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Abstract

In this paper, we develop a novel procedure for low-rank tensor regression, namely
Importance Sketching Low-rank Estimation for Tensors (ISLET). The central idea be-
hind ISLET is importance sketching, i.e., carefully designed sketches based on both the
responses and low-dimensional structure of the parameter of interest. We show that
the proposed method is sharply minimax optimal in terms of the mean-squared error
under low-rank Tucker assumptions and under randomized Gaussian ensemble design.
In addition, if a tensor is low-rank with group sparsity, our procedure also achieves
minimax optimality. Further, we show through numerical studies that ISLET achieves
comparable or better mean-squared error performance to existing state-of-the-art meth-
ods whilst having substantial storage and run-time advantages including capabilities for
parallel and distributed computing. In particular, our procedure performs reliable esti-
mation with tensors of dimension p = O(108) and is 1 or 2 orders of magnitude faster
than baseline methods.

Key words: dimension reduction, high-order orthogonal iteration, minimax optimality,

sketching, tensor regression.

1 Introduction

The past decades have seen a large body of work on tenors or multiway arrays [65, 107, 32,
71]. Tensors arise in numerous applications involving multiway data (e.g., brain imaging
[143], hyperspectral imaging [76], recommender system design [11]). In addition, tensor
methods have been applied to many problems in statistics and machine learning where
the observations are not necessarily tensors, such as topic and latent variable models [2],

additive index models [5], high-order interaction pursuit [55], among others. In many of
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these settings, the tensor of interest is high-dimensional in that the ambient dimension, i.e,
the dimension of the target parameter is substantially larger than the sample size. However
in practice, the tensor parameter often has intrinsic dimension-reduced structure, such as
low-rankness and sparsity [65, 112, 121], which makes inference possible. How to exploit
such structure for tensors poses new statistical and computational challenges [103].

From a statistical perspective, a key question is how many samples are required to learn
the suitable dimension-reduced structure and what the optimal mean-squared error rates
are. Prior work has developed various tensor-based methods with theoretical guarantees
based on regularization approaches [73, 91, 103, 117], the spectral method and projected
gradient descent [29], alternating gradient descent [75, 113, 143], stochastic gradient de-
scent [47], and power iteration methods [2]. However a number of these methods are not
statistically optimal. Furthermore, some of these methods rely on evaluation of a full gradi-
ent, which is typically costly in the high-dimensional setting. This leads to computational
challenges including both the storage of tensors and run-time of the algorithm.

From a computational perspective, one approach to address both the storage and run-
time challenge is randomized sketching. Sketching methods have been widely studied (see
e.g. [3,4, 8, 14, 33, 34, 35, 37, 38, 56, 82, 92, 97, 99, 100, 102, 110, 111, 114, 118, 125,
126]). Many of these prior works on matrix or tensor sketching mainly focused on relative
approximation error [14, 34, 92, 102] after randomized sketching which either may not
yield optimal mean-squared error rates under statistical settings [102] or requires multiple
sketching iterations [100, 101].

In this article, we address both computational and statistical challenges by developing
a novel sketching-based estimating procedure for tensor regression. The proposed proce-
dure is provably fast and sharply minimax optimal in terms of mean-squared error under
randomized Gaussian design. The central idea lies in constructing specifically designed
structural sketches, namely importance sketching. In contrast with randomized sketching
methods, importance sketching utilizes both the response and structure of the target tensor
parameter and reduces the dimension of parameters (i.e., the number of columns) instead of
samples (i.e., the number of rows), which leads to statistical optimality whilst maintaining
the computational advantages of many randomized sketching methods. See more compari-
son between importance sketching in this work and sketching in prior literature in Section
1.3.

1.1 Problem Statement

Specifically, we focus on the following low-rank tensor regression model,

yj:<Xj7A>+5j; j:L...,TL, (1)



where y; and ¢€; are responses and observation noise, respectively; {X); ?:1 are tensor
covariates with randomized design; A € RP1**Pd ig the order-d tensor with parameters
aligned in d ways. Here (-,-) stands for the usual vectorized inner product. The goal is to
recover A based on observations {y;, X; };-‘:1. In particular, when d = 2, this becomes a low-
rank matrix regression problem, which has been widely studied in recent years [25, 68, 104].
The main focus of this paper is solving the underdetermined equation system, where the
sample size n is much smaller than the number of coefficients H?Zl p;. This is because many
applications belong to this regime. In particular, in the real data example to be discussed
later, one MRI image is 121-by-145-by-121, which includes 2,122,945 parameters. Typically
we can collect far less number of MRI images in practice.

The general regression model (1) includes specific problem instances with different
choices of design X. Examples include matrix/tensor regression with general random or de-
terministic design [29, 77, 103, 143], matrix trace regression [6, 25, 43, 45, 68, 104], and ma-
trix sparse recovery [132]. Another example is matriz/tensor recovery via rank-1 projections
[18, 30, 55], which arise by setting X; = u; o v; o w;, where u;, vj, w; are random vectors
and “o” represents the outer product, which includes phase retrieval [16, 23] as a special
case. The very popular matrix/tensor completion example [27, 78, 90, 127, 128, 134] arises
by setting X; = (eaj oep, 0 ecj), where e; is the j-th canonical vector and {a;, bj,cj};‘:l
are randomly selected integers from {1,...,p1} x{1,...,p2} x{1,...,ps}. Specific applica-
tions of this low-rank tensor regression model includes neuroimaging analysis [52, 75, 143],
longitudinal relational data analysis [58], 3D imaging processing [53], etc.

For convenience of presentation, we specialize the discussions on order-3 tensors later,
while the results can be extended to the general order-d tensors. In the modern high-
dimensional setting, a variety of matrix/tensor data satisfy intrinsic structural assumptions,
such as low-rankness [121] or sparsity [143], which makes the accurate estimation of A
possible even if the sample size n is smaller than the number of coefficients in the target
tensor A. We thus focus on the low Tucker rank (ri,r9,73) tensor A with the following

Tucker decomposition [120]:
A:[[S;Ul,UQ,Ug]] ::SX1 U1 X9 U2 ><3U3, (2)

where & is a r1-by-r9-by-r3 core tensor and Uy is a pg-by-rp matrix with orthonormal
columns for k& = 1,2,3. The rigorous definition of Tucker rank of a tensor and more
discussions on tensor algebra are postponed to Section 2.1. In addition, the canoni-
cal polyadic (CP) low-rank tensors have also been widely considered in recent literature
[55, 56, 113, 143]. Since any CP-rank-r tensor A = Y. ;| \;a; o b; o ¢; has the Tucker de-
composition: A = [L£; A, B, C], where L is the r-by-r-by-r diagonal tensor with diagonal

entries Ap,..., A\, A = [aj,...,a,], and likewise for B, C [65], our results naturally adapt



to low CP-rank tensor regression. Also, with a slight abuse of notation, we will refer to
low-rank and low Tucker rank interchangeably throughout the paper.
Moreover, we also consider a sparse setting where there may exist a subset of modes,

say Js C {1,2,3}, such that A is sparse along these modes, i.e.

Pk

A=[8U1, U, Us], [Ukllo =D Lywy)p 0y < 6 k€ Js. (3)
i=1

1.2 Our Contributions

We make the following major contributions to low-rank tensor regression in this article.
Firstly, we introduce the main algorithm — Importance Sketching Low-rank Estimation for
Tensors (ISLET). Our algorithm has three steps: (i) first we use the tensor technique high-
order orthogonal iteration (HOOI) [36] or sparse tensor alternating thresholding - singular
value decomposition (STAT-SVD) [136] to determine the importance sketching directions.
Here, HOOI and STAT-SVD are regular and sparse tensor low-rank decomposition methods
respectively, whose explanations are postponed to the forthcoming Sections 2.2 and 2.3;
(ii) using the sketching directions from the first step, we perform importance sketching,
then evaluate the dimension-reduced regression using the sketched tensors/matrices (to
incorporate sparsity, we add a group-sparsity regularizer); (iii) we construct the final tensor
estimator using the sketched components. Although the focus of this work is on low-
rank tensor regression, we point out that our three-step procedure applies to general high-
dimensional statistics problems with low-dimensional structure, provided that we can find
a suitable projection operator in step (i), and inverse projection operator in step (iii).

One of the main advantages of ISLET is the scalability of the algorithm. The pro-
posed procedure is computationally efficient due to the dimension reduction by importance
sketchings. Most importantly, ISLET only require access to the full data twice, which sig-
nificantly saves run time for large-scale settings when it is not possible to store all samples
into the core memory. We also show that our algorithm can be naturally distributed across
multiple machines that can significantly reduce computation time.

Secondly, we prove a deterministic oracle inequality for the ISLET procedure under
the low-Tucker-rank assumption and general noise and design (Theorems 2 and 3). We
additionally show that ISLET achieves the optimal mean-squared error (with the optimal
constant for non-sparse ISLET) under randomized Gaussian design (Theorems 4, 5, 6, and

7). The following informal statement summarizes two of the main results of the article:

Theorem 1 (ISLET for tensor regression: informal). Consider the regular tensor regression
problem with Gaussian ensemble design, where A is Tucker rank-(ri,r2,73), X; has i.i.d.

standard normal entries, €; i N(0,02), and gj, Xj are independent.



(a) Under regularity conditions, ISLET achieves the following optimal rate of convergence
with the matching constant,

’I?’LO'2

—~ 2
o HA— AHHS — (14 0(1)) ™,

n
where m = rirors+ri(p1—r1)+re(p2—ro)+r3(ps—rs) is exactly the degree of freedom
of all Tucker rank-(ri,ra,r3) tensors in RPP*P2XP3 and ||-||yg is the Hilbert-Schmidt

norm to be defined in Section 2.1.

(b) If in addition, (3) holds with sparsity level sy, then under reqularity conditions, ISLET
achieves the following optimal rate of convergence,

mso>

~ 2
B[ A -l <=

n

where ms = 111213 + D 35 Sk (Tk +1og(pr/sk)) + ZkgéJs peTr and “<” denotes the
asymptotic equivalence between two number series (see a more formal definition in
Section 2.1).

To the best of our knowledge, we are the first to develop the matching-constant optimal
rate results for regular tensor regression under randomized Gaussian ensemble design, even
for the low-rank matrix recovery case since it is not clear whether prior approaches (e.g.
nuclear norm minimization) achieve sharp constants. We are also the first to develop the
optimal rate results for tensor regression with sparsity condition (3).

Thirdly, proving the optimal mean-squared error bound presents a number of technical
challenges and we introduce novel proof ideas to overcome these difficulties. In particular,
one major difficulty lies in the analysis of reduced-dimensional regressions (see (7) in the
forthcoming Section 2) since we analyze sketched regression models. To this end, we intro-
duce partial linear models for these reduced-dimensional regressions from which we develop
estimation error upper bounds.

The final and most important computational contribution is to display through nu-
merical studies the advantages of our ISLET algorithms. Compared to state-of-the-art
tensor estimation algorithms including non-convex projected gradient descent (PGD) [29],
Tucker regression [143], and convex regularization [116], we show that our ISLET algo-
rithm achieves comparable statistical performance with substantially faster computation.
In particular, the runtime is 1-3 orders of magnitude faster than existing methods. In
the most prominent example, our ISLET procedure can efficiently solve the ultrahigh-
dimensional tensor regression with covariates of 7.68 terabytes. For the order-2 case, i.e.,
low-rank matrix regression, our simulation studies show that ISLET outperforms the clas-
sic nuclear norm minimization estimator. We also provide a real data application where

we study the association between the attention-deficit/hyperactivity disorder disease and



the high-dimensional MRI image tensors. We show that the proposed procedure provides
significantly better prediction performance in much less time compared to state-of-the-art
methods.

1.3 Related Literature

Our work is related to a broad range of literature varying from a number of communities
including scientific computing, computer science, signal processing, applied mathematics,
and statistics. Here we make an attempt to discuss existing results from these various
communities however we do not claim that our literature survey is exhaustive.

Large-scale linear systems where the solution admits a low-rank tensor structure com-
monly arise after discretizing high-dimensional partial differential equations [59, 60, 80] and
various methods have been proposed. For example, [12] developed algebraic and Gauss-
Newton methods to solve the linear system with a CP low-rank tensor solution. [7, 10]
proposed iterative projection methods to solve large-scale linear systems with Kronecker-
product-type design matrices. [48] introduced a greedy approach. [69, 70] considered
Riemannian optimization methods and tensor Krylov subspace methods, respectively. The
readers are referred to [51] for a recent survey. Different from these works, our proposed
ISLET is a one-step procedure that only involves solving a simple least squares regression
after performing dimension reduction on covariates by importance sketching (see Steps 1
and 2 in Section 2.2). Moreover, many prior works mainly focused on computational as-
pects of their proposed methods [7, 13, 42, 48, 51|, while we show that ISLET is not only
computationally efficient (see more discussion and comparison on computation complex-
ity in Section 2.2 Computation and Implementation part) but also has optimal theoretical
guarantees in terms of mean square error under the statistical setting.

In addition, sketching methods play an important role in computation acceleration and
has been widely considered in previous literature. For example, [34, 89, 92] provided accu-
rate approximation algorithms based on sketching with novel embedding matrices, where
the runtime is proportional to the number of the non-zero entries of the input matrix.
Sketching methods have also been studied in robust ¢; low-rank matrix approximation
[85, 86, 88, 110, 141], general ¢, low-rank matrix approximation [8, 31], low-rank tensor ap-
proximation [111], etc. In the regression context, the sketching method has been considered
for the least squares regression [34, 37, 92, 101, 102], ¢, regression [34, 89, 92], Kronecker
product regression [37], ridge regression [3, 124], regularized kernel regression [22, 140],
etc. Various types of random sketching matrices have been developed, including ran-
dom sub-Gaussian [101], random sampling [39, 40], CountSketch [28, 33], Sparse Johnson-
Lindenstrauss transformation [64], among many others. The readers are also referred to

survey papers on sketching by Mahoney [82] and Woodruff [126]. The proposed method in



this paper is different from these previous works in various aspects. First, many random-
ized sketching methods in the literature focused on relative approximation error [82, 126]
and the sketching matrices are constructed only based on covariates [39, 40, 64, 101, 102].
In contrast, we explicitly construct “supervised” sketching matrices based on both the re-
sponse y; and covariates X; and obtain optimal bounds in mean square error under the
statistical setting. Second, essentially speaking, our proposed importance sketching scheme
reduces the number of columns (parameters) instead of the number of rows (samples) in the
linear equation system. Third, different from the sketching on an overdetermined system of
least squares [34, 37, 92, 101, 102], we mainly focus on the high-dimensional setting where

the number of samples can be significantly smaller than the number of coefficients.

1.4 Organization

In Section 2.1 we introduce important notation; then we present our ISLET procedure
under non-sparse and sparse settings in Sections 2.2 and 2.3, respectively and illustrate
the procedure from a sketching perspective in Section 2.4; in Section 3 we provide general
theoretical guarantees for our procedure which make no assumptions on the design or
the noise distribution; in Section 4 we specialize our bounds to tensor regression with low
Tucker rank and assume the design is independent Gaussian; a simulation study showing the
substantial computational benefits of our algorithm are provided in Section 5. Additional
notation, discussion on general-order ISLET, simulation results, an application to attention
deficit hyperactivity disorder (ADHD) MRI Imaging data analysis, and all technical proofs

are provided in the supplementary materials [137].

2 Ouwur Procedure: ISLET

In this section, we introduce the general procedure of importance sketching low-rank es-
timation for tensors (ISLET). Although for ease of presentation we will focus on order-3
tensors, the procedure for the general order-d case can also be treated. Details of matrices
and tensors greater than order 3 are provided in Section C of the supplementary material
[137].

2.1 Notation and Preliminaries

The following notation will be used throughout this article. Additional definitions can be
found in Section A in the supplementary materials. Lowercase letters (e.g., a,b), lowercase
boldface letters (e.g. u, v), uppercase boldface letters (e.g., U, V), and boldface calligraphic
letters (e.g., A, X') are used to denote scalars, vectors, matrices, and order-3-or-higher ten-

sors respectively. For simplicity, we denote X; as the tensor indexed by j in a sequence



of tensors {X;}. For any two series of numbers, say {a;} and {b;}, denote a =< b if there
exist uniform constants ¢, C' > 0 such that ca; < b; < Ca;, Vi and a = Q(b) if there exists
uniform constant ¢ > 0 such that a; > cb;,Vi. We use bracket subscripts to denote sub-
vectors, sub-matrices, and sub-tensors. For example, v, is the vector with the 2nd to

rth entries of v; Dy is the entry of D on the i;-th row and is-th column; Dy, 41).p,

11,22
contains the (r + 1)-th] to the pi-th rows of D; Ay, 1:55,1:55] 1S the s1-by-sa-by-s3 sub-
tensor of A with index set {(i1,i2,13) : 1 < i1 < 81,1 < i < s9,1 < i3 < s3}. For any
vector v € RP!, define its ¢, norm as ||v||, = (>, |vi\q)1/q. For any matrix D € RP1*P2,
let ox(D) be the k-th singular value of D. In particular, the least non-trivial singular
value of D, defined as omin(D) = op, ap, (D), will be extensively used in later analysis. We
also denote SVD, (D) = [u; ---u,] and QR(D) as the subspace composed of the lead-

ing r left singular vectors and the Q part of the QR orthogonalization of D, respectively.
/

The matrix Frobenius and spectral norms are defined as ||D||p = (Zimg D[QZ”Q])

(PP 02(D))/? and ||D| = maxyege: |Dul|2/|[ullz = o1(D). In addition, I, repre-

i
sents the r-by-r identity matrix. Let Q,, = {U : U'U = I} be the set of all p-by-r
matrices with orthonormal columns. For any U € O,,, Py = UU' represents the pro-
jection matrix onto the column space of U; we also use U; € O, ,_, to represent the
orthonormal complement of U. For any event A, let P(A) be the probability that A occurs.

For any matrix D € RP1*P2 and order-d tensor A € RP1**Pd et vec(D) and vec(.A)
be the vectorization of D and \A, respectively. The matricization M(-) is the operation that
unfolds or flattens the order-d tensor A € RP1*"XPd into the matrix My (A) € RP**ILizkps
for k =1,...,d. Since the formal entry-wise definitions of matricization and vectorization

is rather tedious, we leave them to Section A in the supplementary materials [137]. The

Hilbert-Schmidt norm is defined as ||Aljgs = (Zih-..,id A[Qiled])l/?_ An order-d tensor
is rank-one if it can be written as the outer product of d nonzero vectors. The CP-rank
of any tensor A is defined as the minimal number » such that A can be decomposed as
A = Y7 | B; for rank-1 tensors B;. The Tucker rank (or multilinear rank) of a tensor
A is defined as a d-tuple (rq,...,rq), where r, = rank(M}y(A)). The k-mode product of
A € RP1XXPd with a matrix U € RP**" is denoted by A x; U and is of size p; X -+ X

Dk—1 X Tk X Pg1 X -+ X pg, such that
Dk
(A X U)[il7-~-7ik—17j7ik+17--~7id} = Z A[i1,i27-~-7id]U[ik7j]'
ir=1

For convenience of presentation, all mode indices (-); of an order-3 tensor are in the sense

of modulo-3, e.g., 71 = 14, So = S5, po = p3, X x4 Uy = X x1 Uj.



For any matrices U € RP1*P2 and V € R™*™2 et

U[Ll} .V e U[LPZ] .V
UV = : : e RP1m1)x(p2m2)
U[pl,l] .V ... U[Pl,pﬂ .V

be the Kronecker product. Some intrinsic identities among Kronecker product, vectoriza-
tion, and matricization, which will be used later in this paper, are summarized in Lemma 1
in the supplementary materials [137]. The readers can refer to [65] for a more compre-
hensive introduction to tensor algebra. Finally, we use C, (1, Cs, ¢ and other variations to

represent the large and small constants, whose actual value may vary from line to line.

2.2 Regular Low-rank Tensor Recovery

We first consider the tensor regression model (1), where A is low-rank (2) without sparsity
assumptions. The proposed algorithm of ISLET is divided into three steps and a pictorial
illustration is provided in Figures 1 - 3 for readers’ better understanding. The pseudo-code

is provided in Algorithm 1.

Step 1 (Probing importance sketching directions) We first probe the importance sketching di-

rections. When the covariates satisfy Evec(&;)vec(X;)" = I, ,,ps, We evaluate
1
A= >y, (4)
j=1

A is essentially the covariance tensor between y and X. Since A = [S; Uy, Uy, Us] has
low Tucker rank, we perform the high-order orthogonal iterations (HOOI) on A to obtain
ﬁk € Op,. .,k = 1,2,3 as initial estimates for Uj. Here, HOOI is a classic method for
tensor decomposition that can be traced back to Lathauwer, Moor, and Vandewalle [36].
The central idea of HOOI is the power iterated singular value thresholding. Then, the
outcome of HOOI {ﬁk}zzl yield the following low-rank approximation for A,

A~ [8;U;,Uy,Us], where 8=[A;U],UJ, U] ecR*"2%"s (5)
We further evaluate

Vi = QR (M{(g)) €O irprames b =1,2,3.

{INJk, \ka}zzl obtained here are regarded as the importance sketching directions. As we
will further illustrate in Section 3.1, the combinations of INJ'k and \ka provide approxi-

mations for singular subspaces of M (A).



Step 2 (Linear regression on sketched covariates) Next, we perform sketching to reduce the
dimension of the original regression model (1). To be specific, we project the original
high-dimensional covariates onto the dimension-reduced subspace “that is important
in the covariance between y and X” and construct the following importance sketching

covariates,

X = [jv(B jiD1 XDQ XDs] € RnXm,

)23 € R"*™msB, (5(3) = vec (A:’i X1 leT X9 [NJ';r X 3 6;) , (6)

[is7]
>~(Dk € R™"™Dx, GED’“)[‘ ] = vec (ﬁ;—LMkJ (Xi Xk+1 6l—|c—+1 X2 6;@) Vk) )

i,
where mg = rirers, mp, = (pr — 76)7%, kK = 1,2,3, and m = mg + mp, + mp, +
mp,. Then, we evaluate the least-squares estimator of the sub-model with importance

sketching covariates )~(,

~ 2
'Ay:argminHy—X'yH . (7)
~ER™ 2

The dimension of sketching covariate regression (7) is m, which is significantly smaller
than the dimension of the original tensor regression model, pipsps. Consequently, the

computational cost can be significantly reduced.

Step 3 (Assembling the final estimate) Then, ¥ is divided into four segments according to the
block-wise structure of X = [Xz,Xp,, Xp,, XDs),

(mp+mp, +mp,+1):(mp-+mp, +mp, +mp, )]

Finally, we construct the regression estimator A for the original problem (1) using the

regression estimator 4 for the sub-model (8): let Bj, = My, (B) and calculate

_ e~ o~ o\l - PO

Ly = (UiBeVi + UuDy) (BVi) . k=1,23, A= [BiLiLaLy[. ()
More interpretation of (9) is given in Section 3.1.

Remark 1 (Alternative Construction of A in Step 1). When Evec(X)vec(X)T # L popss
we could consider the following alternative ways to construct the initial estimate A. Firstly,
i some cases we could do construction depending on the covariance structure of X. For
example, in the framework of tensor recovery via rank-one sketching (discussed in the in-

troduction), we have X; = ujoujou; and u; € RP has iid entry N(0,1). By the high-order

10



Stein’s identity [63], one can show that

p

n
1
ﬁg yjujoujouj—g (woejoej—i—ejowoej—f—ejoejow) ,
Jj=1 Jj=1

A=5

is a proper initial unbiased estimator for A [55, Lemma 4]. Here, w = %Z?:l yjuj, €;
18 the jth canonical basis in RP. Another commonly used setting in data analysis is the
high-order Kronecker covariance structure: E(vec(Xj)vec(X;)") = X3 ® Xo ® X1, where
Y € RPeXPr k= 1,2,3 are covariance matrices along three modes, respectively [57, 81, 84,
98, 144]. Under this assumption, we can first apply existing approaches to obtain estimators
f]k for Xy, then whiten the covariates by replacing X; by [Xj; 2;1/2, 2;1/2, 2;1/2]]. After
this pre-processing step, the other steps of ISLET still follow. Moreover, it still remains an
open question how to perform initialization if X has the more general, unstructured, and

unknown design.

Remark 2 (Alternative Methods to HOOI). In addition to high-order orthogonal iteration
(HOOI), there are a variety of methods proposed in the literature to compute the low-rank
tensor approximation, such as Newton-type optimization methods on manifolds [41, 61, 62,
106], black box approximation [9, 21, 83, 94, 95, 135], generalizations of Krylov subspace
method [49, 105], greedy approzimation method [48], among many others. Further, black
boz approximation methods [9, 21, 94, 95, 135] can be applied even if the initial estimator
A does not fit into the core memory. When the tensor is further approzimately CP low-
rank, we can also apply the randomized compressing method [108, 109] or randomized block
sampling [123] to obtain the CP low-rank tensor approximation. Although the rest of our
discussion will focus on the HOOI procedure for initialization, these alternative methods

can also be applied to obtain an initialization for the ISLET algorithm.

Computation and implementation. We briefly discuss computational complexity
and implementation aspects for the ISLET procedure here. It is noteworthy that ISLET
accesses the sample only twice for constructing the covariance tensor (Step 1) and impor-
tance sketching covariates (Step 2), respectively. In large scale cases where it is difficult
to store the whole dataset into random-access memory (RAM), this advantage can highly
save the computational costs.

In addition, in the order-3 tensor case, when each mode shares the same dimension
pr. = p and rank r, = 7, the total number of observable values is O(np?) and the time com-
plexity of ISLET is O (np3r +nr® + Tp4) where T' is the number of HOOI iterations. For
general order-d tensor regression, time complexity of ISLET is O (npdr +nr2d 4+ Tpd+1).
In contrast, the time complexity of the non-convex PGD [29] is O (T"(np® 4+ rp®™!)), where

T’ is the number of iterations of gradient descent; [13] introduced an optimization based

11
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Figure 1: Hlustration for Step 1 of ISLET
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(b) Perform regression of submodel with importance sketching covariates

Figure 2: Illustration for Step 2 of ISLET
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Figure 3: Ilustration for Step 3 of ISLET
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method with time complexity O(T"dnp?r) where T’ is the number of iterations in Gauss-
Newton method. We can see if T" > r, a typical situation in practice, ISLET is significantly
faster than these previous methods.

It is worth pointing out that the computing time of ISLET is still high when the tensor
parameter has a large order d. In fact, without any structural assumption on the design
tensors X, such a time cost may be unavoidable since reading in all data requires O(np?)
operations. If there is extra structure on the design tensor, e.g., Kronecker product [7, 59,
60, 80] and low separation rank [10, 48|, the computing time can be significantly reduced
by applying methods in this body of literature. Here, we mainly focus on the setting where
AX; does not satisfy a clear structural assumption since in many real data applications, e.g.,
the neuroimaging data example studied in this and many other works [1, 77, 113, 143], the
design tensors X; may not have a clear known structure.

Moreover, in the order-3 tensor case, instead of storing all { X %1 in the memory which
requires O(np*) RAM, ISLET only requires O(p® + n(pr + r3)) RAM space if one chooses
to access the samples from hard disks but not to store to RAM. This makes large-scale
computing possible. We empirically investigate the computation cost by simulation studies
in Section 5.

The proposed ISLET procedure also allows convenient parallel computing. Suppose we
distribute all n samples across B machines: {(X;, ybi)}f:bl, b=1,...,B, where B, ~ n/B.
To evaluate the covariance tensor in Step 1, we can calculate .Zb = Zf:il Ypi Xp; in each
machine, then summarize them as A= %Zle .Zb; to construct sketching covariates and

perform partial regression in Step 2, we calculate
Yo = (yo1s--- me,) | € R, (10)
Xy = [iB,bz‘ XDl,bi X, bi iDg,bz} € R™,
X = vec (xbi 1 U] %2 UJ x3 ﬁ;) , (11)

Bb Bb
Gy=> XpXpi, Z=» Xyt (12)
i=1 i=1

in each machine. Then we combine the outcomes to

The computational complexity can be reduced to O (M +Tp4> via the parallel
scheme. In the large-scale simulation we present in this article, we implement this par-

allel scheme for speed-up.
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To implement the proposed procedure, the input of Tucker rank are required as tuning

parameters. When they are unknown in practice, we can perform cross-validation or an

adaptive rank selection scheme. A more detailed description and numerical results are

postponed to Section D in the supplementary materials [137].

2.3 Sparse Low-rank Tensor Recovery

When the target tensor A is simultaneously low-rank and sparse, in the sense that (3)

holds for a subset Js C {1,2,3} known a priori, we introduce the following sparse ISLET

procedure. The pseudo-code for sparse ISLET is summarized in Algorithm 2.

Step 1

Step 2

(Probing sketching directions) When Evec(X)vec(X)" = I,,,,p,, we still evaluate the
covariance tensor A as Equation (4). Noting that A = [S; Uy, Uy, Us] and {Uj}rey.
are row-wise sparse, we apply the sparse tensor alternating thresholding SVD (STAT-
SVD) [136] on A to obtain Uy, € Op,.ris kB = 1,2,3 as initial estimates for Uy. Here,
STAT-SVD is a sparse tensor decomposition method proposed by [136] with central ideas
of the double projection & thresholding scheme and power iteration. Via STAT-SVD,

we obtain the following sparse and low-rank approximation of \A,
A~ [[5;61,62,63]], ﬁk E(O)Pkﬂ"k? g: [[AN,fJI,ﬁ;,ﬁ;—]] ER“XT?Xm.
We further evaluate

\N[k = QR (M;—(g)) € @T‘k+17”k+2ﬂ”k'

(Group Lasso on sketched covariates) We perform sketching and construct the following

importance sketching covariates based on {[NJk, Vk}zzp

Xp € R™mrs) - (Xg)p; g = vec <Xi x1 U] x3UJ x3 ﬁ;) ;
- - - - - (13)
XE, € R" P (XE, ), = vec (Mk <Xi X1 Ugiq Xks2 U]L_z) Vk> :

Then we perform regression on sub-models with these reduced-dimensional covariates

Xz and }NCEk respectively using least squares and group Lasso [46, 133],

B e R *72%7s, vec( A) = argmin |ly — Xgv|3, (14)
'yeRTlTQTS
~ ~ arg min ~-X 2, if k¢ J;
Ek c Rperk,VeC(Ek) _ g ' 184 Hy NEI@F)/Hg o ' ¢ S (15)
argming |y — X, yl5 + 06 2255 [1varll2, ik € T
Here, {ny}rey, are the penalization level and
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form a partition of {1,...,pgrx} that is induced by the construction of XE[@ (details for

why using group lasso can be found in Section 3.2).

Step 3 (Constructing the final estimator) A can be constructed using the regression coefficients
B and E;’s in the submodels (14) and (15),

A= [B,(B(T]B)™), (Bo(UF B) ™), (By (U] By) )] )

More interpretation of (17) can be found in Section 3.2.

Algorithm 1 Importance Sketching Low-rank Estimation for Tensors (ISLET): Order-3

Case
1: Input: sample {y;, X;}7_;, Tucker rank r = (r1,72,73).

2: Calculate A = %2?:1 y; X o
3: Apply HOOI on A and obtain initial estimates Uy, Uy, Us.
4: Let 8§ = [[.,Z, fle, INJQT, INJ'?T]] Evaluate the sketching direction,

Vi = QR {Mk(g)T} . k=1,2,3.
5: Construct X = [)NCB Xp, Xp, )NCDB} € R™"™ where

Xp € R™™8 (Xg));, = vec (Xi x1 U] x5 Uj x3 ﬁ;?) ;
Xp, € R™™Dx, (ka)[i,:} = vec (fILMk (Xz‘ X1 Ul Xpero fj/Lz) ‘N’k:) ,
for mp = rirers,mp, = (px — ri)7rE, and k =1,2,3.

6: Solve 4 = arg min. cgm ||y — X|2.
7: Partition 4 and assign each part to g, f)l, ]32, f)g, respectively,

k=1,23.

8: Let By, = M (B). Evaluate

A=[BL.Lo L. Ly=(U:BVi+UuBy) (BeVi) . k=123

2.4 A Sketching Perspective of ISLET

While one of the main focuses of this article is on low-rank tensor regression, from a

sketching perspective, ISLET can be seen as a special case of a more general algorithm that
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Algorithm 2 Sparse Importance Sketching Low-rank Estimation for Tensors (Sparse
ISLET): Order-3 Case
1: Input: sample {y;, X;}7_;, Tucker rank r = (rq, 72, 73), sparsity index J; C {1,2,3}.
2: Evaluate A= £ 377 Y. o
3: Apply STAT-SVD on A with sparsity index Js. Let the outcome be Uy, Usy, Us.
4: Let 8 = [[/Nl, T~J'1T, INJQT, I~J3T]] and evaluate the probing direction,

Vi = QR [Mk(g)q . k=1,2,3.
5. Construct
Xg € R (11r2rs) ()NCB)M = vee(X; x1 U] %9 Uj x3U3),
Xg, € R™Pe) (iEk)[i,:} = vec <Mk (-’C}' g1 ULy Xpero ﬁkT—&-Q) \716) -
6: Solve

Bc R717273 Vec(ﬁ) = argmin ||y — iB'YHg;

~€ERT1T273
Ek € RPEXTk veC(Ek) = { argmin’v ”y a XE’“’YH% + Z];kzl ‘hG?HQ, b
argmin, ||y — Xg, 73, ks

7: Evaluate

-~

A= Hﬁ; (E1(U]E1) ™), (E2(UJ Eg)™h), (]?_‘,3(6;]?)3)—1)}] :

broadly applies to high-dimensional statistical problems with dimension-reduced structure.
In fact the three steps of the ISLET procedure are completely general and are summarized

informally here:

Step 1 (Probing projection directions) For the tensor regression problem, we use the HOOI [36]
or STAT-SVD [136] approach for finding the informative low-rank sub-spaces we project /sketch
along. More generally if we let A = %Z?Zl y;Xj where X; has ambient dimen-
sion p, we can define a general projection operator (with a slight abuse of notation)

Pm(.) : RP — R™ indexed by low dimension m and let S(A) be the m-dimensional

subspace of R? determined by performing P,,(.A).

Step 2 (Estimation in subspaces) The second step involves first projecting the data X on to the
subspace S(\A), specifically X = Ps( A~)(X ) € R"*™_ Then perform regression or other
procedures of choice using the sketched data X to determine the dimension-reduced

parameter 4 € R™.

Step 3 (Embedding to high-dimensional space) Finally, we need to project the estimator back to
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the high-dimensional space R? by applying an equivalent to the inverse of the projection

-1
operator 735(1)

: R™ — RP. For low-rank tensor regression we require the formula (9).
The description above illustrates that the idea of ISLET is applicable to more general high-
dimensional problems with dimension-reduced structure. In fact, the well-regarded sure
independence screening in high-dimensional sparse linear regression [44, 129] can be seen
as a special case of this idea. To be specific, consider the high-dimensional linear regression
model,

yi:X[ivz}ﬂ—l—si, 1=1,...,n,

where (3 is the m-sparse vector of interests and y; € R and X[}— ) € RP are observable

response and covariate. Then the m-dimensional subspace S (,@) in Step 1 can be the co-
ordinates corresponding to the m largest entries of B =y, X J 1Yis Step 2 corresponds to
the dimension reduced least squares in sure independence screening; the inverse operator in
Step 3 is simply filling in 0’s in the co-ordinates that do not correspond to S (EI) In addition,
this idea applies more broadly to problems such as matrix and tensor completion. One of
the novel contributions of this article is finding suitable projection and inverse operators
for low-rank tensors.

We can also contrast this approach with prior approaches that involve randomized
sketching [38, 100, 102]. These prior approaches showed that the randomized sketching
may lose data substantially, increases the variance, and yield sub-optimal result for many
statistical problems. There are two key differences with how we exploit sketching in our
context: (1) we sketch along the parameter directions of X, reducing the data from R™*? to
R™*™: whereas approaches in [38, 100, 102] sketch along the sample directions, reducing the
data from R™*P to R"™*P which reduces the effective sample size from n to m; (2) secondly
and most importantly rather than using the randomized sketching that is unsupervised
without the response y, our importance sketching is supervised that is obtained using both
the response y and covariates X'. Then we sketch along the subspace & (.Z) which contains
information on the low-dimensional structure of the parameter A. This is why our general

procedure has both desirable statistical and computational properties.

3 Oracle Inequalities

In this section, we provide general oracle inequalities without focusing on specific design,
which provides a general guideline for the theoretical analyses of our ISLET procedure. We
first introduce a quantification of the errors in sketching directions obtained in the first step
of ISLET. Let Vi, € Oy, 1, .., be the right singular subspace of My(S), where 8 is the
core tensor in the Tucker decomposition of A: A = [S; Uy, Us, Us]. By Lemma 1 in the
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supplementary material [137],

W, = (U3®U2)V1 € ©p2p3,7”17 W,y = (Ug ® Ul)Vg € @p1p3,7“2)

(18)
and Ws3:= (Uy®U1)V3 € Oppyrs

are the right singular subspaces of M;(A), M2(A), and M3(A), respectively. Recall that
we initially estimate Uy and Vy, by ﬁk and \~7k, respectively in Step 1 of ISLET. Define

Wl = (63 (%) fjg){fl, WQ = (63 (%) ﬁl)vg, and {7\73 = (62 (039 61)\73

in parallel to (18). Intuitively speaking, {fjk,{ka}izl can be seen as the initial sample
approximations for {Uy, Wk}i:l' Therefore, we quantify the sketching direction error by

0:= max {|sinO(Uy. Uy | sin O(Wi W) } (19)

Next, we provide the oracle inequality via 6 for ISLET under regular and sparse settings,

respectively in the next two subsections.

3.1 Regular Tensor Regression and Oracle Inequality

In order to study the theoretical properties of the proposed procedure, we need to introduce
another representation of the original model (1). Decompose the vectorized parameter A

as follows,

vec(A) =Pgvec(A) + Pg vec(A)

=Pg,50,00, Ve<(A) + P, (w@ﬁu)vec(A) + PRQ(WZ(@{JM)VeC(‘A)
+ Py s, Vel A) + Py vec(A)

:(63 ® 62 ® ﬁl)vec(g) + R (Wl & ﬁu_)vec(f)l) + Ro (Wg ® ﬁQJ_)VeC(f)Q)
+ R3(Ws3 @ Us, Jvec(Ds) + Pg vec(A).
(20)

(See the proof of Theorem 2 for a detailed derivation of (20)). Here,

U= [63 2Uy@U; Ri(W1@Upp) Ry (VNVQ ® ﬁu) R3 (W?, ® ﬁu)} ,

B = [[.A; ﬁ?,ﬁ;,ﬁ;ﬂ eR™2™  and Dy, := U}, My (A)W), € REx—78)x7k

are the singular subspace of the “Cross structure” and the low-dimensional projections of
A onto the “body” and “arms” fornied l)y sketghing directions {ﬁk,vk}%zl, respectively
(See Figure 4 for an illustration of U, B, and V). Due to different alignments, the i-th
row of {Wj @ Uy }3_, does not necessarily correspond to the i-th entry of vec(.A) for
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U380,.90: §,80,80,,

!73@17\2@(71

U3, ®0,80,

Figure 4: Illustration of Decomposition (20). Here, we assume ﬁ; = [Ty Orx(pr—ro))s
k = 1,2,3, for a better visualization. The gray, green, blue, and red cubes represent the
subspaces of 63@62@61, 63®I~J'Q®I~Ju, ﬁg@ﬁzl ®I~J1, ﬁgL@ﬁQ ®I~Jl. The gray cube
also corresponds to the projected parameters B~ matricizations of green, blue and red cubes
Correspond to the projected parameters U ./\/ll(A)(fI;; @ U,), 621./\/12(«4)(63 ®U,), and

3 U] M;5(A) (Ug ® U1) respectlvely The three plains in the right panel correspond to the
subspace of V1, V2, and Vg, respectively.

all 1 < i < pipaps. We thus permute the rows of {Wk ® ﬁlu}%:l to match each row of
Ry (W, ® Uy ) to the corresponding entry in vec(\A). The formal definition of the row-wise
permutation operator Ry is rather clunky and postponed to Section A in the supplementary
materials. Intuitively speaking, Pgvec(.A) represents the projection of .A onto to the Cross
structure and P vec(A) can be seen as a residual. If the estimates {ﬁk,{ka}zzl are
close enough to {Ug, Wi}3_,, i.e., 6 defined in (19) is small, we expect that the residual
Pg  vec(/A) has small amplitude.

Based on (20), we can re-write the original regression model (1) into the following partial

regression model,

3
Yj =(X35) ;,vec(B B) + Z XDk Jvec (D) + Vec(Xj)TPﬁlvec(.A) +¢€;
k=1

(21)
:X[j’:]’7+8j, j=1...,n.
(See the proof of Theorem 2 for a detailed derivation of (21).) Here,
o &= Vec(Xj)TPﬂ.Lvec(A) + ¢, is the oracle noise; € = (£1,...,8,) ' ;
° )NCB, )sz are sketching covariates introduced in Equation (6);
_ - - - - T
ey = [VGC(B)T,VeC(Dl)T,VGC(DQ)T,VGC(D:J,)T = U'vec(A) € R™ is the dimension-

reduced parameter.

(21) reveals the essence of the least squares estimator (7) in the ISLET procedure — the
outcomes of (7) and (8), i.e., B and f)k, are sample-based estimates of B and Dj. Finally,
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based on the detailed algebraic calculation in Step 3 and the proof of Theorem 2,
o~ ~ ~ ~ o~ ~ ~ ~ \—1
A= [BiLi Lo Ly, Ly = (UBV,+UuDy) (BiVi) (22)

(22) is essentially a higher-order version of the Schur complement formula (also see [20]).
Finally, we apply the plug-in estimator to obtain the final estimator A (Equation (9) in
Step 3 of the ISLET procedure).

Based on previous discussions, it can be seen that the estimation error of the original ten-
sor regression is driven by the error of the least squares estimator 7, i.e., || (XTX) 1XTg 3.

We have the following oracle inequality for the proposed ISLET procedure.

Theorem 2 (Oracle Inequality of Regular Tensor Estimation: Order-3 Case). Suppose
A € RP*P2XPs has Tucker rank-(ri,r2,73) tensor and A is the outcome of Algorithm 1.
Assume the sketching directions {ﬁk,%}zzl satisfy 0 < 1/2 (see (19) for the definition
of 0) and Hﬁk(ﬁkvk)_lH < p. We don’t impose other specific assumptions on X; and &;.
Then, we have

4= A = 0+ e o &KX,

for uniform constant C' > 0 that does not rely on any other parameters.

Proof. See Appendix F.1 for a complete proof. In particular, the proof contains three major
steps. After introducing a number of notation, we first transform the original regression
model to the partial regression model (21), then rewrite the upper bound ||(XT X)X T& B
to ||B — BHHS +30_, IDy, — Dk”F. Next, we introduce a factorization of A in parallel
with the one of A, based on which the loss |4 — Al|us is decomposed into eight terms.
Finally, we introduce a novel deterministic error bound for the “Cross scheme” (Lemma
3 in the supplementary material [137]; also see [135]), carefully analyze each term in the

decomposition of ||A — Algs, and finalize the proof. O

Theorem 2 shows that once the sketching directions U and V are reasonably accurate,
the estimation error for LA will be close to the error of partial linear regression in Equation
(21). This bound is general and deterministic, which can be used as a key step in more

specific settings of low-rank tensor regression.

3.2 Sparse Tensor Regression and Oracle Inequality

Next, we study the oracle performance of the proposed procedure for sparse tensor regres-
sion, where A further satisfies the sparsity constraint (3). As in the previous section, we

decompose the vectorized parameter as

vee(A) =Py, 5,00, Vec(A) + P O500,00,),

:(63 ® 62 & I~j?))VeC(B) + P(U3®U2®U n

vec(\A)

(23)
vec(A);
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vec(A) =P (W ®ka)vec(.A) + Pr, W, ®ka)Lvec(A) 24
=R (W, @ I, )vec(Ej) + PRk(Wk(@ka)LveC(A)’ kE=1,2,3.
Here,
B:=[A;U[, U], UJ] € R,
(25)

Ek = My, <A X (k+1) ﬁz—i-l X (k+2) 62_1_2) \ka S Rperk7 k=1,2,3,

are the low-dimensional projections of A onto the importance sketching directions. Since
{Uk, W} are the left and right singular subspaces of M,(A), we can show Py,eu,eu,), vec(A)
and Pr, (w1, ), vec(A) are zeros. Thus if the estimates (U, W, }3_, are sufficiently ac-

63®62®61)LV60(A)
)Lvec(.A) have small amplitudes. Then, based on a more detailed cal-

curate, i.e., # defined in Eq. (19) is small, we expect that the residuals P(
and PRk (Wl
culation in the proof of Theorem 3, the model of sparse and low-rank tensor regression

yj = (X}, A) + ¢; can be rewritten as the following partial linear regression,

yj = (XB)jvec(B) + (8);, (26)
yj = (Xp, )y gvec(Br) + (Bg)j, k=123 (27)
Here, 5(3 and )~(Ek are the covariates defined in Equation (13) and
s = ((€B)1,---,(EB)n) ", €r, = ((EE,)1,---,(€R,)n) " are oracle noises defined as

(eB)j = <Vec(xj)’P(63®62®61)LV6C(A)> T

(28)
and (EEk)j = <V€C(Xj),P(Rk(vvk®1pk))LVeC(A)> + €j.
Therefore, the Step 2 of sparse ISLET can be interpreted as the estimation of B and Ek
We apply regular least squares to estimate B and Ek for k ¢ Js. For any sparse mode
k € Js, f)k are group sparse due to the definition (25) and the assumption that Uy are

row-wise sparse. Specifically, Ek satisfies

Pk

vec Ek H = 1 N < s, 29
H ( ) 0,2 zz; {(vec(Ek))Gk¢0} ( )
where
GF ={iyi+pr,...,i+pe(r =1}, i=1,....,px, Yk,
is a partition of {1,...,pgrr} (see the proof for Theorem 3 for a more detailed argument

for (29)). By detailed calculations in Step 3 of the proof for Theorem 2, one can verify that

A= [B.(By(U] B ), (By(UF By) ™). (Ba(UJ Es) )]
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Then the finally sparse ISLET estimator A in (17) can be seen as the plug-in estimator.
To ensure that the group Lasso estimator in (15) provides a stable estimation for the

proposed procedure, we introduce the following group restricted isometry condition, which

can also be seen as an extension of restricted isometry property (RIP), a commonly used

condition in compressed sensing and high-dimensional linear regression literature [26].

Condition 1. We say a matriz X € R"*P satisfies the group restricted isometry property
(GRIP) with respect to partition G1,...,Gn C{1,...,p}, if there exists § > 0 such that

n(1=8)||[vIl3 < [IXvI3 < n(1+0)|vl3 (30)
for all group-wise sparse vector v satisfying Y p-, 1{VG;C7£0} <s.

We still use 6 defined in Eq. (19) to characterize the sketching direction errors. The

following oracle inequality holds for sparse tensor regression with importance sketching.

Theorem 3 (Oracle Inequality for Sparse Tensor Regression: Order-3 Case). Consider
the sparse low-rank tensor regression (1) (3). Suppose 8 < 1/2, the importance sketching
covariates XB and XEk (k ¢ Js) are non-singular. For any k € Js, iEk satisfies group
restricted isometry property (Condition 1) with respect to partition G¥, . .. ,G’;k in (16) and
0 < 1/3. We apply the proposed Algorithm 2 with group Lasso penalty

Nk = Cl max
i:l,...,pk

_ iy
(XE, [ct) EE, )

for k € Js and some constant Cy > 3. We also assume HINJ;LE;C(INJJEIC)AH < p. Then,

T3 -1%T=|?
|4- .AH (1+ Cos(0+ ) | [[(X5Xm) "X
N 6D
[ K € 3 [ Rig ])
k¢t Js keJ,
Proof. See Appendix F.2. O

Remark 3. In the oracle error bound (31), H(Xgig)_lf(;EBH%,

2 -
H XT XEk) 1XT 1 and spmaxi—1,..p, [[(Xg, | Gk})TNEk/nH% correspond to the esti-

mation errors ofB Ek of the non-sparse mode, and Ek of sparse mode, respectively. When
the group restricted isometry property (Condition 1) is replaced by group restricted eigen-

value condition (see, e.g., [79]), a similar result to Theorem 3 can be derived.
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4 Fast Low-rank Tensor Regression via ISLET

We further study the low-rank tensor regression with Gaussian ensemble design, i.e., X has
i.i.d. standard normal entries. This has been considered a benchmark setting for low-rank
tensor /matrix recovery literature [25, 29]. For convenience, we denote p = (p1,p2,p3),r =
(ri,72,73), p = max{p1, p2,p3}, and r = max{ry,re,r3}. We discuss the regular low-rank

and sparse low-rank tensor regression in the next two subsections, respectively.

4.1 Regular Low-rank Tensor Regression with ISLET
We have the following theoretical guarantee for ISLET under Gaussian ensemble design.

Theorem 4 (Upper bound for tensor regression via ISLET). Consider the tensor regression

model (1), where A € RPY*P2XP3 4s Tycker rank-(ry,re,r3), X; has i.i.d. standard normal
entries, and € ud N(0,02). Denote 6% = || A|%4g + 02, Ao = ming A\, \p = 07 (M (A)),
k = maxy [|Mg(A)||/or,(Mr(A)), and m = rirors + 22:1(2% — re)rg. If np Ang >
C52(p®/ 2 +kpr)
A3
satisfies

, then the sample-splitting ISLET estimator (see the forthcoming Remark 5)

Hj_AHZ <M (g2 QRN () o Jlogp o [ ma?
HS ~ ng n3N2 m (n1 Ana)A3

with probability at least 1 — p~C4.

Proof. See Section F.3 for details. Specifically, we first derive the estimation error up-

per bounds for sketching directions Uy, via the deterministic error bound of HOOI [138].
o]
and | Dy (B V)Y for k = 1,2,3. Finally, the oracle inequality of Theorem 2 leads to the
desired upper bound. ]

Then we apply concentration inequalities to obtain upper bounds for

Remark 4 (Sample Complexity). In Theorem 4, we show that as long as the sample size
n = Q(p3/2r + pr?), ISLET achieves consistent estimation under regularity conditions.
This sample complexity outperforms many computationally feasible algorithms in previous
literature, e.g., n = Q(p?rpolylog(p)) in projected gradient descent [29], sum of nuclear norm
minimization [117], and square mnorm minimization [91]. To the best of our knowledge,
ISLET is the first computationally efficient algorithm that achieves this sample complexity
result.

On the other hand, [91] showed that the direct nonconvex Tucker rank minimization, a
computationally infeasible method, can do exact recovery with O(pr + r3) linear measure-
ments in the noiseless setting. [13] showed that if tensor parameter A is CP rank-r, the

linear system y; = (A, Xj),j = 1,...,n has a unique solution with probability one if one
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has O(pr) measurements. It remains an open question whether the sample complezity of

n = Q(p3/27" + pr?) is necessary for all computationally efficient procedures.

Remark 5 (Sample splitting). The direct analysis for the proposed ISLET in Algorithm
1 is technically involved, among which one major difficulty is the dependency between the
sketching directions ﬁk obtained in Step 1 and the regression noise € in Step 2. To overcome
this difficulty, we choose to analyze a modified procedure with the sample splitting scheme:
we randomly split all n samples into two sets with cardinality n, and no, respectively. Then
we use the first set of ny samples to construct the covariance tensor A (Step 1) and use
the second set of ng samples to evaluate the importance sketching covariates (Step 2). As
tllustrated by numerical studies in Section 5, such a scheme is mainly for technical purposes
and is not necessary in practice. Simulations suggest that it is preferable to use all samples
{yi, X}l for both constructing the initial estimate A and performing linear regression on

sketching covariates.

We further consider the statistical limits for low-rank tensor regression with Gaussian

ensemble. Consider the following class of general low-rank tensors,
Apr = { A € RPV*P2XP3 : Tucker rank(A) < (r1,72,73) } . (32)
The following minimax lower bound holds for all low-rank tensors in A .

Theorem 5 (Minimax Lower Bound). If n > m + 1, the following non-asymptotic lower

bound in estimation error hold,

~ 2 m )
inf sup E HA— AH > —— 0" (33)
A AcAp HS n—m-—1
Ifn<m+1,
~ 2
inf sup E HA - AH = +o00. (34)
A AcAp HS
Proof. See Appendix F.4. O

Combining Theorems 4 and 5, we can see that as long as the sample size satisfies

215/\2% = o(1), Wii—w = o(c?), and ny = (1 + o(1))n, the statistical loss of the

proposed method is sharp with matching constant to the lower bound.

Remark 6 (Matrix ISLET vs. Previous Matrix Recovery Methods). If the order of tensor
reduces to two, the tensor regression becomes the well-regarded low-rank matrix recovery in
literature [25, 104]:

yi:<XZ~,A)+£,~, 1=1,...,n.
Here, A € RPY*P2 s the unknown rank-r target matriz, {X;}I", are design matrices, and

gi ~ N(0,02) are noises. The low-rank matriz recovery, including its instances such as
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phase retrieval [23], has been widely considered in recent literature. Various methods, such
as nuclear norm minimization [24, 104/, projected gradient descent [115], singular value
thresholding [15], Procrustes flow [119], etc, have been introduced and both the theoretical
and computational performances have been extensively studied. By similar proof of The-
orem 4, the following upper bound for matriz ISLET estimator A (Algorithm 4 in the
supplementary material [137])

—~ 2 C 1
8-l < (o O (v e/ e[ v)
2 ni nl ’l’lg

can be established with high probability. Here, m = (p1 + p2 — r)r, Ao = op(A =

|A||% + %, The lower bound similarly to Theorem 5 also holds.

4.2 Sparse Tensor Regression with Importance Sketching

We further consider the simultaneously sparse and low-rank tensor regression with Gaussian
ensemble design. We have the following theoretical guarantee for sparse ISLET. Due to the
same reason as for regular ISLET (see Remark 5), the sample splitting scheme is introduced

in our technical analysis.

Theorem 6 (Upper Bounds for Sparse Tensor Regression via ISLET). Consider the tensor
regression model (1), where A is Szmultaneously low-rank and sparse (3), X; has i.i.d. stan-
dard Gaussian entries, and g; ~ N(O 0?). Denote \g = ming oy, (My(A)), s = pi if k ¢
Ty, 1y = Tirarat Seey, Sk(a-HOE PR+ S, Phrs and s = max | My (A) /3 (M (A)).
We apply the proposed Algorithm 2 with sample splitting scheme (see Remark 5) and group
Lasso penalty ni, = Coo\/na(ri + log(pr)). If log(p1) = log(pa) < log(ps) < log(p),

~ 3 ~
01520—2 2 2 2 02m5ﬁ20—2
ny > ——5— | s1s283log(p) + E spry + Tig1The2) |+ n2 = T2
k=1 0

the output A of sparse ISLET satisfies

b = O ()

ni

(35)

with probability at least 1 — p~C
Proof. See Appendix F.5. O
We further consider the following class of simultaneously sparse and low-rank tensors,
Aprs ={A=[8;U1,Us, Us] : Uy € Op, e, |Ukllo2 < s, k € Js}. (36)

The following minimax lower bound of the estimation risk holds in this class.
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Theorem 7 (Lower Bounds). There ezists constant C > 0 such that whenever ms > C,

the following lower bound holds for any arbitrary estimator A based on { X, viti,

~ 2 cm
inf sup E HA — AH > 202 (37)
A A€Ap 1. HS n

Proof. See Appendix F.6. O

Combining Theorems 6 and 7, we can see the proposed procedure achieves optimal rate

2
mallAlis — (1) and ng =< n.

of convergence if 5
nio

5 Numerical Analysis

In this section, we conduct a simulation study to investigate the numerical performance of
ISLET. In each study, we construct sensing tensors X; € RP*P*P with independent standard
normal entries. In the non-sparse settings, using the Tucker decomposition we generate the
core tensor & € R"™"™*" and Ej, € R,, with i.i.d. Gaussian entries, the coefficient tensor
A = [S;E;; Ey; Es]; in the sparse settings, we construct & and A in the same way and

generate E; as

(Ek)[j,:]’ i € Q, and 7 is the j-th element of ;
(Ex)pi,g = 0 P

where Qj is a uniform random subset of {1,...,p} with cardinality s; and Ej has sj-
by-r i.i.d. Gaussian entries. Finally, let the response y; = (X, A) +¢;,j = 1,2,...,n,
where ¢; YN (0, 2). We report both the average root mean squared error (RMSE) ||A —
Allns/||Allus and the run time for each setting. Unless otherwise noted, the reported
results are based on the average of 100 repeats and on a computer with Intel Xeon E5-
2680 2.50GHz CPU. Additional simulation results of tuning-free ISLET and approximate
low-rank tensor regression are collected in Sections D and E in the supplementary material
[137].

Since we proposed to evaluate sketching directions and dimension-reduced regression
(Steps 1 and 2 of Algorithm 1) both using the complete sample, but introduced a sample
splitting scheme (Remark 5) to prove Theorems 4 and 6, we investigate how the sample
splitting scheme affects the numerical performance of ISLET in this simulation setting. Let
n vary from 1000 to 4000, p = 10, r = 3,5, 0 = 5. In addition to the original ISLET without
splitting, we also implement sample-splitting ISLET, where a random n; = {%n, %n, %n}
samples are allocated for importance direction estimation (Step 1 of ISLET) and n — n;
are allocated for dimension-reduced regression (Step 2 of ISLET). The results plotted in

Figure 5 clearly show that the no-sample-splitting scheme yields much smaller estimation
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error than all sample-splitting approaches. Although the sample splitting scheme brings
advantages for our theoretical analyses for ISLET, it is not necessary in practice. Therefore,

we will only perform ISLET without sample splitting for the rest of the simulation studies.

=) r=3 r=5
S ] —%— Without Split ] —<— Without Split
9 ‘\ - o- Split—-Prop 0.3 N -e- Split-Prop 0.3
SN 4. split-Prop 0.4 o |3 4. Split-Prop 0.4
o o ‘\ —+ Split—Prop 0.5 S +‘\ \ -—+ Split—-Prop 0.5
N \ \ N
S+ AN

W ERN L < A
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o W ~ -+ ~ N N
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< A N o~ e T~
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Figure 5: No-splitting vs. splitting ISLET: n varies from 1000 to 4000, p = 10, r = 3,5,

o =>5.

We also compare the performance of non-sparse ISLET with a number of contemporary
methods, including non-convex projected gradient descent (non-convex PGD) [29], Tucker
low-rank regression via alternating gradient descent (Tucker regression)! [77, 143], and
convex regularization low-rank tensor recovery (convex regularization)? [78, 103, 117]. We
implement all four methods for p = 10, but only the ISLET and non-convex projected PGD
for p = 50, as the time cost of Tucker regression and convex regularization are beyond our
computational limit if p = 50. Results for p = 10 and p = 50 are respectively plotted in
Panels (a)(b) and Panels (c)(d) of Fig. 6. Plots in Fig. 6 (a) and (c) show that the RMSEs
of ISLET, tucker tensor regression and non-convex PGD are close, and all of them are
slightly better than the convex regularization method; Figure 6 (b) and (d) further indicate
that ISLET is much faster than other methods — the advantage significantly increases
as n and p grow. In particular, ISLET is about 10 times faster than non-convex PGD
when p = 50,n = 12000. In summary, the proposed ISLET achieves similar statistical

performance within in a significantly shorter time period comparing to the other state-or-

!Software package downloaded at https://hua-zhou.github.io/TensorReg/
2The convex regularization aims to minimize the following objective function
n 1 3
2
Do i = (X, A A Me(A-

— 2n
7 k=1

Here, || - ||« is the matrix nuclear norm.
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o = 5; Panels (a)(b): p = 10; Panels (c)(d): p = 50.

Next, we investigate the performance of ISLET when p and n substantially grow. Let
p = 100,150,200, » = 3,5, n € [8000,20000]. The results in RMSE and run time are
shown in Fig. 7 (a), (b), (c), and (d), respectively. We can see that the estimation error

significantly decays as the sample size n grows, the dimension p decreases, or the Tucker

rank r decreases.

We further fix r = 2, n = 30000 and let p grow to 400. Now the space cost for storing
{&;}, reaches 400% x 30000 x 4bytes = 7.68 terabytes, which is far beyond the volume
of most personal computing devices. Since each sample is used only twice in ISLET, we
perform this experiment in a parallel way. To be specific, in each machine b = 1,...,40,
we store the random seed, draw pseudo random tensor X};, evaluate yp; and jb by the
procedure in Section 2.2, and clean up the memory of AXy;. After synchronizing the outcomes

and obtaining the importance sketching directions, for each machine b = 1,...,40, we
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generate pseudo-random covariates Xjp; again using the stored random seeds, evaluate étb
and Xy; by (11)-(12), and clean up the memory of Aj; again. The rest of the procedure
follows from Section 2.2 and the original ISLET in Algorithm 1. The average RMSE and
run time for five repeats are shown in Figure 8. We clearly see that ISLET yields good
statistical performance within a reasonable amount of time, while the other contemporary
methods can hardly do so in such a ultrahigh-dimensional setting.

In addition, we explore the numerical performance of ISLET for simultaneously sparse
and low-rank tensor regression. To perform sparse ISLET (Algorithm 2), we apply the
gglasso package® [131] for group Lasso and penalty level selection. Let n vary from 1500 to
4000, p = 20,25,30, r = 3,5, 0 = 5, s = s1 = s9 = s3 = 8. The result is shown in Fig. 9.
Similar to the non-sparse ISLET, as sample size n increases or Tucker rank r decreases, the
average estimation errors decrease.

We also compare sparse ISLET with slice-sparse non-convex PGD proposed by [29].
Let n € [5000,12000], p = 50, r = 3,5, 0 = 5, s; = s2 = s3 = 15. From Fig. 10, we can
see that ISLET yields much smaller estimation error with significantly shorter time than
non-convex PGD — the difference between two algorithms becomes more significant as n
grows.

Finally, if the tensor is of order 2, tensor regression becomes the classic low-rank matrix
recovery problem [25, 104]. Among existing approaches for low-rank matrix recovery, the
nuclear norm minimization (NNM) has been proposed and extensively studied in recent
literature. We compare the numerical performance of matrix ISLET (see Algorithm 4 in

Section C for implementation details) and NNM that aims to solve

n

S i — (X0, A) + AL,
=1

where ||All, =), 0;(A) is the matrix nuclear norm. We consider two specific settings: (1)
p1 = pa = 50, r = 2, 0 = 10, n € [2000,16000]; (2) p1 = p2 = 100, = 4,0 = 10,n €
[2000, 28000]. From Figure 11, we find that ISLET has similar, or sometimes even better
performance than NNM in estimation error. On the other hand, the run time of ISLET is

negligibly small compared to NNM.

6 Discussion

In this article, we develop a general importance sketching algorithm for high-dimensional

low-rank tensor regression. In particular, to sufficiently reduce the dimension of the higher-

3 Available online at: https://cran.r-project.org/web/packages/gglasso/index.html.
“The optimization of NNM is implemented by accelerated proximal gradient method [115] using the

software package available online at http://www.math.nus.edu.sg/~mattohkc/NNLS.html.
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order structure, we propose a fast algorithm named importance sketching low-rank estimation
for tensors (ISLET). The proposed algorithm includes three major steps: we first apply
tensor decomposition approaches, such as HOOI and STAT-SVD, to obtain importance
sketching directions; then we perform regression using the sketched tensor/matrices (in the
sparse case, we add group-sparsity regularizers); finally we assemble the final estimator.
We establish deterministic oracle inequalities for the proposed procedure under general de-
sign and noise distributions. We also prove that ISLET achieves optimal mean-squared
error rate under Gaussian ensemble design — regular ISLET can further achieves the op-
timal constant for mean-squared error. As illustrated in simulation studies, the proposed
procedure is computationally efficient comparing to contemporary methods. Although the
presentation mainly focuses on order-3 tensors here, the method and theory for the general

order-d tensors can be elaborated similarly.
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Figure 11: ISLET vs. nuclear norm minimization for low-rank matrix recovery

It is also noteworthy that the storage cost for Tucker decomposition in the proposed
procedure grows exponentially with the order d. Thus, if the target tensor has a large
order, it is more desirable to consider other low-rank approximation methods than Tucker,
such as the CP decomposition [12, 13], Hierarchical Tucker (HT) decomposition [7, 50, 54],
and Tensor Train (TT) decomposition [93, 96], etc. The ISLET framework can be adapted
to these structures as long as there are two key components: there exists a sketching ap-
proach for dimension reduction and a computational inversion step for embedding the low-
dimensional estimate back to the high-dimensional space (also see Section 2.4). Whether
these components hold for the previously described methods remains an interesting open
question.

In addition to low-rank tensor regression, the idea of ISLET can be applied to various
other high-dimensional problems. First, high-order interaction pursuit is an important topic
in high-dimensional statistics that aims at the interaction among three or more variables

in the regression setting. This problem can be transformed to the tensor estimation based

33



on a number of rank-1 projections by the argument in [55]. Similarly to analysis on tensor
regression in this paper, the idea of ISLET can be used to develop an optimal and efficient
procedure for high-order interaction pursuit with provable advantages over other baseline
methods.

In addition, matriz/tensor completion has attracted significant attention in the recent
literature [27, 78, 127, 128, 134]. The central task of matrix/tensor completion is to complete
the low-rank matrix/tensor based on a limited number of observable entries. Since each
observable entry in matrix/tensor completion can be seen as a special rank-one projection
of the original matrix/tensor, the idea behind ISLET can be used to achieve a more efficient
algorithm in matrix/tensor completion with theoretical guarantees. It will be an interesting
future topic to further investigate the performance of ISLET on other high-dimensional

problems.
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Supplement to “ISLET: Fast and Optimal Low-rank Tensor

Regression via Importance Sketching”

Anru Zhang, Yuetian Luo, Garvesh Raskutti, and Ming Yuan

Abstract

In this supplement, we provide additional notation, preliminaries, ISLET procedure
for general order tensor estimations, more details on tuning parameter selection, and

all proofs for the main results of the paper.

A Additional Notation and Preliminaries

To conveniently specify the dimensions of tensors, for an order-d tensor A with dimensions
pP1 X -+ X pg, we denote p_p = p1---pa/p for k =1,...,d. Then the mode-k matricization
of A, denoted as My (.A), has dimension py X p_i. For any matrix D € RP**P2 and order-d
tensor A, we formally define the vectorization as

vee(D) € RPP2, - vee(D)ji, 4 (1p-1)p1] = Dfiyia:

vec(A) € RPUPD, - vee(A)fiy oy (ia—1)+-+ia—pr-pal = Al ssial-

For any tensor A € RP1**Pd_the Mode-k matricization is formally defined as

d -1
My (A) e RPPE - Ay 0= (Me(A)g, 5 F=1+> 3 G=1) [] pm
7k M
for any 1 <4 < p;,l =1,...,d. Also see [65, Section 2.4] for more discussions on tensor

matricizations.

In order to better illustrate the proposed procedure, we have introduced a row-permutation
operator Ry that matches the index of W&V}, to vec(\A). In particular if A € RPL*P2XP3 "W €
RP-+XTk 'V, € RPEXTe R, is defined as follows:

(R1 (W1 ® Vl))[i1+(i2—1)p1+(i3—1)p1p271} =(Wie Vl)[il+(i2—1)p1+(i3—1)1)1p2,:] )
(R2 (W2 @ V)i, i — 1)1+ (s —ppes] = (W2 @ V)i (i 1)po-t (ia—1)pap, 1
(R3 (W3 ® V3))[i1+(i2*1)P1+(i3*1)p1p2:1} - (W3 ® V3>[i3+(i1*1)P3+(i2*1)p1p3:¢]

for 1 <i1p <p1,1 <ip <po, 1 <ig < p3.



B ADHD MRI Imaging Data Analysis

In this section, we display the value of our method on predicting attention deficit hyper-
activity disorder (ADHD) with magnetic resonance imaging (MRI) dataset provided by
Neuro Bureau®. The dataset involves 973 subjects, where each subject is associated with
a 121-by-145-by-121 MRI image and several demographic variables. After removing the
missing values, we obtain 930 samples, among which 356 and 574 are diagnosed and control
subjects, respectively.

We aim to do prediction based on the association between the diagnosis label y; of
1

ith observation and its covariates with MRI imaging X;, demographic variables age x;,

3

gender x%, and handedness z7. To better cope the job of predicting binary response y;
and incorporate the demographic information in addition to tensor image covariates, we
apply importance sketching, the central idea of ISLET, for dimension reduction. The 5-fold
cross-validation is applied to examine the prediction power. Specifically for [ = 1,...,50,
we randomly partition all 930 subjects into 5 uniform subsets {le)}jzl,mj C{1,...,930}.
For j = 1,...,5, we assign one fold le) and the other four folds Q(I)J = Ujr2;Q; as
the testing and training sets, respectively. We apply Step 1 of sparse ISLET (described in

Section 2.3) on {y;, Xi}ied” to obtain Uy, Uy, Us and construct the importance sketching
(=3)
covariates X; = vec(X; X1 UlT , ><1U1T , ><1U1T ), perform logistic regression for y; versus the

combined covariates [ii, JY%, x?, xf’], i e OY and possible £1 regularizer to get the estimates.

—J
Then we use estimates and [iz,mﬁ,xé,%] b€ le)
él). For comparison, we also perform Tucker regression and Tucker regression
with regularizer proposed by [77, 143] under the same setting. Since it is computationally

to predict the labels of samples in the
testing set ()

intensive to perform full Tucker regression on complete tensor covariates of dimension 121 x
145 x 121, we follow the procedure described in [77, 143] and apply the discrete cosine
transformation to downsize the MRI data to 12 x 14 x 12 using the code available at the
authors’ website [142]. For all methods, we input Tucker rank (r,r,r) for r = 3,4,5 and
other regularization tuning parameters selected via cross validation. We repeat experiments
forl=1,...,50,7 =1,...,5 and take average to ensure stable estimations of the prediction
accuracy for both procedures.

The average prediction accuracy with standard deviation in the parenthesis and runtime
for both methods are shown in Table 1. We can see the importance sketching method
performs significantly better than Tucker regression in both the prediction accuracy and
runtime for all different Tucker rank choices. Particularly for the importance sketching,
adding ¢ regularizer provides more accurate prediction but costs more time. In addition,

compared to the downsizing method by [143, 77] that deterministically relies on external

Link: http://neurobureau.projects.nitrc.org/ADHD200/Data.html
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Methods
Rank

IS IS Tucker Reg.  Tucker Reg.
+ regularizer + regularizer
Prediction 3 0.684(0.010) 0.686(0.009) 0.624(0.014) 0.647(0.009)
Accuracy 4 0.673(0.009) 0.682(0.008) 0.609(0.014) 0.648(0.007)
5 0.653(0.009) 0.674(0.007) 0.591(0.015) 0.644(0.007)

Runtime 3 0.008 0.392 14.291 3.03

Unit;: 4 0.024 1.003 22.088 5.761

seconds 5 0.064 3.339 33.392 13.710

Table 1: Importance sketching (IS) vs. Tucker regression in prediction accuracy and runtime

information, our importance sketching is fully data-driven. We can also see downsizing the
tensor covariates to 3-by-3-by-3 by importance sketching provides more prediction power
than downsizing to 12-by-14-by-12 by deterministic methods. This reveals the runtime
advantage and immediately demonstrates the advantage of the proposed method over other

state-of-the-art approaches.

C ISLET for General Order Tensor Estimation

For completeness, we provide the ISLET procedure for general order-d low-rank tensor
estimation in this section. The procedure for d > 3 is provided in Algorithms 3 and the
one for d = 2 (i.e., the low-rank matrix estimation) is provided in Algorithm 4. The sparse

versions for d > 3 and d = 2 are provided in Algorithms 5 and 6, respectively.

D More Details on Tuning Parameter Selection

The implementation of ISLET requires the rank » as inputs. When » is unknown in
practice, we propose a two-stage-scheme for adaptive low-rank tensor regression. First, we
input a conservatively large value of 7;,; into ISLET to obtain l§, ]A)k (regular case) or B , Ek
(sparse case), based on which we estimate the rank 7 by the “Cross scheme” introduced
recently by [135]. Then, we run ISLET again with 7 to obtain the final estimates. The
pseudo-codes for regular and sparse order-d tensor regression are provided in Algorithms 7
and 8, respectively.

Next, we perform simulation studies to verify the proposed rank selection scheme in both
the regular and sparse cases. In particular, let p = 20,30, r;,; = |p/3], n € [2000, 5000],
o =5, s =12, and the actual rank r = 3,5. We randomly generate the regular and sparse

regression settings as described in Section 5, then perform Algorithms 7 and 8. The average



Algorithm 3 Order-d ISLET (d > 3)

L Input: y1,...,yp € R, &1, ..., X, € RPVXPd_rank r = (r1,...,7q).
2: Evaluate A = 1 > i1 Ui

3:

4: Let 8 = [[.«1, I~JI, . ,ﬁ;]]. Evaluate the sketching directions,

Apply order-d HOOI on A to obtain initial estimates ﬁk, k=1,....,d

V.= QR [Mk(gﬂ Ck=1,....d
Construct X = [5(3 XDl XDd] € R™*™_ where
Xpg € R"™B, ()23)[1-7:] = vec (XZ- xd leT> ,
Xp, € B8, (X, = vee (UL M, (% o ol ) Vi)

for mp=ri---rq,mp, = (pr —ri)ri, k=1,...,d, and m = mg +mp, +--- + mp,.
Solve 4 = arg min.cgm ||y — 567\\% Partition 4 to g,ﬁl, e ﬁd,
VeC(B) =95 = ﬁ[l:me

~

B
vec(Dy) := '?Dk = ;?[(mBJrZ:/;ll ka,+1>¢<mB+ZZ/:1 ka/ﬂ, k=1,....,d.

Let By = My(B), evaluate

~ ~ o~ ~ ~ ~ o~ ~ .~ ~ ~ o~ -1
A= [[B;Ll,. . .,Ld]], L, = (UkBka + Uk-J_Dk) (Bka) , k=1,...,d.




Algorithm 4 Matrix ISLET
1: Input: y1,...,yn € R, Xq,..., X, € RPY*P2_rank r.
2: Evaluate A = 13" ;X and let Uj = SVD,(A), Uy = SVD,(AT).
3. Construct X = [)NCB XDliDQ} € Rv*r(P1+p2—7) where

Xp € R™" (XB)[i,;] = vec (ﬁfxiﬂb) ;

Xp, € R™Pe" 0 (Xp, ) = vec (ﬁLXiﬁz) . (Xp,)pi,) = vec (Ing_XzTﬁl) :

4: Solve 4 = arg min.cgm ||y — )NC')/H% Partition 5 and assign to B, Dy, D,

~ ~ ~

vec(B) := 1,2, vee(D1) == F(p21)ipy)s VeC(D2) 1= V{(rp £1):(r(p1 +p2—r))-

5: Evaluate

o~

A=LBL]. L =(0B+0,D)B" L= (0B +0,0)(B")

Algorithm 5 Order-d Sparse ISLET
L Input: y1,...,yn € R, X1,..., X, € RPL**Pd_rank r = (ry,r9,...,74), sparsity index
Js.
2. Evaluate A = % Z?Zl y; Xj.
3: Apply STAT-SVD on A with sparsity index Js. Let the outcome be Uy, Uy, Us, ..., Uy.
4: Let 8§ = [[.«17 INJ'lT, ... ,ﬁ}]] and evaluate the probing directions V., =
QR [Mk(gﬂ k=1,....d

5. Construct

XB c RnX(m.--m)’ (XB)[z,] = vec (XZ de:]_ 6;—) ,
XEk € Rnx(pkm)’ (XEk)[’L,] = vec (Mk (Xz X?_l 6?—) Vk> 5 k= 1, cee ,d.

6: Solve

g c RT‘l-wrd’ VeC(B\) = arg min Hy - i37||%’

~ERT1Td
: R e 2 Dk .

Ek c R]%er7 VeC(Ek) _ arngn'yeRkak ”y %'Ek,)/H; + Ak Zj:l H'YG;?H% ke Js;
arg min, cgeyr ly — XE, 75, k¢ Js.

7. Evaluate
A=[B;(E((U/E)"),...,(Eqy(UsEg) )]




Algorithm 6 Matrix Sparse ISLET
L Input: y1,...,yn € R, Xy,...,X,, € RP1*P2_ rank r, sparsity index J; C {1,2}.
2: Evaluate A = n% Z?:l y;X;. Apply sparse matrix SVD (the Two—\lVay Tterative Thresh-
olding in [130] or the order-2 version of STAT-SVD in [136]) on A with sparsity index
Js. Let the estimated left and right subspaces be [~J'1, 62.

3: Construct

iB S Rnx(r2)7 (XB)[%} = VeC(ﬁIXiﬁg),
Xg, € R @er), (XEl)[i,:] = vec (Xiﬁ2> 7 (XEQ)[Z;;} = vec (ﬁlTXz) :

4: Solve B € R"™*" vec(B) = arg min__p.2 ly — XBY|3%

: e 2 Dk .
E; € RPEXTk VeC(Ek) = { e 0 Bl 7=l ||7G?||2’ ke s

arg min. cgeyr ly — XE,;YH%; k¢ Js.

5: Evaluate
A =E|(U/E) 'B(UjE,) 'Ej].

Algorithm 7 Order-d ISLET, unknown r
1: Input: y1,...,yn € R, A&, &y € RPVCXPA rank vi = (T1iniy - - - Tdying)-
2: Apply Algorithms 1, 3, 4 with rank 7;,; to obtain INJk, \~/'k, BA, and f)k fork=1,...,d.
3: Denote By, = ./\/lk(g) Evaluate U](CB) and V,(CA) via SVDs. Then rotate,

U,gB) € Oy, ,,.;» as the left singular vectors of ﬁk,

V,(CA) € Oy, ;> as the right singular vectors of (fjkﬁm + INJkJ_ﬁk) ;

Ak = (f}kﬁk{/k + ﬁkj_]/jk-) V,gA) c RkaTkmn"
Jk — (U](CB))T . <]§k{}k) . V]gA) c Rrk,inixrk‘,i'ni.

4: for k=1,...,ddo

5 for s =rpini: —1:1do

6 if J} [1:,1:6) 18 DOt singular and ”Ak»[izlis]‘]];%l:s,lzs} | <3 then

7: 7L = s; break from the loop;

8 end if

9 end for

10: If 7, is still unassigned then 7, = 0.

11: end for

12: Apply Algorithm 1 again with rank 7 = (71,...,74). Let the final output be A




Algorithm 8 Order-d Sparse ISLET, unknown r
1: Input: y1,...,y, € R, X,..., X, € RP1>*"*Pd_rank r;,;, sparsity index J;.
. Apply Algorithms 2, 5, or 6 with rank 7;,; to obtain ka, {7;{, B\’ and Ek fork=1,...,d.

3: Denote By, = Mk(ﬁ) Evaluate U,(CB) and VliA) via SVDs, then rotate,

\v]

U,(CB) S0 as the left singular vectors of f’)k,

Tk,ini?

V,(CA) € Oy, ,,,;, as the right singular vectors of Ek;

A, = EkV](fA) € RPRXThyini — J = (UIE:B))T . <]§k\~[k> .V’gA) € R7kini XTh,ini

4: for k=1,...,d do

5 for s =14 4p;: —1:1 do

6 if J} [1:,1:5) 18 DOt singular and ||Ak7[:71:8]J];%1:S71:5} | <3 then

7: 7, = s; break from the loop;

8 end if

9 end for

10: If 7}, is still unassigned then 7, = 0.

11: end for

12: Apply Algorithm 2 again with rank 7 = (71,...,7y). Let the final output be A.

estimation error results are plots in Figures 12 and 13 respectively for the regular and sparse
cases. We can see from both cases that the estimation errors with known rank are close to

the one without known rank and the difference decreases when the sample size gets larger.

E Simulation Study on Approximate Low-rank Tensor Re-

gression

We provide simulation results on the performance of ISLET when the parameter A is
approximately low rank. Specifically, we first simulate the exact low Tucker rank tensor
Ap in the same way as the one in previous settings and simulate Z as the perturbation
tensor with i.i.d. standard normal entries. Then we set A = A4+ T”';#. The response
y; and covariate X are generated the same to previous settings. Let o = 5,p = 20,n =
[2000, 8000], s1 = s = s3 = 12,7 = 0,0.1,0.3,0.5. 7 here characterizes how close A is to the
exact low-rank tensor — A is exact low rank if 7 = 0. We apply ISLET in both the regular
and sparse regimes with the tuning parameter selection scheme described in Algorithms
7 and 8 The results are collected in the Figure 14. We can see that the estimation error
decreases as T decreases or n increases; generally speaking, ISLET achieve good performance

under both the regular and sparse regime when the true parameter A is only approximately
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low rank.

F Proofs

We collect all proofs of the main technical results in this section.

F.1 Proof of Theorem 2

This theorem aims to develop a deterministic error bound for ||A — A|%q in terms of the
sketching direction error 6, p, and error term H(XTX)_IX—@Hg Since the proof is long
and technically challenging, we divide the whole argument into six steps for a better pre-

sentation. In Step 1, we introduce the notation to be used throughout the proof. In Step 2,
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Figure 14: Average estimation error of ISLET under approximate low Tucker rank case.
Left panel: regular case; right panel: sparse case. Here, 0 = 5, p = 20, n = [2000, 8000], s; =
so =83=12,7=0,0.1,0.3,0.5.

we transform the original high-dimensional low-rank tensor regression model to dimension-
reduced one (21). We also rewrite the key quantities in the upper bound ||(XTX) X T&||2
to ||B — BVH%IS +30 IDy, — IN)kH% In step 3, we introduce the factorization for A and
A. Based on this factorization and the property of orthogonal projection, in step 4, we
decompose the loss ||./1 — A||lus into eight terms. In step 5, we bound some intermediate
error terms in terms of § and p using properties of the spectral norm and least singular
value. In the last Step 6, we finish the proof by bounding each of the eight terms in Step
4 using the results in Step 2, 5, and Lemma 3.

Step 1 For simplicity, we denote

x; = vec(Xj) € RPIP2P3 . Xy = M (X)) € RPx X (Ph+1Pk+2)

a=vec(A) € RPPPI AL = My(A) € RPFXPrripe2)

as the vectorized and matricized tensor covariates and parameter. (Note that X is a
matrix rather than the (j, k)-th entry of X. Instead, we use X; ;) to denote the specific
(,7)-th entry of the matrix X in our notation system.) All mode indices (-); are in

module-3, e.g., ps = p1, Ay = A1, Xj5 = Xz, etc. Recall
W, =(Uz3®U3)Vy, W= (UsaU;)Vy, Wi3=(Uy;®U;)Vs,

Wl = (fIS ® 62){}17 WQ - (63 ® 61)‘{72, Wg = (62 X 61)‘{73.



Define
= [[A7 ﬁ?,ﬁ;,ﬁ;ﬂ = [[S X1 U1 X9 Ug X3 U3;6¥76;,ﬁ;ﬂ c Rr1><r2><r3;
D, =U], M1 (A x5 U] x5 Us)V; "2 g A, W, € Rer—r)xr
D, 2621/\@(«4 X1 INJT X3 63)\72 = UMAQWQ € R(P2—72)x72
Ds =UJ M3(A x; U] x5 U3)Vy = Ul AsW3 € RPs—73)%73,

(38)

Intuitively speaking, B is the parameter core tensor lying in the singular subspaces
63 ® ﬁg ® ﬁl and ]51, ]52, ]53 are the parameter matrices corresponding to the arm-
minus-body part lying in the singular subspace of Ry (W1 ® fjl J_), Ro (Wg ® ﬁg J_),

Rs (Ws ® ﬁSJ_)-

Step 2 In this step, we introduce an important decomposition for y; and the error term || (XTX)1XT& 3.

In correspondence to 4 (7), we construct v as

g = (VGC(E)T,VeC(Dl)T,VeC(Dz)T,VeC(Dg)T)T e R™. (39)

Then for j =1,...,n, the response y; can be decomposed as

yi =(Xj, A) + &5 = (x5,a) + ¢

= <Xj, Pﬁa> +e&5+ <Xj, Pﬁla>
3

- <Xj’ Pﬁl®ﬁ2®63a> T Z <Xj’ PRk(ﬁki®Wk>a> +&
k=1

(U5 0,001) %, (U300,001) a) (40)

3
+ 3 (TL X Wi, UL AW )+
k=1

3
38 -~
( )(XB i vec(B —|— E XDk Jvec Dk)+5] X Y+ &)
k=1

Given the definitions of Dy, B (38) and 7 (7) and the fact that X is non-singular, ¥ can

be rewritten into the following vectorized form,
2 ) ~ 2
7 —agggxn; (3= Kir) = axgmin Jy =X
_ (XTX) Xy = (XTX) T <)~(—7 n E)
5+ (X'X) X'&

10



where m = r1ror3 + Sa_, (pk — 7)7%. Thus, by the definition of 7 (39), 7 (7), B and
D (8), we have
PO 5. o e 2
1B = Blifs + > 1Dk~ Dilld = 15— 713 = | XTX) X Te| = n2 (1)
k=1

Step 3 In this step, we introduce the factorization for A (43). Since the left and right singular
subspaces of Ay are Uy and Wy, respectively,

or, (ﬁ{Avafk) =0, (ﬁ[PUkAkPWkVTfk) =0, ((INJ'kTUk)UkTAka(W,IWk))

Zamin(ﬁg—Uk) : O'mln(U]—grAka:) : O'min(Wl—ngk)

:\/1 — || sin © (U, Ug) |12 - o, (Ag) - \/1 — || sin O(Wy, W) |2
>0, (Ag)(1 - 6%) > 0.
(42)

Here, the last but one equality is due to the property of sin © distance (c.f., Lemma 1
in [19]). Thus, rank(ﬁzAka) = 7}, which is a full rank matrix. Thus,

A = [[B; U17 U27 Uv?)]]
= HHB; Ul;U27U3]]§Ul(ﬁlTUl)ilﬁlTvU2(62TU2)716;7US(G—?TU3)7163T]]
— [A40(0] ) O], (U7 Uy) 707, Uy (U] Uy) 0|

= HA, Alwl (ﬁIAlﬁ/]l)flﬁI, AQWQ(G;AQWQ)ilﬁ;, A3W3(6;A3W3)7lﬁgﬂ

(43)
The fourth equality is because the left singular space and right singular space of Ay is
Uk and Wk.
Recall

A= [[z?; il,ig,igﬂ , Ly=(UB.V), + U DBV, k=123
Denote ]§k = Mk(B~), ﬁk = Mk(BA) In parallel to the definition of fk, we define
L I(fjlﬁl{ﬁ + ﬁlj_f)l)(ﬁlvl)_1>
= (ﬁlﬁlTAl(ﬁg & 62)\71 + [NJM_INJITJ_Al(ﬁ?, & 62)\71>
- - - o~ \—1
: <U1 A(Us® U2)V1>

— ~ —~ —1
—AIW, (UIAlwl) .

11



Step 4

Step 5

Similarly,
Ly =(UyByVy + Uy Do) (By V) ™! = AW, (ﬁ;A2W2>_1 ,
Ly =(U3B5 Vs + U3y D3) (By V) = AWy (U] AsW;)
Thus, in addition to A= [[li fq, ig, ig]], we have

A = [B;L;,Ly,Ls] (45)

Next, we analyze the estimation error of A. First, the error bound of A — A can be

decomposed into eight parts,

~ ~ 2
2 .
|4~ Alfis = || LA~ 4: Py, + Pg,, . P, + P, Po, + P, 1

= 1A - 4y 07,07 971 +||id - ), 07,07, 071
+ 1A= 07,87, 1+ 1A - 407,87, O (16)

1A - 5 07, 07, T+ 1A - 07, 07 T

+ 1A~ 201, 0L, 61+ ||icd - 467,05, 01|

Here we used the fact that Pfh and Pﬁu are orthogonal complementary. We aim to

apply Lemma 3 to analyze each term above in the next two steps.

Before giving the upper bounds for each term of (46), we denote
Ak :maX{Hﬁk(ﬁkvk)_IHaHﬁk(ﬁkvk)_lH}a )
47
Tk :H(Bka)’lBkH, k= 1,2,3

and aim to provide upper bounds for A, 7 in this step. By definition of ]~3k and the
fact that the right singular vector of Ay is Wy,

T = (El\?l)ilﬁlH = H(GIA1W1)7II~JIA1(63 ®ﬁQ)H

~ —~ -1 -
< (UIA1W1) U A,

~ —~ -1 ~
- H (UIAlwlwfwl) U AW,

__ __ — —1/2
<[ WTW) | = ok (WT W) = (1= | sin (Wi, W) 2)

min
1

S(l —62)1/2°

Similarly, the same upper bounds also applies to me and 3.

12



Based on definitions of ]~)k and ]§k and the fact that the left singular subspace of Ay is

Uy, we have

IDL(BVi)~ HQ+1—HUMAka U] AW, H +1

2
I

Tk
[Uk L AWL(T] Aka ]

U] AW (U] AW,
U] A WL(UT AW,

—1]|2

— AW, (fngkVVk) -

- HU;Avafk (ﬁ;UkU;AkVVk)

_ N1 —1|2
= |u] AW, (U;Akwk) (U;Uk>

2 1

1—6%

_ (fleUl)*l =2 (OT0) = (1- ||sin@(fjl,U1)H2>71 <

D v, )1
DBV HS\/ —92_1:\/1_92-

By the assumption of the theorem that |D1(B;V1)~!|| < p and 6 < 1/2, we have

which implies

A < max {p, (50)

\/19_792} <p+ \%9, k=1,2,3.
Step 6 Now we are ready to give upper bounds for all terms in (46).
e First, by definition of B, A (9),
14 7,0, 071 = [18:L.. Lo, Ll 07,07, 0]
~ [B:OTE:, O L, O] L]
Here,
UL, =0/ ((ﬁkﬁm n ﬁmﬁk)(ﬁm)—l) = (ByVy)(BrVy) ' =1,

Similarly, we have ﬁTik = I
Thus, [4; U], UJ Ul = By definition of B (38), we have
~ ~ ~ ~ 2 ~ ~ ~ ~ ~ ~ ~ 2
|ica-; 07,07, 07]|| = 1407, 05,01 - 140,05, 0]
L (52)
=||B — Blls.

13



e Note that

(A~ 407,97, 071
WLV 18, U1 Ty, U] Ty, U Ls] — [B; U] LbUTL%U?TL?’HH £
(0)(44) [B;D1(B1V1) ™' L1] — [B;Dy(B,1Vy) ™! I’I]]HHS "
et D) (By V) T'By - ]51(]§1\~/‘1)*1]§1HF

By the first part of Lemma 3,
o~ o~~~ ~ 2
|D1(B1V1) "By~ Dy(BiV1) By
.~ . e~ - 2
< (7T1HD1 —Di||r + A1 B1 = Bi|lp + 711 A1 [|[B1V1 — B1V1”F>

(48550)< L 1By - Dullr + (04 =0k + (p+ —=0)—— )2
—— — —0)k — K
> /71_02 1 1| F 1Y \/g P \/3 1_ 02
IDy — Dy||% + Ci(p+ 6)| D1 — Dyt + Calp + )22

—1-—02
<|Di — Dy|% + 262|Dy — D1||2 + Ci(p + 6)||D1 — D1 || pr + Calp + 6)*>
<Dy — Dy} + Clp + 0)r

Here, the last inequality is due to the fact that [[D; — D1|| < k. Therefore,
— 2 -
[[(A_-A)§ 1L7U27U3]HHS < |IDy = Dq|% + C(p + 0)K?

~ ~ 2 ~ ~
similarly  |[[(A— A3 07,03, Gs)| < [1D2 = Dalfp + Clo+ o), (54)

) ST ST T 2 N 2
[(A—); 07,07, Ta ]| < 11Ds = Dallf + Clp+ 0)x
e By similar argument as (53), we have
|1A - )07, 07, T3]
N 2
- H[[B;Dl(Blvl)_ ,Dy(ByVy)~L, 1] - [B: Dy (B, Vi)~ D2(B2V2)_1,I]]HF
By the second part of Lemma 3,
~ o~~~ ~ ~ ~ ~ ~ ~ o~ ~ ~ o~ 2
H[[B;DI(BIVI)_laDQ(B2V2)_1vIH - [[B;D1(31V1)_1;D2(B2V2)_171HHF
< AMXlB=Bllr+ Y mMda/M|Dr = Dillr + > mdide|BiVi — By Villr
k=12 k=12
(41

) (48)
< (A1 A2 + T + moA + A A2 + 7T2>\1)\2)2f£2 < C(p+ (9)21€2

14



Therefore,
—~ ~ ~ ~ 2
[(A-A) 0], U, U ]| < Clo+0)*%

- SON 2
similarly, |[[(A—.A);U{,, Uy, Uj ]| <C(p+0)>k2% (55)

Ny

[[(-/‘At - A); 61Ta ﬁ;g ﬁ;ﬂ] < C(P + 9)2’€2-

B!

e By the second part of Lemma 3,
. e~ 2
H[[(A_ A);UL,UL,UM]]HF
:H[[gé D;(B1V1) ™!, D2(B2V2) 1, D3(BsV3) ]

~ ~ o~ ~ ~ o~ ~ ~ o~ ~ 2
— [B; D1 (B1 V1), Da(Ba Vo) !, Da(Bs Vi) ]|

S(Al/\Z)\SHB\_ Blr+ Y mhidads/ Ml Dy — Dyllr (56)
k=1,2,3
.~ N2
+ > mAdeds|ByVi - Bk:Vk:HF)
k=123
(41)(48)

< Clp+0)'2

Combining (46), (52), (54), (55) and (56), we finally have

~ 2 —~ ~ ~
|A-A|  <IB=BI}+>" 1Dk~ Dulp +Clo+0)r* = (1+Clo+ ).
k=1

In summary, we have finished the proof of this theorem. [

F.2 Proof of Theorem 3

This theorem gives a deterministic error bound of H"‘t_AH%{S in terms of #, p and || (ng(B)_ligaB 12,
(X, X)X Em, [13, (X, [ 4) "y /nl[3 for the sparse ISLET estimator A in the

sparse low-rank tensor regression model. To prove this theorem, we first rewrite the orig-

inal high-dimensional regression model to four dimension-reduced ones (59), (60). Then

we derive error bounds for the least square estimator or group Lasso estimator in terms of

||BA — Blj}g or ||Ek - Ek”% for each of these dimension-reduced regression models. The rest

of the proof aims to assemble the upper bound for |4 — A%, which essentially follows

from Steps 3-6 in the proof of Theorem 2.

Denote

Ap = Mi(A), a=vec(A), Xjp=Mi(X;), x;=vec(X)), 1<j<n, k=1,23;

15



B=[AU], U], Uj]; -
Ep = My(A x4 ULy X412 UL Vi = AWy, € RPETe |k =1,2,3;
Y = vec(B) € RP1P2P: - Fp = vec(Ey) € RPF*, k=1,2,3. (58)

Then similarly as the argument (40) in the proof of Theorem 2, we can write down the

following partial regression formulas that relate y; and (X;,.A),
yj =(Xj, A) + 5 = (x5,a) +¢;

- <Xj’ Pﬁs®ﬁ2®61a> e <Xj’ P(63®62®61)J-a>

- <(ﬁg U, @ Up) %, (Us @ Uy ® 61)Ta> + (eB); o
(57458)(i3)[j,:]’713 + (€B);,
yj =(Xj, A) +¢j
<x Proy (Whal,, )[A]> +ei+ <Xj7 P(Rk<\7vk®1pk))L[A]> 0

= <Xjka, Aka> + (€E,);

(5 )(58)
(XE,)j Ve, + EEL);j

for j =1,...,n and k = 1,2,3. We discuss the estimation errors of yg, (k € Js), g,
(k ¢ J), and B separately as below.

e For any k € Js, due to the definition that
VE, = Vec(Ek), Ek =AW,

pil 1{(Uk)[¢,:]7é0} < Sk

YE, is correspondingly group-wise sparse. More specifically, let G}; ={i,i +pr,...,1 +

and the left singular vectors of Ay is Uy, that satisfying ||[Ugl|lo =

pr(r — 1)} with ¢ = 1,...,px be a partition of {1,...,pgrr}. Then

Ve, = VB, )ci €R™, Zl{mk#o} < sp. (61)
Accordingly, )~(Ek e R™2*(Pr7%) are with grouped covariates with respect to {G}C, o, GPE Y
Xg, = (Xe )iy ERV™, i=1 ., (62)

Recall g, is the group Lasso estimator,

Pk
Ag, = argmin |y — XEk7H2 + Nk Z ||’7’GZ [[2-
~eRPLTE) =1

16



By the group-wise sparsity structure (61)(62), the partial linear regression model (60),
the assumption that iEk e R™2*(Prm%) gatisfies GRIP assumption with § < 1 /4, and
e = C maxi<i<p, ||(}~(§Ek)TEEkH2 for constant C' > 3, Lemma 11 yields

Cy/Skk
1B — Ekllr = |78, — Vu, ll2 < \ﬁ < Cy/sp max H(XEk) eg,/nll2, Vk € Js.

1<i<p
(63)
e For k ¢ J, recall Ek is evaluated via the least square estimator,
~ R N ) ~ 2
welBy) =3, g, = wmin [y K|
~ERPETE) 2
By linear regression model (60) and the definition of the least square estimator,
5T = = T %o 1T = |I?
1Bk = Billr = |15, — T, ll2 = ||(Xf, Xe,) "' X5, 2, | (64)
e In addition, recall
vee(B) = Ag, Ap = argmin [y — Xgv[3.
~YERT1T273
By linear regression model (59) and the definition of the least square estimator g,
T
IB - Bllis = |75 — vsl3 = |(XsX5) ' Xgésl3. (65)

Given 0 = max{|| sin ©(Uy, U]}, || sin @(Wk,Wk)||} < '1/2, similarly as the proof of The-

orem 2, one can show U;—Ek is non-singular. Therefore,

~ 2
1 ; T~
1B - BrHs+;uEk—EknF<H (XgXs) ' Xfes|, +Czsklr<n%>;kH(X3Ek) /s

" 2
+ Z H X XEk X]T]kEEk )
k¢ J,

The rest of the proof directly follows from Steps 3 - 6 in Theorem 3. [

F.3 Proof of Theorem 4

The goal of Theorem 4 is to give a probabilistic error bound for regular tensor regression
via ISLET. The high level idea is to first derive the error bound for importance sketching
regression by a perturbation bound of the HOOI outcome (Theorem 1 in [138]), and then
apply the oracle inequality in Theorem 2 to obtain the final estimation error rate. For a
better presentation, we divide the long proof into six steps. First in Step 1, we bound

the initialization error of INJECO) using perturbation theory [19] and concentration inequality

17



(Lemmas 2 and 4). Then in Step 2, we aim to apply Theorem 1 in [138] to get an error bound
for the importance sketching directions INJk The central goal of Step 3 is to prove an error
bound for 8. In Steps 4, we move on to the second batch of sample and derive error bounds
(XTX)"XTe|

in the context of Theorem 2. Finally, we plug in all quantities to Theorem 2 and finish the

for a few intermediate terms. In step 5, we evaluate key quantities p and ’

proof.
We begin the proof by introducing some notations. Throughout the proof, the mode
indices (-); are presented in modulo 3: e.g., Uy = Uj, V5 = Vy. For convenience, we

denote
7 = || Al + 0% Ap=My(A), Ay =Mp(A), Xy = My(X)

for kK = 1,2,3. p = max{p1,p2,p3}, r = max{ry,re,r3}. To avoid repeating similar
notations consecutively, throughout the proof of this theorem we slightly abuse the notation

and denote
Us® U,, k=1,

Up2®@Ug1 =4 U3 U, k=2;
U,oUy, =3
without ambiguity. Other related notations, e.g., (Ugi21 V)®Uj1, are defined in a similar

fashion.

The rest of the proof for Theorem 4 is divided into 6 steps.

Step 1 We first develop the error bound for ﬂ_go)’ ﬁgo), and INJéO). Particularly, we aim to show

that
~ Co+/ 2. /p1paps
P <Hsin@(U§f),Uk)H < < 7 Ap’“/m 47 plfﬁp?’/m) Ak = 1,2,3) >1-pC.
k k

(66)
We only focus on ﬁgo) as the conclusions for ﬁgo) and ﬁéo) similarly follow. Recall the

baseline unbiased estimator

ol ) L0 DY 2(1) ~ p1 xpaxps
A—m;yi X, _72(@6 LA + 6l )x. eR .

(A (A
n
L

Since the left and right singular subspaces of A; are U; and W, respectively, we further

18



have ;&1 e RP1x(p2p3) and
Ay =M (A) = nllZyZ?” = an( B+ D) x

1 . =1
P>

(x4
! i (or () uul AWy W] ) + V) X
((

& ,PU1A1PW )+ (1)) x (1)

n
L

1 ni
:EZ (U XPW, Ul AW+ (V) X

Since ﬁgo) = SVD,, (A1), the one-sided perturbation bound [19, Proposition 1] yields

Ory (UIAl)HUIL P(UTA )TH Al

072‘1 (UIAI) - Jr +1(A1)

Hsin@ (ﬁﬁo),Ul) H < (67)

To proceed, we analyze o2, (UTA1> ori4+1(A1), and HU]—J_AlP(UlTAl)T ||, respectively.

Lemma 2

Tpin (UTAl) > omin (U1 Alwl) T (U1 A1(W1)1 )

1
—oa | > ((UTXWL, U7 A W) + ) UTX( W,
Lt

1 &
+ Omin < > <<U1TXS)W1= U A W) + 551)) UlTXg)(Wl)J_> -

n
L3

By Lemma 4, U1TA1W1 € R"*" and n; > Cp*/?ry, we have

1 1 1 1
Trmin (m > ((UlTXZ(l)Wl,UlTA1W1> el >> U xPw,

1=1
1«
20min(U ATW) — |- (<U1Tx§.}>w1, U AW + ) UTX W, - Ul AW,
1=1

Lemma 4 lo
2 Url(Al) —C\/ ip (27’1HA1H%+02) 2 (1 _C)Url(A1>
with probability at least 1—p~¢. When XS ) has i.i.d. Gaussian entries and ‘W is fixed

orthogonal matrix, UlTXZ(-P(Wl)l € Rm*(P-1-m1) and ((UITXS)WM U/ AW, + 6@) €
R are independently Gaussian distributed and

(UIXPW, U7 A W) + 2 ~ N(0,52).
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By Lemma 6,

7
=1
5 n1—Civ/nilo 2
>0 SO (o = - i - Co/log)
1

1 &
i (35 (T w 0 A ) Ui w

1

o lo
Zn*l . (1 - ngp) : (p—l — C3y/p—1r1 — Can/D-1 logp)
~9

Z% (]9—1 — Cyy/p-111 — C5m)

with probability at least 1 — p~¢. To sum up,
~ 52
Ohin (UIA1> > (1-c)or (A1) + n (p—1 — C1y/p—1r1 — Can/p—1 logp> (68)
with probability at least 1 — p~¢.

e Next, we consider o,,41(A}), note that

0r+1(A1) = min
et ( ) rank(M)<rq

A - MH < Hgl - PUJHH < U A4

1 & 1 1 1
n Z <<U1TXZ(‘1)a Ul Ay + 5§ )) UlTLXz(l)
i=1

Since
(<UIX§}>W1, UTA W) + egn) ~ N (0,52,

S . 1
which is also independent of ULXEl). Thus,

2
~ 1 & 1 1 1
ofea (A =| = ((UTX, U Ay + V) UL
i=1
S Too 2
<. Rl n1nl20gp Tlogp). (\/ﬁ-l- VP-1+ C\/logp>
1
SZ— <1 + C\/C;Lgp> (p_1 + Cy/p_1ip1 + Cv/p_1logp+ Cp1 + C’logp)
1 1

<2 (por -+ CVpmipn + OV logp + Oy + C'logp)

(69)
with probability at least 1 — p~°.

e Then we consider HUL_AlP(UITTM)T H Note that

1)
a Furanm

)

~ 1 &
UL AP yrz,)r = o 3y (<U1TX§})W1, U AW + 5(1)) U/, X
i=1
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Here, ((UlTXZ(-i)Wl, U] A W,) + 51) ~ N(0,5%); by independence, conditioning on

fixed value of UIXZ(;) , ULXS) is still standard normal, and then

1 1
UL_Xz(l)P(UlTEH)T UlTXz('l)

is a (p1 — r1)-by-r1 i.i.d. standard Gaussian matrix. By Lemma 6, we have

- ~ [n1+Civnilogp+ Calo
HULAW(UIAN S"\/ 1 1@ S (Vo v Gl
1
<Ci |2
ni

(70)
with probability at least 1 — p~C.

Combining (68)-(70) with (67), we have the following inequality holds with probability

at least 1 — p~©,

Hsin@ (ﬁgo),Ul) H
_on(UTA)IU] ArPyrz,y N
02, (Ul A1) =02, 1(A))

((1 —c)or, (A1) + 5\/p_1/n1) -C1o+/p1/m1
2 ~
(1= )or (A1) +5y/p1/m) = Z - (p1 + Coy/pii + Cs /b1 10gp + Capr + Cs logp)

Al

Since nq > Cp3/252//\% for large constant C' > 0, we have

~ 2 52
((1 —c)or (A1) +0 pfl/nl) T (P—l + C1y/p-1p1 + Con/p_1logp + C3p1 + Cy logp)
- Cyo?
>(1—¢)%07 (A1) +2(1 = ¢)oy, (A1)T\/p—1/n1 — ;71 (x/plpzp:s ++/p-1logp + C3p1 + Cy 1ng)
>coy, (A1)

and additionally,

Hsin@ (ﬁgo), U1) H < <015 P/ ‘UT;S?XI_)‘_ 52\/m/n1> Al

T1

with probability at least 1 — p~C. Similar inequalities also hold for Hsin@ (ﬁgo), Ug) H
and Hsin@ <6§0),U3) H Based on these arguments, we conclude that (66) holds. (66)
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further implies that
¢o i= max Hﬁ]g(ET./\/lk(A)H = max HfJgTUkUng(A)H

< max [T U] - [Uf Mi(A)| < max [[sin©(T, Uyl - UL My (A)]

5/p/ny | 3 /Dipams/m (71)
SmI?XCHAkH< rk(Ak) U%k(Ak) >

~ 1/2 =2 3/2

ap g p
SCW( 1/2 + Aon )

ny 071

with probability at least 1 — p~C

Step 2 Then we develop the error bound for Uy, after enough number of iterations in this step.
In particular, we aim to apply Theorem 1 in [138] to give an error bound for the output
U, from the high-order order orthogonal iteration (HOOI). To this end, we verify the
conditions in Theorem 1 in [138] in this step. Defining

Z=A-A T=A+Zx, Py, xs Py, xs Pu,, T =A. (72)

Then,
T —T = Z — Z x1 Py, x2 Py, x3 Pu,. (73)

In order to apply Theorem 1 in [138], we develop the following upper bounds under the
assumptions of Theorem 4.

e Since M; ((.Z —A) x; UlT X9 U; X3 U;) is a r1-by-(rar3) matrix, Lemma 4 implies

‘./\/ll ((.«1—«4) x1 U] xUj x3 U;)H
= \UIMl (A-4) (Useu,)|

:’ n— Z <<UTX(1) U3 ® Ug), UIAl (U3 X U2>> 4 851)) UIXS) (US ® U2)
1

— U/ A (U330 Uy)

L 4 ) ~9
eména Cl\/Ing (ri+rors)o
ni
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with probability at least 1 —p~¢. Similar results also hold for Ma(-) and M3(-). Then

Me(T) =0, (Mi(T))

(73) _
> 0or, (Mi(A) — [M (A= A) 1 Pu, %2 P, x3 Pu,)

1 ) =2

ny

W)

with probability at least 1 — p~¢.
e Next, we consider
To 1= HMk(f“r’— T) (Upyo ® UM)H . k=1,2,3.
In particular,
MI(T = T) (Us o )
= |[Mi(Z - [Z; Pu,, Pu,, Pu,])(Us @ Ua) ||
- ‘Ml ((A-A-1A- A Py, Py, Puj]) %> U5 ngQ)H
=[| M1 (A=) %1 (Pu, + Pu,.) 2 U %3 U7
- M, ((.Z— A) x1 Py, x2 Uy x3 U;) H
= ‘Ml ((.;{— A) x1 Py,, x2Ujy x3 U;) H

= ‘UL (AL — A1) (Us ®U2)H

< nTZ (U7X (Us @ U2), UT A1 (U3 © Us)) + (V) UL X (Ug 9 V)

_ U AL(U; ®U2)H

Lemgla 6 \/nl + C1W

”1

<\/p1 — 71+ /rar3 + CQ\/@) < Cyo 21

1

with probability at least 1 — p~¢. Thus,

P (7on < Coov/pr/m, k=1,2,3) 21-pC. (77)
e Next we consider the upper bound of

T = max{ max Mk(% - T) : {(UkJr?,J_V)
k VERPr+1—Tk4+1)XTk41

Vi<t

(78)
max
VeRPr+2—Th4+2)XTk42
IVi<i

MUT = T) {Uks2 ® (Upir s VY| }.
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Note that
M (T=T)(Us1 V) U
= (Ml(Z) — ./\/ll (Z X1 PU1 X9 PU2 X3 PUg)) (UgJ_V) & U2

=M1(Z)(U3,.V)® Uz = Z (I)X (U3 V) ® Uy),

gV = (xM A) + Y = (U] XD (U3 0 Uy), U A4 (Us @ Uy)) + &Y.

)

Since Uz, and Ug are orthogonal, yi(l) and Xﬁ ) (U3, ®Ujy) are independently Gaussian

distributed. Thus, conditioning on fixed values of {ygl) R

1 &
=X (Uar @ 0| Iy Ol
1=1

is a p1-by-((p2 — r2)r3) random matrix with i.i.d. Gaussian entries with mean zero

and variance |ly("||3/n?. By Lemma 5 in [139],
P( max HMl (Z(UgLV®U2))H
VeR((P2—r2)Xry

CHy(1 l2 (/o1 + 7o + VI E( Ve + Vi)

Hy“)\%) 79)

<Cexp (—Ct(pzra + p3rs3)) -
Note that [ly(D||3 ~ o%x2,, we have
P (Ily @[3 = 32 + 2v/mii +20) ) < exp(-1). (80)

Combining (79) (with ¢ = pr/(par2 + p3rs)), (80) (with t = Cpr), and the fact that
n1 > Cpr for large constant C' > 0, we have

P max My (%—T) (U3J_V)®U2H > C’&,/ﬁ < Cexp (—cpr).
VeR(P3—r2)Xry ni
Ivi<1

By symmetry, we have similar results for other terms in the right hand side of (78)

and the following conclusion,

pr) < Cexp(—cpr). (81)

P (Tl > Co
ni
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e Based on essentially the same argument as the previous step, we can also show

To i=1Imax max HMk(Z) {(Upy11V) ® (Uk+2LV,)}H
ko VeRPr+17TR DX TE1 |V <1,
V/GR(karz*TkJrQ)”kH;HV’Hgl (82)
pr
ny

<Co

with probability at least 1 — C exp(—cpr).

Now, when the statements in (77), (81), (82) all hold, given n; > i—g(mpr v p?/2) for
large enough constant C' > 0, we have ny > C/\—gjp‘l/ 3p1/3 (by Holder’s inequality) and
0

the condition

71 47y (4701 + €o)
max ————

AT) E (T
<015\/W . Ca0\/pr/m ( V/p/n1 + KkG\/p/na + ke 2p32( )\onl))

- Ao )\g
Clgp1/2 1/2 02525177'1/2 C3I<653 2 1/2 <1
> )\Onl/Q /\%nl )\gnglg/g =

holds. Namely, the condition in Theorem 1 in [138] holds when the events of (77), (81),
(82) occur.

Step 3 In this step, we try to establish the estimation errors for ﬁk and Wk First, Theorem 1
in [138] and (77), (81), (82) imply

Hsin@ (ﬁkUk)“ < O'rk(iZZk(T)) R VA]:’“/M, k=1,2,3,

= ~ [P171 + p2ra + P33 4 riT2Ts3
and  [[[7: Py, Py, Pyl - T < Ca\/

ni

with probability at least 1 — p~¢. Moreover,
I - .A||HS 2|(A-a) Ul x2 U] x5 Ug |
—H <<VeC X X1 IJT X9 UQ X3 U3 ) VGC(A X1 [JT X9 [JT X3 UT)> + 5i>

-VeC(XZ' X1 Ul X9 U;— X3 U;,I—) —VeC(A X1 UI X9 U; X3 U;_)H2

Lemma 4 o2
< Cy/— (\/7’17‘27'3 + logp>
n
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with probability at least 1 — p~¢. Combing the previous two inequalities, we have

[15cre, o, o 4],
<175 Pg, . Po, Po, = T, + 14— Tlss

_ T r r3 + rirer ~
SC’U\/pl 1+ pore + p3rs + 123XCUW
ni

with probability at least 1 — p~¢. Then, for k = 1,2, 3,
I0F Aullr < | UL (Pg, Au(Pg,,, @ Po,.,) — Ax)|
< |[Po, AxPg,

with probability at least 1 — p~C.

@ Py, ) - A = |14 Py, P, Po ] - A < Covmm

Next, we are in the position of evaluating the estimation errors of Wk Denote 8 =

A x1 U] %3 U] x3UJ, Vi = SVD,, <Mk(§)T>, we know
Wi, =(Ujy2 ® Upy1) Vi = SVD,, ((6k+2 ® 6k+1)Mkz(§)T>
- - ~ T
:SVDrk <./\/lk (S X(k+1) Uk+1 X(k+2) Uk+2) >
- - - T
:SVDrk <Mk (S X(k+1) Uk+1 X(’H—Q) Uk+2) Uk,)
IS - - T
=SVD,, <Mk (5 Xk Uk X (h41) Uk41 X(142) Uk+2> )
- T
:SVDrk (Mk ([[A, Pﬂ-l,Pﬂ-z,Pﬂ.S]]) > .
On the other hand, Wy, = SVD,, (A]) = SVD,, (My(A)"). By Lemma 7,

AWy || r SQ‘

My([ 4 Py, , P, Pg]) - Mi(A)|

~ ®3)  _ I'm
:QHHA;Pﬁl,Pﬁ2,Pﬁ3H—AHHS < Co nj

with probability at least 1 — p~C. Therefore, we also have

IWLWWLALle _(, [3%m
o (WLAD TV m

sinO(Wi, W) | < [WI, Wi <

with probability at least 1 — p~C.

(85)

To summarize the progress in this step, we have established the following probabilistic

inequalities for 61, 6’2, 63 and Wl, Wg, \7\73,

Hsin@ (ﬂ'k,Uk> H < Govpk/m Hsin@ (Vvkwk> HF coovmim o

)\k )\k ’
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Step 4

Step 5

Hﬁ,IAkHF < C5+/m/n, HAkWMHF < Ce/mjny, k=1,2,3,  (87)
with probability at least 1 — p~C.

For the rest of the proof, we assume (86) and (87) hold. Next, we move on to evaluate
the estimation error bound for A. The focus now shifts from the first batch of samples
(XM, yM) to the second one (X2, y?). Denote

_ (86) O/
O = sin@(Uk,Uk)H < C(’Apk/"l, k=1,2,3; (88)
k
— (87)
&= AW |lF < Cov/m/ny, k=1,2,3; (89)
. (87)
- ;:HU;AkHF < Co/min, k=1,2,3; (90)
7= | Py Vec(A)H2+U2. (91)
il 2

By Lemma 9,

Cot*mp  C15%mp?

1P, vee(A)|I3 <

niAg Agni
Provided that m = rirors + >, (pr — 7%)r% and nq > Cfgp, we know
5 _ Cotmp 5  Cc*mp
HPfJJ_VeC(A)HQ < n%)\% , 0° <o+ n%)\% . (92)

In this step, we evaluate two crucial quantities for applying the oracle inequality (The-

orem 2). Recall the importance sketching covariates (6) are defined as

X = [}N{B XDl iD2 XD?’} Eanxm’

[i]

iB S RHX(T1T2T‘3)’ <i3> = vecC (Xi(2) X1 ﬁ]— X9 ﬁ;— X3 ﬁ;—) s

jv(Dk S Rnx(pk_rk)Tk, (XDk>[ | = vec <6IL_MI€ (XZ(Q) Xk+1 ﬁ;—i-l Xk+2 ﬁ;—+2) {/k) .
i

5

When Xi@) are i.i.d. Gaussian matrices and independent of ﬁk, \N/'k, Wk, X can be seen
&)

as an orthogonal projection of X
5.35 in [122],

and has i.i.d. Gaussian entries. Thus, by Proposition

P (0uin(XTX) = 024(X) 2 (viz = vim —1)°) 2 1 - exp(~£/2).
By definition, € € R™? is independent of f(, and
P

2
= (X, P, Ay o5~ N (0[P, vect ) +07) = N(0.5%)
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Then, |[€]|3 ~ 522, and ”XTEHQ‘HEHQ |lell3x2,. Based on x? distribution tail bound
(72, Lemma 1] and ng > C(p/? + 13) > C'm,

~— o~ ~ 2
&30l

<E2 (ng + 24/n2C1 log(p) + 2C, log(p)) (m + 2/mC3log(p) + 2C log(p))
B (viiz — v/m — Cylog(p))*

2m (14 2,/ Sl 4 282) (142, /L +21) (93)
= no (1_\/5 C1log())4

1
<1+Cl,/ L0 ng>

with probability at least 1 —

We assume (93) holds. It remains to check Hﬁk(ﬁk{’k)_lH Similarly as the proof of
Theorem 2, we define
_ [[A; ﬁf,ﬁ;,ﬁ;ﬂ - [[s 1 Uy x3 Uy ><3U3;I~le’ﬁ;ﬁg]] € Rrixrars,
Bj, =M,(B) € R=*kams2) - p =1 9 3,
D; =U], M (A x5 Uy x3U3)V, Lemma 1 U, A1W1 € RP1—ri)xr
D, :fj;—LMQ(A X1 I~J1T X3 63)\72 = UMAQW2 € RP2=r2)xr2
D; =UJ, M3(A x1 U] x Ua) Vs = U], A3 Wy € Ro—r)7rs,

By the proof of Theorem 2, we have

2 s o~ 2 @D e 2
- D, - D H < H XX —1XT”H
HB Bl + [P~ B, < &R,
(99)
93) 5 1 1
<7 <1+01 Ve ng>
o~ o~ . (19 . ~ . Coy/m/n
IDL(BVi) ! < Cmax {]|sin ©(Ty, Uy, || sin O(Wi, W) } < Ak/ L (95)
- - (42 52
Omin(Br Vi) = omin(Up ALWy) > ) <1 - CZ m> > (1 —c)
Aknl
for some constant 0 < ¢ < 1. This additionally means
~ ~ ~ ~ (94) Ca’m Co*m
Ornin (Bka> > omin(Br Vi) — [Br — Byl > Ak <1 3 > - > (1 =)
[AUaI n2
(96)
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It is easy to check that the following equality,
(BxVy) ™! = (BrVy) ' + (By Vi) ! <]§k‘7k - ﬁk‘ﬁ) (BrVy) !
Thus,
= B < - imiw |+ B
C|[Pi By
<0 U
< N
+ Hf)k Ekvk)ilu ' H(Ek - ﬁk){/kH I(BeVe) Y

94)(95 )(96) Ca Cs m
\/ A Ve

Step 6 Finally, we apply the oracle inequality, i.e., Theorem 2, and obtain the final upper bound
for A. We have shown that the conditions of Theorem 2 holds if (86), (87), and (93)
hold. Then Theorem 2 implies

+ Hf)k(f)’kvk)_lH o7

HA AH <(1+CO+Cp) H (XTX)"'X & H

(88)(93)(97) & fm /1 [m [m
< om ( Lo +02 ng 030 C4cr >
m ni n9
(92) -
§m<02+01(; Tp> <1+02,/ +03\/logp 0401/ CU,/ )
19 A m 2
m 2 Cio*mp Iogp
<— 1 \/ 1/
Ny (U 2)\2 ) ( +C + G n1 Ang )\2>

with probability at least 1—p~¢. Here, the last inequality is due to ny Ang > CF2(p
r3) /A and 7 = || Al|fg + 02> N. O

3/2

F.4 Proof of Theorem 5

In this theorem, we provide an estimation error lower bound for low-rank tensor regression.
The central idea is to carefully transform the original high-dimensional low-rank tensor
regression model to the unconstrained dimension-reduced linear regression model (103),
then apply the classic Bayes risk of linear regression (Lemma 10) to finalize the desired
lower bound on estimation error.

Since 71,79, and r3 satisfy ry < rpyirrae for k = 1,2,3, the ri-by-ro-by-r3 tensor
with i.i.d. normal entries has full Tucker rank with probability 1. Thus, we can set Sy €
R7*72X73 a5 a fixed tensor with full Tucker rank, i.e., rank(Sp) = (r1,72,73). Let T > 0 be

a large to-be-specified constant. Define

A() c R ><p2><pg’ (AO)[lzrl,l:rg,lzrg] =TS8y, (AO)[lzm,l:rg,l:rg]C =0. (98)
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Suppose U, € O, ,, and W, € O, , ,, are the left and right singular subspaces of
M. (Ap), respectively; Vi, € Qr,, ry 0., is the right singular subspace of My(Sp). Then

by definition of Ay,

I,
U, =

b ] k=1,2,3.

O(p—rp)xrs
Next, for to-be-specified values 7,7 > 0, we introduce a prior distribution PT,T on the class
of Ap, »: the pi-by-pa-by-p3 random tensor A ~ P, 7 if and only if it can be generated based

on the following process.
1. Generate an r1-by-ry-by-rs tensor B % N(0,72) and assign Ay, 1.1y = TS0 + B,
2. Suppose My( Aty 1:ra,1:05]) = Aok € R 7=k and Vi, = SVD,, (Aj,) € O,_, ;. Assign
M (Ai(ry 11)py 1:r0,105]) = B V],
Mz (At (ry 1) 10rs]) = Ba - V3,
M3 (At 1o, (rs+1)p5)) = Bs - V3,

where all entries of B; € RP1—7)xm1 B, ¢ RP2=72)x2 By ¢ R(P3=73)%"s gre indepen-

dently drawn from N(0,72).

3. The other blocks of A are calculated as follows,
Al 1) (ot Dpotirs] = Aty 1 10) X1 (B1(A01 V1) ™) X2 (Ba(Ag2V2) ™),
A[(Tl+1):p1,1:7"2,(7"3+1):p3] = A[11T1,11T2,1:T3] X1 (Bl(AOIVI)_l) X3 (B3(A03v3)_1) )

3 (Bs(AgsVs)™"), (99)

X

A[l:rl,(r2+1):p2,(r3+1):p3] = A[11T1712T2,11T3] X9 (BQ(AOQVQ)_l)

A[(r1+1):p1,(r2+1):p2,(r3+1):p3]
= A 10 105) X1 (B1(A01 V1) ™) X2 (B2(Ag2Va) ™) x3 (B3(AgsVs) ™).

One can check by comparing each block that A satisfies

A= [TSO + B; El,ig,ig]] , where Lj=

I,
L k=123 (100)
By (Ao Vi)

Thus, rank(,A) < (r1,72,73) and A € Ap . Then we consider another distribution P, on

the whole tensor space RP1*P2%P3
A"~ Plp, suchthat A7 0,0 =T8S+ B,
My ( >[k(r1+1):p1,1:r2,1:7"3}> =B;-V];
Mo ( Fl:rl,(m—l-l):pg,l:rg}) =Bs- V;; (101)
Ms ( >[k(r1+1):p1,1:r2,1:r3}> =B3-Vy;

the other blocks of A" are set to zero.
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Here, B,B{, B, B3 d N(0,7%). Suppose A ~ P, and A* ~ Prr. Recall that Vj, =

SVD,, (M1(So) ")) and Vi, = SVD,, (My(So+ B/T)T). As T — oo, we must have
ViS5 Ve and (A-Ag) S (A" — Ay). (102)
Next, we move on to the regular tensor regression model
yi = (X, A) +e;, 1=1,...,n.
For convenience, we divide X; and A into eight blocks and denote them separately as
Xisisosy = (X1 o Doy s 0] Asiszss = AL 1oy T5.0,]0 10T 51,52, 83 € {1,2},
where Iy, ={1,...,m}, Igo={re+1,....pk}, k=123

If A" ~ P, Algy, ASg, Adoy, Adyy are all zeros. Then,

2

yi =(Xi, A") +e; = Z (X ,515283) A:15255> + &

81,52,83=1

=((Xi111, TS0 + B) + (M1(Xi211),B1V])
+ (M2(Xi121), BaVy ) + (M3(Xi112), BsV3 ) + &
=(X;, Ao) + &; + (vec(X;111), vee(B)) + (M1(X;211) V1, B1)
+ (M2(Xi121) Ve, Ba) + (M3(X;112) V3, Bs)
)+

< AO <X’L’ b> + €4,
where
vec (Xj111) XT vec(B)
X‘ _ vec (./\/ll( i 211)V1) c R™ X _ . c RXm b — vec(Bl) c R™
vec (M2(X;121)Va) ’ X.T ’ vec(Bs)
vec (M3(X112)Vs) " vec(B3)

Suppose the parameter A* is drawn from the prior distribution Prp. Then, b Y (0,72).

Note that X; is an orthogonal projection of Xj, so X; id N(0,1). Now, y;, X;,b can be

related by the following regression model,

yi — (X, Ag) =X[b+e, i=1...n

iid

N (103)
b~ N(0,7%), &~ N(0,0%).

By the construction of A* and the setting that Sy is fixed, the estimation of A* is equivalent
to the estimation b. By Lemma 10, the Bayes risk of estimating b (and the Bayes risk of
estimating A* if A* ~ P, 7) is

H“i* A 2HS ){Xl}znzl - HB — sz ’{Xl}:‘zl =tr ((ITZL + X(;X)_1> .
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Here, A* and b are the posterior mean of A* and b, respectively.
Since Prr — Prp and A— Ay — A* — A as T — oo, we have

2 e L,  XTX\7
s ‘{Xi}?:1 = tr <<7_2 + 02) > ,

where A is the posterior mean of A if A ~ 7T,T. Since A ~ PﬂT and PﬂT is the distribution

- afl i, 64 -

on A, we have the following estimation lower bound,

inf sup H./T— AH;S ‘{X,}le > tr ((Im + XTX>_1> :

A AcAp 72 o?

Finally, since (X" X)™! is inverse Wishart distributed and®

o L (T,) = L
tr(E(XTX)—l):{ ey tt(In) = 5 n>m+ 1,

00 n<m+1.

By letting 7 — oo, we finally obtain

~ 2 Im XTX -1
inf sup HA— AH > lim sup Etr <<2 + > >
A HS T

A AcAy 00 o2
; < o’1,, ) nf;‘ril, ifn>m+1;
=1r —_— =
n—m-—1 +o00 ifn<m+1.

0

F.5 Proof of Theorem 6

In this theorem, we aim to establish an estimation error upper bound for sparse ISLET in
sparse low-rank tensor regression problem. After introducing some necessary notations, we
develop the estimation error bounds for sketching directions ﬁk and Wy in Steps 1 and
2. In Step 3, we give error bounds for a number of intermediate terms. In Step 4, we
— ~ 2 ||~ o~ ~ 2
(XsXs)'Xges|| . |[(Xf, Xp,) ' X5, &,

prove upper bounds for key quantities p, S

and max;—i... p, (iEk,[:,G’?])TEEk /nH2 Finally, we plug in these values to Theorem 3 to
finalize the proof.
We first introduce a number of notations that will be used in the proof. Similarly as

the proof of Theorem 4, denote

Ap = Mp(A), Sp=Mi(S),

6See nhttps://en.wikipedia.org/wiki/Inverse-Wishart_distribution for expectation of inverse
Wishart distribution.
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A= Mp(A), S=[AU], U], Ul], Sp=MiS), Xj.=Mi(X;), k=123
Recall
52 = | Alfis + 0% A = 0 (M (A)),
ms = rirars + Y sk(rk +1og(pr)) + Y prrk, (104)
keJs k¢ Js
and fjl, ﬁg, 62 are the output from Step 1. We also denote

Ik = {Z : Uk:,[i,:} 7& 0} ’ k= ]-a 2737

¢ = (Us® Uy @ Uy) vee(X ) = vee([XY; UT, U, UJ]) e R, j=1,...,my,
(105)

5 1 & 2
52 = EZ (gg” el Vec(8)> . (106)
j=1

Step 1 In this first step, we develop the perturbation bound for INJ'k and Wk First, A can be

decomposed as

ol L) ) ()
Aﬂ;Z% X = ;12 (%‘ + (& ,A>> X;
J=1 j=1
RS (1) W), y7T 717 1717 (1)
:m ]z_:l (5]' + <[[Xj ; U, Uy 7U3]]18>> X;
1 & 1 107
:7712(551)"‘@)‘}( )7UI,U;,U;)F]],S>> [[Xj(l);PUUPUwPUg]] ( )
j=1
1 /. 1 1
+ nil — <€§ ) + <[[X]( : UT UT7U;—H’S>) P(U3®U2®U1)L[Xj( )}
j:
=H+R.

(1)

In particular, #H is fully determined by ¢; and ¢;

has loadings U, U, Us. By Lemma 4,

; H is of Tucker rank-(p1, p2, p3) and

M) = s = U] ML) (U3 © Uz) — U] Ay (U © Uy

1 &
== S (ggv +(xM;ul,ug,ujl, s>) UTX)(Us © Uz) — UTA(Us @ Uy)
j=1

1 &
= |- 3 (e§1) + <U1TX§11) (Us ® Uy), sl>) U XD (Us 0 Uy) -8,
j=1

< (r1 + ror3)a?logp
< o

(108)

33



Step 2

with probability at least 1 — p~¢. Similar inequalities also hold for | Ma(#) — As|| and
| Ms(H) — As||. Provided that A\g = ming_ 2.3 0y, (Ay) satisfies N2 > CG2(r1ro +1ror3 +

rsr1)/n1, we have

0r (Mi(H)) = 07, (Mi(A)) = [Mr(H) — Apll = (1 = c)Ax (109)

with probability at least 1 — p~C.

Recall the definition of ¢; and 52 in (105) (106). For any j = 1,...,ny, 851) -I-C]TVGC(S) ~
N(0,02+|S||}s) ~ N(0,0%+ || All}g) ~ N(0,52), which means 52 ~ %X%y By the tail
bound of x? distribution [72, Lemma 1],

. o 1 1
|58 — 57| < 002< ogp ogp) < 052, 8P (110)
ni ni ni

with probability at least 1 — p~C.

Since vec(Xj(l)) has i.i.d. Gaussian entries and (Uz ® Us ® Uy) is orthogonal to (Uz ®
U, ® Uy)1, we have that (Us ® Uz ® Uy) Tvee(X\") is independent of (Us ® Up ®

Ul)IVeC(Xj(I)) and R (defined in (107)) is Gaussian distributed conditioning on fixed
(1)

values of (; and ¢ i

vec(R) {E§~l), (i}, has same distribution as Plu,eu,eu;), vec(Ro),
~2 (111)
X pa X itd 9¢
where Rg € RPVP2XP3 - Ry~ N[0, — |.
ni

iid

Particularly, Ry, 1,1, {egl),Cj}?;l ~ N(0,6¢)? ie., R is iid. Gaussian outside of

the support of A.

The rest of this proof will be conditioning on the fixed value of {55-1), (1L, that satisfies
(108), (109), and (110). Provided (109), (110), and

C5> >
n > —5- | s1s2s3logp + Z(Siﬁ% + 7"1%+17"1%+2) ;
A k=1
we have the following signal-noise-ratio assumption for denoising problem: A=H+ R,
Ca¢ ’
min o, (My(H)) > —= [ (s1s253logp)'/? + SETk + Tk+1Tk+1) | -
in o, (My,(H)) m(( ) ;( +1Tk+1)

By [136, Theorem 4] (with mild modifications to the proof to accommodate the fact

that Ry, 1,1, here is projection of i.i.d. Gaussian but not exactly i.i.d. Gaussian), the
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STAT-SVD with the tuning parameter & = Med(|vec(,A)|/0.6744) (where 0.6744 is the
75% quantile of standard Gaussian) yields

Cocy/ (skrk + sk log(pr))/m
Ory, (Mk(%))

sin@(ﬁk,Uk)HF <

(112)
109)(110 o
( é )Ca\/(swarSklOg(pk))/"l, ke Js,
Ak
| B Coer/prri/n1 (109)(110) CF/ppry/ny
M e R e v
Hsm (U, k)HF_O'rk(Mk(%)) N Ak 7 f o
B 2 05,27
and MAJ%NﬁLJ%J—?qMSSn Qwﬂy+§:%wk+MMﬁ+§:mm>
1 keJs ke Js
(124)052777/8
<
(114)

with probability at least 1 — p~¢, where 61,62,63 are the outcomes of STAT-SVD
procedure. Since the leading right singular vectors of My <H.Z, PI~J1’PI~Jg’PI~Jsﬂ) and

M (A) are W, and W, respectively, we have

W Wi W M(H) |
o, (W My(H)T)

W My ()T e [ M (A5 P, Po, P 1) = Mu(8)|

sworst ], = [WEwi, <

F
O, (Mi(H)) B o (Mi(H))
(109)(114) /
< 0&”13/”1, k=1,2,3.
k

i, et < [,
- Hsin@(VA\?k,Wk)HF AR € Cre/my/nr.

Since ﬁk and Uy are the leading left singular values of My, ([[./1, Pﬁl’Pﬁz’ Pﬁg]]> and
Ay, respectively,

e e

< [[OR0, - [uiad =

sin©(0p, Uy)| - A4

Ak

ORI | Agl| < Ona /s /m, kg

{ C&\/(Skrk-‘rsk log(pr))/n1 . ”AkH < CH&\/(Skrk + sk log(pk))/nl, ke JS;
Ak
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In summary, in the previous two steps, we have shown

C&/(skri+si log(px))/n1 ke .

. i b )
sin ©(Uy, Uk)HF < o5 /7Pk7‘k/n1k be

Ak ’
UL AL < Cr/my/m, (115)

sin (Wi, W) | < covms/m VATZS/M,

AkWMHF < Cko\/ms/n1, for k=1,2,3

with probability at least 1 — p~—C.

Step 3 Next, we move on to analyze the second batch of samples {X].(Q),eg-z)}?il. We first
introduce the following notations,

2

2
52 — 52 -~ 52 — 52 —
og=0"+ HP(U3®U2®U1)LV6C(A)H2’ Op, =0 + HP(RIC(W;CQ?I%))LVGC(A) )

In this step, we give an upper bound for 5 and 3]2% given (115) holds. Note that

P(63®62®ﬁ1)LveC(A) H2

=||vee() = Pg 5,00, veel )|, = | A~ [4: Py, . P, Py, ]

s
= [['A’ Pﬁl - Pﬁu’ Pﬁz - P62L’ Pﬁ3 T PﬁSL]] N [[A’ Pﬁl’ Pﬁz’ P63]]

"

<||4i P, Po, Po, HS+H'A;I”1’P‘~J2L’P63 Hs+HA;I’”“IM’Pﬁ:’rL HS
cfoal, - [oEa, + [0
= 1L1F+ 2L2F+ 3LA3||
(115)
< Ckoy/mg/ny,
HP(RIC(WMW)LWC(A) - [ vee( ) = P, i, on,, veelA) |
= HAkPWkLHF = ‘AkaLHF < Ckoy/ms/ny.
Therefore,
22 2~2
52 < o2y SR go 0 OMsRTGT g (116)
B " E, n

Step 4 In this step, we analyze the estimation error for B and Ek under the assumption that
(115) hold (which further means (116) holds). Recall the partial linear models on im-

portance sketching covariates (see (25) - (28); also see the proof of Theorem 3),

y? = )Nigvec(lg) + en,
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y(2) = )N(Ekvec(f]k) + gEk’ k=1,2,3,

where the covariates, parameters, and noises of these two regressions are
Xz € R2x(rirars) (Xg)i. = vec (Xi@) x1 Uj x9 Uy X3 I~J3> :
X, € R™X 000, (X, );. =vee (X (Upya @ Ugia ) Vi)
—vec (ng)wk) L k=1,2,3;
es €R", (en); = <Vec ( ’P(63®62®61)LV60(A)> + 55-2),
gg, €R", (g,); = <vec (x]@)) P(Rk(wk®1pk))Lvec(A)> +eP k=123

vec(B) = vece([A; U], Uz, U3 ]) = (Us @ Us @ Us)vec(A) € R™7";
and Ek = M; (A XE41 fjg_,'_l X k42 624_2) Vk =AW, € Rperk7 k=1,2,3.

These quantities satisfy the following properties.

e Based on the proof of Theorem 3, Ek, k € Js are group-wise sparse,

E H 1 < s,
HVeC k Z { vec Ek )Gkio} = ok

where G¥ = {i + pg,...,i +pr(re — D)}, i=1,...,pr, k € Js.
e Conditioning on fixed values of f)’k\N/'k, Wk, the noise distribution satisfies

~ |7 <7 <xr Uid =
2| Uk Vie Wi N (0,02 4 || P oo, 1| ) ~ N (0,53)

) ~ N(0,5%,).

€E, Al

~ ~ o did 2
0050 0+ .

HS

e Note that Xz is an ng-by-(r172r3) matrix with i.i.d. Gaussian entries. Similarly to

the argument in Step 5 in the proof of Theorem 4,

N1 2
H (X;XB) Xien
2

0% (ng + 24/n2C log(p) + 2C log(p ) (7“17“27“3 +2/Crirarslog(p) + 2C log(p))
<
(72 — y/Fi7ars — Clog(p))*

C1 1
b (1 ) o,
< /rirars /log(p > 2
no na
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with probability at least 1—p~¢. Here, the second last inequality is due to /717273 log(p) <
% (rirars + log(p)) < ms and the last inequality is due to ng > Cms. By the proof of
Theorem 3,

|58}, | (RExa) " Kpea| < 7B 1)

with probability at least 1 — p~¢. Similarly, we can show for k ¢ J,, the least square

estimator E, satisfies

1 2

~ 2 (64 ~ ~ . Cm /O'\2
om0 (e R =

(118)

2 n2
e By Lemma 12 and ne > C'my for large constant C' > 0, ka satisfies group restricted
isometry property with § = 1/4 with probability at least 1 — exp(—cn).

. ~ d ~ i ~ ~ ~
Next, since £g, ~ Np, <O,U%k> and (Xi]k)TeE,C [€E, I3 ~ Nry (0, [[EE; [|3), we know

B3 ~ 5F,xn, and  [(Xg,) Er,l3|E, )13 ~ €3 - X7,

By the tail bound of x? distribution,

2
, <, (nz +2y/n2Clog(p) + 2C 10g(p)> (m +2¢/7,Clog(p) + 2C 10g(p))

<Cns5yg, (rr + log(p))

|(Xs,) 2w,

with probability at least 1 — p~¢. Since log(py) =< log(p), we have

max (X%}k)TEEk

2
< ~2
1<i<py , < On20g, (1 + log(pr)) (119)

with probability at least 1 — p~¢.

e Similarly as the Step 5 in the proof of Theorem 4, one can show
Y CW’,/% <14e¢ k=1,23
ny AeV ong

By previous arguments, we have shown the conditions of Theorem 3 hold with probability

Jouozm | <1+ S22

A

for constant 0 < ¢ < 1/2.
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at least 1 — p~¢ under the scenario of Theorem 6. Finally, Theorem 3 implies

HS
(14 G0 [ ms H (X5pXs) "' X5 H +C Z H(fé )T&g, / H2
= X 71 A B BEB 2 Sk Higk E.) E€E;/N2 )

2)
kit J, 2

+3 H (Xg, X, ) "' Xg, &,
(a) ms(Ga + 02 3 sk(ry +lo o2
SC( s(UB O—Ek) —|—CZ k( k g(pk))aEk
no ng
k=1
(gClms (02 N szs/i252>
1

no n

with probability at least 1 — p~C. Here, (a) is due to (117), (118), and (119); (b) is due
o (116). O

F.6 Proof of Theorem 7

This theorem gives a lower bound on the estimation error of sparse low-rank tensor regres-
sion. In order to prove the desired lower bound, we only need to prove the forthcoming
(120) and (123), respectively. To prove each inequality, we first construct a series of tensor
parameters AU that satisfy: (1) there are sufficient distances between AY) and A for any
J # I; (2) the Kullback-Leiber divergence between the resulting observations, {yZ Xl(] yn “
and {yz( Z)}Z 1, are close. Finally, the lower bound is proved by an application of the
generalized Fano’s Lemma.

In order to prove this theorem, we only need to show

~ 2 criror3c? co? (syry + splog(epy/s
inf sup EHA—AH > max{m” max (siri + silog(epi/ l))}
HS n =123 n

A AcAp s

1. If

T1T9T3 = max {Tl’I“QT‘g, max, (k7K + Sk log(epk/sk))} ,

we only need to prove

CT1T2T302

" 2

inf sup E HA— .AH > —, (120)
A AcAp s HS n

for rirorg > 9 in order to finish the proof of this theorem. Construct Sy as an ri-

by-ro-by-r3 tensor with i.i.d. Gaussian entries. Since 1y > rrpi1rgae for £ = 1,2, 3,

Sp has Tucker rank-(ry, 72, 73) with probability one. Let Uj, Ug, U3z be arbitrary fixed
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orthogonal matrices that satisfy

Pk

Ui € (O)Pkﬂ"k? HUk”0,2 = Z 1{(U;€)[i,:]7ﬁ0} <sk, k=1,2,3.
=1

By Varshamov-Gilbert bound [87, Lemma 4.7], we can find BV ..., BY) C {—1,1}71x72x73
such that

vi£l, |BY —BO|3g =2 Z B [“ o] [21 ; ]\ > 2rirors and N > exp(rirars/8).

11,02

On the other hand,
1B — BY||Es < 2BV |fis + 2B < 4rirars. (121)
Since r11rorg > 9, N > 3. Then we construct
AV =[Sy +7B;; Uy, Us, U], j=1,...,N,

where 7 > 0 is a constant to be determined a little while later. By such the configuration,
AL AN C Apsr. Now, the KullbackLeibler divergence between the samples

generated from AU) and the samples generated from A® satisfy

. 2
DxL ({Xz,yz H{Xz,yzl)} ) Lemma 13 27’L2 HA(J) . A(Z)H
o HS
(122)
Wk (121) p A
=207 HTB - 7B HHS 2p2 (47 m172r3)
and
ST PR g e 1 P
By generalized Fano’s lemma,
,\ 2 5 2
O S P
A AcAp s H HS

A Ae{A(U A(N)}

272r1r9rgn/a? + log(2)
>7? 1- .
2t log(N)
By setting 72 = 0% log(N/2.5)/(2r1rar3n), We have

CO’21"17‘27‘3

. 2
inf sup HA— .AH > cr?rirery = ———
A AcAp s HS n

which has shown (120) if rirers > 9.
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L If

— L4y

skri + sk log(epr/sk) = max {?”17"27“3, lnrﬁax3 (syr1 + sk log(epl/sl))} ,

we only need to prove

|- > coloerit s los(eps/ o)

inf sup E
n

, (123)
A AE.Ap,r

provided that spri + silog(epi/si) > C for large constant C' > 0. Without loss of
generality we assume k = 1.

To this end, we randomly generate an orthogonal matrix S € O,,,, ,, and construct
S € R"*"2x73 gych that M;(S) = ST. We also construct Us and Uj as fixed orthogonal
matrices that satisfies |Uzljo2 < s2 and [|Usljp2 < s3. By Lemma 14, there exists
{U }{CV 1 € {1,0, —1}P1*"1 such that

@y _ Z | o
Ul ||072 - - 1 (U<1]))i,: 760} < S1, J = 17 .- '7N7
1=

HUgj) - Ugl)Hl Z‘ (UD) — (UMY > sir/2, 1<j#1<N, o

and N > exp (c(s17m1 + 1 log(epl/sl))). We further let
AY = [78; UV U, U], j=1,2,...,N,

where 7 is a fixed and to-be-determined value. By such the construction, for any 1 <
jALSN,

|49 —a0|| = |uPmis)uF 2 Uf - uPMmus)Uf @ U]

|
HS
. 2 . 2
—*|u’sTuf e U7 ~u’sTuf e uf|[ =72 Ul - Ul

(since all entries of U(]) gl) € {-1,0,1})

> 72 Ugj) _ Ugl)‘

>T 81r1/2,
1,1

it D (1A~ -0,
(125)
—o5r2||u - v H <—2(||U 13+ 1uI3) < ;:2-4311"1.

By setting 72 = 0% log(N/2.5)/(2ns171), we have
2n72 51r1 —lo
inf sup HA AH i 1— —2 8(2)
A Acd, ., 4 log(N)

>202 log(N/2.5) s1r1 S co? (s1r1 + s1log(ep1/s1))
. . C
= 4nsiry 4 = n ’

which has shown (123).

In summary of the previous two parts, we have finished the proof of this theorem. [J
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G Technical Lemmas

Lemma 1 (Kronecker Product, Vectorization, and Matricization). Suppose A € RP1*P2,
A € RP1xp2x-xpd B € RPEXTh B € R % Jo=1,...,d. Then,

B1® - -®By) (B)® - -®B) =(BB)®- @ (BsB)), (126)
vec (BIABQ) = (By ® B{ )vec(A), (127)
vec ([[.A; B/,... ,BdT]]) — (B] ®-- ®B] )vec(A), (128)

M (IA:B] ... B]]) = Bl Mi(A) (By® - © B 9By ©-- ©By).  (120)
Finally, for any Vi, € R"-k*"k

vee (B{ My ([A:B], ... B, BL..,....B]] ) V)

=V, (B; ®-- 9Bl ®B]l_1® - ® B1T>  (B]) - vee(My(A)) (130)

Proof of Lemma 1. See [65, 66] for the proof of (126), (128) and (129). We shall also
note that (127) is the order-2 case of (128). Finally,

vee (B My, ([4:B].....BL.B[,,...BI]) Vi)

(V] @ B] )vec (/\/lk ([[A; B],...B] .1, B/, ... ,B}ﬂ))
(129)
="

(127)

V] @ BJ )vec (Mp(A)(Bg® - @By @By ®--- ® By))

VT o B]) (B; ® - ®Bl,,®B]_,® -®B] ® 1) vec(My,(A))
=Vv/ (BdT ®-- @Bl @Bl 1 ® - ® BI) ® (B]) - vec(M}(A))

O

Lemma 2. Suppose A € RP*" and U € Oy,,. Then,
2 2
oH(A) = o2(UTA) +o2(UTA), (A < |uTa| +|uTal.

Proof of Lemma 2. Let v be the right singular vector associated with the r-th singular
value of A. Then ||Av|js = 0,(A)||v|]2 = 0,(A) and
a7 (A) =|Av|3 = |PuAv|3 + [Py, Av]3 = [UTAv|3 + U] Av]3
>0 (UTA)| V[ + o7 (ULA)|[v[3 = 07 (UTA) + 07 (ULA).
On the other hand,

|A|?= max |[Av[3= max (||PuAv|3+ |Pu, Av|3)
vil|v2<1 vi[|[v]2<1
< max [[PuA H2+ max HPUJ_AVHQ_ HUTAHQ—FHUTAHQ.
vil|v2<1 vi[|v]
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g
The following lemma establish a deterministic upper bound for |[FG—1H — FG'H| in
terms of |F —F| r, |G — G| r, |[H—H| r and its more general high-order form. This result

serves as a key technical lemma for the theoretical analysis of the oracle inequalities.

Lemma 3. Suppose F, Fe RPIXT G, Ge R”’",H,IA{ e R™P2, Jf G and G are invertible,
IFG| < A1, [GT'H]| < Ao, and ||G™'H|| < A2, we have

|[FGH-FGH| < Xo|F — Fllr+ MH-H|r + Mdo|G - Gl (131)

More generally for any d > 1, suppose f',.’F € R™*X"d qgre order-d tensors, Gk,ék €
Rrexe Hy, Hy € ROTe If [HGL | < A, [HEGE Y| < Mk, and |G Me(F)|| < 7, we
have

[[#: G, . (GH] - [7 (G (G|
A Ml F = Fllus + ) mid- AdllG — Glle + > meds -+ Aa/ Ak Hi — H | 7.
k=1 k=1
(132)

Proof of Lemma 3. First, it is easy to check the following identity for any non-singular
matrices G and é,
G'=G'-GHG-G)G.

Thus,
FG'H - FG—1HHF
<|®- F)é*lﬁHF + HF (G*l G 4G - G)é*l) H- FG*1HHF
<|F- FHF Hé—lfIH + HFG—lﬁ - FG_lHHF + HFG—l(é - G)é—lﬁHF
<[[F v, & a]+ jpe -ty i -u| + jree - cf ||

<o||F = Fllr + M[[H - Hlr + X2 G - G|r.
Then we consider the proof of (132). Define
f‘d = My(F) <I/_\Id71é;_11 ®® ﬁ1é1_1>T ;
Fo= My(F) (HyG;Y @ 9 HiGTY) |
We shall note that
|G2'Fa| = 67 MalF) (B Gy & - UG

< |G Ma(F)|| - I Hao 1 G -+ [HIGTY| < mghs -+ Ao,
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G| < Aa, [HaG| < Ao
By the first part of this lemma and tensor algebra,
[FH,GL . H,GY - [FH G ,Hngl]]HHS

=My ([[f'; H,G,.. .,ﬁdégl]]) — M, ([F;HGTY, .. H G Y) HF

N ~ (133)
o= H,G ' Fy - H,GLFy
F
<NallFa—Fallp+ M- Amal Ga = Gallp + A1+ Aa—17al| g — Hyl| .
Next, we analyze |Fg — Fg||p. Define
= ~ - o~ \T
Fo1=Mg1(F) (I'r‘d ® Hd72G;_12 R ® HlGl_l) )
= _ T
Then by tensor algebra (Lemma 1),
IFa—Fallr = |[[F G Hoa Gyl L] - R HIGT, . Ht G L

_ HMd_l ([[f-'; H,GT',... ,ﬁd_lé;jl,lrd]]) — May ([F;HIGTY . ,Hd_ngﬁl,Im]])HF

I/_\Idflég_llf‘dfl - delGC?_llf‘dfl

F

Similarly as the previous argument, one can show by the first part of this lemma that

|Fg—Fallr = Hﬁd—ladllfd—1 ~H, G, Fa

F

N1 |Fact = Faoallp + M Agcima1]|Gao1 — Gaci||lp + M- Aa—ama—1|[Ha—1 — Hai[|p.
Therefore, by (133) and the previous inequality,

[(FRG BG ] - [F G G|

Ai-1ha|[Facr = Faoa|| + D Mo damel G — Gillr + ) %HH;ﬁfHkH
Foo _ k F
k=d—1,d k=d—1,d
We further introduce f‘d_g, f‘d_g, e f‘l, f‘b repeat the previous argument for d time, and
can finally obtain
|G BG] - [FHG ,Hdcgl]]HHs
d LN AdT
N ~ L AT s
<A Al F = Fllus + YA Aami|Gr = Gllp + ) T”Hk — Hi||F,
k=1 k=1

44



which has finished the proof of this lemma. [
The following lemma characterizes the concentration of Gaussian ensemble measure-

ments, which will be extensively used in the proof of Theorem 4.

Lemma 4 (Gaussian Ensemble Concentration Inequality for Matrices). Suppose A € R**?
is a fived matriz, X1,...,X, € R**® are random matrices with i.i.d. standard Gaussian
entries, and €1, ... € %i N(0,0%). Let E= 13" | ((A,X;) +¢&;) X;. Then there ezists a

uniform constant C > 0 such that,

P (nE Az 0@+ B)(IAIE + o) ( oplat )+t loglath) ”)) < exp(1)

(134)

Proof of Lemma 4. Denote Z; = ((A,X;) +¢;) X;. It is easy to check that EZ; = A.
Then,
E(Z; — A)(Z; — A)" =EZ,Z] — A(EZ;)" — (EZ,)A" + AAT =EZ,Z] — AAT
=E(A, X;)2X; X, + o?EX; X — AAT
=E(A, X;)?X; X + 0% - b, — AAT

Note that for any entry (Xi)[j,k]a E(Xz)[],kz] = 0, E(Xz)[zj k] = 1,E(Xz)3

ke 0,E(X;)t ., = 3.
When j # k,

k] —

M=

<E<A,Xi>2xixj)  —E(A,X,)?

i (Xa) (5,0 (Xi) (1

-~
Il

1
b

=E > (240 Ay (Xi) iy (Xi) ) (Ko (Xo) e
=1

b
=2 A Ay = 2(AAT )
=1

when j =k,

(B(A,X)2XXT)  =E(AX)?Y (X,

[4.] =1

o

a b b
=E) > (A[Qjcz'l( D ) > (X = Z Z Afjr ) b +2 IEA[QJ‘J}
=1

jr=11=1 =1 J=1=1
=b|| A% +2(AAT) -
Therefore, B(A, X;)?X,; X = 2AAT +b||A|21,, and
HE(Zi —A)Zi - A)TH - HQAAT + b A2, + bo?T, — AATH = |A] + bl|A|Z + bo?.
(135)
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Similarly, we can also show

HE(ZZ» AT (Z - A)H - HzATA +al|A|2T, + 021, — ATAH = |A|2 + al|A]% + ac.
(136)

Next, we consider the spectral norm of Z; and aim to show that

|2~ Al l,, = inf {u Eexp (‘Z;A”> < 2} <o (vVa+vb) JIA+o? (37)

for uniform constant C' > 0. Note that (A, X;) +¢&; ~ N (0,]A]% 4 ¢2), X; is a random

matrix, by Gaussian tail bound inequality and random matrix theory (Corollary 5.35 in

[122]),
P ((A,Xi) + el > /A% + 02> < 2exp(—t?/3),

(138)
P(IXill = va+ Vb +t) < exp(—12/2).

We set u = C (ﬁ + \/5) \/|A[|% + o2 for large uniform constant Cy > 80. Thus, for any

z > 1,

P(11Zi = All = zu) <P ([[((A, Xi) + ) Xi| = zu — [|A]])

<P <||<<A,Xi> e)X,| 2 FOVIEVD) g +0_2>
- (KA’X” vel > /52 an +G2)> . (”Xin > |52 wa+ m)

(138)
< 3exp(—Copz/6).

For any real valued function smooth g and non-negative random variable Y with density
fy, the following identity holds,

Eg(Y) = /OOO g (y)P(Y > y)dy.

Z;— A *° Z;,— A
E exp <H H) = / exp (z)P (H | > x) dx
u 0 u

1 o0
S/ exp(u)du +/ exp(x) - 3exp(—Coz/6)dx
0 1
1+ L <
Co/6—1 —

which implies ||[|Z; — AHle < (p (\/64— \/5) \/I|A]|% + o2 for some uniform constant
Cp > 0.

Thus,

<exp(l) — 2

)
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Finally we apply the Bernstein-type matrix concentration inequality (c.f., Proposition
2 in [68] and Theorem 4 in [67]),

1 & t+1 b
ISz, a + log(a + b)
n

=1

< C'max {O'Z _—,

n

oz n

(v + VB TATE 1 oo | ST VOV IAL + o7 .t+10g<a+b>}

(139)

with probability at least 1 — exp(—t). Here,

1/2 1 n 1/2
—> E(Z;— A)T(Z; — A)
n

=1

Oz :=max ,

LS Bz - Az - A
i=1

=/IAJ2 + (a v b) (JAIB + 02).

Noting that \/(a VO (|AZ+02) < oy < \/(a Vb+1)(|A||% + 02), (139) implies (134).
O

Lemma 5 (Gaussian Ensemble Concentration Inequality for Vector). Suppose 1, ...,z d
N(0,L,,) are i.i.d. m-dimensional random vectors, €1,...,en i N(0,0?), and a € R™ is a

fixed vector. Then

n

1 C 2+ 02 t t
’ < —3 ((xpa)+e)x;—a| < B e \[)> > 1-5exp(—t).
n n
i=1 9
Proof of Lemma 5. Denote
Xi:(xilv'--’xim)—r, 1=1,...,n.

Since the distribution of Gaussian random vectors are invariant after orthogonal transfor-

mation, without loss of generality we assume a = (60,0,...,0). Then
Sy (zh —1)0
L(s & i Tinbin 1 L
" <;<Xi7a>+€i> A : +Ezgixi ::h‘i‘ﬁszixz';
% Z?:l 10T im

Note that > 1 | 2% ~ x2, by tail bounds of x? (c.f., [72, Lemma 1]),

n n
P (n —2v/nt < Zm?l) >1—exp(—t), P (ZI% <n+2vVnt + 2t> > 1 — exp(—t).
i=1

=1
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Conditioning on the fixed value of £ := >"" | 22, we have

2
*2%193%»5 N( 05), k=2,...,n,

£ N\ 0%
||h||%‘§ ~ <n —1) 6%+ ﬁXgm—l-

Thus,

) N 2 02(n+2\/ﬁ+2t)<m—1+2,/(m—1)t+2t)
P (Rl > 467 (/- 4+~ )+

n2

SP<€Zn+2\/ﬁ+2t)+P(§§n_2m>+lp<2£X el _1+2ﬁ+2t>

<3exp(—t).

Conditioning on fixed values of ||g||3 =", €2,

2
n
1
*g €iXg
n <
i=1

2

20112
o’llells o
lel3 ~ TSR,

Additionally, P (|le||3 > o%(n + 2v/nt 4 2t)) < exp(—t), which means

1 zn: ? o? (n+2\/nt—|—2t) (m—|—2\/mt+2t)
— EiXil| =2
n

i=1

n2
2

<P(|\s||2>a(n+2f+2t)+xp H Zfle lel2 > Hst( +2F+2t)

<2exp(—t).

Combining the previous two inequalities, we finally obtain

n

P(iz:«xua)%—ei)xi—a SC 02+02(\/ﬁ:\/i)(\/m+\/i)>
=1 ,
>1 —5exp(—t).

for constant C' > 0. O

Lemma 6. Suppose Xi,...,X, € R (4 < b) are i.i.d. standard Gaussian matrices,

&, 6 u N(0,7%), and E = % o1 &X,. Then the largest and smallest singular values

of E satisfies the following tail probability,

IP’< o2 (E)>7 2n+2\/ﬁ+2$ (f+f+\/ﬁ) ) < 2exp(—z),

P (afmn(E) < 7-271_32\/% <\/(; —Va— @) 2) < 2exp(—x).
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Proof of Lemma 6. In the given setting, ||£]|3 = Y, & ~ 72x2, and

1 — 2
=Y ex 9N (0, ”§!2> .
n im1 n

P (on® 2 L (v VB4 V)l ) < expia),
P(o—fmn<E>§”nﬂ2(¢E—f ~va) [l < exp(-a).

By Corollary 5.35 in [122],
(140)

By the tail bound of x? distribution (Lemma 1 in [72]),

P (€15 > 7 (n+2vnx +2z)) <e ™, P(|&)3 <7 (n—2Vna)) <e " (141)

By (140) and (141), we have
24/ 2 2
P(a?nax(E) > 20t Z“ = (Va+ v+ var) )

<]P’< 2 (B)> w(f—l—f—l-\/%) or ||£||%272(n+2\/7ﬁ+2:1:)>

<exp(—z) + exp(—z) = 2exp(—x);
P (oh(®) < 222 (Vi va - Vi)' )
M _ 2 2/
<P (o2n(®) < 2 (V- va- vE2)" or el < 72 (n - 2vi)

<exp(—z) + exp(—x) = 2exp(—x).
O
The next lemma provides an upper bound for the projection error after perturbation,
which is useful in the singular subspace perturbation analysis in the proofs of the main

results.

Lemma 7 (Projection error after perturbation). Suppose A,Z are two matrices of the
same dimension and U = SVD, (A + Z). Then,

|Po. A corn)+21zl |Po Al < [0 o2a)+ 202
k>r+1

In particular when rank(A) < r,

|Po.A| <21zl ||Pg, A, < 2min (1Z]r, vriZI}
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Proof of Lemma 7. Suppose A = )", Jk(A)ukV,I is the singular value decomposition.
Then,

1Py, Al <||Pg, (A +2)|| + 1] = 0741(A +2) + |2
= min_[A+Z- M|+ 2|

rank(M)<r
s
<|A+Z - oAy wv] || +1Z] = ||Z+ Y or(A)uv] | +1Z]
k=1 k>r+1
<or41(A) + 2(/Z].
IPs, Allr < | P, (A+2)| +11P5 ZIr= | > o}(A+2)+|Zlr
k>r+1
= min _[|A+Z-M|r+|Z]r
rank(M)<r

< +ZlIr < [ D of(A) +20Z]F.
F k>r+1

Finally, when rank(A) <r, rank(Pﬁl A) <rank(A) <r, then

A+7Z-— ZO’k(A)ukV;—
k=1

IPg, Allp <ming [ > oF(A)+2)Z|r, V7 |Po, A p < min {21Z]r,2v7)Z]}.
k>r+1

0

The Lemma 8 below provides a inequality for tensors after tensor-matrix product pro-
jections.

Lemma 8. Suppose A € RP1*""*Pd jg qn order-d tensor and U € Oppris k=1,...,d, are
orthogonal matrices. Let || - || be a tensor norm that satisfies sub-multiplicative inequality,

i.e., | A X Blle < || Alle - [|B]|| for any tensor A and matriz B (in particular, the tensor
Hilbert-Schmitt norm satisfies this condition), we have

[P N IS o ey |
k=1

Specifically,

d
[ AHHS - Hp(ﬁm,@ﬁmvec(A)Hz < kzl Hﬁ,LMk(A)HF.
Proof of Lemma 8. Note that )
A= [[A; (Pﬁl +Pﬁu) (Pﬁd + PﬁdL)ﬂ
- [[A;Pﬁl,...,Pﬁdﬂ n [[A;Pﬁu,...,Pﬁd]] n [[A;Ipl,Pﬁu,...,Pﬁd]]
Fot [[A;Ipl,lm,...,Pﬁdlﬂ .
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Additionally, [|[Pg || < 1,[|Pg, [ <1. Thus,

H[[A;pﬁl,...,pﬁd]]—A

. g”[{A;Pﬁu,...,Pﬁdﬂ

+ H[{A;Ipl,Pﬁu,...,Pﬁd]]

oot [[AL T PG

d
3 axery, |
k=1

Specifically for the Hilbert-Schmitt norm,

P(ﬁd®-~-®ﬁl)LveC(A)H2 = Hp(ﬁd@..@tjl)vec(A) - VeC(A)H2

d
e 24

IN

d
[[A; P~1, - ’Pﬁd]] - AHHS < Z HA Xk PﬁkL
k=1

= Tlmu)|,

Therefore, we have finished the proof of lemma 8. [
The next Lemma 9 introduces a useful inequality for the tensor projected orthogonal

to a Cross structure (i.e., U in the statement below).

Lemma 9. Suppose A = [S;U;,Usg, Us] is a rank-(r1,72,73) tensor. Uy € Oy, ,, and
Wi € Oy, 1ppiope are the left and right singular subspaces of My (A) := Ay, respectively.
Suppose ﬁk € Op,r\, and

Wi = (U32U) V1 €0y, Wa = (Us0U1)Va €0y, yy, Wi = (Ua0U1) Vs € Oy
are sample estimates of U and Wy, respectively. Assume Uj, and Wk satisfy
Isin©(Uk, Up)l| < 0k, 1O Akllr <k, |A(WiL]lp <&, k=1,2,3.

Let

U= [63 ® U, ® Uy, 731(‘7\71 ® ﬁu), R2({7VV2 ® ﬁu), R3({7VV3 ® 63L)} ;

where Ry (+) is the row-permutation operator that matches the row indices of Wk ® ﬁkl
to vec(A) and the actual definitions of Ry are provided in Section A in the supplementary

materials. Recall INJJ_ is the orthogonal complement of U. Then,

”Pﬁl"eC(A)H% < Z (91251% + min{92+1nz+2, ‘91%+2771%+1})
k=1,2,3

+ min{n}0363, 031363, 036303 }.
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Proof of Lemma 9. Since

U=|U300,0U;, Ry(W10Uy,), Ro(W2®Uy.), R3(Ws® ﬁSL)] € Op1paps,m>

where m = rirars + (p1 — r1)r1 + (p2 — r2)r2 + (ps — r3)rs. Denote

ﬁll =T ( (Us@U2)Vyy ) ® ﬁli) € @p1p2p3,(P177‘1)(r2r37m)’

( )
IFj12 =Ra (((63 & 61){721_) & 62J_) € ©p1p2p3,(p2—r2)(7"17”3—7‘2)> (142)
020 01V )

613 =Rs <<(U2 ®U)Vs1 ) ® U3J—) € @p1p2p3,(p3*7“3)(7“27‘171"3)7

ﬁmzﬁu(@ﬁu@fh cO

'p1p2p3,m1(p2—72)(p3—T3)3

622 - fj:“- ® 62 ® ﬁu— € @plp2p3,7'2(p1*1”1)(p3*7‘3); (143)
U3 =Uz@ Uy @ Uy € ©P1P2P3»7"3(P1*7’1)(P2*7’2);
U =U3 @Up ® Uy, € ©p1p2P37(p1*Tl)(p2*7"2)(p3*1“3)‘ (144)

Then it is not hard to verify that [611, 612, 613, 621,622,623, 63*] forms an orthogonal

complement of U. Thus, we have the following decomposition,

1Py vec(A)E= > IIPg, vec(AI3+ Y [Py, vec(A)lI3 + [Py, vec(A)|3.

k=1,2,3 k=1,2,3

We analyze each term separately as follows.

e Note that
[(U3 ®U2)Vy, (U3 Uy)Vi, (Us® UZ)J_]

is a square orthogonal matrix, we know
{(63 ®U)Vy, (Us® I~J2)L}

is an orthogonal complement to \7\71. Given the left and right singular subspaces of A;

are U; and W1, we have
142) ||~ ~ ~ L~ 2
Py, vee(A) 3 "2 [ 0T, A ((Ts 0 Ua) VL) |
~ —~ 2 ~ — 2 ~ —
<[OL AW =[Ol o] AW < 101002 AW
<[|sin©(T1, U1+ | Ay W]} < 67€d.

Similar inequalities also hold for ||P612V6C(A)||%~ and HPﬁlgvec(A)H%.
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1Pg,, vec(A) |3 = [Ugyvec(A)[3 = | A x1 U] x2 Ugy x3 UJ, s
=103, A2(Us1 @ Up)|E = [|U3, U2 U3 Ax(Us1 @ Uy
<[ U3, Uy - [[U5 A2(Uss @ Uy}
<[|sin ©(Us, Ua)||* - | A2(UsL @ U1)|[3 = 65 - |4 x1 U] x3 Uy, i
=03 - U3 As|3 < 03m3.
By symmetry, ||PI~J-21V€C(A)||% < 02n2. Similar inequalities also hold for ||P622vec(A)||%
and ||P623vec(A)||%. Therefore,

1Py, vee( A3 < min{67, 10?15, 03,01}, for k=1,2,3. (145)

e Similarly as the previous part,

|Pg,, vee(A)ls <||A4x1 07, x2 0, x3 OF, ||

o (0002,

= U] A1(U; @ U)(Us @ Us) T (Us, ® fJu)HF

IN

GL_Al(Ug ® UQ)HF . H(U;ﬁ?ﬂ_) & (U;ﬁgl)H

<Ol - U s [ (UF ToL) | < miats.
Similar upper bounds of #17203 and 616513 also hold. Thus,

| Pg, vec(A)|5 < min{n;0563, 670363, 676503}

In summary,
||PUJ_V6C(A)H3 < Z (913513 +min{9£+1771%+2»‘913+2771%+1})
k=1,2,3
+min{ni6363, 010363, 6165713}
O
The following lemma discusses the Bayes risk of regular linear regression. Though it is
a standard result in statistical decision theory (c.f., Exercise 5.8, p. 403 in [74]), we present

the proof here for completeness of statement.

Lemma 10. Consider the linear regression model y = X3 + €. Here, € d N(0,0%); the
parameter B is generated from a prior distribution: 3 u N(0,72). We aim to estimate
B based on (y,X) with the minimal {o risk. Then, the Bayes estimator for B and the

corresponding Bayes risk are

1 -1
3:("?+XTX> X" and E((B—B)ZIX)ZU<<I2+XTQX> )

T T g
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Proof of Lemma 10. When 3 i N(0,72) and ¢ i N(0,0?),

p(B|1X,y) o p(ylX,B8)- p(B)
o exp (—|ly — XB3/(207)) - exp(—-B" 8/ (27%))

' B'X'Xp y'Xp
— — 14
oe exp( 972 952 + ) (146)
_ 2
. Hr, x7x 2xTy /1 XX 1/26
P 2 ||\ 72 o2 o2 72 o? )

Thus, the posterior distribution of 3 is

21 - 1 XTx\'
B‘X,y ~ N<<02+XTX> X'y, <2+ 5 ) .
T T

(o)

Then, the Bayes estimator, i.e., the posterior mean, and the corresponding Bayes risk are

g

R 9 —1 N TN 1
ﬂzE(ﬁIX,y)=<i;+XXT> X'y, E((B—B)QIX,.V):U((TIQJFX)?) )

respectively. Thus, we have finished the proof of this lemma. [
The following lemma provides a deterministic bound for the group Lasso estimator

under group restricted isometry property.

Lemma 11. Suppose X € R™P" {Gy,...,Gp} is a partition of {1,...,pr} and |G| =

- = |Gp|. Assume X satisfies group restricted isometry condition, such that
m
(1= O)nlBIE < IXBIZ < (L+6)mlBI3, VB such that 3" 1g,, 20y < 2.
i=1
Supposey = XB+e and > 0_; 1{'86‘1-750} < s. Consider the following group Lasso estimator
~ 1 P
B = argmin §HY—X7H§+UZH7@Hz : (147)
YERP” i=1

For n > 3maxi<j<p ”(X[:’Gj])TEHQ and § < 2/7, the optimal solution of (147) yields

~ 4n+/s/3
- < —————. 148
1B~ Bl < s (148)
Proof of Lemma 11. For convenience, define the (2,00)- and (2, 1)-norms of any vector
v e R as
P
¥l = IV, and vl =3 I,
j:
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Then, |- [|2,00 and [ - [|2,1 satisfies [|V]|2,00- [[w]l2,1 = (v, w). We also define J = {j : B¢, # 0}
as the group support of 3, then |J| < s based on the assumption. Suppose h = B—B € RP",
By definition,

1 ~ ~ 1
Sy = XBIE + 1llBll21 < 5lly — XBI3 + 1]l
Noting that

1 ~ 1
5 (Iy = XBI3 — Iy - XB8I3) = 5 (

e = Xh|3 ~ llell3)

(2¢ — Xh)"(Xh) > —e"Xh > —||X "¢

2,00 * ||P]l2,1

1
2
= — [|XTell2,00(|Bsll2,1 + I1hell21),

0 (1821 = 1Bll2.) =1 (185112 = 1B, 12 — 1B

21) < 0 (Ihsllza = s l2).

we have
— X ell200(lhll2n + [hellz1) < n(lhsll2g = [|Bgell2,1),
N+ 1XTell2,00
= hJc 2,1 = — hJ 2,1-
“ =X el !

Given 1 > 3||X T¢||2,00, We have
[hell21 < 2[hsll2,1- (149)

Now we can sort all groups of h by their /2 norm and suppose [|hg, [2 > -+ > HhGi,, II2,

where {i1,...,i,} as a permutation of {1,...,p}. Let

hj, jGGz’lU---UGZ’S;

hmax(s) € RP", (hmaX(s))j - { 0 otherwise

Then hyax(s) is the vector h with all but the s largest groups in ¢ norm set to zero. We

also denote h_ yax(s) = I — hmax(s)- Then (149) implies

17— max(s) 121 < [[huell2,1 < 2[[hull21 < 2[Pmax(s)

2,1- (150)

Let v € RP with v; = |hg,|l2,1 < i < p be the f2 norms of each group of h.
We can similarly define v .5 as the vector v with all but the s largest entries set to
zero, and V_jax(s) = V = Viax(s)- Lhen, (Viax(s))i = [[(Amax(s))Gill2 and (V_ax(s))i =
[[(h— max(s)); ll2- Let

Q= maX{th max(s)HZOOﬂ thmax(s) 2,1/3} = maX{va max(s)H007 ”meax(s)Hl/S}'
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By the polytope representation lemma (Lemma 1 in [17]) with a, one can find a finite series

of vectors v&D ... v(N) € RP and weights 71, ..., 7y such that

Supp(V(j)) - Supp(vfmax(s)% ||v(j)”0 <s, ”VO)HOO < a, ||V(])||1 = ||V7max(s)||17

N
V_ max(s) Zﬂj , 0<m <1, and ZT[‘J':L

Now we construct

(h max(s)) (j)

hY) e R, where (hY)g =
e [

i=1,...,p:j=1,...,N. (151)

Then {h(] ", satisfy

p
supp(ht?)) C supp(h_ max(s)); > L), 200 < 5 1BD|2,00 < av,

= v (152)
1Az, = 1A maxs)l215 A mas(s) Zm Wo0<m<1, Y m=1

Therefore, Apax(s) and h() have distinct supports, oy 1(hmax<s>+h(j))cv¢0 <28, [|Pmax(s) +
hDN3 = || Paax(s) I3 + IR 3, and

4 ‘ A (152)
IRO13 <A a1 19 oo < (15—

(150)
< 2||hmax(s)||2,1 - max { Hh— max(s)HZ,ooa ||h— max(s)

}

<2||h : i he 2, 2|k
<2 s 21 - max {j:”;g%;ﬁg#o” ;22| max(smz,l/s}

SZJL”hmaX(s)H%,l/s < 4HhmaX(s)”g'
Thus,

N

‘ <Xhmax(s) , Xh_ max(s)> ‘ < Z T ‘ <Xh‘max(s)7 Xh(3)> ’
J=1

MzWMz

7T .
7 21X Py + XBDI = [ KRana(s) — XRD

T4 . .
>~ (004 ) (Wemao 13 + 1AD13) =21 = 8) (I max(o 13 + [H913)

56n
(Hhmax s)||2+4Hhmaxs H ) T”hmax(s)H%v

IN

1

°’T|

56



which means

<Xhmax(s)7 Xh> = Hthax(s) ||g + <Xhmax(s)7 Xh_ max(s)>

>n(1 = 8)|[ Pamax(s) 3 — E)(STthmax(s)”% = n(1 = 76/2)|| hmax(s) 13- 1
Next, by the KKT condition of B being the optimizer of (147),
X" (y = XB) 2,00 < 1-
In addition, || X' (y — XB8)||2.00 = [|XT€ll2.00 < 7/3, which means
(Xhumax(s)s XB) =hppae (X Xh < [ hax(s)ll2,1 - X7 XAll2,00
sl (X7 = XB) 200 + X (9 = XB)|2s)  (154)

§47)/3 ’ Hhmax(s) ”2,1 < 477/3 ’ \/thmax(s)HZ

Combining the above inequality with (153), one has

4n
?\/gnhmax(s)”Q > n(l - 75/2)||hmax(s)||%7

namely
4
3V
h < 3
Finally,
Hh— max(s)”% S”h— max(s) ‘271 ’ Hh— max(s) [|2,00
<2||h . i h ,
<2[|Pmax(s) ll2.1 j:(hmﬁigcﬁoll( max(s))G; |2
S2Hhma‘x(s)H%'
Therefore,

dnv/s/3
Hh”2 = \/thmax(s)H% + HhmaX(S)H% < \/§Hhmax(s)H2 < mv

which has finished the proof of this lemma. O
The next Lemma 12 shows that the Gaussian Ensemble satisfies group restricted isom-

etry property with high probability.

Lemma 12. Suppose X € R™*®) Gi1,...,Gy is a partition of {1,...pr} and |G| =
|Gyl = If X b N(0,1) and n > C(sr/d + slog(ep/s)) for large constant C > 0, X

satisfies the following group restricted isometry (GRIP)

p
n(1=38)IBl3 < [XBll; < n(L+0)|BII3, VB such that Y 1ig, 20y < s (155)
=1

with probability at least 1 — exp(—cn).
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Proof of Lemma 12. First, the statement (155) is equivalently to

V distinct i1,...,is C {1,...,p},
) , (156)
n(l - 5) < O-min(X[:,GZ'lU---UGiS]) < O-max(X[:,GZ'lU---UGiS]) < n(l + 6)

Since X[:7Gilu.,,ugis] is an n-by-sr matrix with i.i.d. Gaussian entries, by random matrix
theory (c.f., [122, Corollary 5.35]),

P (\/> - \/§ —z < O'min(X[:,Gi1U~~-UGiS]) < O-maX(X[:,Gq-,lUwUGiS}) < \/ﬁ + \/§ + CE)
>1— 2exp(—z°/2),
which means

P ((156) does not hold)

< Y p({n01-6) <02 (Xee, 0060 < Chan (X ueua,) < nL+0)])
distinct 41,...,is
c{1,....p}

<2(P) exp (= (vii— ValT=0) - var) " a (Vi 0] - vii - V)’ ).
Provided that n > C(sr/d + slog(ep/s)) for large constant C' > 0, we have
(Vi = Vall=8) = vr) A (Vall+8) = i = Vi) | = (1= hn
(1 —=c)n > (1—c)Cslog(ep/s) > (1 —c)C'log ((Z)) :

Therefore, we have

P ((156) does not hold) < exp <log (2 (i)) —1- c)n> < exp(—cn)

and have finished the proof of this lemma. [
The next lemma gives the KullbackLeibler divergence between two regression models

with random designs, which will be used in the lower bound argument in this paper.

Lemma 13. Consider two linear regression models y!) = X3 4+ ¢ and y@ = X3 4e.
Here, yU y? € R" and X € R"*P, BW. B2 € R, and e € R™. Assume X id N(0,1),
e N(0,02), and B, B2 are fized. Then,

2

D (053 050) = g o -5 i

Proof of Lemma 13. Denote the j-th row vector of X as z;, i.e., X = [#{ ---z,]T. Then,
(mf,ygl)T), oo (2] y7(11)T) are i.i.d. distributed vectors, y]m = achB(l) +¢;, and

I, i)

T 0 —
<5Uj 'Y ) ~ N(():Zl): ¥ = [B(l)T H:B(l)”%“‘UQ
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Similarly,

2)
e _| I p
(] ") =N O.22), 3, = [ﬂ@” 1621+ 02
Additionally,
I I (%) I (4)
det(3;) = det P - 0 . .pT .'8 = det » B =02, i=1,2,
—BOT 1| [BOT |8D|2 + o2 0 o2

ol —

(2

I, + BUAITs—2 _gi)s-2 .
_BOT 52 2 | T 1,2.

By the formula for multivariate normal distribution KL-divergence,

D ({474} | 7.47))

:;_(2‘51‘ (23'%1) = (p+1) +log (32%3))

:% (tr (6(2)ﬁ(2)T _g2gmT 5<1)T5<2>> n Hﬁ(l)H%)

ol -l

Therefore,

Dt <{x}7y§1)}:1 H {iﬂT’y§2)}:1> =nDkr <{$JT’yJ('1)} H {xJ'Tvyg(‘Q)})
oo sl

O
The next lemma can be seen as a sparse version of Varshamov-Gilbert bound [87,
Lemma 4.7]. This result is crucial in the proof of the lower bound argument in sparse

tensor regression (Theorem 7).

Lemma 14. There exists a series of matrices AD ... AW ¢ {1,0,=1}P*" such that

”A(k)

p P r
k !
2= Sty S 1A= A0s =3 |af |-z 159
= =17=

for all k,1, and N > exp (c(sr + slog(ep/s))) for some uniform constant ¢ > 0.

Proof of Lemma 14 First, if p/s < C for some constant C > 0, the lemma directly
follows from the Varshamov-Gilbert bound by restricting on the top s x r submatrices of
Aq,...,Ay. Thus, without loss of generality, we assume p > 10s throughout the rest of
the proof.
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Next for k = 1,..., N, we randomly draw s elements from {1,...,p} without replace-

ment, form Q) as a random subset of {1,...,p}, and generate

A®) ¢ rpxT AR ~ Rademacher, ie Q®);
s ij = (), i ¢ Q(k)’

for k=1,2,...,N. Here, A ~ Rademacher if A is equally distributed on -1 and 1. By such

the construction,

p
AP o2=>"1 <s.
L

For any k # [,

AF —AO| | @N\QO| 4+ 1| QN\Q®) | + 2. Bin (r|Q®) nQ®] 1/2
1,1

=2sr — 27|00 N Q®| — 2. Bin (rm(l) na®, 1/2)

~2sr — 2 Bin (r|Q<l> na®)|, 1/2) .

(159)

Here, we used the fact that [QFN\QO| = QK| — |Q®) N Q1| = s — |Q*) N QD). Moreover,

100 N QK| satisfies the following hyper-geometric distribution:
(2 (220)
@

Let Zy; = ‘Q(Z) N Q(k)|. Then for any s/2 <t < s,

P(‘Q(l)ﬂﬁ(k)‘:t): t=0,...,s.

s (s—t+1) (p—s)--(p—2s+t+1)

. ¢
o (s—0)! s\ s
P(Z=1)= p(p—s+1) = <t> (p — s+ 1)

s!

s t 4s ¢
<5 — <|!— .
a p—s+1/) “\p—s+1

Next, by Bernstein’s inequality,

P <HA(’“) - A<Z>H1 =< 57“/2‘Z> (159 p (Bin (rZ,1/2) > 331“/4‘2)
=P (2Bin(7‘Z7 1/2) —rZ > 32ﬂ — T'Z)

(3sr/2—Zr)? .
S{ Qexp(—m>, S/2SZSS,

0, Z < s/2.
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P (HAW - A<Z>H1 < sr/2> <Y P <HA(’“) - A(“HL1 < sr/Q‘Z - t> P(Z=1)
< ) 2ew <_rt +(3:;s/r2/2_ irt)j)/?)) (p —i: 1>t

< 2 2exp <_Sr J(rggs/f/;rs)i)/?) <p —4SS+1)t

5/2<t<s

< Y 20 (—sr/14) - (ds/(p — r+ 1))’
t>s/2

<2exp(—sr/14)2 - (4s/(p — s + 1))*/?
<dexp (—c(sr + slog(ep/s)))

for some uniform constant ¢ > 0. Finally,

P(Vlgk;ﬁlgN,

’A(k) - A(Z)H1 e 57“/2)

)

2

>1 — (Z)P <HAU€) — A(Z)HL1 < sr/2> >1- N7 -4dexp (—c(sr + slog(ep/s)))

We can see if N < exp(c(sr + slog(ep/s))) for some uniform constant ¢ > 0, the previous
event happens with a positive probability, which means there exists fixed AM, ... AWV
satisfying the targeting condition (158) for some N > exp(c(sr + slog(p/s))). O
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