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Abstract. Formulating and designing authentication of classical mes-
sages in the presence of adversaries with quantum query access has been
a longstanding challenge, as the familiar classical notions of unforgeabil-
ity do not directly translate into meaningful notions in the quantum
setting. A particular difficulty is how to fairly capture the notion of “pre-
dicting an unqueried value” when the adversary can query in quantum
superposition.

We propose a natural definition of unforgeability against quantum
adversaries called blind unforgeability . This notion defines a function to
be predictable if there exists an adversary who can use “partially blinded”
oracle access to predict values in the blinded region. We support the pro-
posal with a number of technical results. We begin by establishing that
the notion coincides with EUF-CMA in the classical setting and go on to
demonstrate that the notion is satisfied by a number of simple guiding
examples, such as random functions and quantum-query-secure pseudo-
random functions. We then show the suitability of blind unforgeability
for supporting canonical constructions and reductions. We prove that the
“hash-and-MAC” paradigm and the Lamport one-time digital signature
scheme are indeed unforgeable according to the definition. To support
our analysis, we additionally define and study a new variety of quantum-
secure hash functions called Bernoulli-preserving.

Finally, we demonstrate that blind unforgeability is strictly stronger
than a previous definition of Boneh and Zhandry [EUROCRYPT ’13,
CRYPTO ’13] and resolve an open problem concerning this previous def-
inition by constructing an explicit function family which is forgeable yet
satisfies the definition.

1 Introduction

Large-scale quantum computers will break widely-deployed public-key cryptog-
raphy, and may even threaten certain post-quantum candidates [6,9,10,12,23].
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Even elementary symmetric-key constructions like Feistel ciphers and CBC-
MACs become vulnerable in quantum attack models where the adversary is
presumed to have quantum query access to some part of the cryptosystem [16–
18,22]. As an example, consider encryption in the setting where the adversary
has access to the unitary operator |x〉|y〉 �→ |x〉|y⊕fk(x)〉, where fk is the encryp-
tion or decryption function with secret key k. While it is debatable if this model
reflects physical implementations of symmetric-key cryptography, it appears nec-
essary in a number of generic settings, such as public-key encryption and hashing
with public hash functions. It could also be relevant when private-key primitives
are composed in larger protocols, e.g., by exposing circuits via obfuscation [21].
Setting down appropriate security definitions in this quantum attack model is
the subject of several threads of recent research [8,13].

In this article, we study authentication of classical information in the
quantum-secure model. Here, the adversary is granted quantum query access
to the signing algorithm of a message authentication code (MAC) or a digital
signature scheme, and is tasked with producing valid forgeries. In the purely
classical setting, we insist that the forgeries are fresh, i.e., distinct from previous
queries to the oracle. When the function may be queried in superposition, how-
ever, it’s unclear how to meaningfully reflect this constraint that a forgery was
previously “unqueried.” For example, it is clear that an adversary that simply
queries with a uniform superposition and then measures a forgery—a feasible
attack against any function—should not be considered successful. On the other
hand, an adversary that uses the same query to discover some structural property
(e.g., a superpolynomial-size period in the MAC) should be considered a break.
Examples like these indicate the difficulty of the problem. How do we correctly
“price” the queries? How do we decide if a forgery is fresh? Furthermore, how can
this be done in a manner that is consistent with these guiding examples? In fact,
this problem has a natural interpretation that goes well beyond cryptography:
What does it mean for a classical function to appear unpredictable to a quantum
oracle algorithm? 1

Previous approaches. The first approach to this problem was suggested by
Boneh and Zhandry [7]. They define a MAC to be unforgeable if, after making
q queries to the MAC, no adversary can produce q + 1 valid input-output pairs
except with negligible probability. We will refer to this notion as “PO security”
(PO for “plus one,” and k-PO when the adversary is permitted a maximum of k
queries). Among a number of results, Boneh and Zhandry prove that this notion
can be realized by a quantum-secure pseudorandom function (qPRF).

Another approach, due to Garg, Yuen and Zhandry [14] (GYZ), considers a
function one-time unforgeable if only a trivial “query, measure in computational
basis, output result” attack2 is allowed. Unfortunately, it is not clear how to

1 The related notion of “appearing random to quantum oracle algorithms” has a sat-
isfying definition, which can be fulfilled efficiently [29].

2 Technically, the Stinespring dilation [25] of a computational basis measurement is
the most general attack.



790 G. Alagic et al.

extend GYZ to two or more queries. Furthermore, the single query is allowed
in a limited query model with an non-standard restriction.3 Zhandry recently
showed a separation between PO and GYZ by means of the powerful tool of
obfuscation [31].

It is interesting to note that similar problems arise in encryption schemes of
quantum data and a convincing solution was recently found [2,3]. However, it
relies on the fact that for quantum messages, authentication implies secrecy. This
enables “tricking” the adversary by replacing their queries with “trap” plaintexts
to detect replays. As unforgeability and secrecy are orthogonal in the classical
world, adversaries would easily recognize the spoofed oracle. This renders the
approach of [2,3] inapplicable in this case.

Unresolved issues. PO security, the only candidate definition of quantum-
secure unforgeability in the general, multi-query setting, appears to be insuf-
ficient for several reasons. First, as observed in [14], it is a priori unclear if
PO security rules out forging on a message region A while making queries to a
signing oracle supported on a disjoint message region B. Second, there may be
unique features of quantum information, such as the destructiveness of quantum
measurement, which PO does not capture. In particular, quantum algorithms
must sometimes “consume” (i.e., fully measure) a state to extract some useful
information, such as a symmetry in the oracle. There might be an adversary
that makes one or more quantum queries but then must consume the post-query
states completely in order to make a single, but convincing, forgery.

Surprisingly, prior to this work none of these plausible attack strategies have
been exploited to give a separation between PO and “intuitive security.”

2 Summary of Results

A new definition: Blind-unforgeability. To address the above mentioned
issues, and in light of the concrete “counterexample” presented below as Con-
struction 8, we develop a new definition of many-time unforgeability we call
“blind-unforgeability” (or BU). In this approach we examine the behavior of
adversaries in the following experiment. The adversary is granted quantum ora-
cle access to the MAC, “blinded” at a random region B. Specifically, we set B to
be a random ε-fraction of the message space, and declare that the oracle function
will output ⊥ on all of B.

BεMack(x) :=

{
⊥ if x ∈ Bε,

Mack(x) otherwise.

Given a MAC (Mac,Ver), an adversary A, and A-selected parameter ε, the “blind
forgery experiment” is:

3 Compared to the standard quantum oracle for a classical function, GYZ require the
output register to be empty prior to the query.
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1. Generate key k and random blinding Bε;
2. Produce candidate forgery (m, t) ← ABεMack(1n).
3. Output win if Verk(m, t) = acc and m ∈ Bε; otherwise output rej.

Definition 1. A MAC is blind-unforgeable (BU) if for every adversary (A, ε),
the probability of winning the blind forgery experiment is negligible.

In this work, BU will typically refer to the case where A is an efficient
quantum algorithm (QPT) and the oracle is quantum, i.e., |x〉|y〉 �→ |x〉|y ⊕
BεMack(x)〉. We will also consider q-BU, the information-theoretic variant where
the total number of queries is a priori fixed to q. We remark that the above defi-
nition is also easy to adapt to other settings, e.g., classical security against PPT
adversaries, quantum or classical security for digital signatures, etc.

We remark that one could define a variant of the above where the adversary
is allowed to describe the blinding distribution, rather than it being uniform.
However, this is not a stronger notion. By a straightforward argument, an adver-
sary wins in the chosen-blinding BU game if and only if it wins with a uniform
ε-blinding for inverse-polynomial ε. Indeed, the adversary can just simulate its
chosen blinding herself, and this still succeeds with inverse polynomial probabil-
ity when interacting with a standard-blinded oracle (see Theorem2 below).

Results about blind-unforgeability. To solidify our confidence in the new
notion, we collect a series of results which we believe establish BU as a definition
of unforgeability that captures the desired intuitive security requirement. In par-
ticular, we show that BU is strictly stronger than previous candidate definitions,
and that it classifies a wide range of representative examples (in fact, all exam-
ples examined thus far) as either forgeable or unforgeable in a way that agrees
with cryptographic intuition.

Relations and characterizations. First, we show that BU correctly classifies
unforgeability in the classical-query setting: it is equivalent to the classical
unforgeability notion of EUF-CMA (existential unforgeability against chosen-
message attack). Then, we show that it implies PO.

Theorem 1. If a function family is BU-unforgeable, then it is PO-unforgeable.

One key technical component of the proof is a general simulation theorem,
which tightly controls the deviation in the behavior of an algorithm when sub-
jected to the BU experiment.

Theorem 2. Let A be a quantum query algorithm making at most T queries.
Let f : X → Y be a function, Bε a random ε-blinding subset of X, and for each
B ⊂ X, let gB a function with support B. Then

E
Bε

∥∥Af (1n) − Af⊕gBε (1n)
∥∥
1

≤ 2T
√

ε.

This result can be viewed as strong evidence that algorithms that pro-
duce “good forgeries” in any reasonable sense will also win the BU experiment.
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Specifically, adversaries that produce “good forgeries” will not be disturbed too
much by blinding, and will thus in fact also win the BU experiment with non-
negligible probability.

We can formulate and prove this intuition explicitly for a wide class of adver-
saries, as follows. Given an oracle algorithm A, we let supp(A) denote the union
of the supports of all the queries of A, taken over all choices of oracle function.

Theorem 3 (informal). Let A be QPT and supp(A) ∩ R = ∅ for some R �= ∅.
Let Mac be a MAC, and suppose AMack(1n) outputs a valid pair (m,Mack(m))
with m ∈ R with noticeable probability. Then Mac is not BU secure.

Blind-unforgeable MACs. Next, we show that several natural constructions sat-
isfy BU. We first show that a random function is blind-unforgeable.

Theorem 4. Let R : X → Y be a random function such that 1/|Y | is negligible.
Then R is a blind-unforgeable MAC.

By means of results of Zhandry [29] and Boneh and Zhandry [7], this leads
to efficient BU-secure constructions.

Corollary 1. Quantum-secure pseudorandom functions (qPRF) are BU-secure
MACs, and (4q+1)-wise independent functions are q-BU-secure MACs.

We can then invoke a recent result about the quantum-security of domain-
extension schemes such as NMAC and HMAC [24], and obtain variable-length
BU-secure MACs from any qPRF.

In the setting of public verification, we show that the one-time Lamport
signature scheme [19] is BU-secure, provided that the underlying hash function
family R : X → Y is modeled as a random oracle.

Theorem 5. Let R : X → Y be a random function family. Then the Lamport
scheme LR is BU against adversaries which make one quantum query to LR and
poly-many quantum queries to R.

Hash-and-MAC. Consider the following natural variation on the blind-forgery
experiment. To blind F : X → Y , we first select a hash function h : X → Z
and a blinding set Bε ⊆ Z; we then declare that F will be blinded on x ∈ X
whenever h(x) ∈ Bε. We refer to this as “hash-blinding.” We say that a hash
function h is a Bernoulli-preserving hash if, for every oracle function F , no QPT
can distinguish between an oracle that has been hash-blinded with h, and an
oracle that has been blinded in the usual sense. Recall the notion of collapsing
from [27].

Theorem 6. Let h : X → Y be a hash function. If h is Bernoulli-preserving
hash, then it is also collapsing. Moreover, against adversaries with classical ora-
cle access, h is a Bernoulli-preserving hash if and only if it is collision-resistant.

We apply this new notion to show security of the Hash-and-MAC construc-
tion Πh = (Mach,Verh) with Mach

k(m) := Mack(h(m)).

Theorem 7. Let Π = (Mack,Verk) be a BU-secure MAC with Mack : X → Y ,
and let h : Z → X a Bernoulli-preserving hash. Then Πh is a BU-secure MAC.
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We also show that the Bernoulli-preserving property can be satisfied by pseu-
dorandom constructions, as well as a (public-key) hash based on lossy functions
from LWE [20,26].

A concrete “counterexample” for PO. Supporting our motivation to devise
a new unforgeability definition, we present a construction of a MAC which is
forgeable (in a strong intuitive sense) and yet is classified by PO as secure.

Construction 8. Given a triple k = (p, f, g) where p ∈ {0, 1}n and f, g :
{0, 1}n → {0, 1}n, define Mk : {0, 1}n+1 → {0, 1}2n by

Mk(x) =

⎧⎪⎨
⎪⎩

02n x = 0‖p,

0n‖f(x′) x = 0‖x′, x′ �= p,

g(x′ mod p)‖f(x′) x = 1‖x′.

Define gp(x) := g(x mod p) and consider an adversary that queries only on
messages starting with 1, as follows:∑

x,y

|1, x〉X |0n〉Y1 |y〉Y2 �−→
∑
x,y

|1, x〉X |gp(x)〉Y1 |y ⊕ f(x)〉Y2 ; (1)

discarding the first qubit and Y2 then yields
∑

x |x〉|gp(x)〉, as
∑

y |y⊕f(x)〉Y2 =∑
y |y〉Y2 . One can then recover p via period-finding and output (0‖p, 02n). We

emphasize that the forgery was queried with zero amplitude. In practice, we can
interpret it as, e.g., the attacker queries only on messages starting with “From:
Alice” and then forges a message starting with “From: Bob”. Despite this, we
can show that it is PO-secure.

Theorem 9. The family Mk (for uniformly random k = (p, f, g)) is PO-secure.

The PO security of M relies on a dilemma the adversary faces at each query:
either learn an output of f , or obtain a superposition of (x, g(x))-pairs for Fourier
sampling. Our proof shows that, once the adversary commits to one of these two
choices, the other option is irrevocably lost. Our result can thus be understood
as a refinement of an observation of Aaronson: quantumly learning a property
sometimes requires uncomputing some information [1]. Note that, while Aaron-
son could rely on standard (asymptotic) query complexity techniques, our prob-
lem is quite fragile: PO security describes a task which should be hard with q
queries, but is completely trivial given q + 1 queries. Our proof makes use of a
new quantum random oracle technique of Zhandry [30].

EUF-CMA
[7]⇐⇒ PO

Proposition 2⇐⇒ BU

Unforgeability against classical adversaries

PO
Corollary 2

�=⇒
⇐=

Theorem 1
BU

Observation
�=⇒
⇐=

Corollary 1
qPRF

Unforgeability against quantum adversaries

Fig. 1. Relationship between different unforgeability notions
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A straightforward application of Theorem3 shows that Construction 8 is BU-
insecure. In particular, we have the following.

Corollary 2. There exists a PO-secure MAC which is BU-insecure.

The relationship between BU, PO some other notions are visualized in Fig. 1.

3 Preliminaries

Basic notation, conventions. Given a finite set X, the notation x ∈R X will
mean that x is a uniformly random element of X. Given a subset B of a set X,
let χB : X → {0, 1} denote the characteristic function of B, i.e., χB(x) = 1 if
x ∈ B and χB(x) = 0 else. When we say that a classical function F is efficiently
computable, we mean that there exists a uniform family of deterministic classi-
cal circuits which computes F . We will consider three classes of algorithms: (i)
unrestricted algorithms, modeling computationally unbounded adversaries, (ii)
probabilistic poly-time algorithms (PPTs), modeling classical adversaries, and
(iii) quantum poly-time algorithms (QPTs), modeling quantum adversaries. We
assume that the latter two are given as polynomial-time uniform families of cir-
cuits. For PPTs, these are probabilistic circuits. For QPTs, they are quantum
circuits, which may contain both unitary gates and measurements. We will often
assume (without loss of generality) that the measurements are postponed to the
end of the circuit, and that they take place in the computational basis. Given an
algorithm A, we let A(x) denote the (in general, mixed) state output by A on
input x. In particular, if A has classical output, then A(x) denotes a probability
distribution. Unless otherwise stated, the probability is taken over all random
coins and measurements of A, and any randomness used to select the input x.
If A is an oracle algorithm and F a classical function, then AF (x) is the mixed
state output by A equipped with oracle F and input x; the probability is now
also taken over any randomness used to generate F .

We will distinguish between two ways of presenting a function F : {0, 1}n →
{0, 1}m as an oracle. First, the usual “classical oracle access” simply means that
each oracle call grants one classical invocation x �→ F (x). This will always be
the oracle model for PPTs. Second, “quantum oracle access” will mean that each
oracle call grants an invocation of the (n+m)-qubit unitary gate |x〉|y〉 �→ |x〉|y⊕
F (x)〉. For us, this will always be the oracle model for QPTs. Note that both QPTs
and unrestricted algorithms could in principle receive either oracle type.

We will need the following lemma. We use the formulation from [8, Lemma
2.1], which is a special case of a more general “pinching lemma” of Hayashi [15].

Lemma 1. Let A be a quantum algorithm and x ∈ {0, 1}∗. Let A0 be another
quantum algorithm obtained from A by pausing A at an arbitrary stage of exe-
cution, performing a partial measurement that obtains one of k outcomes, and
then resuming A. Then Pr[A0(1n) = x] ≥ Pr[A(1n) = x]/k.

We denote the trace distance between states ρ and σ by δ(ρ, σ). Recall its
definition via the trace norm, i.e., δ(ρ, σ) = (1/2)‖ρ − σ‖1. When ρ and σ are
classical states, the trace distance is equal to the total variation distance.
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Quantum-secure pseudorandomness. A quantum-secure pseudorandom
function (qPRF) is a family of classical, deterministic, efficiently-computable
functions which appear random to QPT adversaries with quantum oracle access.

Definition 2. An efficiently computable function family f : K × X → Y is a
quantum-secure pseudorandom function (qPRF) if, for all QPTs D,∣∣∣ Pr

k∈RK

[Dfk(1n) = 1
]− Pr

g∈RFY
X

[Dg(1n) = 1
]∣∣∣ ≤ negl(n).

Here FY
X denotes the set of all functions from X to Y . The standard “GGM+GL”

construction of a PRF yields a qPRF when instantiated with a quantum-secure
one-way function [29]. One can also construct a qPRF directly from the Learning
with Errors assumption [29]. If we have an a priori bound on the number of
allowed queries, then a computational assumption is not needed.

Theorem 10. (Lemma 6.4 in [7]). Let q, c ≥ 0 be integers, and f : K ×X →
Y a (2q+c)-wise independent family of functions. Let D be an algorithm making
no more than q quantum oracle queries and c classical oracle queries. Then

Pr
k∈RK

[Dfk(1n) = 1
]

= Pr
g∈RFY

X

[Dg(1n) = 1
]
.

PO-unforgeability. Boneh and Zhandry define unforgeability (against quantum
queries) for classical MACs as follows [7]. They also show that random functions
satisfy this notion.

Definition 3. Let Π = (KeyGen,Mac,Ver) be a MAC with message set X. Con-
sider the following experiment with an algorithm A:

1. Generate key: k ← KeyGen(1n).
2. Generate forgeries: A receives quantum oracle for Mack, makes q queries, and

outputs a string s;
3. Outcome: output win if s contains q + 1 distinct input-output pairs of Mack,

and fail otherwise.

We say that Π is PO-secure if no adversary can succeed at the above experiment
with better than negligible probability.

The Fourier Oracle. Our separation proof will make use of a new technique of
Zhandry [30] for analyzing random oracles. We briefly describe this framework.

A random function f from n bits to m bits can be viewed as the outcome
of a quantum measurement. More precisely, let HF =

⊗
x∈{0,1}n HFx

, where
HFx

∼= C
2m

. Then set f(x) ← MFx
(ηF ) with ηF = |φ0〉〈φ0|⊗2n

, |φ0〉 = 2− m
2∑

y∈{0,1}m |y〉, and where MFx
denotes the measurement of the register Fx in

the computational basis. This measurement commutes with any CNOTA:B gate
with control qubit A in Fx and target qubit B outside Fx. It follows that, for any
quantum algorithm making queries to a random oracle, the output distribution
is identical if the algorithm is instead run with the following oracle:
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1. Setup: prepare the state ηF .
2. Upon a query with query registers X and Y , controlled on X being in state

|x〉, apply (CNOT⊗m)Fx:Y .
3. After the algorithm has finished, measure F to determine the success of the

computation.

We denote the oracle unitary defined in step 2 above by UO
XY F . Having

defined this oracle representation, we are free to apply any unitary UH to
the oracle state, so long as we then also apply the conjugated query unitary
UH(CNOT⊗m)Fx:Y U†

H in place of UO
XY F . We choose UH = H⊗m2n

, which means
that the oracle register starts in the all-zero state now. Applying Hadamard to
both qubits reverses the direction of CNOT, i.e., HA ⊗HBCNOTA:BHA ⊗HB =
CNOTB:A, so the adversary-oracle-state after a first query with query state
|x〉X |φy〉Y is

|x〉X |φy〉Y |0m〉⊗2n �−→ |x〉X |φy〉Y |0m〉⊗(lex(x)−1)|y〉Fx
|0m〉⊗(2n−lex(x)), (2)

where lex(x) denotes the position of x in the lexicographic ordering of {0, 1}n,
and we defined the Fourier basis state |φy〉 = H⊗m|y〉. In the rest of this section,
we freely change the order in which tensor products are written, and keep track
of the tensor factors through the use of subscripts. This adjusted representation
is called the Fourier oracle (FO), and we denote its oracle unitary by

UFO
XY F =

(
H⊗m2n

)
F

UO
XY F

(
H⊗m2n

)
F

.

An essential fact about the FO is that each query can only change the number
of non-zero entries in the FO’s register by at most one. To formalize this idea,
we define the “number operator” NF =

∑
x∈{0,1}n(1−|0〉〈0|)Fx

⊗1⊗(2n−1). The
number operator can also be written in its spectral decomposition,

NF =
2n∑
l=0

lPl where Pl =
∑
r∈Sl

|r〉〈r|,

Sl =
{

r ∈ ({0, 1}m)2
n
∣∣∣|{x ∈ {0, 1}n|rx �= 0}| = l

}
.

Note that the initial joint state of a quantum query algorithm and the oracle (in
the FO-oracle picture described above) is in the image of P0. The following fact
is essential in working with the Fourier Oracle; the proof is given in AppendixA.

Lemma 2. The number operator satisfies
∥∥[NF , UFO

XY F

]∥∥
∞ = 1. In particular,

the joint state of a quantum query algorithm and the oracle after the q-th query
is in the kernel of Pl for all l > q.
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4 The New Notion: Blind-Unforgeability

Formal definition. For ease of exposition, we begin by introducing our new
security notion in a form analogue to the standard notion of existential unforge-
ability under chosen-message attacks, EUF-CMA. We will also later show how to
extend our approach to obtain a corresponding analogue of strong unforgeability.
We begin by defining a “blinding” operation. Let f : X → Y and B ⊆ X. We let

Bf(x) =

{
⊥ if x ∈ B,

f(x) otherwise.

We say that f has been “blinded” by B. In this context, we will be particularly
interested in the setting where elements of X are placed in B independently at
random with a particular probability ε; we let Bε denote this random variable.
(It will be easy to infer X from context, so we do not reflect it in the notation.)

Next, we define a security game in which an adversary is tasked with using
a blinded MAC oracle to produce a valid input-output pair in the blinded set.

Definition 4. Let Π = (KeyGen,Mac,Ver) be a MAC with message set X. Let
A be an algorithm, and ε : N → R≥0 an efficiently computable function. The
blind forgery experiment BlindForgeA,Π(n, ε) proceeds as follows:
1. Generate key: k ← KeyGen(1n).
2. Generate blinding: select Bε ⊆ X by placing each m into Bε independently

with probability ε(n).
3. Produce forgery: (m, t) ← ABεMack(1n).
4. Outcome: output 1 if Verk(m, t) = acc and m ∈ Bε; otherwise output 0.

We say that a scheme is blind-unforgeable if, for any efficient adversary, the
probability of winning the game is negligible. The probability is taken over the
choice of key, the choice of blinding set, and any internal randomness of the
adversary. We remark that specifying an adversary requires specifying (in a
uniform fashion) both the algorithm A and the blinding fraction ε.

Definition 5. A MAC Π is blind-unforgeable (BU) if for every polynomial-time
uniform adversary (A, ε), Pr

[
BlindForgeA,Π(n, ε(n)) = 1] ≤ negl(n).

We also define the “q-time” variant of the blinded forgery game, which is
identical to Definition 4 except that the adversary is only allowed to make q
queries to BεMack in step (3). We call the resulting game BlindForgeq

A,Π(n, ε),
and give the corresponding definition of q-time security (now against computa-
tionally unbounded adversaries).

Definition 6. A MAC Π is q-time blind-unforgeable (q-BU) if for every q-query
adversary (A, ε), we have Pr

[
BlindForgeq

A,Π(n, ε(n)) = 1] ≤ negl(n).

The above definitions are agnostic regarding the computational power of the
adversary and the type of oracle provided. For example, selecting PPT adver-
saries and classical oracles in Definition 5 yields a definition of classical unforge-
ability; we will later show that this is equivalent to standard EUF-CMA. The
main focus of our work will be on BU against QPTs with quantum oracle access,
and q-BU against unrestricted adversaries with quantum oracle access.
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Some technical details. We now remark on a few details in the usage of BU.
First, strictly speaking, the blinding sets in the security games above cannot be
generated efficiently. However, a pseudorandom blinding set will suffice. Pseudo-
random blinding sets can be generated straightforwardly using an appropriate
pseudorandom function, such as a PRF against PPTs or a qPRF against QPT. A
precise description of how to perform this pseudorandom blinding is given in the
proof of Corollary 3. Note that simulating the blinding requires computing and
uncomputing the random function, so we must make two quantum queries for
each quantum query of the adversary. Moreover, verifying whether the forgery is
in the blinding set at the end requires one additional classical query. This means
that (4q + 1)-wise independent functions are both necessary and sufficient for
generating blinding sets for q-query adversaries (see [7, Lemma 6.4]). In any
case, an adversary which behaves differently in the random-blinding game ver-
sus the pseudorandom-blinding game immediately yields a distinguisher against
the corresponding pseudorandom function.

The Blinding Symbol. There is some flexibility in how one defines the blinding
symbol ⊥. In situations where the particular instantiation of the blinding symbol
might matter, we will adopt the convention that the blinded version Bf of
f : {0, 1}n → {0, 1}� is defined by setting Bf : {0, 1}n → {0, 1}�+1, where
Bf(m) = 0�||1 if m ∈ B and Bf(m) = f(m)||0 otherwise. One advantage of this
convention (i.e., that ⊥ = 0�||1) is that we can compute on and/or measure the
blinded bit (i.e., the (
 + 1)-st bit) without affecting the output register of the
function. This will also turn out to be convenient for uncomputation.

Strong Blind-Unforgeability. The security notion BU given in Definition 5 is an
analogue of simple unforgeability, i.e., EUF-CMA, for the case of a quantum-
accessible MAC/Signing oracle. It is, however, straightforward to define a corre-
sponding analogue of strong unforgeability, i.e., SUF-CMA, as well.

The notion of strong blind-unforgeability, sBU, is obtained by a simple adjust-
ment compared to BU: we blind (message, tag) pairs rather than just messages.
We briefly describe this for the case of MACs. Let Π = (KeyGen,Mac,Ver)
be a MAC with message set M , randomness set R and tag set T , so that
Mack : M × R → T and Verk : M × T → {acc, rej} for every k ← KeyGen.
Given a parameter ε and an adversary A, the strong blind forgery game pro-
ceeds as follows:

1. Generate key: k ← KeyGen; generate blinding: select Bε ⊆ M × T by placing
pairs (m, t) in Bε independently with probability ε;

2. Produce forgery: produce (m, t) by executing A(1n) with quantum oracle
access to the function

BεMack;r(m) :=

{
⊥ if (m,Mack(m; r)) ∈ Bε,

Mack(m; r) otherwise.

where r is sampled uniformly for each oracle call.
3. Outcome: output 1 if Verk(m, t) = acc ∧ (m, t) ∈ Bε; otherwise output 0.



Quantum-Secure Message Authentication 799

Security is then defined as before: Π is sBU-secure if for all adversaries A (and
their declared ε), the success probability at winning the above game is negligi-
ble. Note that, for the case of canonical MACs, this definition coincides with
Definition 5, just as EUF-CMA and SUF-CMA coincide in this case.

5 Intuitive Security and the Meaning of BU

In this section, we gather a number of results which build confidence in BU as
a correct definition of unforgeability in our setting. We begin by showing that a
wide range of “intuitively forgeable” MACs (indeed, all such examples we have
examined) are correctly characterized by BU as insecure.

Intuitively forgeable schemes. As indicated earlier, BU security rules out any
MAC schemes where an attacker can query a subset of the message space and
forge outside that region. To make this claim precise, we first define the query
support supp(A) of an oracle algorithm A. Let A be a quantum query algorithm
with oracle access to the quantum oracle O for a classical function from n to m
bits. Without loss of generality A proceeds by applying the sequence of unitaries
OUqOUq−1...U1 to the initial state |0〉XY Z , followed by a POVM E . Here, X and
Y are the input and output registers of the function and Z is the algorithm’s
workspace. Let |ψi〉 be the intermediate state of of A after the application of
Ui. Then supp(A) is defined to be the set of input strings x such that there
exists a function f : {0, 1}n → {0, 1}m such that 〈x|X |ψi〉 �= 0 for at least one
i ∈ {1, ..., q} when O = Of .

Theorem 11. Let A be a QPT such that supp(A) ∩ R = ∅ for some R �= ∅. Let
Mac be a MAC, and suppose AMack(1n) outputs a valid pair (m,Mack(m)) with
m ∈ R with non-negligible probability. Then Mac is not BU-secure.

To prove Theorem 11, we will need the following theorem, which controls the
change in the output state of an algorithm resulting from applying a blinding
to its oracle. Given an oracle algorithm A and two oracles F and G, the trace
distance between the output of A with oracle F and A with oracle G is denoted
by δ(AF (1n),AG(1n)). Given two functions F, P : {0, 1}n → {0, 1}m, we define
the function F ⊕ P by (F ⊕ P )(x) = F (x) ⊕ P (x).

Theorem 12. Let A be a quantum query algorithm making at most T queries,
and F : {0, 1}n → {0, 1}m a function. Let B ⊆ {0, 1}n be a subset chosen
by independently including each element of {0, 1}n with probability ε, and P :
{0, 1}n → {0, 1}m be any function with support B. Then

EB

[
δ
(AF (1n),AF⊕P (1n)

)] ≤ 2T
√

ε.

The proof is a relatively straightforward adaptation of a hybrid argument
in the spirit of the lower bound for Grover search [5]. We provide the complete
proof in the full version [4]. We are now ready to prove Theorem 11.
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Proof ( of Theorem 11). Let A be a quantum algorithm with supp(A) for any
oracle. By our hypothesis,

p̃ := Prk,(m,t)←AMack (1n) [Mack(m) = t ∧ m /∈ supp(A)] ≥ n−c ,

for some c > 0 and sufficiently large n. Since supp(A) is a fixed set, we can think
of sampling a random Bε as picking B0 := Bε ∩ supp(A) and B1 := Bε ∩ supp(A)
independently. Let “blind” denote the random experiment of A running on Mack

blinded by a random Bε: k,Bε, (m, t) ← ABεMack(1n), which is equivalent to
k,B0, B1, (m, t) ← AB0Mack(1n). The probability that A wins the BU game is

p := Pr
blind

[f(m) = t ∧ m ∈ Bε] ≥ Pr
blind

[f(m) = t ∧ m ∈ B′]

≥ Pr
blind

[f(m) = t ∧ m ∈ B′ | m /∈ supp(A)] · Pr
blind

[m /∈ supp(A)]

= Pr
f,B0

(m,t)←ABf

[f(m) = t ∧ m /∈ supp(A)] · Pr
f,B′

(m,t)←ABf

[m ∈ B′|m /∈ supp(A)]

≥ (p̃ − 2T
√

ε
)
ε ≥ p̃3

27T 2
.

Here the second-to-last step follows from Theorem 12; in the last step, we chose
ε = (p̃/3T )2. We conclude that A breaks the BU security of the MAC. ��

Relationship to other definitions. As we will show in Sect. 7, PO fails to
capture certain prediction algorithms. It does, however, capture a natural family
of attacks and should hence be implied by a good security notion. In this section
we show that our new definition, BU, indeed implies PO. To this end, we first
introduce a natural weaker variant of BU that we call measured BU, or mBU.

Definition 7. The measured ε-blinded oracle for a function f : {0, 1}n →
{0, 1}m is the oracle that first applies the ε-blinded oracle for f and then performs
the projective measurement |⊥〉〈⊥| vs. 1− |⊥〉〈⊥|. A scheme Π is measured-BU,
or mBU, secure, if for all ε > 0 and all QPT adversaries A, the winning proba-
bility in the BU game when provided with a measured ε-blinded oracle instead of
a ε-blinded oracle, is negligible.

A straightforward reduction argument shows that BU implies mBU.

Proposition 1. Let Π be a BU (k − BU)-secure MAC. Then Π is mBU (k −
mBU)-secure.

Proof. Let A be an mBU-adversary against Π. We construct a BU-adversary A′

against Π as follows. A′ runs A. For each query that A makes to the measured
ε-blinded oracle, A′ queries the ε-blinded oracle and performs the “blinded or
not” measurement before returning the answer to A. Clearly the probabilities
for A′ winning the BU and for A winning the mBU game are the same. ��
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For the following proof we need a generalization of Zhandry’s superposition
oracle technique to functions drawn from a non-uniform distribution. Such has
been developed in detail in [11]. As for the proof of Theorem21, we do not need
the more complicated (but efficiently implementable) compressed oracle. Hence
we introduce only the basic non-uniform superposition oracle. The generalization
is straight-forward. In [30], a uniformly random function f : {0, 1}n → {0, 1}m

is sampled by preparing 2n m-qubit uniform superposition states. The measure-
ment that performs the actual sampling is delayed, which allows for new ways
of analyzing the behavior of a query algorithm by inspecting the oracle registers.
Here, we woudl like to use the superposition oracle representation for the indi-
cator function 1Bε

: {0, 1}n → {0, 1} of the blinding set Bε. This is a Boolean
function with Pr [1Bε

(x) = 1] = ε independently for all x ∈ {0, 1}n.
We will sample 1Bε

by preparing 2n qubits in the state

|ηε
0〉 =

√
1 − ε|0〉 +

√
ε|1〉, (3)

i.e., we prepare the 2n-qubit oracle register F in the state(
|ηε

0〉⊗2n
)

F
=

⊗
x∈{0,1}⊗n

|ηε
0〉Fx

. (4)

We will refrain from fourier-transforming any registers, so if the adversaries
query registers are X and B (the input register and the blinding bit register),
the oracle unitary is just given by

UStO =
∑

x∈{0,1}n

|x〉〈x|X ⊗ CNOTFx:B. (5)

We can also define the generalization of the projectors P�. To this end we com-
plete |ηε

0〉 to an orthonormal basis by introducing the state

|ηε
1〉 =

√
ε|0〉 − √

1 − ε|1〉. (6)

Let further Uε be the unitary such that Uε|i〉 = |ηε
i 〉. The generalization of

P� is now defined by P ε
� = UεP�U

†
ε . As UStO is a sum of terms that each act

non-trivially only on one out of the 2n Fx registers, the analogue of Lemma 2
clearly holds, i.e., if |ψq〉 is the joint algorithm-oracle state after q queries to the
superposition oracle for 1Bε

, then P ε
� |ψq〉 = 0 for all 
 > q.

We are now ready to prove that BU security implies PO security.

Theorem 13. Let Π be a BU-secure MAC. Then Π is PO-secure.

Proof. According to Proposition 1, Π is mBU secure. It therefore suffices to find
a reduction from breaking mBU to breaking PO. Let A be a q query PO adversary
against Π, i.e., an algorithm that makes q queries and outputs q +1 pairs (xi, ti)
with the goal that ti = Mack(xi) for all i = 1, ..., q + 1. We construct an mBU-
adversary A′ as follows. The adversary A′ runs A, answering the queries using
the measured ε-blinded oracle for Mack. If for any of the queries the result is ⊥,
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A′ aborts. In this case we formally define A’s output to be ⊥. After (and if) A
has finished by outputting q +1 candidate message-tag pairs (mi, ti), A′ chooses
i ∈R {1, ..., q + 1} and outputs (mi, ti).

According to Theorem2, the trace distance between the distribution of the
q + 1 candidate message tag pairs that A outputs only changes by δ = 2q

√
ε

in total variational distance when run with the measured ε-blinded oracle as
done as a subroutine of A′. It follows that with at least probability pA

succ − δ, all
q+1 outputs of A ar valid message-tag-pairs, where pA

succ is the probability with
which A wins the PO game when provided with an unblinded Mack-oracle.

For the rest of the proof we instantiate the blinding set using the super-
position oracle described above. In this case, the measured ε-blinded oracle is
implemented as follows. On input registers X and Y , create a blank qubit regis-
ter B and query the blinding function 1Bε

on XB. Measure B to obtain b (the
blinding bit). If b = 1, query the Mack-oracle on XY , otherwise add ⊥ to Y .
For the q-query algorithm A′, q queries are made to the superposition blinding
oracle. Afterwards the oracle register F is measured in the computational basis
to determine whether the output is blinded or not.

We continue by finding a lower bound on the probability that the message
output by A′ is blinded. To that end, consider the modified game, where after A′

has finished, but before measuring the oracle register F , we compute the small-
est index i ∈ {1, ..., q + 1} such that Fxi

is in state |η(ε)
0 〉 in superposition into

an additional register. Such an index always exists. This is because P ε
� |ψ〉 = 0

for all 
 > q, where |ψ〉 is the joint adversary-oracle state after the execution
of A′. Hence |ψ〉 is a superposition of states |β〉 =

⊗
x∈{0,1}n |ηε

βx
〉 for strings

β ∈ {0, 1}2n

of Hamming weight at most q. Now we measure the register to
obtain an outcome i0. But given outcome i0, the register Fmi0

is in state |ηε
0〉.

Now the oracle register is measured to determine the blinding set Bε ⊂ {0, 1}n.
The computation together with the measurement implements a (q + 1)-outcome
projective measurement on F . The probability that mi0 is blinded is ε indepen-
dently, so the success probability in the modified game is

p̃A′
succ ≥ ε

(
pA
succ − 2q

√
ε
)

q + 1
. (7)

Finally, we can apply Lemma 1 to conclude that adding the measurement has
not decreased the success probability by more than a factor 1/(q + 1), to con-
clude that the success probability of A′ in the unmodified mBU game is lower-
bounded by

pA′
succ ≥ ε

(
pA
succ − 2q

√
ε
)

(q + 1)2
. (8)

Choosing ε =
(
pA
succ/3q

)2 we obtain
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pA′
succ ≥

(
pA
succ

)3
27q2(q + 1)2

. (9)

In particular we have that pA′
succ is non-negligible if psucc was non-negligible. ��

1-BU also implies the notion by Garg et al. [14], see the full version [4].
In the purely classical setting, our notion is equivalent to EUF-CMA. Also,

sBU from Sect. 4 implies SUF-CMA.

Proposition 2. A MAC is EUF-CMA if and only if it is blind-unforgeable
against classical adversaries.

Proof. Set Fk = Mack. Consider an adversary A which violates EUF-CMA. Such
an adversary, given 1n and oracle access to Fk (for k ∈R {0, 1}n), produces a
forgery (m, t) with non-negligible probability s(n); in particular, |m| ≥ n and m
is not among the messages queried by A. This same adversary (when coupled
with an appropriate ε) breaks the system under the blind-forgery definition.
Specifically, let p(n) be the running time of A, in which case A clearly makes no
more than p(n) queries, and define ε(n) = 1/p(n). Consider now a particular k ∈
{0, 1}n and a particular sequence r of random coins for AFk(1n). If this run of A
results in a forgery (m, t), observe that with probability at least (1−ε)p(n) ≈ e−1

in the choice of Bε, we have Fk(q) = BεFk(q) for every query q made by A. On
the other hand, Bε(m) = ⊥ with (independent) probability ε. It follows φ(n, εn)
is at least εs(n)/e = Ω(s(n)/p(n)).

On the the other hand, suppose that (A, ε) is an adversary that breaks
blind-unforgeability. Consider now the EUF-CMA adversary A′Fk(1n) which sim-
ulates the adversary A(·)(1n) by answering oracle queries according to a locally-
simulated version of BεFk; specifically, the adversary A′ proceeds by drawing
a subset Bε(n) ⊆ {0, 1}∗ as described above and answering queries made by A
according to BεF . Two remarks are in order:

– When x ∈ Bε, this query is answered without an oracle call to F (x).
– A′ can construct the set Bε “on the fly,” by determining, when a particular

query q is made by A, whether q ∈ Bε and “remembering” this information
in case the query is asked again (“lazy sampling”).

With probability φ(n, ε(n)) A produces a forgery on a point which was not
queried by A′, as desired. It follows that A produces a (conventional) forgery
with non-negligible probability when given Fk for k ∈R {0, 1}n. ��

6 Blind-Unforgeable Schemes

Random schemes. We now show that suitable random and pseudorandom
function families satisfy our notion of unforgeability.

Theorem 14. Let R : X → Y be a uniformly random function such that 1/|Y |
is negligible in n. Then R is a blind-forgery secure MAC.
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Proof. For simplicity, we assume that the function is length-preserving; the proof
generalizes easily. Let A be an efficient quantum adversary. The oracle BεR
supplied to A during the blind-forgery game is determined entirely by Bε and
the restriction of R to the complement of Bε. On the other hand, the forgery
event

ABεFk(1n) = (m, t) ∧ |m| ≥ n ∧ Fk(m) = t ∧ BεFk(m) = ⊥
depends additionally on values of R at points in Bε. To reflect this decomposition,
given R and Bε define Rε : Bε → Y to be the restriction of R to the set
Bε and note that—conditioned on BεR and Bε—the random variable Rε is
drawn uniformly from the space of all (length-preserving) functions from Bε

into Y . Note, also, that for every n the purported forgery (m, t) ← ABεR(1n) is
a (classical) random variable depending only on BεR. In particular, conditioned
on Bε, (m, t) is independent of Rε. It follows that, conditioned on m ∈ Bε, that
t = Rε(m) with probability no more than 1/2n and hence φ(n, ε) ≤ 2−n, as
desired. ��

Next, we show that a qPRF is a blind-unforgeable MAC.

Corollary 3. Let m and t be poly(n), and F : {0, 1}n × {0, 1}m → {0, 1}t a
qPRF. Then F is a blind-forgery-secure fixed-length MAC (with length m(n)).

Proof. For a contradiction, let A be a QPT which wins the blind forgery game for
a certain blinding factor ε(n), with running time q(n) success probability δ(n).
We will use A to build a quantum oracle distinguisher D between the qPRF F
and the perfectly random function family F t

m with the same domain and range.
First, let k = q(n) and let H be a family of (4k + 1)-wise independent func-

tions with domain {0, 1}m and range {0, 1, . . . , 1/ε(n)}. The distinguisher D first
samples h ∈R H. Set Bh := h−1(0). Given its oracle Of , D can implement the
function Bhf (quantumly) as follows:

|x〉|y〉 �→|x〉|y〉|Hx〉|δh(x),0〉 �→ |x〉|y〉|Hx〉|δh(x),0〉|f(x)〉
�→|x〉|y ⊕ f(x) · (1 − δh(x),0)〉|Hx〉|δh(x),0〉|f(x)〉
�→|x〉|y ⊕ f(x) · (1 − δh(x),0)〉.

Here we used the CCNOT (Toffoli) gate from step 2 to 3 (with one control bit
reversed), and uncomputed both h and f in the last step. After sampling h, the
distinguisher D will execute A with the oracle Bhf . If A successfully forges a
tag for a message in Bh, A′ outputs “pseudorandom”; otherwise “random.”

Note that the function Bhf is perfectly ε-blinded if h is a perfectly random
function. Note also that the entire security experiment with A (including the
final check to determine if the output forgery is blind) makes at most 2k quan-
tum queries and 1 classical query to h, and is thus (by Theorem10) identically
distributed to the perfect-blinding case.

Finally, by Theorem14, the probability that D outputs “pseudorandom”
when f ∈R F t

m is negligible. By our initial assumption about A, the proba-
bility that D outputs “pseudorandom” becomes δ(n) when f ∈R F . It follows
that D distinguishes F from perfectly random. ��
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Next, we give a information-theoretically secure q-time MACs (Definition 6).

Theorem 15. Let H be a (4q + 1)-wise independent function family with range
Y , such that 1/|Y | is a negligible function. Then H is a q-time BU-secure MAC.

Proof. Let (A, ε) be an adversary for the q-time game BlindForgeq
A,h(n, ε(n)),

where h is drawn from H. We will use A to construct a distinguisher D between
H and a random oracle. Given access to an oracle O, D first runs A with the
blinded oracle BO, where the blinding operation is performed as in the proof
of Corollary 3 (i.e., via a (4q + 1)-wise independent function with domain size
1/ε(n)). When A is completed, it outputs (m,σ). Next, D queries O on the
message m and outputs 1 if and only if O(m) = σ and m ∈ B. Let γO be the
probability of the output being 1.

We consider two cases: (i) O is drawn as a random oracle R, and (ii) O
is drawn from the family H. By Theorem 10, since D makes only 2q quantum
queries and one classical query to O, its output is identical in the two cases.
Observe that γR (respectively, γH) is exactly the success probability of A in
the blind-forgery game with random oracle R (respectively, H). We know from
Theorem 14 that γR is negligible; it follows that γH is as well. ��

Several domain-extension schemes, including NMAC (a.k.a. encrypted cas-
cade), HMAC, and AMAC, can transform a fixed-length qPRF to a qPRF that
takes variable-length inputs [24]. As a corollary, starting from a qPRF, we also
obtain a number of quantum blind-unforgeable variable-length MACs.

Lamport one-time signatures. The Lamport signature scheme [19] is a EUF-
1-CMA-secure signature scheme, specified as follows.

Construction 16 (Lamport signature scheme, [19]). For the Lamport sig-
nature scheme using a hash function family h : {0, 1}n × {0, 1}n → {0, 1}n, the
algorithms KeyGen,Sign and Ver are specified as follows. KeyGen, on input 1n,
outputs a pair (pk, sk) with

sk = (sj
i )i∈{1,...,n},j=0,1, with sj

i ∈R {0, 1}n, and (10)

pk =
(

k,
(
pj

i

)
i∈{1,...,n},j=0,1

)
, with k ∈ {0, 1}n and pj

i = hk

(
sj

i

)
. (11)

The signing algorithm is defined by Signsk(x) = (sxi
i )i∈{1,...,n} where xi, i =

1, ..., n are the bits of x. The verification procedure checks the signature’s consis-
tency with the public key, i.e., Verpk(x, s) = 0 if pxi

i = hk(si) and Verpk(x, s) = 0
else.

We now show that the Lamport scheme is 1-BU secure in the quantum ran-
dom oracle model.

Theorem 17. If in Construction 16, h is modeled as a quantum-accessible ran-
dom oracle, it is 1-BU secure.
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We give a brief sketch of the proof; for details, see AppendixA. The proof uses
arguments analogous to the classical proof. This is made possible through the use
of the Fourier oracle technique (from Sect. 3) for both h and sk. The latter can be
understood as a uniformly random function sk : {0, ..., n − 1} × {0, 1} → {0, 1}n.
Subsequently we perform “forensics” on the oracle database after the adversary
has finished, in a similar way as in the proof of Theorem21. Let us first argue
that an adversary A that makes a signing query but no queries to h and outputs
(m,σ) does not succeed except with negligible probability. If m is blinded, then
there is at least one bit of m where the corresponding part of sk (and hence the
correct signature) is independent of σ. While this is only true in superposition,
we can break this superposition using an n-outcome measurement on the sk-
register, which does not change the success probability by much according to
Lemma 1.

For the general case, we observe that queries to h do not help, because they
will only have negligible support on the unqueried parts of sk. Concretely, we
show that the commutator of the oracle unitary for h and the projector on the
uniform superposition state (the initial state of the oracle register holding a part
of sk) is small in operator norm, which implies that an untouched sk register
remains untouched except with negligible amplitude, even in superposition.

A simple proof of the PO-security of a random function can be given using a
similar idea; see the full version [4].

Hash-and-MAC. To authenticate messages of arbitrary length with a fixed-
length MAC, it is common practice to first compress a long message by a
collision-resistant hash function and then apply the MAC. This is known as
Hash-and-MAC. However, when it comes to BU-security, collision-resistance may
not be sufficient. We therefore propose a new notion, Bernoulli-preserving hash,
generalizing collision-resistance in the quantum setting, and show that it is suf-
ficient for Hash-and-MAC with BU security. Recall that, given a subset B of a
set X, χB : X → {0, 1} denotes the characteristic function of B.

Definition 8 (Bernoulli-preserving hash). Let H : X → Y be an efficiently
computable function family. Define the following distributions on subsets of X:

1. Bε : generate Bε ⊆ X by placing x ∈ Bε independently with probability ε.
Output Bε.

2. BH
ε : generate Cε ⊆ Y by placing y ∈ Cε independently with probability ε.

Sample h ∈ H and define Bh
ε := {x ∈ X : h(x) ∈ Cε}. Output Bh

ε .

We say that H is a Bernoulli-preserving hash if for all adversaries (A, ε),∣∣∣ Pr
B←Bε

[AχB (1n) = 1] − Pr
B←BH

ε

[AχB (1n) = 1]
∣∣∣ ≤ negl(n).

The motivation for the name Bernoulli-preserving hash is simply that select-
ing Bε can be viewed as a Bernoulli process taking place on the set X, while Bh

ε

can be viewed as the pullback (along h) of a Bernoulli process taking place on Y .



Quantum-Secure Message Authentication 807

We show that the standard, so-called “Hash-and-MAC” construction will
work w.r.t. to BU security, if we instantiate the hash function with a Bernoulli-
preserving hash. Recall that, given a MAC Π = (Mack,Verk) with message set
X and a function h : Z → X, there is a MAC Πh := (Mach

k ,Verhk) with message
set Z defined by Mach

k = Mack ◦ h and Verhk(m, t) = Verk(h(m), t).

Theorem 18 (Hash-and-MAC with Bernoulli-preserving hash).
Let Π = (Mack,Verk) be a BU-secure MAC with Mack : X → Y , and let h : Z →
X a Bernoulli-preserving hash. Then Πh is a BU-secure MAC.

The proof follows in a straightforward way from the definitions of BU and
Bernoulli-preserving hash; the details are in the full version [4].

In AppendixB, we also provide a number of additional results about
Bernoulli-preserving hash functions. These results can be summarized as follows.

Theorem 19. We prove the following about Bernoulli-preserving hash func-
tions.

– If H is a random oracle or a qPRF, then it is a Bernoulli-preserving hash.
– If H is 4q-wise independent, then it is a Bernoulli-preserving hash against

q-query adversaries.
– Under the LWE assumption, there is a (public-key) family of Bernoulli-

preserving hash functions.
– If we only allow classical oracle access, then the Bernoulli-preserving property

is equivalent to standard collision-resistance.
– Bernoulli-preserving hash functions are collapsing (another quantum gener-

alization of collision-resistance proposed in [27]).

7 The Problem with PO-Unforgeability

Our search for a new definition of unforgeability for quantum-secure authentica-
tion is partly motivated by concerns about the PO security notion [7]. In this
section, we make these concerns concrete by pointing out a significant security
concern not addressed by this definition. Specifically, we demonstrate a MAC
which is readily broken with an efficient attack, and yet is PO secure. The attack
queries the MAC with a superposition over a particular subset S of the message
space, and then forges a valid tag for a message lying outside S.

One of the intuitive issues with PO is that it might rule out adversaries that
have to measure, and thereby destroy, one or more post-query states to produce
an interesting forgery. Constructing such an example seems not difficult at first.
For instance, let us look at one-time PO, and construct a MAC from a qPRF f
by sampling a key k for f and a superpolynomially-large prime p, and setting

Mack,p(m) =

{
0n if m = p,

(fk(m mod p)) otherwise.
(12)

This MAC is forgeable: a quantum adversary can use a single query to perform
period-finding on the MAC, and then forge at 0n. Intuitively, it seems plausible
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that the MAC is 1-PO secure as period-finding uses a full measurement. This is
incorrect for a somewhat subtle reason: identifying the hidden symmetry does
not necessarily consume the post-query state completely, so an adversary can
learn the period and a random input-output-pair of the MAC simultaneously.
As shown in the full version [4] this is a special case of a fairly general situation,
which makes establishing a proper PO “counterexample” difficult.

A counterexample to PO. Another intuitive problem with PO is that using
the contents of a register can necessitate uncomputing the contents of another
one. We exploit this insufficiency in the counterexample below. Consider the
following MAC construction.

Construction 20. Given k = (p, f, g, h) where p ∈ {0, 1}n is a random period
and f, g, h : {0, 1}n → {0, 1}n are random functions, define Mk : {0, 1}n+1 →
{0, 1}2n by

Mk(x) =

⎧⎪⎨
⎪⎩

g(x′ mod p)‖f(x′) x = 1‖x′,
0n‖h(x′) x = 0‖x′, x′ �= p,

02n x = 0‖p.

Consider an adversary that queries as follows∑
x,y

|1, x〉X |0n〉Y1 |y〉Y2 �−→
∑
x,y

|1, x〉X |gp(x)〉Y1 |y ⊕ f(x)〉Y2 , (13)

and then discards the first qubit and the Y2 register; this yields
∑

x |x〉|gp(x)〉.
The adversary can extract p via period-finding from polynomially-many such
states, and then output (0‖p, 02n). This attack only queries the MAC on messages
starting with 1 (e.g., “from Alice”), and then forges at a message which starts
with 0 (e.g., “from Bob.”) We emphasize that the forgery was never queried, not
even with negligible amplitude. It is thus intuitively clear that this MAC does
not provide secure authentication. And yet, despite this obvious and intuitive
vulnerability, this MAC is in fact PO-secure.

Theorem 21. The MAC from Construction 20 is PO-secure.

The proof of this theorem can be found in the full version [4]. The proof idea
is as follows. The superposition oracle technique outlined in Sect. 3 achieves some-
thing that naively seems impossible due to the quantum no-cloning theorem: it
records on which inputs the adversary has made non-trivial4 queries. The infor-
mation recorded in this way cannot, in general be utilized in its entirety – after
all, the premise of the superposition oracle is that the measurement MF that
samples the random function is delayed until after the algorithm has finished,
but it still has to be performed. Any measurement M′ that does not commute

4 For the standard unitary oracle for a classical function, a query has no effect when
the output register is initialized in the uniform superposition of all strings.
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with MF and is performed before MF , can disturb the outcome of MF . If how-
ever, M′ only has polynomially many possible outcomes, that disturbance is at
most inverse polynomial according to Lemma 1.

Here, we sample the random function f using a superposition oracle, and we
chose to use a measurement M′ to determine the number of nontrivial queries
that the adversary has made to f , which is polynomial by assumption. Random
functions are PO-secure [7], so the only way to break PO security is to output
(0‖p, 02n) and q other input-output-pairs. Querying messages that start with
0 clearly only yields a negligible advantage in guessing p by the Grover lower
bound, so we consider an adversary querying only on strings starting with 1. We
distinguish two cases, either the adversary makes or exactly q non-trivial queries
to f , or less than that. In the latter case, the success probability is negligible
by the PO-security of f and h. In the former case, we have to analyze the
probability that the adversary guesses p correctly. f is not needed for that, so the
superposition oracle register can be used to measure the set of q queries that the
adversary made. Using an inductive argument reminiscent of the hybrid method
[5] we show that this set is almost independent of p, and hence the period is equal
to the difference of two of the queried inputs only with negligible probability. But
if that is not the case, the periodic version of g is indistinguishable from a random
function for that adversary which is independent of p.

It’s not hard to see that the MAC from Construction 20 is not GYZ-secure.
Indeed, observe that the forging adversary described above queries on messages
starting with 0 only, and then forges successfully on a message starting with 1.
If the scheme was GYZ secure, then in the accepting case, the portion of this
adversary between the query and the final output would have a simulator which
leaves the computational basis invariant. Such a simulator cannot change the
first bit of the message from 0 to 1, a contradiction.

By Theorem 11, this PO-secure MAC is also not BU-secure.

Corollary 4. The MAC from Construction 20 is BU-insecure.

Acknowledgements. CM thanks Ronald de Wolf for helpful discussions on query
complexity. GA acknowledges support from NSF grant CCF-1763736. CM was funded
by a NWO VIDI grant (Project No. 639.022.519) and a NWO VENI grant (Project
No. VI.Veni.192.159). FS acknowledges support from NSF grant CCF-1901624. AR
acknowledges support from NSF grant CCF-1763773.

A Technical Proofs

The Fourier Oracle number operator. We now restate and prove Lemma 2.

Lemma 3. The number operator satisfies
∥∥[NF , UFO

XY F

]∥∥
∞ = 1. In particular,

the joint state of a quantum query algorithm and the oracle after the q-th query
is in the kernel of Pl for all l > q.
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Proof. Let |ψ〉XY EF be an arbitrary query state, where X and Y are the query
input and output registers, E is the algorithm’s internal register and F is the
FO register. We expand the state in the computational basis of X,

|ψ〉XY EF =
∑

x∈{0,1}n

p(x)|x〉X |ψx〉Y EF . (14)

Now observe that UFO
XY F |x〉X |ψx〉Y EF = |x〉X

(
C̃NOT

⊗m
)

Y :Fx

|ψx〉Y EF with

C̃NOTA:B = HACNOTA:BHA, and therefore

[
NF , UXY F

]
|x〉X |ψx〉Y EF = |x〉X

[
NF ,

(
C̃NOT

⊗m
)

Y :Fx

]
|ψx〉Y EF

= |x〉X

[
(1 − |0〉〈0|)Fx

,

(
C̃NOT

⊗m
)

Y :Fx

]
|ψx〉Y EF .

It follows that∥∥∥[NF ,UXY F

]
|ψ〉XY EF

∥∥∥
2

(15)

=
∑

x∈{0,1}n

p(x) ‖[NF , UXY F ] |ψx〉Y EF ‖2

=
∑

x∈{0,1}n

p(x)

∥∥∥∥∥
[
(1 − |0〉〈0|)Fx

,

(
C̃NOT

⊗m
)

Y :Fx

]
|ψx〉Y EF

∥∥∥∥∥
2

≤
∥∥∥∥∥
[
(1 − |0〉〈0|)F0n ,

(
C̃NOT

⊗m
)

Y :F0n

]∥∥∥∥∥
∞

, (16)

where we have used the definition of the operator norm and the normalization
of |ψ〉XY EF in the last line. For a unitary U and a projector P , it is easy to
see that ‖[U,P ]‖∞ ≤ 1, as [U,P ] = PU(1 − P ) − (1 − P )UP is a sum of two
operators that have orthogonal support and singular values smaller or equal
to 1. We therefore get ‖[NF , UXY F ] |ψ〉XY EF ‖2 ≤ 1, and as the state |ψ〉 was
arbitrary, this implies

∥∥[NF , UXY F ]
∥∥

∞ ≤ 1. The example from Eq. (2) shows
that the above is actually an equality. The observation that PlηF = 0 for all
l > 0 and an induction argument proves the second statement of the lemma.

BU-security of Lamport. In this section, we provide the full proof of Theo-
rem 17, showing that the Lamport construction is BU-secure in the QROM.

Proof. We implement the random oracle h as a superposition oracle with register
F . In the 1-BlindForge experiment we execute the sampling part of the key gener-
ation by preparing a superposition as well. More precisely, we can just prepare 2n
n-qubit registers Sj

i in a uniform superposition, with the intention of measuring
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them to sample sj
i in mind. We are talking about a classical one-time signature

scheme, and all computation that uses the secret key is done by an honest party,
and is therefore classical. It follows that the measurement that samples sj

i com-
mutes with all other operations which are implemented as quantum-controlled
operations controlled on the secret key registers, i.e., we can postpone it to the
very end of the 1-BlindForge experiment, just like the measurement that samples
an actual random oracle using a superposition oracle. The joint state |ψ0〉 with
oracle register F and secret key register SK = (Sj

i )i∈{1,...,n},j=0,1 is now in a
uniform superposition, i.e.,

|ψ0〉SKF = |φ0〉⊗2n
SK ⊗ |φ0〉⊗2n

F . (17)

To subsequently generate the public key, the superposition oracle for h is queried
on each of the Sj

i with an empty output register P j
i , producing the state

|ψ1〉SKPKF equal to

2−2n2 ∑
sj

i ∈{0,1}n

pj
i ∈{0,1}n

i∈{1,...,n},j=0,1

⎛
⎜⎜⎝ ⊗

i∈{1,...,n}
j=0,1

|sj
i 〉Sj

i

⎞
⎟⎟⎠⊗

⎛
⎜⎜⎝ ⊗

i∈{1,...,n}
j=0,1

|pj
i 〉P j

i

⎞
⎟⎟⎠⊗ |fsk,pk〉F ,

where |fsk,pk〉F is the superposition oracle state where Fsj
i

is in state |pj
i 〉 and

all other registers are still in state |φ0〉. Then the registers P j
i are measured to

produce an actual, classical, public key that can be handed to the adversary.
Note that there is no hash function key k now, as it has been replaced by the
random oracle. Treating the public key as classical information from now on and
removing the registers PK, the state takes the form

|ψ2(pk)〉SKF = 2−n2 ∑
sj

i ∈{0,1}n

i∈{1,...,n},j=0,1

⎛
⎜⎜⎝ ⊗

i∈{1,...,n}
j=0,1

|sj
i 〉Sj

i

⎞
⎟⎟⎠⊗ |fsk,pk〉F , (18)

Now the interactive phase of the 1-BlindForge experiment can begin, and we
provide both the random oracle h and the signing oracle (that can be called
exactly once) as superposition oracles using the joint oracle state |ψ2(pk)〉 above.
The random oracle answers queries as described in Sect. 3. The signing oracle,
when queried with registers XZ with Z = Z1...Zn, applies CNOT⊗n

S
xi
i :Zi

, i =
1, ..., n controlled on X being in the state x /∈ Bε.

Now suppose A, after making at most one query to Sign and an arbitrary
polynomial number of queries to h, outputs a candidate message signature pair
(x0, z0) with z0 = z01‖...‖z0n. If x0 /∈ Bε, A has lost. Suppose therefore that
x0 ∈ Bε. We will now make a measurement on the oracle register to find an index
i such that S

x0
i

i has not been queried. To this end we first need to decorrelate SK
and F . This is easily done, as the success test only needs computational basis
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measurement results from the register SK, allowing us to perform any controlled
operation on F controlled on SK. Therefore we can apply the operation ⊕pj

i

followed by H⊗n to the register Fsj
i

controlled on Sj
i being in state |sj

i 〉, for all
i = 1, ..., n and j = 0, 1. For an adversary that does not make any queries to h,
this has the effect that all F -registers are in state |φ0〉 again now.

We can equivalently perform this restoring procedure before the adversary
starts interaction, and answer the adversary’s h-queries as follows. Controlled on
the adversary’s input being equal to one of the parts sj

i of the secret key, answer
with the corresponding public key, otherwise use the superposition oracle for h.

For any fixed secret key register Sj
i , the unitary that is applied upon an

h-query has hence the form

U ′
h = U⊥ +

∑
x∈{0,1}n

(Ux − U⊥)|x〉〈x|X |x〉〈x|Sj
i

(19)

= U⊥ +
∑

x∈{0,1}n

|x〉〈x|X |x〉〈x|Sj
i
(Ux − U⊥), (20)

where the second equality follows because the unitaries U⊥ and Ux are controlled
unitaries with X and Sj

i part of the control register. Using the above equation
we derive a bound on the operator norm of the commutator of this unitary and
the projector onto |φ0〉,

‖[U ′
h, |φ0〉〈φ0|]‖∞

= 2−n/2

∥∥∥∥∥∥
∑

x∈{0,1}n

(
(Ux − U⊥)|x〉〈x|X |x〉〈φ0|Sj

i
− |x〉〈x|X |φ0〉〈x|Sj

i
(Ux − U⊥)

)∥∥∥∥∥∥
∞

= 2−n/2 max
x∈{0,1}n

∥∥∥((Ux − U⊥)|x〉〈x|X |x〉〈φ0|Sj
i

− |x〉〈x|X |φ0〉〈x|Sj
i
(Ux − U⊥)

)∥∥∥
∞

≤ 2 · 2−n/2,

where the second equality follows again because U⊥ and Ux are controlled uni-
taries with X and Sj

i part of the control register.
It follows that a query to h does not decrease the number of registers Sj

i that
are in state |φ0〉, except with probability 8n · 2−n.

As we assume that x0 is blinded, we have that for any message x /∈ Bε,
there exists an i ∈ {1, ..., n} such that xi �= x0

i . But A interacts with a blinded
signing oracle, i.e., controlled on his input being not blinded, it is forwarded
to the signing oracle, otherwise ⊥ is XORed into his output register. Therefore
only non-blinded queries have been forwarded to the actual signing oracle, so
the final state is a superposition of states in which the register SK has at least n
subregisters Sj

i are in state |φ0〉, and at least one of them is such that x0
i = j. We

can therefore apply an n-outcome measurement to the oracle register to obtain

an index i0 such that S
x0

i0
i0

is in state |φ0〉. By Lemma 1, this implies that A’s
forgery is independent of si0 , so A’s probability of succeeding in BlindForge is
negligible. ��
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B More on Bernoulli-Preserving Hash

In this section, we prove several results about Bernoulli-preserving hash func-
tions. Recalling Definition 8, we refer to blinding according to Bε as “uniform
blinding,” and blinding according to BH

ε as “hash blinding.” First, we show that
random and pseudorandom functions are Bernoulli-preserving, and that this
property is equivalent to collision-resistance against classical queries.

Lemma 4. Let H : X → Y be a function such that 1/|Y | is negligible. Then

1. If H is a random oracle or a qPRF, then it is a Bernoulli-preserving hash.
2. If H is 4q-wise independent, then it is a Bernoulli-preserving hash against

q-query adversaries.

Proof. The claim for random oracles is obvious: by statistical collision-resistance,
uniform blinding is statistically indistinguishable from hash-blinding. The
remaining claims follow from the observation that one can simulate one quantum
query to χBh

ε
using two quantum queries to h (see, e.g., the proof of Corollary 3).

��
Theorem 22. A function h : {0, 1}∗ → {0, 1}n is Bernoulli-preserving against
classical-query adversaries if and only if it is collision-resistant.

Proof. First, the Bernoulli-preserving hash property implies collision-resistance:
testing whether two colliding inputs are either (i) both not blinded or both
blinded, or (ii) exactly one of them is blinded, yields always outcome (i) when
dealing with a hash-blinded oracle and a uniformly random outcome for a blinded
oracle and ε = 1/2. On the other hand, consider an adversary A that has inverse
polynomial distinguishing advantage between blinding and hash-blinding, and
let x1, ..., xq be it’s queries. Assume for contradiction that with overwhelming
probability h(xi) �= h(xj) for all xi �= xj . Then with that same overwhelming
probability the blinded and hash blinded oracles are both blinded independently
with probability ε on each xi and are hence statistically indistinguishable, a con-
tradiction. It follows that with non-negligible probability there exist two queries
xi �= xj such that h(xi) = h(xj), i.e., A has found a collision. ��

Bernoulli-preserving hash from LWE. We have observed that any qPRF
is a Bernoulli-preserving hash function, which can be constructed from various
quantum-safe computational assumption (e.g., LWE). Nonetheless, qPRF typi-
cally does not give short digest, which would result in long tags, and it requires
a secret key.5

Here we point out an alternative construction of a public Bernoulli-preserving
hash function based on the quantum security of LWE. In fact, we show that the
collapsing hash function in [26] is also Bernoulli-preserving hash. This construc-
tions relies on a lossy function family F : X → Y and a universal hash function
5 In practice, it is probably more convenient (and more reliable) to instantiate a qPRF

from block ciphers, which may not be ideal for message authentication.
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G = {gk : Y → Z}k∈K. A lossy function family admits two types of keys: a lossy
key s ← Dlos and an injective key s ← Dinj , which are computationally indistin-
guishable. Fs : X → Y under a lossy key s is compressing, i.e., |im(Fs)| � |Y |;
whereas under an injective key s, Fs is injective. We refer a formal definition
to [26, Definition 2], and an explicit construction based on LWE to [20]. There
exist efficient constructions for universal hash families by various means [28].
Then one constructs a hash function family H = {hs,k} by hs,k := gk ◦ Fs

with public parameters generated by s ← Dlos, k ← K. The proof of Bernoulli-
preserving for this hash function is similar to Unruh’s proof that H is collapsing;
see the full version [4].

Relationship to collapsing. Finally, we relate Bernoulli-preserving hash to
another quantum generalization of classical collision-resistance: the collapsing
property. Collapsing hash functions are particularly relevant to post-quantum
signatures. We first define the collapsing property (slightly rephrasing Unruh’s
original definition [27]) as follows. Let h : X → Y be a hash function, and let
SX and SXY be the set of quantum states (i.e., density operators) on registers
corresponding to the sets X and X×Y , respectively. We define two channels from
SX to SXY . First, Oh receives X, prepares |0〉 on Y , applies |x〉|y〉 �→ |x〉|y⊕h(x)〉,
and then measures Y fully in the computational basis. Second, O′

h first applies
Oh and then also measures X fully in the computational basis.

Oh : |x〉X
h�−→ |x, h(x)〉X,Y

measure Y�−→ (ρy
X , y) ,

O′
h : |x〉X

h�−→ |x, h(x)〉X,Y
measure X&Y�−→ (x, y) .

If the input is a pure state on X, then the output is either a superposition over
a fiber h−1(s) × {s} of h (for Oh) or a classical pair (x, h(x)) (for O′

h) .

Definition 9 (Collapsing). A hash function h is collapsing if for any single-
query QPT A, it holds that

∣∣Pr[AOh(1n) = 1] − Pr[AO′
h(1n) = 1]

∣∣ ≤ negl(n) .

To prove that Bernoulli-preserving hash implies collapsing, we need a tech-
nical fact. Recall that any subset S ⊆ {0, 1}n is associated with a two-outcome
projective measurement {ΠS ,1−ΠS} on n qubits defined by ΠS =

∑
x∈S |x〉〈x|.

We will write ΞS for the channel (on n qubits) which applies this measurement.

Lemma 5. Let S1, S2, . . . , Scn be subsets of {0, 1}n, each of size 2n−1, chosen
independently and uniformly at random. Let ΞSj

denote the two-outcome mea-
surement defined by Sj, and denote their composition Ξ̃ := ΞScn

◦ ΞScn−1 ◦
· · · ◦ ΞS1 . Let Ξ denote the full measurement in the computational basis. Then
Pr
[
Ξ̃ = Ξ

] ≥ 1 − 2−εn , whenever c ≥ 2 + ε with ε > 0,

A proof is given in the full version [4]. We remark that, to efficiently imple-
ment each ΞS with a random subset S, we can sample hi : [M ] → [N ] from a
pairwise-independent hash family (sampling an independent hi for each i), and
then define x ∈ S iff. h(x) ≤ N/2. For any input state

∑
x,z αx,z|x, z〉, we can

compute
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∑
x,z

αx,z|x, z〉 �→
∑
x,z

|x, z〉|b(x)〉, where b(x) := h(x)
?≤ N/2,

and then measure |b(x)〉. Pairwise independence is sufficient by Theorem 10
because only one quantum query is made.

Theorem 23. If h : X → Y is Bernoulli-preserving, then it is collapsing.

Proof. Let A be an adversary with inverse-polynomial distinguishing power in
the collapsing game. Choose n such that X = {0, 1}n. We define k = cn hybrid
oracles H0,H1, . . . , Hk, where hybrid Hj is a channel from SX to SXY which acts
as follows: (1) adjoin |0〉Y and apply the unitary |x〉X |y〉Y �→ |x〉X |y⊕h(x)〉Y ; (2)
measure the Y register in the computational basis; (3) repeat j times: (i) select
a uniformly random subset S ⊆ X of size 2n−1; (ii) apply the two-outcome
measurement ΞS to the X register; (4) output registers X and Y .

Clearly, H0 is identical to the Oh channel in the collapsing game. By Lemma 5,
Hk is indistinguishable from the O′

h. By our initial assumption and the triangle
inequality, there exists a j such that∣∣Pr[AHj (1n) = 1] − Pr[AHj+1(1n) = 1]

∣∣ ≥ 1/poly(n). (21)

We now build a distinguisher D against the Bernoulli-preserving property
(with ε = 1/2) of h. It proceeds as follows: (1) run A(1n) and place its query
state in register X; (2) simulate oracle Hj on XY (use 2-wise independent hash
to select sets S); (3) prepare an extra qubit in the |0〉 state in register W , and
invoke the oracle for χB on registers X and W ; (4) measure and discard register
W ; (5) return XY to A, and output what it outputs.

We now analyze D. After the first two steps of Hj (compute h, measure
output register) the state of A (running as a subroutine of D) is given by∑

z

∑
x∈h−1(s)

αxz|x〉X |s〉Y |z〉Z .

Here Z is a side information register private to A. Applying the j measurements
(third step of Hj) results in a state of the form

∑
z

∑
x∈M βxz|x〉|s〉|z〉, where

M is a subset of h−1(s). Applying the oracle for χB into an extra register now
yields ∑

z

∑
x∈M

βxz|x〉|s〉|z〉|χB(x)〉W .

Now consider the two cases of the Bernoulli-preserving game.
First, in the “hash-blinded” case, B = h−1(C) for some set C ⊆ Y . This

implies that χB(x) = χC(h(x)) = χC(s) for all x ∈ M . It follows that W simply
contains the classical bit χC(s); computing this bit, measuring it, and discarding
it will thus have no effect. The state returned to A will then be identical to the
output of the oracle Hj . Second, in the “uniform blinding” case, B is a random
subset of X of size 2n−1, selected uniformly and independently of everything else
in the algorithm thus far. Computing the characteristic function of B into an
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extra qubit and then measuring and discarding that qubit implements the chan-
nel ΞB , i.e., the measurement {ΠB ,1 − ΠB}. It follows that the state returned
to A will be identical to the output of oracle Hj+1.

By (21), it now follows that D is a successful distinguisher in the Bernoulli-
preserving hash game for h, and that h is thus not a Bernoulli-preserving hash.

��
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