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Abstract. Civil infrastructure inspection in hazardous areas such as
underwater beams, bridge decks, etc., is a perilous task. In addition, other
factors like labor intensity, time, etc. influence the inspection of infras-
tructures. Recent studies [11] represent that, an autonomous inspection
of civil infrastructure can eradicate most of the problems stemming from
manual inspection. In this paper, we address the problem of detecting
cracks in the concrete surface. Most of the recent crack detection tech-
niques use deep architecture. However, finding the exact location of crack
efficiently has been a difficult problem recently. Therefore, a deep archi-
tecture is proposed in this paper, to identify the exact location of cracks.
Our architecture labels each pixel as crack or non-crack, which elimi-
nates the need for using any existing post-processing techniques in the
current literature [5,11]. Moreover, acquiring enough data for learning
is another challenge in concrete defect detection. According to previous
studies, only 10% of an image contains edge pixels (in our case defected
areas) [31]. We proposed a robust data augmentation technique to allevi-
ate the need for collecting more crack image samples. The experimental
results show that, with our method, significant accuracy can be obtained
with very less sample of data. Our proposed method also outperforms
the existing methods of concrete crack classification.

Keywords: Crack detection · Pixel labeling · Deep learning
architecture · Data augmentation

1 Introduction

Modern transportation system consists of a variety of civil infrastructures such
as roads, bridge decks, highways, etc. Potential defects or deterioration in these
structures can lead to unwanted situation e.g., road accidents. Civil infrastruc-
ture inspection is an essential for ensuring a well performing transportation
system. The main element of these structures, is concrete. Concrete is composed
of an aggregate mixture of various type of rocks, limestone, clay, and water. This
liquid paste is altogether known as cement. The cement hardens over time as
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water evaporates from the mixture. This leads to various type of deterioration
such as cracking, spalling, abrasion, etc. Cracking in concrete occurs more fre-
quently than any other defects. The cement of concrete suffers from cracking
mostly in comparison to other defects. Shrinkage in concrete elements, expan-
sion, overloading, heaving, chemical exposure, corrosion with metals infused in
concretes, improper drying, etc is some of the most common reasons for concrete
cracking.

The longevity and performance of civil infrastructure are immensely affected
by the defects of the concrete. Moreover, rebuilding infrastructure is time-
consuming, uneconomic as well as time-consuming. Thus, continuous inspection
of concrete health is necessary for maintaining a fully functional transportation
system.

Earlier civil infrastructure inspection was performed manually by experts.
However, the time consuming and labor-intensive manner of such method
necessitated autonomous inspection. Autonomous inspection robotic systems
[11,16,20] integrated with various sensors e.g., non-destructive evaluation (NDE)
sensors [13] and camera can access infrastructure location to collect NDE
data and sample images, which are further processed for defect identification.
Autonomous inspection systems can reach dangerous areas where it is unsafe for
humans to reach. The less error-prone nature of the autonomous systems also
made them a convenient technique to adopt for maintenance [10,14,15].

One of the main challenges in identifying concrete defect autonomously is to
provide the machine with enough knowledge of unhealthy concrete. Therefore,
the need for an extensive amount of concrete samples is undeniable. In addi-
tion, an efficient architecture that can extract distinguishing features of concrete
defect is also necessary. Recently many studies have proposed many architectures
or methods for extracting such features. In the remainder of this section we have
elaborated about the recent works of concrete crack inspection, the challenges
associated and our contribution to the research problem.

1.1 Literature Review

Concrete defect classification and localization have enticed the attention of the
research community very recently. The state of the art image processing tech-
niques e.g., thresholding [19,24,29], morphological operations [2,7,17,22,28,30]
and edge detection algorithms [21,25,32], have been proven efficient for defect
localization [5]. The most significant advantage of these approaches is the extrac-
tion of both local and global feature of crack location with less computational
complexity. However, the extensive amount of noise (crack like areas) present
in real-world images induces extraction of unnecessary feature points. ‘These
unnecessary feature points increase the number of falsely identified crack pix-
els. Moreover, perfect parameter selection is also a conundrum for these type of
methods.

Since the machine learning architectures are adaptive to real-world situa-
tions, it is intuitive to use them for defect classification and localization. In this
paper, we categorize the machine learning architectures into two divisions such
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as (a) shallow architectures and (b) deep architectures. Some of the shallow
machine learning architectures in the literature, for defect classification are Sup-
port Vector Machines (SVM) [8,25,28], Adaboost [25], Multi-Layer Perceptron
(MLP) [4]. The conundrum of selecting perfect parameter set is solved by these
architectures. An accurate classification using these architectures, require a bal-
anced data-set having uniform instances of both healthy and defected areas of
concrete. However, recent studies show that defected pixels occur only 10% of
the time in an image [31]. Thus, the scarcity of well-balanced instances of both
classes significantly drops accuracy. On the other hand, the recent advent of deep
architectures [18] in solving classification problem,

Since the deep architectures [18] achieved significant performance gain in
image classification, some studies [3,5,6,11,12,27] used them for crack image
classification. These approaches apply image processing techniques on the
extracted crack blocks, to localize the cracks. However, the rate of false clas-
sification and parameter selection of image processing techniques affects the
performance of crack localization. Moreover, the computational complexity, as
well as the number of parameters of deep architectures increases as the network,
goes deeper. The growing number of parameters degrades with a deeper layer
which, drops the performance of the network. In addition, the deep architectures
require an extensive amount of data to train the networks on. Collection and
processing of such data-set are time-consuming and memory intensive.

1.2 Contributions

From the above discussion we postulate that the main challenges in concrete
defects detection in previous studies are :

1. Generating distinguishing feature maps for crack and non-crack pixels with
a deep architecture.

2. A deep architecture that is less affected by parameter degradation problem
of deep architecture.

3. Generation of a balanced data-set with enough instances of both crack and
non-crack pixels.

In this paper, we proposed a robust deep network architecture alleviating the
effect of parameter degradation. Our architectures use a series of encoder and
decoder to generate distinguishing feature descriptor for crack and non-crack
class. Lastly, our data augmentation technique enables to generate a substantial
amount of instances for training. The rest of the paper is organized as follows:
Sect. 2 elaborately explains our Proposed architecture. In Sect. 3, we discuss our
training process, data augmentation and results. Lastly, we conclude in Sect. 4.

2 Methodology

The deep network architectures eliminated the need for feature extraction using
traditional image processing techniques. In this paper, we introduce an encoder-
decoder based deep network architecture to extract definitive features of crack
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and non-crack pixels. There exists, a number of different encoder-decoder based
deep convolutional network architectures in literature, such as, UNet [26], SegNet
[1], DeconvNet [23], FCN [12] etc. These networks are designed for semantic seg-
mentation of generic object classes in natural images, and therefore, are not quite
suitable for crack detection. To address the generic nature of these networks, we
have designed the Proposed network architecture inspired by the architecture of
SegNet [1]. In this section, we briefly reviewed the architecture of SegNet and
then discussed our proposed network architecture.

2.1 SegNet

The SegNet architecture is composed of five encoders and five decoders. The
encoders consist of a series of convolution layers, followed by ReLu, Batch Nor-
malization, and max-pooling layer. The first two encoders have three consec-
utive convolution layers with 64 and 128 filters of size 3× 3 respectively. The
remaining encoders are composed of two convolution layers with 256, 512 and
512 filters of size 3× 3 respectively. The convolution operations are performed
with 3× 3 filters. Each max-pooling layer uses a 2× 2 window with stride 2 to
obtain translation in-variance as mentioned in [1]. The max pooled indices are
stored in memory to use in their respective decoder. Each decoder consists of
a bilinear upsampling layer, followed by the convolution, ReLu, Batch Normal-
ization layers using the same convention as their corresponding encoder layers.
The upsampling operations are performed using memorized pool indices from
the max-pooling layers. The SegNet architecture does not add a fully connected
layer at the end of the network. Alternatively, it maps the output of the decoder
layer to the softmax layer and assigns a label to each pixel.

2.2 Proposed Architecture

SegNet architecture uses a 3× 3 window for the convolution operations in the
encoder layers. Performing convolution operation with smaller windows causes
significant boundary information loss. Since the pixels in a crack location are
connected, such information loss has an enormous effect on classification. For
example, if a 256× 256× 3 (196,608 pixels)image is convolved with eight filters
of size 3× 3, a feature map of size 128× 128× 8 (131,072 pixels)is generated. The
reduced feature map on this particular operation loses the information of 65,536
pixels. The deeper the network goes, the more pixel information is lost. Our
proposed network architecture accumulates for this lost pixel values in SegNet.

Since significant feature information is lost during the convolution process of
each encoder, we have added a side output function [31] to each encoder. The side
output function accommodates for the feature loss in each encoding operation.
The side output function takes the output feature map of its corresponding
encoder layer and up-samples it to original size. To up-sample the feature maps to
its original size, we use a transposed convolution operation, followed by sigmoid
activation. Since the transposed convolution includes learn-able parameters, it
feeds the network with more information about the feature space. Our Proposed
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Fig. 1. Proposed architecture for detecting pixels

network architecture is shown in Fig. 1. The side outputs from each encoder layer
are concatenated together in the final layer. The output of the merged layer is
passed to a convolution layer with filter size 1. The number of filters in the final
convolution layer is the number of desired classes. A softmax layer is added at
the end of the convolution layers.

2.3 Data Augmentation

The deep network architectures require a balanced data-set with enough
instances of each class. In this section, we discuss our data augmentation tech-
nique which alleviates the need to collect the huge number of data instances.

The deep network architecture proposed in this paper labels each pixel as
crack or non-crack. Thus, a pixel map of each training sample from the original
data set is generated manually. We define a pixel map as a binary image of the
same size as the training sample images. Each pixel in the pixel map is assigned
a value. The crack pixels in the original image are assigned the value 1 in the
pixel map. The non-crack pixels are assigned the value 0.

Our data augmentation method generates thousands of sub-sample from a
single image sample and its pixel map. We take each image randomly from our
data set. At first, A random center position (x, y) is generated for that image.
Then we sub-sample an image and its corresponding pixel map of height h and
width w from the large image. After that, it is randomly decided if the image and
its pixel map should be flipped (horizontally or vertically). Lastly, we perform
gamma correction on the image randomly.

3 Experiment Results

We performed multiple experiments to train and evaluate our method. We com-
pared our method with recent crack detection architectures in literature. In this
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section, we elaborately discussed our experimental setup, comparison with dif-
ferent methods and result interpretation.

3.1 Experimental Setup and Parameters

We optimized our proposed network architecture with Adam optimizer with a
constant learning rate of 0.001. Since we have only two classes, a binary cross-
entropy loss was used. It was trained for 100 episodes on a 1080Tx GPU.

We collected our data using an autonomous robotic system with NDE sensor
fusion method [11] from various roads and bridges. These images contain many
noises such as oil spilling, paint, stones, strips from tire screeching and many
more. To generate the pixel map of each image we used Gimp software. To
train our method we have generated pixel maps 33 large resolution images of
2304× 3456× 3 (height×width× channel).

Using our data augmentation technique we have generated 5000 sub-sampled
images of size 512× 512 (height×width) for training and 1000 images of size
512× 512 (height×width) for validation from the large resolution images of
the database. In each episode of training, a different set of 6000 images (train-
ing + validation) is generated. We evaluated the performance of our network
with recent deep architectures for crack classification. At first, we compared
our results with the image block classification method [9,11] to demonstrate
the nature of the segmentation problem affecting crack detection. Since the pro-
posed network architecture labels pixel and uses an encoder-decoder architecture,
we have also compared our results with recent encoder-decoder architecture for
pixel-level labeling such as Unet [26], SegNet [1].

3.2 Comparative Analysis

For evaluation, we generated 200 images of size 1024× 1024× 3 (height×
width× channel) from our validation data set using our data augmentation tech-
nique. In this section, we elaborately explained the quantitative and qualitative
results on different architectures based on our data-set.

Quantitative Comparisons. For evaluating our Proposed network architec-
ture, we have taken into account different state-of-the-art statistical measure-
ments such as true positive, false positive, true negative, false negative, accuracy,
error rate, specificity, precision, recall, and F-1 score. We defined the crack pixels
as the positive class and non-crack pixels as the negative class.

Thus, true positive (TP) is defined as the number of correctly detected crack
pixels. True negative (TN) is defined as the number of pixels detected as non-
crack that are labeled non-crack pixels in the ground truth. False-positive (FP)
is the number of pixels that are erroneously detected as crack pixels. Finally,
False negative (FN) is the number of crack pixels detected as non-crack pixels.
A summary of the evaluation results performed on different methods are shown
in Table 1.
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Table 1. Quantitative Comparisons of the Proposed Network Architecture with Exist-
ing Crack Detection Methods.

Method TP% FP% TN% FN% Acc.� E.R.∗ Spc.§ Prec.† Rec.‡ F-1�

Gibbs [11] 25.2 23.0 77.0 25.2 76.9 23.1 77.0 0.004 0.25 0.007

Unet [26] 53.5 1.3 98.7 46.5 98.6 1.4 98.7 12.9 53.5 20.8

SegNet1 [1] 55.4 1.3 98.7 44.6 98.5 1.5 98.7 13.2 55.4 21.3

SegNet2 [1] 55.1 1.3 98.7 44.9 98.6 1.4 98.7 13.5 55.1 21.7

Proposed1 56.1 1.1 98.9 43.9 98.7 1.3 98.9 15.3 56.1 24.1

Proposed2 57.2 1.3 98.7 42.8 98.5 1.5 98.7 13.1 57.2 21.4

1: Conv-Layer Sizes (8-16-32-64-64)

2: Conv-Layer Sizes (16-32-64-128-128)

TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative

� : Accuracy= TP+TN
TP+FP+TN+FN

∗ : Error Rate= FP+FN
TP+FP+TN+FN

§ : Specificity= TN
TN+FP

† : Precision= TP
TP+FP

‡ : Recall= TP
TP+FN

� : F-1 Measure=2 × Pre.×Rec.
Pre.+Rec.

In Table 1 we compared our results with both block-wise crack detection
and pixel-wise crack detection techniques from the recent literature. The block
detection method [11] under-performs than all the other existing pixel labeling
method. The false-positive rate of this method is much higher than the other
methods. Moreover, each detected crack block is a mixture of crack and non-crack
pixels. This makes the block detection method to suffer from unacceptably high
false positive, false negative and error rates compared to pixel labeling methods.
It is evident from these measures, that a model with such a high error rate is
not feasible for any classification.

We also compared our method with recent pixel classification methods from
the literature, such as SegNet [1] and UNet [26]. For uniform comparison, we
have employed two filter banks of size (8-16-32-64-64) and (16-32-64-128-128)
for SegNet and our Proposed Architecture. The Unet architecture is designed
with a regular number of filter banks of VGG-16, which is (64-128-256-512-512).

The SegNet1 architecture uses a fewer number of filters compared to Unet,
which reduces the number of learning parameters. The SegNet1 architecture
achieves more true positive rate, precision, recall and F1 score in comparison
to Unet [26]. The false-positive rate, true negative rate, specificity measures
are similar in both SegNet1 and UNet. It under-performs than Unet in case of
false-negative rate and error rate. Therefore, we can deduce that the SegNet1

architecture acceptable in terms of less computational complexity and slightly
better result than Unet.

The SegNet2 model uses filter bank of size (16-32-64-128-128), which is larger
than SegNet1 but smaller than Unet. SegNet2 achieves higher true positive rate,
precision and F1 score than both Unet and SegNet1. It has a similar false-
positive rate, true negative rate, specificity measures with both SegNet1 and
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Fig. 2. Qualitative comparison of the proposed method with Gibbs [11] block detec-
tion architecture. The result shown in the middle is the crack detection using the
Gibbs method, while (a) shows the pixels-wise crack detection results of the Proposed1

architecture, and (b) shows the results of the Proposed2 architecture on two random
1024 × 1024 sub-regions of the original image.

Unet. It reduces the error rate of SegNet1, which is higher than Unet. In addi-
tion, it improves the accuracy in comparison to SegNet1. However, the higher
false-negative rate and lower recall rate in comparison to SegNet1 represent the
effect of gradient degradation. Though the overall method shows higher F1 score
than the previous methods, this method is not suitable for crack classification
considering the degradation of gradient problem.

The Proposed1 architecture shows significant performance gain in all of the
statistical measure. It achieves more true positive rate, false-positive rate, true
negative rate, accuracy, specificity, precision, F-1 score and less error rate, the
false-negative rate in comparison to SegNet1, SegNet2 and Unet.

To reveal the effect of parameter degradation in our architecture we have
experimented our architecture by increasing the filter bank to (16-32-64-128-
128). The Proposed2 architectures achieve more true positive rate, recall rate
and less false-negative rate than all the previous methods in Table 1. However,
because of parameter degradation the error rate increases as well as the accuracy
drops. Therefore, we can deduce that the Proposed1 architecture is more suitable
for crack pixel classification in comparison to other recent methods. Moreover,
the Proposed2 architecture is less affected by the gradient degradation problem
in comparison to SegNet2.
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(a) (b) (c) (d) (e)

Fig. 3. Qualitative comparison of the proposed method with the state-of-the-art: (a)
Unet [26]. (b) Segnet1. (c) Segnet2. (d) Proposed1 Architecture. (e) Proposed2 Archi-
tecture

It is worth noting that crack pixels exist in such small numbers, considering
the vast majority of pixels in an image being normal. This makes the evaluation
result biased toward the effective detection of non-crack pixels. To accommodate
for this bias, we do not solely, rely on true positive rates. Instead, better measures
of the unbiased performance of the crack detection methods are the accuracy,
and the Error Rate, shown in Table 1. As observed from the table, both of the
proposed methods outperform the existing techniques from the literature, while
the Proposed1 shows the highest Accuracy and lowest Error Rate.

Qualitative Comparisons. In this section, we have discussed the compar-
ative results on sample images from our validation data set. We have shown
comparative results from both block detection methods and pixel classification
methods.
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In Fig. 2 the comparative result of block detection method and our proposed
method is shown. The Gibbs [11] architecture, divides an image into smaller
sub-blocks of size 256× 256. Each block is identified as crack and non-crack. The
non-crack blocks are labeled as black in the image. Moreover, we have shown
some results from the Proposed architecture on the same block. It is evident
from Fig. 3, that our Proposed1 architecture outperforms Gibbs [11] method in
case of crack localization.

Figure 3 shows the result of different pixel-level classification methods. The
number of crack pixels occurs are significantly lower than non-crack pixels.
Therefore, we zoomed out some of our crack pixel location to represent a more
clear result. The first row in Fig. 3, shows that the number of false-negative pix-
els in the same area is higher in Unet. It is reduced in both SegNet1 and SegNet2

architecture. However, in the same area, our Proposed1 architecture significantly
reduces the number of false-negative pixels in comparison to SegNet1, SegNet2

and Unet. The Proposed2 have more false-negative pixels than Proposed1 but it
has less false negative pixels than the other previous architectures.

One of the most important observations in this study is, the pixel labeling
method is affected by pixel discontinuity. We define pixel discontinuity is the
detection of the anomalous length of pixels (not continuous pixels as crack) as
cracks. These discontinuous pixels are the effect of gradient degradation. The
discontinuous pixels are shown by the circled area in Fig. 3.

Our results show that the Proposed1 architecture removes most of these
discontinuous pixels significantly. From Figure 3, we can see that the Unet archi-
tecture have many discontinuous pixels. SegNet1 and SegNet2 reduces the length
and number of these pixels. On the other hand, the discontinuous pixels affect
the Proposed1 architecture very little. Moreover, the Proposed2 architecture have
some discontinuous pixels (last image of row 2). However, the length of the dis-
continuous pixels is reduced in comparison to Unet. In addition, it has more
true-positive pixels in comparison to Unet and SegNet architecture.

4 Conclusions and Future Work

We presented in this paper, a deep convolutional network architecture while
accommodating for the feature loss. Our architecture shows that with a lim-
ited number of filters we can alleviate the feature loss. The main motivation
of this work is to design an efficient crack detection system for civil infrastruc-
ture inspection. Our method also shows significant improvement over existing
methods. Moreover, we presented data augmentation techniques, which can sig-
nificantly improve the performance of any architecture. On the contrary, our
architecture consumes more memory because of its large number of parameters.
In the future, we would optimize the memory structure as well as achieve better
performance.
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