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In the ultra-fast electron microscopy community, electron bunches with much smaller
longitudinal widths than transverse widths are emitted from the cathode surface. The
community has believed that these bunches evolve to a uniform ellipsoid, but recent
simulations by our group and others suggest that if the bunch has an initially transverse
Gaussian profile, a ring-like density “shock” emerges at the median of the bunch dur-
ing evolution. To explain these results, we generalized Reed’s 1D fluid model of charged
bunch expansion to cylindrical and spherical geometries demonstrating such a shock
emerges analytically under these symmetric geometries. Mathematically, the shock in
these models occurs when particles more toward the middle “catch-up” to outer par-
ticles, and eventually the trajectory of the more central particle crosses-over the outer
particle’s trajectory. This crossover marks the transition from the laminar to non-laminar
regime. However, this theory has been developed for cold-bunches, i.e. bunches of elec-
trons with zero initial momentum. Here, we briefly review this new theory and extend it
to the cylindrically- and spherically- symmetric cases that have non-zero initial momen-
tum. This formulation elucidates how charge-dominated bunches may be manipulated
to maintain laminar conditions even through focussing of the bunch.
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1. Introduction

Freely expanding ensembles of charged particles are fundamental to accelerator
physics. Although continuous beams near the particle source are relatively diffuse,
bunched beams can reach densities where space-charge effects dominate the ex-
pansion. A seminal work by Luiten et.! reasoned that pancake bunches under such
space-charge dominated expansion should become uniform ellipsoids if they had the
correct initial, non-uniform distribution based on essentially complementary work
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that had been done on the collapse of a uniform ellipsoid under gravity in astro-
physics.? This postulate has been supported by experimental evidence that observed
the uniform-like projected density of an ellipsoid after such expansion.? However, we
recently published simulated results that showed that initially Gaussian transverse
distributions in this pancake regime may appear uniform when projected, but the
evolved distribution actually obtains a ring-like substructure around the median of
the beam.*

A number of theoretical approaches have been used to understand beam dy-
namics that could arguably shed light on this density ring. More than 30 years ago,
Anderson presented 1D and cylindrical mean-field fluid models of beam dynamics
for ensembles of particles with arbitrary initial distributions relevant while the beam
remains laminar.® These models describe the transverse density in the presence of
a focussing force — a model that eventually helped lead to emittance compensa-
tion.% 7 However, these models are for cigar-like beams and not pancake-like bunches
and are therefore inappropriate. Within the ultrafast electron microscopy (UEM)
literature, numerous works postulated 1D models for non-relativistic longitudinal
free expansion,’®? and Reed eventually settled upon a mean-field fluid approach.
Again this model was to describe the longitudinal density evolution of initially dense
pancake bunches that can be assumed to be planar symmetric. Reed’s mean-field
model accurately describes the longitudinal expansion while planar symmetry can
be assumed.!'® However, Reed was concerned that no Coulomb explosion-like shock
was seen in the model even when non-uniform initial conditions were assumed, in
stark disagreement to what had been previously found within the Coulomb explo-
sion literature.!’ 1 We recently demonstrated that such a shock cannot occur in
the non-relativistic 1D model without careful tuning of the initial velocity distri-
bution.* In contrast, we showed that these shocks spontaneously occur in higher
dimensions for non-uniform distributions,* so that the theoretical results found in
the UEM community are now consistent with the shocks found in the Coulomb ex-
plosion literature as well as observed in our simulations of the evolution of a pancake
bunch.

We accomplished this demonstration by generalizing Reed’s model to higher di-
mension by deriving closed form analytic expressions that describe arbitrary density
evolution under cylindrical and spherical symmetries with cold initial conditions,
meaning that all particles are assumed to start with 0 velocity.* We recently dis-
covered a paper from the Coulomb explosion literature that has the same spher-
ically symmetric analysis we presented in our work but pre-dates our publication
by roughly a decade;!” however, we presented not only the spherically symmetric
analysis but the planar and cylindrically symmetric analyses as well. We found that
the shocks arise when the Lagrangian particles from our model approach one an-
other. Eventually, Lagrangian particles in these shocks will cross, which in essence
is a violation of laminar conditions — an assumption of the analysis; while the model
still approximates the simulations after such a cross-over event in the free expansion
case, this is due to the dynamics being largely determined by the early evolution
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of the bunch where the space-charge forces are strongest. On the other hand, if the
laminar assumption is violated in a region where space-charge forces dominate, we
would expect the model to differ from the simulation. Therefore, we argue that our
equations and the simulation deviations from the model’s predictions may be used
as a proxy for understanding laminar conditions in the presence of the non-linear
forces typical of dense bunches at cross-over.

This is significant to the community as laminar-like flow in a charged particle
beam produces ideal conditions for experiments;'® specifically, it is important to
understand to what extent space-charge dominated bunches can be manipulated
to maintain laminar-like conditions. However, our previous model assumes that the
initial velocity of every particle is 0. Here we present an extension of our previous
model that includes arbitrary initial velocities that can be written as a single-value
function of the radius of the appropriate symmetry, i.e. v9 = vo(rg). This is still
a cold distribution as it has no initial emittance, but it can now be used to treat
driven expansion and focussing events by specifying the form of f(rg). We demon-
strate that this model reproduces particle-in-cell (PIC) simulations, implemented
in warp!® for many cases. We also validate our spherically symmetric results us-
ing N-particle simulations implemented in Fortran using the fast multipole method
(FMM) library, fmm3dlib.2° We show conditions where the laminar assumption is
violated and obtain analytical bounds for when the laminar assumption can be
maintained through focal points for arbitrary distributions within the space-charge
dominated regime.

2. Density evolution with initial velocity

In this section, we present a derivation of the density evolution equations with
arbitrary initial velocity, ¥p = vo(r)#, under cylindrical and spherical symmetries.
This analysis follows from our earlier work* with the following differences: (1.) we
assume non-zero radial velocity and (2.) we adopt slightly modified notation that
we have recently developed for a relativistic extension of our initial analysis (under
review).

Consider Lagrangian particles under cylindrical and spherical symmetries. Let
the position of the particles be parameterized by r = /22 + ¢? in the cylindrical
case and 7 = /22 + 92 + 22 in the spherical case. Further, denote Vy for d €
{2,3} as the Jacobian of the transformation from the specific symmetry to a 1D
formulation, namely V, = 27, and V3 = 47r2. Furthermore, introduce the subscript
0 to indicate the initial (at time 0) value of any parameter; for example, rg indicates
the initial position of a Langragian particle under the model. Likewise, denote Vyy =
Vd(’r‘o), i.e. V02 = 27TTO, and Vog = 47’(’/‘(2).

Consider an ensemble of particles. Define the time-dependent probability den-
sity (fraction of entire distribution per unit area), pq(r;t), and denote the initial
probability density as poa = poa(ro) = pa(ro;t = 0). With the initial conditions, we
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have,
T0
POd:/ Voapoa(r)dr (1)
0
or.aP
Eoa(ro) = By = HicttTa @)
0d€0

where Q¢ot,q is the total charge per unit length along the cylindrical charge distribu-
tion under cylindrical symmetry or the total charge under spherical symmetry and
Pyq is the cumulative probability within r¢. Notice that the quantity Q:ot,aFoa rep-
resents the charge per unit length or charge inside radius rg for the cylindrically and
spherically symmetric cases, respectively. As Py, is the cumulative probability con-
tained in g and for °® Va(r)dr is the volume contained in rg, the average probability
density can be defined by

Pog

pod - fOT‘O Vd(T)dT

(3)

Assuming the distribution undergoes laminar flow, the electric field experienced
by a particle at radial position 7(rg,¢) under cylindrical (d = 2) and spherical
(d = 3) symmetries, respectively, is

7o\ d—1
Ea(r) = Boa () (4)
Under the laminar assumption, Eyg is a constant, and the change in kinetic energy
is found by integrating the force qE:

AKy =Esln <T> (5)
To

AK3 =¢&3 (1 - %0) (6)

for the cylindrical and spherical cases, respectively. Here &4 = (IQMV;% Further

introduce a fictitious velocity, v,q for d = 2,3, such that v,y = + an—” Using

1,2

conservation of energy in the non-relativistic regime with initial energy & = 3

we can solve for the velocity,

Y2y gmn(r)

Ur2 r2 To
U3 &o 70

-+ +1-20
Ur3 Era T

where the + is determined by whether the particle is traveling away or toward the
origin and the subscript again indicates the appropriate symmetry. In other words,
the velocity equations become double valued for » < ry when vy < 0 as both the
negative and positive square roots occur at some time ¢ > 0; specifically, there
is a radius, ryg < ro with d = 2,3, at which the Lagrangian particle reaches 0
velocity and turns-around, and the velocities between this r;q and rg are symmetric
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— differing only by their sign. The geometric interpretation of this radius can be
seen in Fig. 1. By setting v = 0, ;4 can be derived

_ g
Tio = roe iz (7)
To
Tt3 = 2 (8)
1+ 2

Vr3

With this notation, the velocities can be rewritten as
v r
=2 —4,/In () (9)
Vg2 T2
v r
B o418 (10)
V3 r
ot,2 P tot,3 P
where vy = \/% = vpp and vz = \/% = vrg,/%. We use these

turn-around radii to define the average probability-like densities

_ Poz
= 11
Pt2 wrt22 ( )
_ Py3
Pt3 = 713 (12)
§7T7"t3

and the associated plasma frequencies

ot.2p v
Weg = /(IQt t,20t2 _ Vi (13)
€om T2
2 ot.3Pte v
s — \/7 [4Qtot,3Pt3 _ Vi3 (14)
3 €om T3

thus effectively mapping this problem to the freely-expanding case started from rest
we recently examined.* The main difference, now, is that r,y and w;q are functions
of both ry and vy whereas in the from rest theory their counterparts, 7o and wpoq,
were treated as functions solely of ry. Furthermore, r;4 does not necessary occur at
the same time for all Lagrangian particles. That is, as the bunch contracts, different
portions of the bunch can reverse their course and begin to expand locally — the
entire bunch need not enter into the expansion regime at the same time. This is
in contrast to our earlier solution where the bunch began expansion at the same
time; however, it should be noted that the mathematics for these cases is extremely
similar. Of course, this difference in expansion time will complicate the derivation
of v’ where ' = ﬁ, but it will much simplify the derivation and interpretation of
the time-position relation.

To derive the time-position relation for a specific Lagrangian particle, we con-
sider the normal time-position relation with ry replaced by ryq. If vg > 0, then the
time-position relation is the same as the cold expansion relations less the time it
would take the particle to travel from r.y to rg, call this ¢4 for d = 2,3. If vy < 0,

then the particle needs to travel from ry to ;g4 before undergoing free expansion
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Fig. 1. Schematic detailing meaning of different radii for a single Lagrangian particle at different
times represented here by concentric circles. The particle starts at ro at t = 0 represented by the
green (online) dotted circle with velocity vg. According to the laminar assumption, the velocity
of the particle at every radius can be calculated by conservation of energy, and the black (online)
dashed circle with radius r:4, always closer to the origin than rg, denotes the radius where the
velocity is 0. The corresponding time at which the particle is at rq is denoted t;4; tiqg < 0 if
vo > 0 and tyq > 0 if vg < 0. We previously solved the evolution of the Lagrangian particle from
rest,* and the non-rest evolution can be expressed in terms of the solution starting from ryq at

ttq. Notice that according to the symmetry of this problem, the particle returns to rg at 2t;4 with
velocity —vg.

expansion from rest. As this process is symmetric to the expansion from rg to 7,
the alteration is again t;q. Denote ¢, as the portion of the time-position relation
defined by the cold free-expansion from 7.4. Thus, ¢t = £ty — t;q where the + sign
is determined by whether the Lagrangian particle is moving away or toward the
origin, respectively, t; has the same sign as vy, and d = 2,3 for the cylindrical and
spherical symmetric case, respectively. The parameter ¢4 can be determined from
our previous work:*

2
trz = —€e"F (y2) (15)
w2
1 - Y3
trig = tanh™!y5 + ) 16
pia = o (rah ™ 2 (16)

where yp = Mln( z ), ys = /1 — "2, and F(-) represents the Dawson function.

Tt2

From these equations, we can also obtain #;4

2
2 4 v
tip = —e'r2 F <0) (17)
W2 Ur2
1 1 V0 vo\/ V3 + v
tt3 = — | tanh + 2
w3 Vg + 02y Urs

Implicit differentiation of ¢ allows us to determine 7’ = ddTTO which is used in the

(18)
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density evolution expression
Pod

d—1
(L) T/
To
To obtain an expression for r’, we need to take the derivative of the time with respect

to 9 while holding ¢ constant, and then we solve for r’. We present the results of
this process written in terms of time, the ratio

pa(r;t) = (19)

T

— and the initial conditions

o —Yartawtatyy + Yartawigtied + 7-Tg, £ < —twd (20)
YaTtdWidlyy + YareaWiglyed + 7-Tig, > —tu

for d = 2,3 for the cylindrical and spherical symmetric case, respectively. Note
that the condition on the time corresponds to the same + condition seen with the
velocity and the time-position relation. Further notice that all of the derivatives on
the right hand side can be written in terms of 7o, vg, v{, and poq; namely

d—1
k rgfl Urd VUrd 02, Pod
dwia ((poa  To
Wiy = -2 (24 2y 22
M9 (F_)Od Ta (22)
2
t 2 vy 21 [(rov)
poote o 2 v 1 (00 ~ /joz) (23)
W2 Wt2 Ur2 To Vo P02
tt3 1 Vo U2 1 ’/‘01}6 P03
byg = ——wjz + — 1+ —(14+2—2 3= (24)
w3 Wt3 Ur3 V3 70 Vo P03

We present the derivation of Egs. (21) - (24) in Appendix A. Eq. (20) leads to an
analytic form for p4(r;t) once it is applied to Eq. (19).

3. Comparison to cylindrically-symmetric simulations

We first demonstrate the use of these equation with initially uniform distributions
under cylindrical symmetry. Within the initial distribution, we introduce a velocity
term that is linear in the initial position, specifically it has the form vo(ro) = C %%
where C is a simulation dependent constant and R is the initial radius of the uniform
distribution. This form for the velocity was chosen as it models the linear kick
received by a distribution as it passes through a typical focussing lens. For our
demonstration, we chose Qo2 = 2 X 107% and R = 1mm, and this corresponds to
a Upg &Y 105%%. For the purposes of simulation, we used the electrostatic Poisson
solver in warp.'® Fig. 2 shows the results for one value for C' = —10°m/s, which
is nearly equal to the constant associated with v,5. As can be seen, the theory is
in excellent agreement even through the focal point of the distribution. We have
examined other values for C, and such agreement is generally witnessed. We point

out that this agreement is in part due to both the initial velocity and v,o having
ro

the same functional form, 72, thus the distribution remains laminar.
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Fig. 2. The evolution of cylindrically symmetric uniformly distributed electrons with density of
2x 107£ in a R = 1 mm radius with initial velocity assigned by vg = —1007¢ 5™ wwhere r
represent the radial position of the particle, at ¢ is (a) 0, (b) 7.5 ns, (c¢) 15 ns, and (d) 37.5 ns.
Solid lines are from the theory presented in this paper and circles are from the same single PIC
simulation but at the different times. Note the different scales on the axes for the different plots
except (a) and (c), and further note that the model captures both the contraction as well as the
expansion of the bunch. Specifically, note that (a) and (c) are nearly the same distribution as here
toq is slightly less than 7.5 ns.

We next demonstrate the use of these equations with initially Gaussian distri-
butions under cylindrical symmetry. Again we introduce the same initial velocity
relation, vo(rg) = C%8, choosing Qtor,2 = 4 X 107% and o, = 1lmm, which corre-

2
sponds to a v,.9 &~ 1.4 X 105% 1-— e_ﬁ. Unlike the uniform case, the functional
form for the initial velocity and the velocity scale differ. As we are interested in
when the laminar assumption fails, we examine multiple values of C. Figs. 3 and
4 show the evolution for the two positive values of C' less than and near the value
of vp9. For all such cases examined, the theory and the simulations were again in
excellent agreement. For C' = 104%, we see that the shock emerges approximately
at 22 ns instead of the 20 ns emergence seen in the cold case.* For C' =5 x 104%,
the shock is far less noticeable and emerges in the vicinity of 50ns. For C' = 105%
(not shown), the distribution become much closer to the uniform distribution and
we could not see the emergence of the shock even at times > 100ns. This suggests
that the violation of the laminar condition that occurs shortly after the formation of

RIS



November 15, 2019 10:3 WSPC/INSTRUCTION FILE laminar-like-flow

Charged bunch laminar-like flow 9

18 2.50
T T
g9 g1.25
< <
QU U
0 0.00
—4 0 4 —8 0
r (mm) r (mm)
(a) initial (b) 20 ns
1.0 B 5 0.6
20 OO o o o o o o
° o o
P o o 0%,
o o
5 £
0.3
QU QU
0.0 0.0
-8 0 8 —9 0 9
r (mm) r (mm)
(c) 30 ns (d) 40 ns

Fig. 3. Similar to Fig. 2 but with vg = 10%’16—’”7 with the initial Gaussian distribution, and where
tis (a) 0, (b) 20 ns, (c) 30 ns, and (d) 40 ns. Solid lines are from the theory presented in this paper
and circles are from the same single PIC simulation but at the different times; note the different
scales on the axes for the different plots. Further note that the model captures the emergence of
the density peak between 20 ns and 30 ns, aka shock in the Coulomb explosion literature, and is
very apparent by (d) 40 ns. The emergence of this shock is slightly delayed from what we found
in the initially at rest case.*

the shock can be delayed by putting a large, linear outward initial velocity relation
on the bunch.

Figs. 5, 6, and 7 show the evolution for the three negative values of C'. We
see that for C' = —104% the shock emerges around 18 ns instead of the 20 ns
emergence seen in the cold case, and for ¢ = —5 x 104% the shock seems to
emerge in the vicinity of 11 ns. However, the deviation of the simulated density
from the theoretical expectation is much larger for this simulation than for the
previously investigated simulations indicating that the model assumption may be
only approximate. Interestingly, the model predicts qualitatively different behavior
than what is seen in simulation for C' = 7105%. Specifically, the mean-field fluid
model predicts that the distribution begins to expand much earlier than what is
seen in simulation. This is due to many Lagrangian particles violating the laminar
assumption leading to the incorrect assignment of force to a large proportion of
the Lagrangian particles. Thus the simulation can no longer be described by our
laminar model.
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Fig. 4. Similar to Fig. 3 but with vg = 50%’%“ and at ¢ is (a) 0, (b) 60 ns, (c) 70 ns. Solid lines
are from the theory presented in this paper and circles are from the same single PIC simulation
but at the different times. While a theoretical density peak can be seen to develop between (b)

60 ns and (c) 70 ns, this peak is below the random variance of the density and therefore may be
argued to not be present.
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Fig. 5. Similar to Fig. 3 but with vg = —107¢ £m

-, i.e. inward instead of outward, and where ¢ is
(a) 0, (b) 17 ns, (c) 21 ns, and (d) 25 ns. Solid lines are from the theory presented in this paper and
circles are from the same single PIC simulation but at the different times. Note that the density

peak forms between (b) 17 ns and (c) 21 ns and is more prominent in (d) 25 ns. The emergence
of this shock is slightly before what we found in the initially at rest case.*

To study this further, we again simulate the cylindrically-symmetric distribution
/ _ g
but with vg = CV 1 —e 2% for C' < 0. This velocity profile has ;% = Wcﬂ, which
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Fig. 6. Similar to Fig. 5 but with vo = —50%0%" and where t is (a) 0, (b) 11 ns, (¢) 12 ns, and

(d) 13 ns. Solid lines are from the theory presented in this paper and circles are from the same
single PIC simulation but at the different times. Note that the density peak forms between (b)

11 ns and (c) 12 ns and is more prominent in (d) 13 ns. However, also not that the agreement
between simulation and theory is not as good as previous cases.

60
Té \ ‘E w
< =
0 o
-2 0 2 -2 0 2
r (mm) r (mm)
(a) initial (b) 4.4 ns (c) 5 ns
Fig. 7. Similar to Fig. 5 but with vg = ,100%0’6% and where ¢ is (a) 0, (b) 4.4 ns, and (c) 5

ns. Solid lines are from the theory presented in this paper and circles are from the same single
PIC simulation but at the different times. Note that not only does the theory fail to capture the

details of the simulated density, but the theoretical density is expanding between 4.4 ns but is still
contracting in simulation.

__¢c? _
.. . . 19m2 .
is independent of ry. This results in ry9 = arg where a@ = ¢ ° %% where « is

11
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/ i
Fig. 8. Similar to Fig. 5 but with vo = —1007* V1 —e 202 /s and where ¢ is (a) 0, (b) 6
ns, and (c) 10 ns. Solid lines are from the theory presented in this paper and circles are from the
same single PIC simulation but at the different times; note the different scales on the axes for the
different plots. Note that the theoretical and the simulated density evolutions are in agreement

including near the focal point near (b) 6 ns as well as the portion where the distribution is again
expanding as seen at (c) 10 ns.

%}o
% o

p(em™?)

vy 0 2

-2 [
r (mm)

r (mm) r (mm)

(a) initial (b) 6 ns (c) 10 ns

r2

Fig. 9. Similar to Fig. 5 but with vg = —2007V 1 —e 20% km/s and where ¢ is (a) 0, (b) 6
ns, and (c) 10 ns. Solid lines are from the theory presented in this paper and circles are from the
same single PIC simulation but at the different times; note the different scales on the axes for the
different plots. Note that the theoretical and the simulated density evolutions are in agreement
including the theory correctly predicting the location of the density peak as seen at (c) 10 ns.

2
. 2a B 101?) m?2 C . .
independent of rg and t;5 = e 2 F W); that is, the turn around points

are simply scaled from the initial Gaussian, altshough they still occur at different
times as wos is still dependent on rg. As can be seen in Figs. 8 and 9, this distribution
does appear to remain laminar through the focus as the theory is now in agreement

with simulation when vy > v,.2; however, this comes at a cost of an early-emergence
of the shock that can be seen at 10ns in Fig. 9c.

4. Comparison to spherically-symmetric simulations

We now demonstrate that the analysis for systems with spherical symmetry is also
accurate for a wide range of initial conditions. As for the cylindrical case, we intro-
duce a velocity term that is linear in the initial position, specifically it has the form
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Fig. 10. The evolution of spherically symmetric 2 x 104 uniformly distributed electron in a R = 1
mm radius with initial velocity assigned by vg = —100%2 Ich’ where rg represent the radial position
of the particle, at ¢ is is (a) 0, (b) 7.5 ns and (c) 30 ns. Solid lines are from the theory presented in
this paper and circles on the right of » = 0 and triangles left of » = 0 are from the same single PIC
simulation and N-particle simulation, respectively, but at different times. Note the very different
scales on the axes for the two plots, and notice that the mean-field fluid model again captures the
evolution of the bunch for this case with the exception of the very edge of the N-particle simulation
even through the focal point near (b) 7.5 ns.

vo(ro) = C' where C is a simulation dependent constant and R is the initial radius
of the uniform distribution. For our demonstration, we chose Q0,3 = 2 X 10%*e and
R = 1mm, and this again corresponds to a v,3 = 105%%’. We used the electrostatic
Poisson solver in warp'® as well as leapfrog algorithm with the FMM algorithm?°
to determine the force on the particles in our own fortran code. Fig. 10 shows the
results for the value of C' corresponding to inward focussing and roughly the size of
U3, —105%. Notice the excellent agreement between theory and simulation in all
cases thus validating the use of the spherically-symmetric formulation.

5. Conclusions

Here, we presented a mean-field fluid model for the evolution of cylindrically and
spherically symmetric charged bunches with arbitrary initial distribution and initial
velocity that can be written as a function of the radial coordinate. We demonstrated
that this model predicts the density evolution of the initially uniform bunch when
the initial velocity distribution is linear under both spherical and cylindrical geome-
tries. In the cylindrical geometry, we showed that the shock that arises in the cold
Gaussian distribution slightly prior to the onset of the non-laminar regime can be
suppressed by introducing a initial radially-outward velocity distribution whose lin-
ear proportionality constant is of the order or greater than %. However, when
an analogous negative linear velocity distribution is introduced, the model disagrees
with simulations as the initial velocity results in a rapid violation of the laminar

assumption. Nonetheless, by adjusting the functional form of the initially velocity

2
0

e

B toV1— e 277, we demonstrated that the model can predict

the evolution of the initially Gaussian distribution through the focus including the
emergence of a shock. This suggests that the laminar assumption for the Gaussian

distribution from
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distribution is not violated by this functional form of the velocity distribution, at
least for the duration of time we simulated.
The velocity scales derived in this paper, v,.2 and v,3, present the means to qual-

itatively understand when the laminar assumption can be made. For the uniform

distribution, v,q oc 5. Thus linear momentum kicks should result in the evolution

of the distribution remaining laminar even when the kick is inward; however, if
the inward kick has a functional form where the slope of the function is beyond

.2
linear, say vy o %, outer Lagrangian particle trajectories will cross the trajec-

tories of inner Lagrangian particles and the laminar assumption will be violated.

2

__0_
Analogously for the Gaussian distribution, v,q x V1 —e 277, so it is the slope

of this function that matters; that is, the linear kick, where v,4 oc 75, has slope
2
_ "0

beyond V1 —e 2% resulting in violation of the laminar assumption. On the other

T

hand, using V1 —e 27 as the functional form of the velocity distribution, the den-
sity evolution of the laminar theory and the simulation remain in agreement even
through focal points as seen in this work. This brings us to the conclusion that such
non-linear focussing results in the beam retaining laminar flow through the focal
point until the laminar assumption is later violated by the shock dynamics as we
have discussed in our previous work.*

In other words, the model we have presented here provides an accurate descrip-
tion of the density evolution of a beam as it expands and focusses as long as the
beam dynamics exhibits laminar flow. The model also lends important insight into
the parameters that drive the beam into non-laminar conditions; specifically shortly

o

after the emergence of a shock and when the focussing kick has a functional form
beyond what is needed for the specific distribution. Of course, our theoretical ini-
tial distributions arguably still have zero emittance as vy is exactly specified by
ro. The arguably comes from the fact that this initial velocity need not be linear
in rg, and hence the rms normalized emittance measure need not be zero; how-
ever, the initial local momentum width at each x is zero. On the other hand, the
initial spatial distribution in the simulations was sampled, and this process does
make the beam effectively warm as the sampling introduces disorder induced heat-
ing into the distribution.?! Despite the beam being having non-zero emittance after
initialization, though, the model correctly predicts the focussing behavior of both
the initially uniform and Gaussian distributions provided that the laminar criteria
are met. Presumably if the emittance is high enough, the model will fail, and an
exploration of this condition is reserved for future work; as is extending the analysis
presented here to the relativistic regime. The question of whether it is better to
remain within this laminar regime or to allow mixing is also worth investigating as
we now understand many of the conditions to prevent Lagrangian particle mixing.
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Appendix A. First order derivatives

In this appendix, we derivatives the expressions Eqs (21) - (24). We start this by
taking the derivative, ' = %, of all parameters discussed in the main text. Starting
with the cumulative probabilities we have

Py = 2770 poz (A1)
P63 = 47’(7”'(2)/)03 (AQ)
Now the derivatives of the average probability-like distribution is
_ 2po2 (Poz )
g = —— | — —1 A3
Po2 To o2 (A.3)
_ 3po3 (003 )
/
Pza=—|=——-1 A4
03 ) Po3 (A-4)
Next, the derivative of the initial energy term
&L = muou}, (A.5)
and then the derivatives of the energy scale terms
ro = Lror2 70002 (A.6)
€0
o 1_
13 = MTO (Pos - Pos) (A7)
€0 3
This can be used to show
/ Ur2 P02
Vpo = — — A8
2 o Po2 (&.8)
Lopg ( Po3 )
vg=-— 3= -1 A9
"2\ pos (&.9)
For the cylindrical turn around point, we can write Eq. (7) as
€9

Ty =To€ Fr2

it follows
) T2 & 50542)
T = — —T -
T (&2 &
/ 2
e (12%%+2U§p°2> (A.10)
To Ur2 Ur2 V9 P02
For the spherical turn around point, we can write Eq. (8) as
T
- 70& (A.11)
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it follows

Tt3 =

e <5a eos;g)

ro 1+ “% Ers &l

2 / 2
:”§<1—2U°”W0+329@B> (A.12)

0 Ur3 Ur3 U3 P03

Next, the derivative of the average probability-like densities at the turn-around
point are

~ 2pt2 (7“0 P02

= Pz (To po2 A3
P2 Tz T2 P2 2 ( )
_ 3pt3 (7‘8 P03 )

/ !

s 08 _, A4
= (om (A1)

The derivative of the associated plasma frequencies are

/ w2
Wiy = %Pw
wt2 [ P02 To
=z 0 A.15
To (,502 () Tt2> ( )
w/ _ Wtz
t3 2% Pt3
_ 3w (pos 1o, (A.16)
2719 \pos Tz ’

Finally, the derivative of the transit time to the turn around point in the cylindrical
case is

teo 1 Vo ToUh v p
/ / 0 0 F02
ttQ == _7wt2+tt2f 27 _27_7
Wi2 To Ur2 Ur2 Ur2 P02
2

2 2 Vg g Vg VoV
+—e'2 |1 -2—F - —
Wi2 Ur2 Ur2 Ur2 Vyg

U?
- —tt—Qw' + 2 v e%i (TO% — po2) (A.17)
Wiz 2 wio vpa To \ Yo Po2
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and for spherical symmetry

ti3 1
thy =~ iy + —
w3 Wt3
2
Vr3

—4= !/ !

« _1 + 02 1 Ur3 (Vpz  Ur3lp

Vrs Vo U%

wt3 wt3

/ / 2
Yo (Yo Urs Yo
Ur3 Vo Ur3 UT?)
ttg ’ 1 () ’Ug 1
— W+ —
wt3 Wt3 Ur3 V3 To

Il
~
o~
w
S
w
+
—_
—
—+ —
<
o
/T\
<
I |&
7N
[SH IS
S ls~
w W
|
@‘C
S o~
~~_

- 3”“3> (A.18)
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