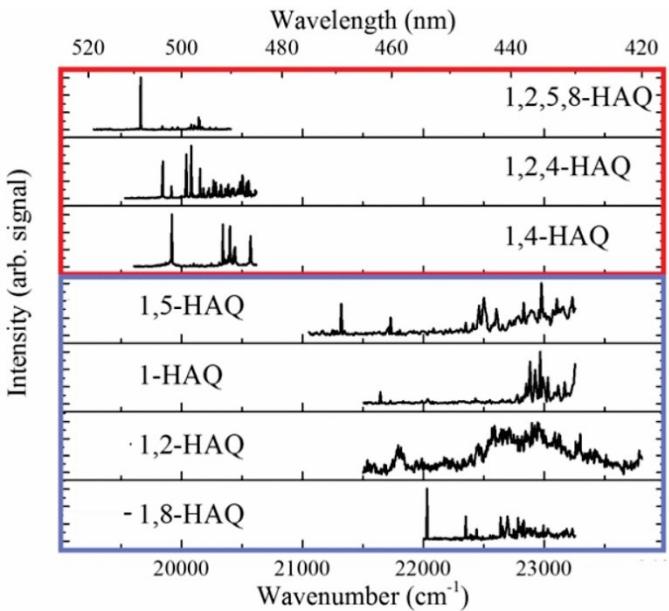
86 the unimolecular dynamics of the AQ and HAQ molecules requires gas phase experiments. It
87 should be noted that in the context of art materials, much of the available literature deals only with
88 alizarin and purpurin as exemplars of the HAQ system.(24) Therefore, there remains a need to
89 examine a broader range of these important molecules in the gas phase to fully explicate the
90 observed differences in the relative photostabilities of the basic chromophores themselves. By
91 studying a larger set of isolated HAQs it is possible to identify the key structural motifs that
92 determine the photodynamics of this class of compounds and further explicate the observed
93 photochemical behavior of alizarin and purpurin. Such a fundamental study can then inform a fuller
94 understanding of the more complex systems found in works of art, which will include binding
95 media, the support, and other pigments in addition to the organic red colorant in question.

96 In this paper, we address this need, and report an experimental and computational case study on the
97 effects of proton transfer on the excited state lifetimes of seven related HAQs as isolated
98 chromophores. We measured intrinsic lifetimes of a series of neutral HAQ molecules in a jet-cooled
99 molecular beam by time resolved, pump-probe, two-color (2C) resonant two-photon ionization
100 (R2PI) spectroscopy to elucidate the relaxation dynamics occurring at the lower limit of the excited
101 state potential energy surface (PES). For each molecule studied, these data provide the first 2C
102 R2PI action spectra, building a library to allow their identification in works of art. We also obtained
103 the excited state lifetimes from both the lowest energy vibronic transition and at higher internal
104 energy ($\sim 500\text{-}1000\text{ cm}^{-1}$) and, for selected compounds, partial mid-IR characterization of the
105 ground state hydrogen bond vibrations with IR hole burning of the R2PI probe signal. These
106 measurements allow us to study these chromophores in selected unique tautomeric forms. The
107 resulting detailed vibrationally and tautomERICALLY resolved excited state lifetime data reveal the
108 intrinsic properties of the chromophores and serve as the basis for high level quantum
109 computational modeling of the excited state dynamics. We explore the implications of the resulting
110 data for the photodegradation of these compounds. Our results show a trend of shorter excited state
111 lifetimes for the structures for which there is evidence for ESIPT, as derived from dual fluorescence
112 by Flom and Barbara and others. We find that both phenomena correlate with structural motifs with
113 a specific double hydrogen bonding pattern and this observation provides experimental evidence to
114 support predictions for the expected stability of HAQs beyond alizarin and purpurin in works of
115 art.


116

117 Results

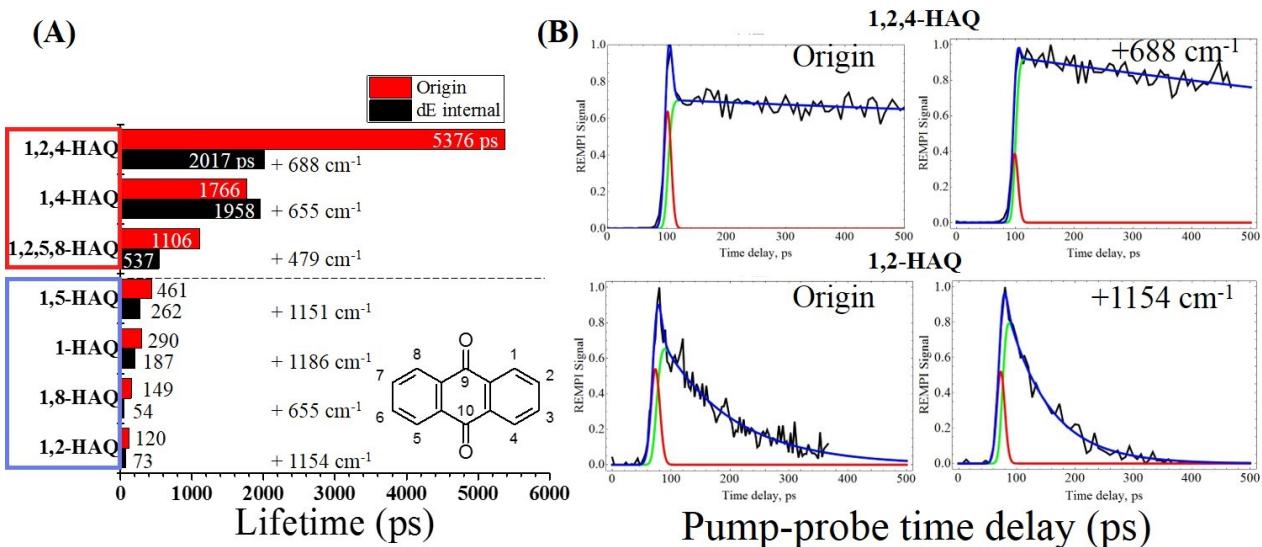
118 Analytes studied and R2PI spectroscopy


119 Fig. 1 shows the series of substituted HAQs analyzed. The analytes represent structures with and
120 without the 1,4-OH substitution motif postulated to be determinative of ESIPT properties.(11, 15).
121 Several of these molecules are also found in artists' red lake pigments. The molecular structures
122 shown in Fig. 1 are planar in all cases. In each molecule the lowest energy (LE) structure (indicated
123 by the Roman numeral I) is that of the 9,10-anthraquinone, with carbonyl groups rather than
124 hydroxyl moieties on the central ring of the backbone. The interpretation of R2PI and pump-probe
125 spectra requires an understanding of the possible structures present in the molecular beam, which
126 are most likely the lowest energy isomers. Fig. 1 shows all isomers with energies calculated to be
127 within 25 kJ/mol of the lowest energy (LE) structure; isomeric forms with higher energies appear
128 in the supplemental information. The center of Fig. 1 shows the two primary *common madder*
129 chromophores alizarin (1,2-HAQ) and purpurin (1,2,4-HAQ). Both have multiple low energy
130 isomers, as do 1,2,5,8-HAQ and 1,4-HAQ. Three of the molecules examined – 1-HAQ, 1,5-HAQ,
131 and 1,8-HAQ – have only a single lowest energy structure (the rotamers for each of these molecules
132 are 52.3, 53.2, and 47.4 kJ/mol higher in energy than the forms shown, respectively). In the figure

133 and throughout we use the nomenclature of HAQ for all compounds, ignoring the more formal
 134 designations of DHAQ and THAQ for the di- and trihydroxy forms, as the numbered prefixes
 135 already indicate the number of hydroxyl substituents.

Fig. 1. The molecules of this study. Molecules having a 1,4 -OH motif are above the dotted line and those without 1,4 -OH motif are below it. Isomers within ~25 kJ/mol of the lowest energy ZPE corrected structure (labeled I) are also shown with their relative energy values (kJ/mol) with respect to the lowest energy form. Central to this figure is the common madder root and its primary chromophores alizarin and purpurin.

154 Fig. 2 presents the R2PI spectra of the HAQs from Fig. 1. The origins, corresponding to S_{0-0}
 155 transitions, of molecules with a 1,4-motif are about 2000 cm^{-1} lower in energy than those without
 156 the 1,4-motif. The origins of 1,2,5,8-HAQ ($19,661\text{ cm}^{-1}$), 1,2,4-HAQ ($19,845\text{ cm}^{-1}$), and 1,4-HAQ
 157 ($19,920\text{ cm}^{-1}$) all lie within 300 cm^{-1} of each other, and each is characterized by sharp, laser
 158 linewidth limited, bands over a $\sim 1000\text{ cm}^{-1}$ range. In contrast to this, the spectra for HAQs without
 159 the 1,4-motif are broader, suggesting shorter excited state lifetimes. Their origins – 1-HAQ ($21,645$
 160 cm^{-1}), 1,2-HAQ ($21,748\text{ cm}^{-1}$), 1,5-HAQ ($21,321\text{ cm}^{-1}$), and 1,8-HAQ ($22,031\text{ cm}^{-1}$) – are located
 161 over a larger energy spread, though still within $\sim 700\text{ cm}^{-1}$ of each other. The difference between
 162 these two groups of spectra, suggests that the excited state properties strongly depend on the
 163 presence or absence of the 1,4-OH structural motif.

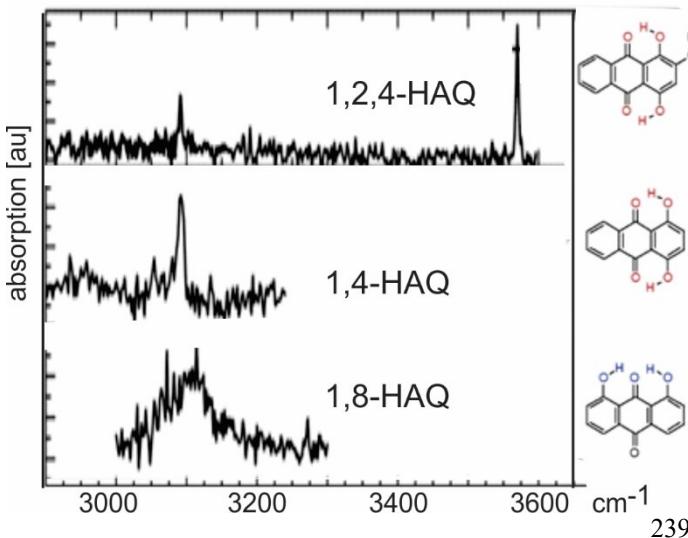

Fig. 2. Picosecond 2C-R2PI spectra of each HAQ in this study (OPG + 213 nm). Intensities have been normalized.

176

177 **Pump-probe spectroscopy**

178 We performed picosecond pump-probe measurements for each HAQ from Fig. 1 on both the origin
 179 transition and on one additional higher energy transition, determined from the R2PI spectra. The
 180 measurement using the higher energy transition probed whether additional relaxation pathways
 181 become available at higher energies, which would likely be evidenced by a change in excited state
 182 lifetime. Fig. 3 shows the effect of structure on excited state lifetime. The molecules with the 1,4-
 183 OH motif, shown at the top in Fig. 3a in a red box, have nanosecond lifetimes at their lowest energy
 184 transitions. In contrast, those molecules without the 1,4-OH motif, shown at the bottom of Fig. 3a
 185 in a blue box, have sub-nanosecond lifetimes.

186 Coincidentally, the primary madder chromophores (1,2,4-HAQ and 1,2-HAQ) have the longest and
 187 the shortest excited state lifetimes, respectively, of all molecules measured. Fig. 3b shows the
 188 pump-probe traces of these two end-members (picosecond pump-probe data for the other molecules
 189 are shown in Fig. S1, Supplemental Information). Each of these traces can be adequately fit using
 190 a single exponential, providing the excited state lifetime of each molecule. When probed at the
 191 origin, 1,2,4-HAQ (purpurin) has an excited state lifetime of 5.4 ns, while 1,2-HAQ (alizarin) has
 192 an excited state lifetime of only 120 ps. Others of the HAQ series have lifetimes intermediate
 193 between these two: 1-HAQ has a measured lifetime of 290 ps while 1,4-HAQ has a measured
 194 lifetime of 1.7 ns, for example. In general, excitation at higher energies shortens the lifetime, as
 195 shown in Fig. 3a (black bars). 1,4-HAQ provides an exception to this trend, with a slight increase
 196 in excited state lifetime when measured at a transition $+655\text{ cm}^{-1}$ from the origin (from 1.7 ns to
 197 1.9 ns). This slight increase is likely an artifact due to the short observation period relative to the
 198 excitation lifetime. For completeness, we also carried out nanosecond pump-probe measurements
 199 on the two endmembers (1,2,4-HAQ and 1,2-HAQ, data shown in Fig. S2). These measurements
 200 show no component at longer time scale than those found in the ps measurements.

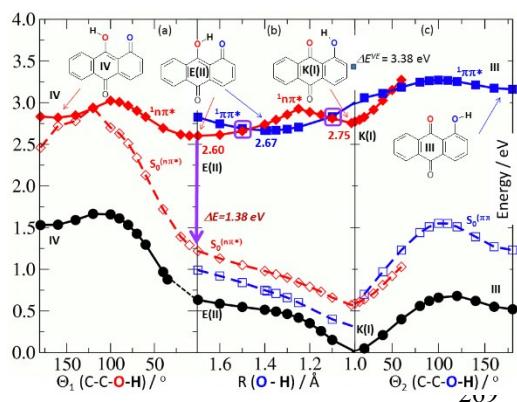

Fig. 3. Results of picosecond pump-probe spectroscopy. (A) Pump-probe lifetime as measured at the origin transition (red bars) and at excess energy (black bars), arranged in order of decreasing measured lifetimes. The excess energy transition used is noted next to the black bars. (B) Pump-probe traces of the molecules with the longest and shortest measured excited state lifetime, 1,2,4-HAQ and 1,2-HAQ respectively, plotted over 500 ps. The pump-probe data are fit to a curve (blue trace) which is the sum of a single exponential decay (green trace) convolved with a Gaussian component (red trace) representative of our instrument response function (IRF).

Intramolecular Hydrogen Bonding Characterization and Structural Confirmation

In order to understand the hydrogen bonding environment of the isomer of species in the molecular beam with and without the 1,4-OH motif, we performed IR hole burning. IR-UV results in mode II indicate that for 1,2,4-HAQ and 1,4-HAQ the R2PI results are from a single conformation (see Supplemental Information Fig. S3).

We also performed hole burning in mode I on 1,2,4-HAQ, 1,4-HAQ, and 1,8-HAQ while probing the origin of each, as shown in Fig. 4. In all three spectra the peak at $\sim 3,100$ cm⁻¹ represents stretching modes associated with the -OH hydrogen bound to a carbonyl group. In the case of 1,8-HAQ this peak is broadened by the competitive sharing of the carbonyl with intramolecular hydrogen bonds 180° about the oxygen atom (9-position). In the case of 1,2,4-HAQ the peak at 3570 cm⁻¹ results from the in-plane hydroxyl (2-position) which is hydrogen bound to the neighboring hydroxyl (1-position). The 470 cm⁻¹ separation is a direct measurement of different hydrogen bond environments: between carbonyl and hydroxy intramolecular bonded -OH stretches.

Fig. S4 in supplemental information also shows calculated LE spectra convoluted with a lorentzian linewidth of 3 cm⁻¹. These calculations reproduce the experimental patterns but not the exact frequencies, reflecting the fact that these are unscaled harmonic calculations. Future work with anharmonic calculations at a higher level may provide further details on structures.

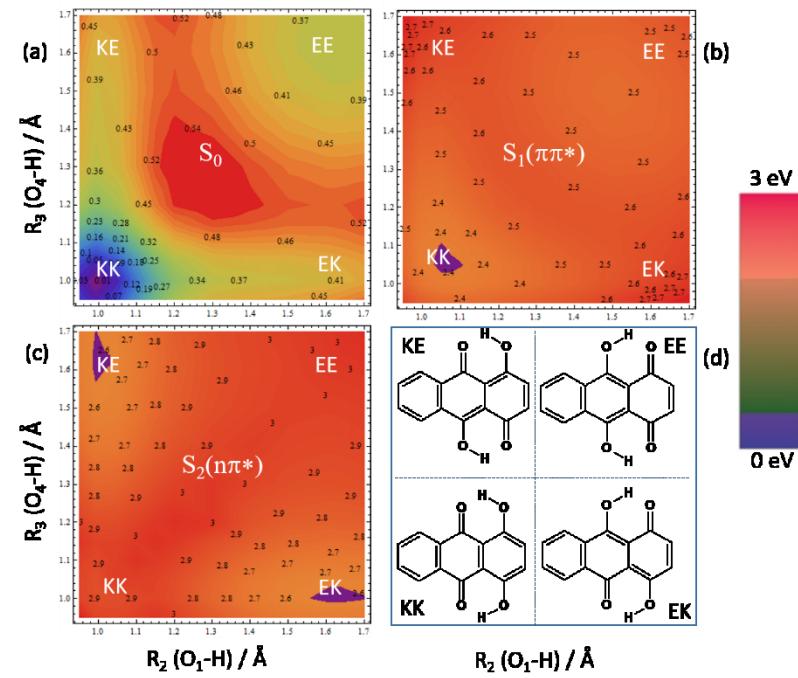

Fig. 4. IR hole burning spectra. Spectra were taken in mode I of 1,2,4-HAQ, 1,4-HAQ, and 1,8-HAQ probed at their origin R2PI transition.

240 Theoretical calculations: 1-HAQ and 1,4-HAQ

241 To model computationally the difference in excited state dynamics in the two structural motifs, with
 242 and without the 1,4 substitution, we performed detailed calculations on the most basic
 243 representatives of the two structural families, namely 1-HAQ and 1,4-HAQ.

244 1-HAQ: ground and excited state

245 Fig. 5 shows the calculated energetic landscapes of 1-HAQ. The ground-state global minimum of
 246 the keto form (I in Fig 5, hereafter referred to as K(I)) with the proton attached to the O₁ oxygen
 247 atom, is planar and stabilized by a single intramolecular hydrogen bond between two oxygen atoms
 248 as proton acceptor: O₁-H...O₉. The proton transferred form (enol form, II in Fig. 5, hereafter
 249 referred to as E(II)) with the proton attached to the O₉ oxygen atom is not stable in the S₀ state, and
 250 its geometry optimization transfers the proton back to the O₁ oxygen atom to reform the global
 251 minimum, form K(I). Possible rotation of the O₁H group could generate the second lowest S₀-state
 252 minimum, the keto rotamer (III in Fig. 5) structure. However, the O₁H rotation breaks the
 253 intramolecular hydrogen bond in the 1-HAQ structure, which destabilizes the rotated form
 254 compared to the global minimum K(I) by 0.52 eV (50 kJ/mol). Furthermore, the rotamer (III)
 255 minimum is separated from the global minimum by a S₀-state energy barrier of 0.16 eV (15kJ/mol).
 256 The fourth form, IV with the proton attached to the O₉ atom, has much higher energy and can be
 257 excluded from this study. This energetic profile indicates that the 1-HAQ molecule should exist in
 258 the K(I) form in the ground state.


Fig. 5. Potential-energy energy profiles of 1-HAQ. Profiles shown are of the S₀ state (black circles), the S₁(ππ*) state (blue squares) and the S₁(nπ*) state (red diamonds) of the 1-HAQ molecule as a function of the torsional reaction path (a, c) and the hydrogen-transfer reaction path (b). Full lines (full symbols): energy profiles of reaction paths determined in the same electronic state. Dashed lines (empty symbols) represent ground-state energy calculated for the geometry optimized in the given excited state nπ* (red) or ππ* (blue). Purple rectangles highlight the nπ* and ππ* intersections.

When 1-HAQ is irradiated, the ground-state K(I) form is photo-excited to the lowest $\pi\pi^*$ excited state, $S_2(\pi\pi^*)$ with vertical energy $\Delta E^{VE} = 3.38$ eV at the S_0 -state minimum geometry. At this optimized ground-state geometry of K(I), S_1 is a dark $n\pi^*$ state below the $S_2(\pi\pi^*)$. The lowest $\pi\pi^*$ excited state does not have a stable minimum in the K(I) form. Therefore, as long as the system remains in the excited $\pi\pi^*$ state, the proton will transfer between the two oxygen atoms (from O_1 toward O_9) along a barrierless path to form the proton-transferred $\pi\pi^*$ excited-state form, E(II), as indicated by the minimum of the blue curve (full squares) in the central panel of Fig. 5.

As depicted in Fig. 5 (highlighted with purple rectangles), the $n\pi^*$ and $\pi\pi^*$ excited states intersect in the vicinity of the $S_1(\pi\pi^*)$ state minimum, E(II). Consequently, the $n\pi^*$ state can be populated directly from the $\pi\pi^*$ excited state. The $n\pi^*$ state has two minima, at the K(I) and E(II) forms, and the adiabatic energies of both minima are lower than that of the $S_1(\pi\pi^*)$ E(II) minimum. Once in the non-fluorescent $n\pi^*$ state the system seeks another decay channel. The S_1 - S_0 energy gap lowers for the $n\pi^*$ state to 1.38 eV for the E(II) excited-state form, as depicted by the vertical purple line in Fig 5. As shown in Fig. 5, if the system is in $n\pi^*$ - E(II) minimum, rotation of the O_9 H group may lead to further significant decrease of the S_1 - S_0 energy gap (see red traces) until S_1 and S_0 meet at a C-C- O_2 -H dihedral angle of about 100°. This pathway provides an additional channel for excited-state deactivation. However, the large barrier in the $n\pi^*$ excited state may make this process less efficient.

1,4-HAQ: ground and excited state

The addition of the OH group to position 4 of the 1-HAQ molecule (that is, the introduction of the 1,4-OH motif) results in significant changes, both structurally by forming a second intramolecular hydrogen bond, and photo-physically by changing the ordering of the excited states.

Fig. 6. Potential energy surfaces (PES) of 1,4-HAQ. (a) Minimum PES of the S_0 state, (b) the $S_1(\pi\pi^*)$ singlet excited state, (c) the $S_1(n\pi^*)$ singlet excited state of the 1,4-HAQ molecule as a function of the hydrogen-transfer reaction path as a function of two coordinates: $R(O_1...H)$ and $R(O_4...H)$. (d) Schematic indication of the structures at the four combinations of minimum and maximum R values. The location of each tautomer on the PES are also labeled.

310

In contrast to 1-HAQ, 1,4-HAQ possesses two intramolecular hydrogen bonds: O_1 -H... O_9 and O_4 -H... O_{10} which bridge the molecule on opposite sides and ensure planarity of the system. Fig. 6 displays the 2-dimensional PES of 1,4-HAQ, with panels (a), (b), and (c) showing the S_0 , S_1 and S_2

315 states, respectively; panel (d) illustrates the possible tautomers of 1,4-HAQ, both single hydrogen
316 transfers (KE and EK), and double hydrogen transfer (EE). The x-axes of Fig. 6(a-c) are the reaction
317 coordinate for the hydrogen displacement from O₁ while the y-axes are the reaction coordinate for
318 the hydrogen displacement from O₄. Moving along the x-axis moves the hydrogen from O₁ to O₉
319 while the y-axis moves the hydrogen from O₄ to O₁₀. Thus, the top right corner of each energy
320 surface is the EE tautomer, the product of both hydrogen transfers. There exists a tautomer in each
321 corner of each PES, labeled accordingly. In addition to the global minimum form – the KK form
322 with protons attached to O₁ and O₄ – the EE form, with the protons attached to O₉ and O₁₀, provides
323 an additional local minimum, 0.36 eV higher in energy. As shown in Fig. 6a, the EE minimum is
324 separated from the KK form by relatively small S₀-state energy-barrier of ~+0.15 eV. The presence
325 of this additional stable tautomer and the energy barrier (in contrast to the 1-HAQ system which
326 lacks an energy barrier) might be explained by the fact that any proton transfer usually requires
327 shortening of the interatomic distance between two proton accepting centers (here, two oxygen
328 atoms). While one interatomic distance, e.g. O₁...O₉, contracts, the other, i.e. O₄...O₁₀, must
329 simultaneously lengthen. This effect is not energetically favorable, creating the barrier in S₀.

330 In these coordinates for the $\pi\pi^*$ (Fig. 6b), the KK tautomer is the minimum by ~0.15 eV. A single
331 or double proton transfer to generate any other tautomer would be uphill and unfavorable. The
332 vertical excitation energies, ΔE^{VE} , to the lowest excited $\pi\pi^*$ state of the KK and EE forms of the
333 1,4-HAQ molecule are: 2.80 eV and 2.58 eV, respectively (for a complete tabulation of results, see
334 Tables S1 and S2, Supplemental Information). Both ΔE^{VE} values for 1,4-HAQ are lower than the
335 respective value of 3.38 eV for 1-HAQ which is consistent with the experimental pattern of the
336 origin shifts. This effect is consistent with π -electron donating character of the OH group(25) which
337 should result in stabilization of the $\pi\pi^*$ excited state *vs* the $n\pi^*$ state for a given structure. Indeed,
338 the lowest $n\pi^*$ states (Fig. 6c) in the absorption ladder of both tautomeric forms of 1,4-HAQ are at
339 least 0.5 eV above the lowest $\pi\pi^*$ states and therefore inaccessible.

340 The properties of the optimized excited state forms of the molecule are gathered in Table S1. KK
341 and EE, respectively, each have the same ground state and $\pi\pi^*$ excited state geometries. Both
342 excited-state forms are almost isoenergetic. Moreover, a barrier of only 0.15 eV separates the S₁
343 states of these two forms. At the same time, the $n\pi^*$ state PES lies almost entirely above the
344 fluorescent $\pi\pi^*$ state. Such a situation greatly reduces the probability for nonradiative decay for the
345 1,4-HAQ in comparison to the 1-HAQ system.

346 Discussion

347 The experimental and computational results from this series of molecules demonstrate that the
348 presence or absence of a hydroxyl substitution at the 4 position has profound effects on the
349 spectroscopy and dynamics of substituted anthraquinones.

350 When interpreting spectral and pump-probe results it is important to keep in mind that multiple
351 tautomeric forms are possible (as shown in Fig. 1). Generally, in jet-cooling conditions only the
352 lowest energy forms exist and the mode II IR-UV data for 1,2,4-HAQ and 1,4-HAQ suggest those
353 data to be exclusively from a single tautomer (though it is possible that signal arises from
354 complimentary rotamers in Fig. 1). We assume the other compounds also to be exclusively or at
355 least predominantly in the lowest energy tautomeric form but the possible existence of other
356 tautomers in the beam cannot be definitively excluded.

357 With this limitation in mind, the experimental and computational evidence can be summarized as
358 follows: (i) The origin transition for HAQs with the 1,4-motif is about 2000 cm⁻¹ to the red of those

360 without the 1,4-motif, as shown in Fig. 2.(ii) The excited state lifetime is approximately an order
361 of magnitude shorter for those without the 1,4-motif, going from a few ns to a few hundred ps at
362 the origin transition, as shown in Fig. 3. Relative to the 1-OH motif there is a 15 \times average longer
363 lifetime for the molecular species with the 1,4-OH motif. (iii) In systems without the 1,4 motif (and
364 therefore with short excited state lifetimes), proton transfer between the two oxygen atoms to form
365 the proton-transferred $\pi\pi^*$ excited-state form is likely, while systems with the 1,4 motif more
366 energetically favorable forms are likely to be present, limiting the probability for nonradiative decay
367 pathways.

368 The photobleaching effects of *common madder* chromophores, 1,2,4-HAQ and 1,2-HAQ, was
369 recently investigated by Tan et al. by counting emissive events in time (photo-blinking) of these
370 dyes under inert (N_2) irradiant conditions on glass. They measured that alizarin is able to absorb
371 and emit four times longer (and over many more events) than purpurin, which they argue to be due
372 to a long lived excited state of purpurin which degrades through electron injection to the glass
373 slide.(11) This decay pathway is consistent with the literature.(19, 21, 26, 27) One cannot compare
374 absolute lifetime values between gas phase and condensed phase states but the trend in the
375 condensed phase correlates with the inherent lifetime trends presented here that 1,2-HAQ is \sim 45
376 times shorter lived at its vibrationless transition than 1,2,4-HAQ. The experimental data presented
377 here seem to suggest that this pathway may be common to other substituted HAQs, with variations
378 in the excited state lifetimes determined by the exact substitution arrangement.

379 Our theoretical investigation focused on the excited state potentials of 1-HAQ and 1,4-HAQ, since
380 the experimental work showed that these motifs represent two distinct families of molecules. For
381 1-HAQ, the computations explain the experimentally observed short lifetimes by an energetically
382 downhill process from the initially populated $\pi\pi^*$ state. Along the proton transfer coordinate, the
383 $n\pi^*$ state is crossed twice, leading to the minimum of E(II). Following this pathway, the energy gap
384 to the ground state is 1.38 eV, allowing for nonradiative decay, although there may be additional
385 involvement of an out of plane torsion, leading to a conical intersection. These dynamics are
386 consistent with the relatively short lifetimes observed for the HAQs without a 1,4-motif. After
387 reaching the ground state, it is a downhill path to transfer the proton back and complete the
388 photocycle, recovering the K(I) tautomer.

389 The addition of the OH group to the 4 position of the HAQ skeleton results in several critical
390 changes to ground and excited state profiles. First, in the 1,4-HAQ molecule there is a second S_0
391 state minimum, the EE characterized by the two protons being transferred to the oxygens on carbons
392 9 and 10. Additionally, the shape of the $\pi\pi^*$ -excited state in 1,4-HAQ is much shallower than in 1-
393 HAQ and photoexcitation of the KK form does not result in a barrierless proton transfer to the EE
394 form as in 1-HAQ. The most prominent effect is that the $\pi\pi^*$ excited-state PES lies below the $n\pi^*$
395 excited-state PES, an effect of electron-donating property of the OH-group, which tends to stabilize
396 the $\pi\pi^*$ excited state versus the $n\pi^*$ state. This explains the red shift of 1,4 motif versus those
397 molecules that lack it (25, 28). Due to the stabilization of the $\pi\pi^*$, the $n\pi^*$ is not accessible at the
398 excitation energies utilized. This effect inhibits non-radiative decay from the excited $\pi\pi^*$ to S_0 via
399 crossing to the $n\pi^*$, as is the case for 1-HAQ. A major effect of 4-OH substitution is related to the
400 unique stabilization of the KK($\pi\pi^*$), lacking the downhill proton transferred minimum of the $\pi\pi^*$
401 excited state in 1-HAQ. The analogous initial $\pi\pi^*$ state in 1-HAQ undergoes proton transfer in a
402 barrierless manner, leading to ps excited state lifetimes. However, this proton transfer shortens the
403 interatomic distance between the two proton accepting oxygen atoms. With the 1,4 motif, while
404 one interatomic distance, e.g. O1...O9, contracts, the other, i.e. O4...O10, simultaneously
405 lengthens, creating a barrier in the excited state potential. As a result, we find a single ns timescale
406 lifetime for the molecules with a 1,4-motif, implying that instead of undergoing ESIPT, they relax

407 from the initially populated $\pi\pi^*$ state. This model also explains why 1,5-HAQ and 1,8-HAQ – both
408 doubly hydrogen bound – behave photodynamically like 1-HAQ.

409 We investigated the possibility of longer-lived states such as triplets with a ns ionization source for
410 1,2-HAQ and 1,2,4-HAQ, but have not observed such states experimentally. However, Mohamed
411 et al. reported formation of a long lived triplet state with high quantum yield in a study of 1,8-HAQ
412 in a series of nonpolar, polar aprotic, and polar protic solvents.(20) Further work in this area is
413 therefore justified to clarify whether long lived triplets may form in some systems.

414 As seen by Flom and Barbara and explained by Nagaoka et al., the 1-HAQ motif exhibits dual
415 fluorescence due to ESIPT. As the main excited-state pathway, this explains the photostability of
416 molecules lacking the 1,4-HAQ motif observed in works of art (by, e.g. alizarin). In contrast,
417 molecules with the 1,4-HAQ motif lack dual fluorescence and the corresponding ESIPT properties.
418 At the same time, molecules with the 1,4-HAQ motif are noted for their photodegradation in works
419 of art (e.g. purpurin). We have corroborated these phenomena both experimentally and theoretically
420 in the gas-phase, indicating that this is a fundamental characteristic of the anthraquinone molecules
421 used to create lake dyes, and not due to other effects such as interactions with the substrate on which
422 the dyes are precipitated, the binding media or other pigments that may be present in the complex
423 system of a work of art. Molecules with the 1-HAQ motif have \sim 15x shorter excited state lifetime
424 than molecules with the 1,4-HAQ motif, explaining the former's photostability. The energetically
425 downhill process of ESIPT accounts for the shorter lifetime of the 1-HAQ motif. Meanwhile, the
426 geometries resulting from ESIPT of the 1,4-motif are all higher in energy than the initially excited,
427 non-proton transfer state, making PT highly unfavorable. Without this process available, the 1,4-
428 motif has a much longer excited-state lifetime and worse photostability.

429 Taken with the body of work done on UV radiation on anthracene by Mallakin on the production
430 of toxic species (i.e. reactive, typically $^1\text{O}_2$) through the stepwise formation and further irradiation
431 of AQs and HAQs (29, 30) and the work by Nagaoka et. Al (18) on the quenching of singlet oxygen
432 ($^1\text{O}_2$) by ESIPT HAQs, and the previous experimental and theoretical work done on alizarin and
433 purpurin (8-12, 27), the data presented here form a complex picture of the degradation of the madder
434 colorants – and anthraquinone dyes more generally – in cultural heritage materials. These pigments
435 need a way to dissipate photoenergy that they inherently will absorb from the environment. But
436 without a viable energetic channel for decay, such as proton transfer or quenching of singlet oxygen,
437 anthraquinone chromophores with a 1,4- substitutional motif will tend to degrade at a faster pace
438 than their photostable counterparts which lack this motif. Knowledge of the structural trend that
439 drives the photochemical response, therefore, allows those who care for culturally significant
440 materials to better predict their photosensitivity: if the specific chemical composition of the organic
441 red dyes in an object can be determined, and a 1,4- substitutional motif is prevalent (either in the
442 only chromophore present, or in high concentration in a mixture of several anthraquinones), a
443 higher photosensitivity can be presumed than if the structure were lacking, regardless of how many
444 chromophore(s) are present. The data shown here suggests that conservators and curators may
445 therefore use information about the chemical structure to predict general trends in the
446 photosensitivity of the objects in their care if colored with anthraquinone dyes, and protect those
447 objects accordingly.

448

449 Materials and Methods

450 Experimental Design

451 Standards of seven HAQs were purchased from Sigma-Aldrich and used without further
452 purification. Standards were directly applied to individual graphite sample bars as a thin solid layer
453 and examined in isolation to ensure spectral purity for 2C-R2PI and pump-probe measurements.

454 The instrument has been previously described in detail and only a brief description of the
455 experimental setup follows.(31, 32) Samples are laser desorbed in vacuo directly in front of a pulsed
456 molecular beam controlled by a piezo cantilever valve.(33) The desorption laser is a tightly focused
457 Nd:YAG laser (1064 nm, ~ 1 mJ/pulse) and the piezo cantilever valve operates at a 45 μ sec pulse
458 duration with 8 bars backing argon gas. The desorbed sample is adiabatically cooled by collisions
459 with the argon jet-expansion to between 10-20 K and the molecular beam is skimmed before being
460 intersected by laser beams and photo-ionized by two-color resonant two photon ionization (2C-
461 R2PI). The subsequent ions are detected by a reflectron time of flight mass spectrometer (2×10^{-6}
462 Torr analyzer pressure, mass resolution $m/\Delta m=500$).

463 The 2C-R2PI spectroscopic and picosecond (ps) pump-probe delay measurements are performed
464 with an Ekspla PL2251 Nd:YAG laser system producing ~30 ps laser pulses. The 355 nm output
465 pumps an Ekspla PG401 tunable optical parametric generator (OPG) (VIS output of 450-600
466 uJ/pulse, $\sim 6 \text{ cm}^{-1}$ spectral linewidth). The sample is excited by the OPG and ionized by 213 nm,
467 fifth harmonic of the Ekspla PL2251 laser, which is mechanically delayed up to 600 ps before
468 colineation with the OPG beam. A variable electronic (SRS DG645) delay between OPG UV laser
469 and an excimer laser (193 nm, 1.5-2 mJ/pulse) is used for pump-probe measurements in the
470 nanosecond (ns) time delay range.

471 For IR-UV double resonant spectroscopy (i.e. IR hole-burning) a Laser Vision optical parametric
472 oscillator/amplifier (OPO/OPA) (mid-IR output over the range 3,000-3,600 cm^{-1} of ~3-5 mJ/pulse,
473 3 cm^{-1} spectral linewidth) precedes the REMPI by 200 ns. This study utilized double resonant
474 spectroscopy with two different pulse sequences: in mode I, the IR pump is scanned at a fixed UV
475 probe wavelength, while in mode II, the UV is scanned with a fixed IR burn wavelength. In mode
476 I, the UV laser wavelength is selected to correspond to a single vibronic transition, and the resulting
477 2C-R2PI signal depletes when the IR laser becomes resonant with the ground state population. The
478 resulting ion-dip spectrum therefore represents the ground state IR spectrum of a single tautomer,
479 selected by the UV probe wavelength. This IR spectrum can be compared with calculated IR
480 frequencies to determine the specific tautomer of the selected vibronic transition. In mode II, the
481 IR laser wavelength is selected to correspond to a tautomer-specific vibrational resonance, and
482 spectra are collected both with IR laser on and off. The difference spectrum identifies peaks in the
483 UV spectrum that arise from the same tautomer.

484 Calculations for IR-UV double resonant spectroscopy

485 Calculations were performed with the Gaussian 09 program package.(34) Starting structures for
486 hydroxy derivatized anthracene-9,10-dione (HAQ) structures, tautomer and rotamer isomers, were
487 optimized using the B3LYP hybrid functional with CC-pVTZ basis set. Relative zero- point
488 corrected energy (ZPE) values are used to predict the number of isomers in our molecular beam
489 based on the rule of thumb that for a given species isomers up to 20 kJ/mol of the lowest energy
490 structure are typically kinetically trapped laser desorption jet-expansion. Past work on the
491 nucleobase adenine showed that only the lowest energy isomer was present, where the next lowest
492 energy isomer was calculated to be at ~33 kJ/mol higher energy than the one observed.(35) Ground
493 state minima were confirmed by the absence of imaginary frequencies and these geometries were
494 later used to determine electronic transition state strengths for S1-4 by way of TD-DFT with the
495 B3LYP hybrid functional with CC-pVTZ basis set. The simulated IR spectra arise from frequencies
496 with harmonic intensities using a Lorentzian shape and FWHM of 3 cm^{-1} and are presented without
497 a spectral shift.

498 **Calculations for construction of energy profiles**

499 The ground-state minima forms of the 1-HAQ and 1,4-DHAQ were optimized by means of the
500 MP2 method (36) using the cc-pVDZ(37) correlation-consistent atomic basis set. The excited-state
501 geometries were optimized with the use of the same basis set while using the CC2(38, 39) method
502 as implemented in TURBOMOLE software package (40). In the calculation of the vertical
503 excitation energies, ΔE^{VE} , mimicking the absorption spectra, performed on top of the MP2/cc-
504 pVDZ-optimized S_0 -state geometries, the CC2(38, 39) method was used to evaluate the response
505 properties.

506 To elucidate the photophysical mechanism on the molecular level the important driving coordinates
507 were appropriately chosen for each system so that the ground- and the excited-state minimum
508 potential-energy (MPE) profiles or surfaces could be constructed to estimate the ground- and
509 excited-state energy barriers determining the photophysics of the both molecules. The 1-HAQ
510 molecule is bound by a single hydrogen bond. In such case one coordinate – the $R_1(O_1H)$ distance
511 – is needed to be chosen as a driving coordinate to illustrate the photophysical mechanism of the
512 photo-tautomerization process. The MPE profile for 1-HAQ is constructed in a way that for fixed
513 given value of the $R_1(O_1H)$ distance, all the remaining nuclear degrees of freedom are optimized;
514 once in the ground state and twice in the two excited states: $S_1(\pi\pi^*)$ and $S_1(n\pi^*)$.

515 The 1,4-DHAQ system has an additional intramolecular hydrogen bond binding the molecule and
516 more tautomeric forms are possible to be formed upon photoexcitation. A convenient method for
517 illustrating the tautomerization process in such molecule is to construct the MPE surface spanning
518 the two driving reaction coordinates describing the two intramolecular hydrogen bonds by the
519 $R_2(O_2H)$ and $R_3(O_4H)$ distances. In that case both the R_2 and R_3 coordinates are being frozen for
520 given values, while the rest of the parameters are being optimized in the constructed MPE surface,
521 separately for the ground (S_0) and the two excited states: $S_1(\pi\pi^*)$ and $S_1(n\pi^*)$ with the C_s symmetry
522 constrain.

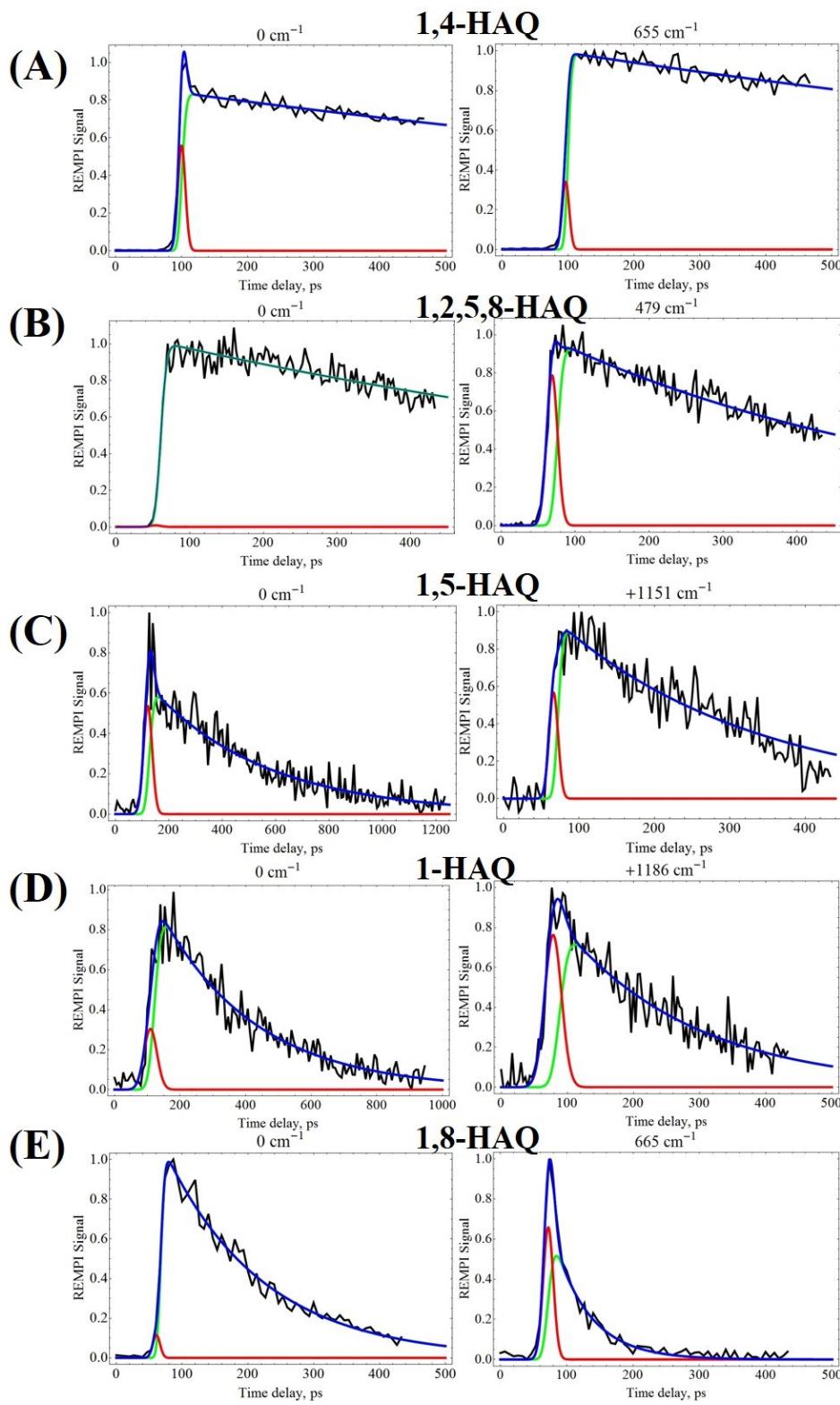
523 **524 References and Notes**

- 525 1. J. Hofenk de Graaff, *The Colourful Past: Origins, Chemistry, and Identification of Natural Dyestuffs*. (Archetype
526 Publications, London, 2004).
- 527 2. A. V. Whitney, R. P. Van Duyne, F. Casadio, An innovative surface-enhanced Raman spectroscopy (SERS) method for the
528 identification of six historical red lakes and dyestuffs. *J. Raman Spectrosc.* **37**, 993-1002 (2006).
- 529 3. J. P. Brown, A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds.
530 *Mutation Research/Reviews in Genetic Toxicology* **75**, 243-277 (1980).
- 531 4. E. M. Malik, C. E. Müller, Anthraquinones As Pharmacological Tools and Drugs. *Medicinal Research Reviews* **36**, 705-748
532 (2016).
- 533 5. M. J. Melo, A. Claro, Bright Light: Microspectrofluorimetry for the Characterization of Lake Pigments and Dyes in Works
534 of Art. *Acc. Chem. Res.* **43**, 857-866 (2010).
- 535 6. C. L. Brosseau, F. Casadio, R. P. Van Duyne, Revealing the invisible: using surface-enhanced Raman spectroscopy to
536 identify minute remnants of color in Winslow Homer's colorless skies. *J. Raman Spectrosc.* **42**, 1305-1310 (2011).
- 537 7. J. E. Fieberg, P. Knutas, K. Hostettler, G. D. Smith, "Paintings Fade Like Flowers": Pigment Analysis and Digital
538 Reconstruction of a Faded Pink Lake Pigment in Vincent van Gogh's Undergrowth with Two Figures. *Appl Spectrosc* **71**,
539 794-808 (2017).
- 540 8. D. Saunders, J. Kirby, Light-Induced Color Changes in Red and Yellow Lake Pigments. *National Gallery Tech. Bull.* **15**, 79-
541 97 (1994).
- 542 9. C. Clementi, W. Nowik, A. Romani, F. Cibin, G. Favaro, A spectrometric and chromatographic approach to the study of
543 ageing of madder (*Rubia tinctorum* L.) dyestuff on wool. *Anal. Chim. Acta* **596**, 46-54 (2007).
- 544 10. C. Grazia, C. Clementi, C. Miliani, A. Romani, Photophysical properties of alizarin and purpurin Al(III) complexes in solution
545 and in solid state. *Photochem Photobiol Sci* **10**, 1249-1254 (2011).
- 546 11. J. A. Tan *et al.*, Contributions from Excited-State Proton and Electron Transfer to the Blinking and Photobleaching
547 Dynamics of Alizarin and Purpurin. *The Journal of Physical Chemistry C* **121**, 97-106 (2017).

- 549 12. C. Miliani *et al.*, Recent insights into the photochemistry of artists' pigments and dyes: towards better understanding
550 and prevention of colour change in works of art. *Angew. Chem. Int. Ed.* **57**, 7324-7334 (2018).
- 551 13. A. Douhal, F. Lahmani, A. H. Zewail, Proton-transfer reaction dynamics. *Chemical Physics* **207**, 477-498 (1996).
- 552 14. S. J. Formosinho, L. G. Arnaut, Excited-state proton transfer reactions II. Intramolecular reactions. *Journal of*
553 *Photochemistry and Photobiology A: Chemistry* **75**, 21-48 (1993).
- 554 15. S. R. Flom, P. F. Barbara, Proton transfer and hydrogen bonding in the internal conversion of S1 anthraquinones. *The*
555 *Journal of Physical Chemistry* **89**, 4489-4494 (1985).
- 556 16. M. S. El Ezaby, T. M. Salem, A. H. Zewail, R. Issa, Spectral Studies of Some Hydroxy-derivatives of Anthraquinones. *J.*
557 *Chem. Soc. B*, 1293-1296 (1970).
- 558 17. A. Navas Diaz, Absorption and emission spectroscopy and photochemistry of 1,10-anthraquinone derivatives: a review.
559 *Journal of Photochemistry and Photobiology A: Chemistry* **53**, 141-167 (1990).
- 560 18. S.-i. Nagaoka, U. Nagashima, Effects of node of wave function upon excited-state intramolecular proton transfer of
561 hydroxyanthraquinones and aminoanthraquinones. *Chem. Phys.* **206**, 353-362 (1996).
- 562 19. S. Lee, J. Lee, Y. Pang, Excited state intramolecular proton transfer of 1,2-dihydroxyanthraquinone by femtosecond
563 transient absorption spectroscopy. *Current Applied Physics* **15**, 1492-1499 (2015).
- 564 20. O. F. Mohammed, D. Xiao, V. S. Batista, E. T. Nibbering, Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-
565 dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and
566 computational modeling. *The journal of physical chemistry. A* **118**, 3090-3099 (2014).
- 567 21. M. Jen, S. Lee, K. Jeon, S. Hussain, Y. Pang, Ultrafast Intramolecular Proton Transfer of Alizarin Investigated by
568 Femtosecond Stimulated Raman Spectroscopy. *J Phys Chem B* **121**, 4129-4136 (2017).
- 569 22. M. Smoluch, H. Joshi, A. Gerssen, C. Gooijer, G. van der Zwan, Fast excited-state intramolecular proton transfer and
570 subnanosecond dynamic stokes shift of time-resolved fluorescence spectra of the 5-methoxysalicylic acid/diethyl ether
571 complex. *J Phys Chem A* **109**, 535-541 (2005).
- 572 23. Y. Peng, Y. Ye, X. Xiu, S. Sun, Mechanism of Excited-State Intramolecular Proton Transfer for 1,2-
573 Dihydroxyanthraquinone: Effect of Water on the ESIPT. *The journal of physical chemistry. A* **121**, 5625-5634 (2017).
- 574 24. M. Leona, J. Stenger, E. Ferloni, Application of surface-enhanced Raman scattering techniques to the ultrasensitive
575 identification of natural dyes in works of art. *J. Raman Spectrosc.* **37**, 981-992 (2006).
- 576 25. M. F. Rode, A. L. Sobolewski, Effect of chemical substituents on the energetical landscape of a molecular photoswitch:
577 an ab initio study. *The Journal of Physical Chemistry A* **114**, 11879-11889 (2010).
- 578 26. T. D. Giacco, L. Latterini, F. Elisei, Photophysical and photochemical properties of 1,2,4-trihydroxy-9,10-anthraquinone
579 adsorbed on inorganic oxides. *Photochemical & Photobiological Sciences* **2**, 681-687 (2003).
- 580 27. A. Amat, C. Miliani, A. Romani, S. Fantacci, DFT/TDDFT investigation on the UV-vis absorption and fluorescence
581 properties of alizarin dye. *Phys Chem Chem Phys* **17**, 6374-6382 (2015).
- 582 28. M. F. Rode, A. L. Sobolewski, Effect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid
583 studied by ab initio methods. *The Journal of Chemical Physics* **140**, 084301 (2014).
- 584 29. A. Mallakin, D. George Dixon, B. M. Greenberg, Pathway of anthracene modification under simulated solar radiation.
585 *Chemosphere* **40**, 1435-1441 (2000).
- 586 30. A. Mallakin *et al.*, Impacts of Structural Photomodification on the Toxicity of Environmental Contaminants: Anthracene
587 Photooxidation Products. *Ecotoxicology and Environmental Safety* **43**, 204-212 (1999).
- 588 31. G. Meijer, M. S. Devries, H. E. Hunziker, H. R. Wendt, Laser Desorption Jet-Cooling of Organic-Molecules - Cooling
589 Characteristics and Detection Sensitivity. *Appl Phys B-Photo* **51**, 395-403 (1990).
- 590 32. F. M. Siouri, S. Boldissar, J. A. Berenbeim, M. S. de Vries, Excited State Dynamics of 6-Thioguanine. *J Phys Chem A* **121**,
591 5257-5266 (2017).
- 592 33. D. Irimia *et al.*, A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic
593 and molecular beams. *Rev Sci Instrum* **80**, 113303 (2009).
- 594 34. M. J. Frisch *et al.*, Gaussian 09, Revision B.01. (2009).
- 595 35. C. Plutzer, E. Nir, M. S. de Vries, K. Kleinermanns, IR-UV double-resonance spectroscopy of the nucleobase adenine.
596 *Physical Chemistry Chemical Physics* **3**, 5466-5469 (2001).
- 597 36. C. Møller, M. S. Plesset, Note on an approximation treatment for many-electron systems. *Physical Review* **46**, 618 (1934).
- 598 37. T. H. Dunning Jr, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and
599 hydrogen. *The Journal of chemical physics* **90**, 1007-1023 (1989).
- 600 38. O. Christiansen, H. Koch, P. Jørgensen, The second-order approximate coupled cluster singles and doubles model CC2.
601 *Chem Phys Lett* **243**, 409-418 (1995).
- 602 39. C. Hättig, F. Weigend, CC2 excitation energy calculations on large molecules using the resolution of the identity
603 approximation. *The Journal of Chemical Physics* **113**, 5154-5161 (2000).
- 604 40. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Electronic-Structure Calculations on Workstation Computers - the
605 Program System Turbomole. *Chem. Phys. Lett.* **162**, 165-169 (1989).

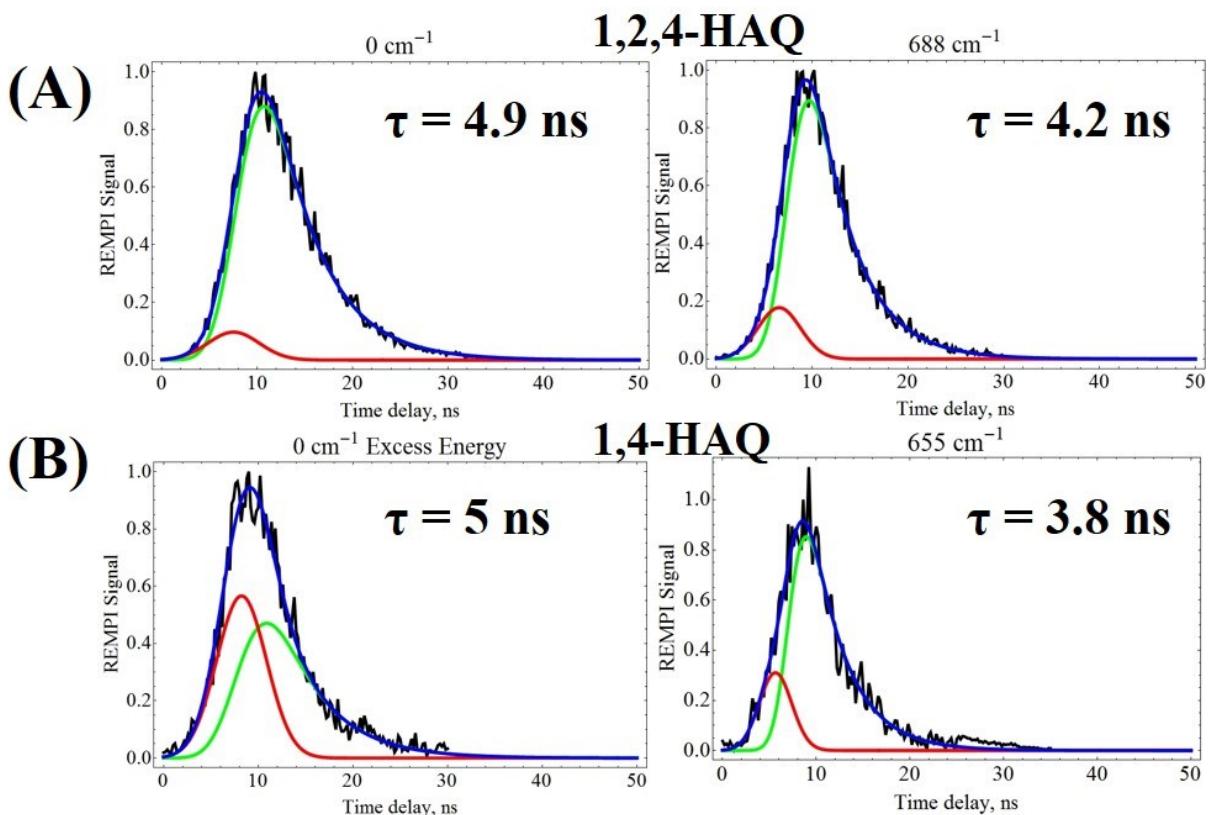
606
607
608 **Acknowledgments**
609

610 **General:** The authors thank K. Trentelman, B. Fonseca, J. Delaney, M. Fischer, M. Melo, and C.
611 Miliani for helpful discussions.


612 **Funding:** This work was supported by the National Science Foundation under CHE-1800283. We
613 acknowledge support from the Center for Scientific Computing from the CNSI, MRL: an NSF
614 MRSEC (DMR-1121053) and NSF CNS-0960316.

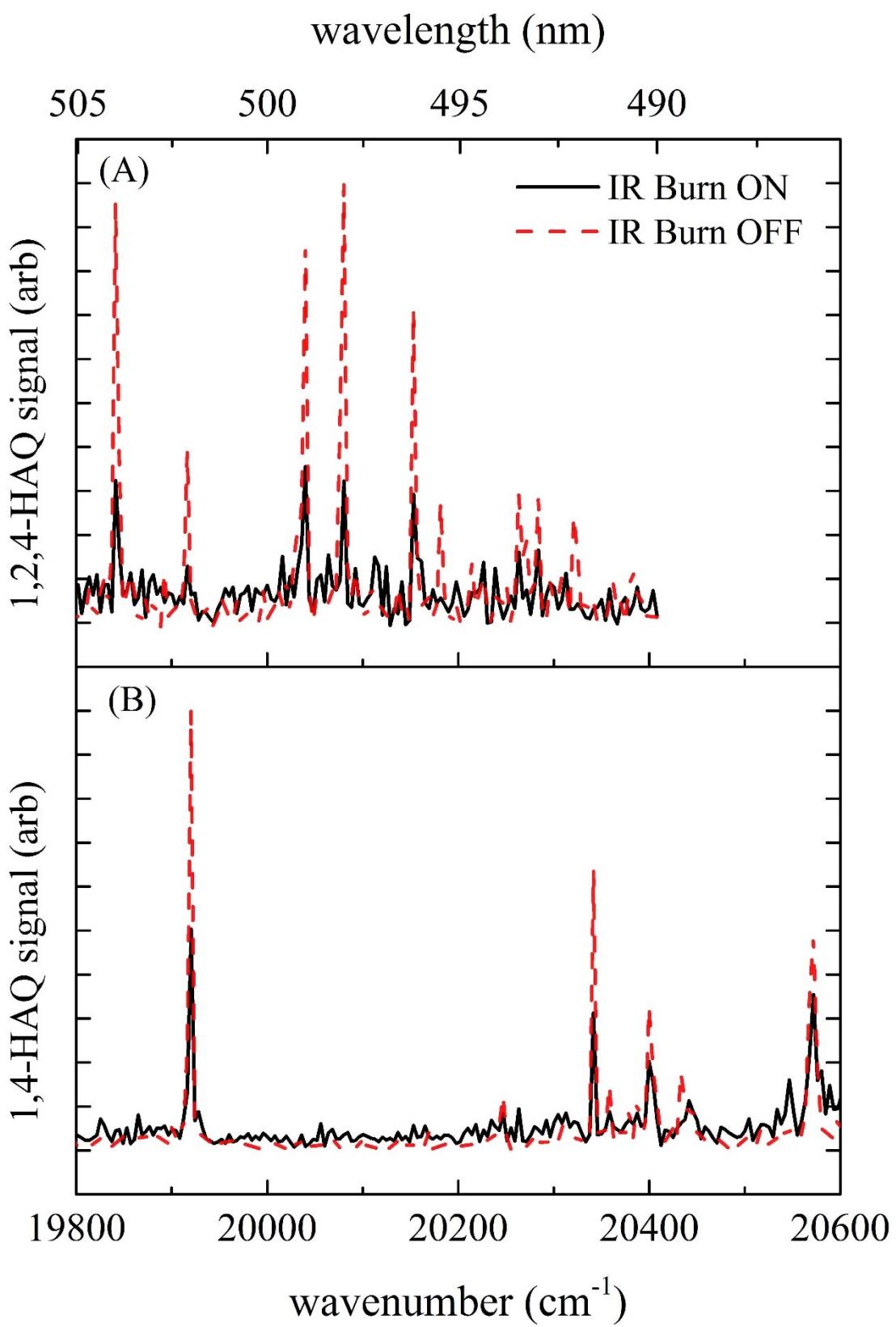
615 **Author contributions:** J.B., S.B., S.O., M.R.H., G.G., F.M.S., T.C. (experimental work); J.B.,
616 S.B., M.F.R (computational work); C.S.P., M.S.dV (project development and funding); J.B.,
617 M.R.H., G.G., M.F.R, C.S.P., M.S.dV (manuscript preparation).

618 **Competing interests:** The authors have no competing interests.


619 **Data and materials availability:** All data needed to evaluate the conclusions in the paper are
620 present in the paper and/or the Supplementary Materials. Additional data available from authors
621 upon request.

622

Fig. S1. Picosecond pump-probe spectra. (A) 1,4-HAQ, (B) 1,2,5,8-HAQ, (C) 1,5-HAQ, (D) 1-HAQ, and (E) 1,8-HAQ at vibrationless (left column) and excess probe lengths (right column). The pump-probe data are fit to a curve (blue) which is the sum of a single exponential decay convolved with a Gaussian component (red) representative of our instrument response function (IRF) the IRF itself (green).


632
633
634

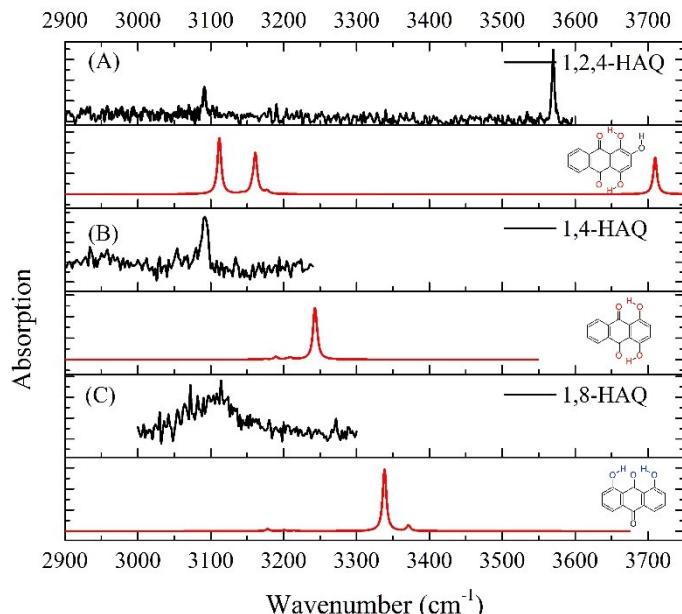

635
636
637
638
639
640

Fig. S2. Nanosecond pump-probe spectra. (A) 1,2,4-HAQ at vibrationless and excess probe lengths and for (B) 1,4-HAQ at vibrationless and excess probe lengths. The lifetime values here agree with those presented in Fig. 3 for pump-probe measurement within the time jitter (± 3 ns) of the 193 nm ns ionization source. The pump-probe data are fit to a curve (blue) which is the sum of a single exponential decay convolved with a Gaussian component (red) representative of our instrument response function (IRF) the IRF itself (green).

641
642
643
644
645

Fig. S3. IR hole burning spectra in mode II with the burn laser set to 3090 cm^{-1} . (A) All 1,2,4-HAQ vibronic transitions share resonance at IR burn wavelength, as do all (B) 1,4-HAQ vibronic transitions, suggesting a single tautomer in each R2PI spectrum.

652
 653 **Fig. S4. IR hole burning spectra (in black) taken in mode I of (A) 1,2,4-HAQ, (B) 1,4-HAQ, and (C) 1,8-HAQ**
 654 **probed at their lowest energy R2PI transition.** The ground state predicted frequencies for the given LE structure are
 655 plotted below each hole burn spectrum (in red). Harmonic analysis is shown unshifted.

656
 657

Table S1: Calculated properties of 1-HAQ and 1,4-HAQ. Vertical excitation energies, ΔE^{VE} (in eV) for the stable minima of the 1-HAQ and 1,4-HAQ molecules calculated at the CC2/cc-pVDZ theory level at the geometries optimized with the MP2/cc-pVDZ method. The ground-state properties are marked Italic.

1-HAQ			
S _n / Tautomer	ΔE^{VE} / eV	<i>f</i>	μ / D
form K (I)			
S ₀	0.0		1.4
S ₁ (nπ*)	3.21	0.000	2.8
S ₂ (ππ*)	3.38	0.145	4.4
S ₃ (nπ*)	3.62	0.000	2.6
S ₄ (ππ*)	4.28	0.029	4.9
S ₅ (ππ*)	4.31	0.012	1.3
S ₆ (nπ*)	4.97	0.000	4.0
form K_rot (III)			
S ₀	0.52		1.8
S ₁ (nπ*)	3.10	0.000	3.6
S ₂ (nπ*)	3.43	0.000	2.2
S ₃ (ππ*)	3.79	0.110	7.2
S ₄ (ππ*)	4.34	0.035	3.2
S ₅ (ππ*)	4.55	0.014	0.7
S ₆ (nπ*)	4.74	0.000	6.3
1,4-HAQ			
S _n / Tautomer	ΔE^{VE} / eV	<i>f</i>	μ / D
form KK (I)			
S ₀	0.0		2.2
S ₁ (ππ*)	2.80 (a1)	0.209	2.5
S ₂ (nπ*)	3.32 (b2)	0.000	1.9
S ₃ (nπ*)	3.65 (a2)	0.000	2.1
S ₄ (ππ*)	4.14 (b1)	0.000	0.4
S ₅ (ππ*)	4.29 (a1)	0.032	7.1
S ₆ (ππ*)	4.43 (b1)	0.006	4.0
form EE (II)			
S ₀	0.36		1.1
S ₁ (ππ*)	2.58 (a1)	0.246	4.8
S ₂ (nπ*)	3.19 (b2)	0.000	0.6
S ₃ (nπ*)	3.46 (a2)	0.000	0.4
S ₄ (ππ*)	3.86 (b1)	0.007	0.9
S ₅ (ππ*)	4.16 (b1)	0.051	5.2
S ₆ (nπ*)	4.34 (a1)	0.002	4.2
form KK_rot (I)			
S ₀	0.55		0.9
S ₁ (nπ*)	3.03	0.188	5.7
S ₂ (ππ*)	3.03	0.000	4.2
S ₃ (nπ*)	3.60	0.000	2.6
S ₄ (ππ*)	4.29	0.026	4.1
S ₅ (ππ*)	4.38	0.020	0.9
S ₆ (nπ*)	4.70	0.000	6.8

670
671
672
673
Table S2: Emission properties of 1-HAQ. Adiabatic energy, (E^a in eV , bold), fluorescence energy, (E_{fl} , given in parenthesis), excited-state dipole moment (μ_e in D) and oscillator strength (f) of the given excited-state form optimized with the CC2/cc-pVDZ method.

1-HAQ				
state/ tautomer	$E^a(S_n)$ (E_{fl})	μ_e/D	f	
form K(I)				
S_0	0.00			
$S_1 \pi\pi^*$	-	-	-	
$S_1 n\pi^*$	2.75 (2.18)	$\mu_e = 4.2$ D	0.00	
form E(II)				
S_0	-			
$S_1 \pi\pi^*$	2.67 (1.92)	$\mu_e = 1.2$ D	0.200	
$S_1 n\pi^*$	2.60 (1.38)	$\mu_e = 5.4$ D	0.000	

674
675
676
677
678
Table S3: Emission properties of 1,4-HAQ. Adiabatic energy, (E^a in eV , bold), fluorescence energy, (E_{fl} , given in parenthesis), excited-state dipole moment (μ_e in D) and oscillator strength (f) of the given excited-state form optimized with the CC2/cc-pVDZ method.

1,4-HAQ				
state/ tautomer	S_n (E_{fl})	μ_e/D	f	
form KK(I)				
S_0	0.00			
$S_1 (\pi\pi^*)$	2.39 (2.13)	0.1 D	0.221	
$S_1 (n\pi^*)$	2.95 (2.42)	3.1 D	0.000	
form EE(II)				
S_0	0.36			
$S_1 (\pi\pi^*)$	2.50 (2.01)	2.6 D	0.225	
$S_1 (n\pi^*)$	3.10 (2.57)	2.0 D	0.000	
form EK ~ KE				
S_0	-			
$S_1 (\pi\pi^*)$	-	-	-	
$S_1 (n\pi^*)$	2.66 (1.70)	3.6 D	0.000	

679
680
681
682
Table S4: Emission properties of 1,4,4-HAQ. Adiabatic energy, (E^a in eV , bold), fluorescence energy, (E_{fl} , given in parenthesis), excited-state dipole moment (μ_e in D) and oscillator strength (f) of the given excited-state form optimized with the CC2/cc-pVDZ method.

1,4,4-HAQ				
state/ tautomer	S_n (E_{fl})	μ_e/D	f	
form KK(I)				
S_0	0.00			
$S_1 (\pi\pi^*)$	2.39 (2.13)	0.1 D	0.221	
$S_1 (n\pi^*)$	2.95 (2.42)	3.1 D	0.000	
form EE(II)				
S_0	0.36			
$S_1 (\pi\pi^*)$	2.50 (2.01)	2.6 D	0.225	
$S_1 (n\pi^*)$	3.10 (2.57)	2.0 D	0.000	
form EK ~ KE				
S_0	-			
$S_1 (\pi\pi^*)$	-	-	-	
$S_1 (n\pi^*)$	2.66 (1.70)	3.6 D	0.000	