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In the ultra-fast electron microscopy community, electron bunches with much smaller
longitudinal widths than transverse widths are emitted from the cathode surface. The

community has believed that these bunches evolve to a uniform ellipsoid, but recent

simulations by our group and others suggest that if the bunch has an initially transverse
Gaussian profile, a ring-like density “shock” emerges at the median of the bunch dur-

ing evolution. To explain these results, we generalized Reed’s 1D fluid model of charged
bunch expansion to cylindrical and spherical geometries demonstrating such a shock

emerges analytically under these symmetric geometries. Mathematically, the shock in

these models occurs when particles more toward the middle “catch-up” to outer par-
ticles, and eventually the trajectory of the more central particle crosses-over the outer

particle’s trajectory. This crossover marks the transition from the laminar to non-laminar

regime. However, this theory has been developed for cold-bunches, i.e. bunches of elec-
trons with zero initial momentum. Here, we briefly review this new theory and extend it

to the cylindrically- and spherically- symmetric cases that have non-zero initial momen-
tum. This formulation elucidates how charge-dominated bunches may be manipulated
to maintain laminar conditions even through focussing of the bunch.

Keywords: density evolution equations; non-neutral plasma; coulomb explosion; laminar

PACS numbers:47.15.-x 47.15.Tr 47.27.C 41.20.-q 41.75.-i 42.65.Jx 45.05.+x

1. Introduction

Freely expanding ensembles of charged particles are fundamental to accelerator

physics. Although continuous beams near the particle source are relatively diffuse,

bunched beams can reach densities where space-charge effects dominate the ex-

pansion. A seminal work by Luiten et.1 reasoned that pancake bunches under such

space-charge dominated expansion should become uniform ellipsoids if they had the

correct initial, non-uniform distribution based on essentially complementary work

1
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that had been done on the collapse of a uniform ellipsoid under gravity in astro-

physics.2 This postulate has been supported by experimental evidence that observed

the uniform-like projected density of an ellipsoid after such expansion.3 However, we

recently published simulated results that showed that initially Gaussian transverse

distributions in this pancake regime may appear uniform when projected, but the

evolved distribution actually obtains a ring-like substructure around the median of

the beam.4

A number of theoretical approaches have been used to understand beam dy-

namics that could arguably shed light on this density ring. More than 30 years ago,

Anderson presented 1D and cylindrical mean-field fluid models of beam dynamics

for ensembles of particles with arbitrary initial distributions relevant while the beam

remains laminar.5 These models describe the transverse density in the presence of

a focussing force — a model that eventually helped lead to emittance compensa-

tion.6,7 However, these models are for cigar-like beams and not pancake-like bunches

and are therefore inappropriate. Within the ultrafast electron microscopy (UEM)

literature, numerous works postulated 1D models for non-relativistic longitudinal

free expansion,1,8, 9 and Reed eventually settled upon a mean-field fluid approach.

Again this model was to describe the longitudinal density evolution of initially dense

pancake bunches that can be assumed to be planar symmetric. Reed’s mean-field

model accurately describes the longitudinal expansion while planar symmetry can

be assumed.10 However, Reed was concerned that no Coulomb explosion-like shock

was seen in the model even when non-uniform initial conditions were assumed, in

stark disagreement to what had been previously found within the Coulomb explo-

sion literature.11–16 We recently demonstrated that such a shock cannot occur in

the non-relativistic 1D model without careful tuning of the initial velocity distri-

bution.4 In contrast, we showed that these shocks spontaneously occur in higher

dimensions for non-uniform distributions,4 so that the theoretical results found in

the UEM community are now consistent with the shocks found in the Coulomb ex-

plosion literature as well as observed in our simulations of the evolution of a pancake

bunch.

We accomplished this demonstration by generalizing Reed’s model to higher di-

mension by deriving closed form analytic expressions that describe arbitrary density

evolution under cylindrical and spherical symmetries with cold initial conditions,

meaning that all particles are assumed to start with 0 velocity.4 We recently dis-

covered a paper from the Coulomb explosion literature that has the same spher-

ically symmetric analysis we presented in our work but pre-dates our publication

by roughly a decade;17 however, we presented not only the spherically symmetric

analysis but the planar and cylindrically symmetric analyses as well. We found that

the shocks arise when the Lagrangian particles from our model approach one an-

other. Eventually, Lagrangian particles in these shocks will cross, which in essence

is a violation of laminar conditions – an assumption of the analysis; while the model

still approximates the simulations after such a cross-over event in the free expansion

case, this is due to the dynamics being largely determined by the early evolution
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of the bunch where the space-charge forces are strongest. On the other hand, if the

laminar assumption is violated in a region where space-charge forces dominate, we

would expect the model to differ from the simulation. Therefore, we argue that our

equations and the simulation deviations from the model’s predictions may be used

as a proxy for understanding laminar conditions in the presence of the non-linear

forces typical of dense bunches at cross-over.

This is significant to the community as laminar-like flow in a charged particle

beam produces ideal conditions for experiments;18 specifically, it is important to

understand to what extent space-charge dominated bunches can be manipulated

to maintain laminar-like conditions. However, our previous model assumes that the

initial velocity of every particle is 0. Here we present an extension of our previous

model that includes arbitrary initial velocities that can be written as a single-value

function of the radius of the appropriate symmetry, i.e. v0 = v0(r0). This is still

a cold distribution as it has no initial emittance, but it can now be used to treat

driven expansion and focussing events by specifying the form of f(r0). We demon-

strate that this model reproduces particle-in-cell (PIC) simulations, implemented

in warp19 for many cases. We also validate our spherically symmetric results us-

ing N-particle simulations implemented in Fortran using the fast multipole method

(FMM) library, fmm3dlib.20 We show conditions where the laminar assumption is

violated and obtain analytical bounds for when the laminar assumption can be

maintained through focal points for arbitrary distributions within the space-charge

dominated regime.

2. Density evolution with initial velocity

In this section, we present a derivation of the density evolution equations with

arbitrary initial velocity, ~v0 = v0(r)r̂, under cylindrical and spherical symmetries.

This analysis follows from our earlier work4 with the following differences: (1.) we

assume non-zero radial velocity and (2.) we adopt slightly modified notation that

we have recently developed for a relativistic extension of our initial analysis (under

review).

Consider Lagrangian particles under cylindrical and spherical symmetries. Let

the position of the particles be parameterized by r =
√
x2 + y2 in the cylindrical

case and r =
√
x2 + y2 + z2 in the spherical case. Further, denote Vd for d ∈

{2, 3} as the Jacobian of the transformation from the specific symmetry to a 1D

formulation, namely V2 = 2πr, and V3 = 4πr2. Furthermore, introduce the subscript

0 to indicate the initial (at time 0) value of any parameter; for example, r0 indicates

the initial position of a Langragian particle under the model. Likewise, denote V0d =

Vd(r0), i.e. V02 = 2πr0, and V03 = 4πr20.

Consider an ensemble of particles. Define the time-dependent probability den-

sity (fraction of entire distribution per unit area), ρd(r; t), and denote the initial

probability density as ρ0d = ρ0d(r0) = ρd(r0; t = 0). With the initial conditions, we
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have,

P0d =

∫ r0

0

V0dρ0d(r)dr (1)

E0d(r0) = E0d =
Qtot,dP0d

V0dε0
(2)

where Qtot,d is the total charge per unit length along the cylindrical charge distribu-

tion under cylindrical symmetry or the total charge under spherical symmetry and

P0d is the cumulative probability within r0. Notice that the quantity Qtot,dP0d rep-

resents the charge per unit length or charge inside radius r0 for the cylindrically and

spherically symmetric cases, respectively. As P0d is the cumulative probability con-

tained in r0 and
∫ r0
0
Vd(r)dr is the volume contained in r0, the average probability

density can be defined by

ρ̄0d =
P0d∫ r0

0
Vd(r)dr

(3)

Assuming the distribution undergoes laminar flow, the electric field experienced

by a particle at radial position r(r0, t) under cylindrical (d = 2) and spherical

(d = 3) symmetries, respectively, is

Ed(r) = E0d

(r0
r

)d−1
(4)

Under the laminar assumption, E0d is a constant, and the change in kinetic energy

is found by integrating the force qE:

∆K2 = Er2 ln

(
r

r0

)
(5)

∆K3 = Er3
(

1− r0
r

)
(6)

for the cylindrical and spherical cases, respectively. Here Erd =
qQtot,dP0dr0

V0,dε0
. Further

introduce a fictitious velocity, vrd for d = 2, 3, such that vrd = +
√

2Erd
m . Using

conservation of energy in the non-relativistic regime with initial energy E0 = 1
2mv

2
0 ,

we can solve for the velocity,

v2
vr2

= ±

√
E0
Er2

+ ln

(
r

r0

)
v3
vr3

= ±
√
E0
Er3

+ 1− r0
r

where the ± is determined by whether the particle is traveling away or toward the

origin and the subscript again indicates the appropriate symmetry. In other words,

the velocity equations become double valued for r < r0 when v0 < 0 as both the

negative and positive square roots occur at some time t > 0; specifically, there

is a radius, rtd < r0 with d = 2, 3, at which the Lagrangian particle reaches 0

velocity and turns-around, and the velocities between this rtd and r0 are symmetric



November 15, 2019 10:3 WSPC/INSTRUCTION FILE laminar-like-flow

Charged bunch laminar-like flow 5

— differing only by their sign. The geometric interpretation of this radius can be

seen in Fig. 1. By setting v = 0, rtd can be derived

rt2 = r0e
− v20
v2r2 (7)

rt3 =
r0

1 +
v20
v2r3

(8)

With this notation, the velocities can be rewritten as

v2
vt2

= ±

√
ln

(
r

rt2

)
(9)

v3
vt3

= ±
√

1− rt3
r

(10)

where vt2 =
√

qQtot,2P02

πmε0
= vr2 and vt3 =

√
qQtot,3P03

2πmε0rt3
= vr3

√
r0
rt3

. We use these

turn-around radii to define the average probability-like densities

ρ̄t2 =
P02

πr2t2
(11)

ρ̄t3 =
P03

4
3πr

3
t3

(12)

and the associated plasma frequencies

ωt2 =

√
qQtot,2ρ̄t2
ε0m

=
vt2
rt2

(13)

ωt3 =

√
2

3

√
qQtot,3ρ̄t3
ε0m

=
vt3
rt3

(14)

thus effectively mapping this problem to the freely-expanding case started from rest

we recently examined.4 The main difference, now, is that rtd and ωtd are functions

of both r0 and v0 whereas in the from rest theory their counterparts, r0 and ωp0d,

were treated as functions solely of r0. Furthermore, rtd does not necessary occur at

the same time for all Lagrangian particles. That is, as the bunch contracts, different

portions of the bunch can reverse their course and begin to expand locally — the

entire bunch need not enter into the expansion regime at the same time. This is

in contrast to our earlier solution where the bunch began expansion at the same

time; however, it should be noted that the mathematics for these cases is extremely

similar. Of course, this difference in expansion time will complicate the derivation

of r′ where ′ ≡ d
dr0

, but it will much simplify the derivation and interpretation of

the time-position relation.

To derive the time-position relation for a specific Lagrangian particle, we con-

sider the normal time-position relation with r0 replaced by rtd. If v0 > 0, then the

time-position relation is the same as the cold expansion relations less the time it

would take the particle to travel from rtd to r0, call this td for d = 2, 3. If v0 < 0,

then the particle needs to travel from r0 to rtd before undergoing free expansion
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Fig. 1. Schematic detailing meaning of different radii for a single Lagrangian particle at different

times represented here by concentric circles. The particle starts at r0 at t = 0 represented by the

green (online) dotted circle with velocity v0. According to the laminar assumption, the velocity
of the particle at every radius can be calculated by conservation of energy, and the black (online)

dashed circle with radius rtd, always closer to the origin than r0, denotes the radius where the

velocity is 0. The corresponding time at which the particle is at rtd is denoted ttd; ttd < 0 if
v0 > 0 and ttd > 0 if v0 < 0. We previously solved the evolution of the Lagrangian particle from

rest,4 and the non-rest evolution can be expressed in terms of the solution starting from rtd at

ttd. Notice that according to the symmetry of this problem, the particle returns to r0 at 2ttd with
velocity −v0.

expansion from rest. As this process is symmetric to the expansion from rtd to r0,

the alteration is again ttd. Denote tftd as the portion of the time-position relation

defined by the cold free-expansion from rtd. Thus, t = ±tftd − ttd where the ± sign

is determined by whether the Lagrangian particle is moving away or toward the

origin, respectively, td has the same sign as v0, and d = 2, 3 for the cylindrical and

spherical symmetric case, respectively. The parameter tftd can be determined from

our previous work:4

tft2 =
2

ωt2
ey

2
2F (y2) (15)

tft3 =
1

ωt3

(
tanh−1 y3 +

y3
1− y23

)
(16)

where y2 =

√
ln
(
r
rt2

)
, y3 =

√
1− rt3

r , and F (·) represents the Dawson function.

From these equations, we can also obtain ttd

tt2 =
2

ωt2
e
v20
v2r2 F

(
v0
vr2

)
(17)

tt3 =
1

ωt3

(
tanh−1

(
v0√

v20 + v2r3

)
+
v0
√
v20 + v2r3
v2r3

)
(18)

Implicit differentiation of t allows us to determine r′ = dr
dr0

which is used in the
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density evolution expression

ρd(r; t) =
ρ0d(

r
r0

)d−1
r′

(19)

To obtain an expression for r′, we need to take the derivative of the time with respect

to r0 while holding t constant, and then we solve for r′. We present the results of

this process written in terms of time, the ratio r
rtd

, and the initial conditions

r′ =

{
−ydrtdωtdt′td + ydrtdω

′
tdtftd + r

rtd
r′td, t < −ttd

ydrtdωtdt
′
td + ydrtdω

′
tdtftd + r

rtd
r′td, t ≥ −ttd

(20)

for d = 2, 3 for the cylindrical and spherical symmetric case, respectively. Note

that the condition on the time corresponds to the same ± condition seen with the

velocity and the time-position relation. Further notice that all of the derivatives on

the right hand side can be written in terms of r0, v0, v′0, and ρ0d; namely

r′td =
rd−1td

rd−10

(
1− 2

v0
vrd

r0v
′
0

vrd
+ d

v20
v2rd

ρ0d
ρ̄0d

)
(21)

ω′td =
d

2

ωtd
r0

(
ρ0d
ρ̄0d
− r0
rtd

r′td

)
(22)

t′t2 = − tt2
ωt2

ω′t2 +
2

ωt2

v0
vr2

e
v20
v2r2

1

r0

(
r0v
′
0

v0
− ρ02
ρ̄02

)
(23)

t′t3 = − tt3
ωt3

ω′t3 +
1

ωt3

v0
vr3

√
1 +

v20
v2r3

1

r0

(
1 + 2

r0v
′
0

v0
− 3

ρ03
ρ̄03

)
(24)

We present the derivation of Eqs. (21) - (24) in Appendix A. Eq. (20) leads to an

analytic form for ρd(r; t) once it is applied to Eq. (19).

3. Comparison to cylindrically-symmetric simulations

We first demonstrate the use of these equation with initially uniform distributions

under cylindrical symmetry. Within the initial distribution, we introduce a velocity

term that is linear in the initial position, specifically it has the form v0(r0) = C r0
R

where C is a simulation dependent constant and R is the initial radius of the uniform

distribution. This form for the velocity was chosen as it models the linear kick

received by a distribution as it passes through a typical focussing lens. For our

demonstration, we chose Qtot,2 = 2× 107 em and R = 1mm, and this corresponds to

a vr2 ≈ 105ms
r0
R . For the purposes of simulation, we used the electrostatic Poisson

solver in warp.19 Fig. 2 shows the results for one value for C = −105m/s, which

is nearly equal to the constant associated with vr2. As can be seen, the theory is

in excellent agreement even through the focal point of the distribution. We have

examined other values for C, and such agreement is generally witnessed. We point

out that this agreement is in part due to both the initial velocity and vr2 having

the same functional form, r0
R , thus the distribution remains laminar.
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(a) initial (b) 7.5 ns

(c) 15 ns (d) 37.5 ns

Fig. 2. The evolution of cylindrically symmetric uniformly distributed electrons with density of

2 × 107 e
m

in a R = 1 mm radius with initial velocity assigned by v0 = −100 r0
R

km
s

, where r0
represent the radial position of the particle, at t is (a) 0, (b) 7.5 ns, (c) 15 ns, and (d) 37.5 ns.

Solid lines are from the theory presented in this paper and circles are from the same single PIC

simulation but at the different times. Note the different scales on the axes for the different plots
except (a) and (c), and further note that the model captures both the contraction as well as the

expansion of the bunch. Specifically, note that (a) and (c) are nearly the same distribution as here

t2d is slightly less than 7.5 ns.

We next demonstrate the use of these equations with initially Gaussian distri-

butions under cylindrical symmetry. Again we introduce the same initial velocity

relation, v0(r0) = C r0
R , choosing Qtot,2 = 4 × 107 em and σr = 1mm, which corre-

sponds to a vr2 ≈ 1.4 × 105ms

√
1− e−

r20
2σ2r . Unlike the uniform case, the functional

form for the initial velocity and the velocity scale differ. As we are interested in

when the laminar assumption fails, we examine multiple values of C. Figs. 3 and

4 show the evolution for the two positive values of C less than and near the value

of vr2. For all such cases examined, the theory and the simulations were again in

excellent agreement. For C = 104ms , we see that the shock emerges approximately

at 22 ns instead of the 20 ns emergence seen in the cold case.4 For C = 5× 104ms ,

the shock is far less noticeable and emerges in the vicinity of 50ns. For C = 105ms
(not shown), the distribution become much closer to the uniform distribution and

we could not see the emergence of the shock even at times > 100ns. This suggests

that the violation of the laminar condition that occurs shortly after the formation of
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(a) initial (b) 20 ns

(c) 30 ns (d) 40 ns

Fig. 3. Similar to Fig. 2 but with v0 = 10 r0
R

km
s

, with the initial Gaussian distribution, and where

t is (a) 0, (b) 20 ns, (c) 30 ns, and (d) 40 ns. Solid lines are from the theory presented in this paper
and circles are from the same single PIC simulation but at the different times; note the different

scales on the axes for the different plots. Further note that the model captures the emergence of
the density peak between 20 ns and 30 ns, aka shock in the Coulomb explosion literature, and is

very apparent by (d) 40 ns. The emergence of this shock is slightly delayed from what we found

in the initially at rest case.4

the shock can be delayed by putting a large, linear outward initial velocity relation

on the bunch.

Figs. 5, 6, and 7 show the evolution for the three negative values of C. We

see that for C = −104ms the shock emerges around 18 ns instead of the 20 ns

emergence seen in the cold case, and for C = −5 × 104ms the shock seems to

emerge in the vicinity of 11 ns. However, the deviation of the simulated density

from the theoretical expectation is much larger for this simulation than for the

previously investigated simulations indicating that the model assumption may be

only approximate. Interestingly, the model predicts qualitatively different behavior

than what is seen in simulation for C = −105ms . Specifically, the mean-field fluid

model predicts that the distribution begins to expand much earlier than what is

seen in simulation. This is due to many Lagrangian particles violating the laminar

assumption leading to the incorrect assignment of force to a large proportion of

the Lagrangian particles. Thus the simulation can no longer be described by our

laminar model.
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(a) initial (b) 60 ns (c) 70 ns

Fig. 4. Similar to Fig. 3 but with v0 = 50 r0
R

km
s

and at t is (a) 0, (b) 60 ns, (c) 70 ns. Solid lines

are from the theory presented in this paper and circles are from the same single PIC simulation
but at the different times. While a theoretical density peak can be seen to develop between (b)

60 ns and (c) 70 ns, this peak is below the random variance of the density and therefore may be
argued to not be present.

(a) initial (b) 17 ns

(c) 21 ns (d) 25 ns

Fig. 5. Similar to Fig. 3 but with v0 = −10 r0
R

km
s

, i.e. inward instead of outward, and where t is
(a) 0, (b) 17 ns, (c) 21 ns, and (d) 25 ns. Solid lines are from the theory presented in this paper and

circles are from the same single PIC simulation but at the different times. Note that the density

peak forms between (b) 17 ns and (c) 21 ns and is more prominent in (d) 25 ns. The emergence
of this shock is slightly before what we found in the initially at rest case.4

To study this further, we again simulate the cylindrically-symmetric distribution

but with v0 = C

√
1− e−

r20
2σ2r for C < 0. This velocity profile has v0

vr2
= C

105ms
, which
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(a) initial (b) 11 ns

(c) 12 ns (d) 13 ns

Fig. 6. Similar to Fig. 5 but with v0 = −50 r0
R

km
s

and where t is (a) 0, (b) 11 ns, (c) 12 ns, and

(d) 13 ns. Solid lines are from the theory presented in this paper and circles are from the same
single PIC simulation but at the different times. Note that the density peak forms between (b)

11 ns and (c) 12 ns and is more prominent in (d) 13 ns. However, also not that the agreement
between simulation and theory is not as good as previous cases.

(a) initial (b) 4.4 ns (c) 5 ns

Fig. 7. Similar to Fig. 5 but with v0 = −100 r0
R

km
s

and where t is (a) 0, (b) 4.4 ns, and (c) 5

ns. Solid lines are from the theory presented in this paper and circles are from the same single

PIC simulation but at the different times. Note that not only does the theory fail to capture the
details of the simulated density, but the theoretical density is expanding between 4.4 ns but is still

contracting in simulation.

is independent of r0. This results in rt2 = αr0 where α = e
− C2

1010m
2

s2 where α is
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(a) initial (b) 8 ns (c) 10 ns

Fig. 8. Similar to Fig. 5 but with v0 = −100m
s

√
1 − e

−
r20
2σ2r km/s and where t is (a) 0, (b) 6

ns, and (c) 10 ns. Solid lines are from the theory presented in this paper and circles are from the

same single PIC simulation but at the different times; note the different scales on the axes for the

different plots. Note that the theoretical and the simulated density evolutions are in agreement
including near the focal point near (b) 6 ns as well as the portion where the distribution is again

expanding as seen at (c) 10 ns.

(a) initial (b) 6 ns (c) 10 ns

Fig. 9. Similar to Fig. 5 but with v0 = −200m
s

√
1 − e

−
r20
2σ2r km/s and where t is (a) 0, (b) 6

ns, and (c) 10 ns. Solid lines are from the theory presented in this paper and circles are from the
same single PIC simulation but at the different times; note the different scales on the axes for the

different plots. Note that the theoretical and the simulated density evolutions are in agreement

including the theory correctly predicting the location of the density peak as seen at (c) 10 ns.

independent of r0 and tt2 = 2α
ω02

e
− C2

1010m
2

s2 F
(

C
105ms

)
; that is, the turn around points

are simply scaled from the initial Gaussian, although they still occur at different

times as ω02 is still dependent on r0. As can be seen in Figs. 8 and 9, this distribution

does appear to remain laminar through the focus as the theory is now in agreement

with simulation when v0 > vr2; however, this comes at a cost of an early-emergence

of the shock that can be seen at 10ns in Fig. 9c.

4. Comparison to spherically-symmetric simulations

We now demonstrate that the analysis for systems with spherical symmetry is also

accurate for a wide range of initial conditions. As for the cylindrical case, we intro-

duce a velocity term that is linear in the initial position, specifically it has the form
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(a) initial (b) 7.5 ns (c) 30 ns

Fig. 10. The evolution of spherically symmetric 2×104 uniformly distributed electron in a R = 1

mm radius with initial velocity assigned by v0 = −100 r0
R

km
s

, where r0 represent the radial position

of the particle, at t is is (a) 0, (b) 7.5 ns and (c) 30 ns. Solid lines are from the theory presented in
this paper and circles on the right of r = 0 and triangles left of r = 0 are from the same single PIC

simulation and N-particle simulation, respectively, but at different times. Note the very different

scales on the axes for the two plots, and notice that the mean-field fluid model again captures the
evolution of the bunch for this case with the exception of the very edge of the N-particle simulation

even through the focal point near (b) 7.5 ns.

v0(r0) = C r0
R where C is a simulation dependent constant and R is the initial radius

of the uniform distribution. For our demonstration, we chose Qtot,3 = 2× 104e and

R = 1mm, and this again corresponds to a vr3 ≈ 105ms
r0
R . We used the electrostatic

Poisson solver in warp19 as well as leapfrog algorithm with the FMM algorithm20

to determine the force on the particles in our own fortran code. Fig. 10 shows the

results for the value of C corresponding to inward focussing and roughly the size of

vr3, −105ms . Notice the excellent agreement between theory and simulation in all

cases thus validating the use of the spherically-symmetric formulation.

5. Conclusions

Here, we presented a mean-field fluid model for the evolution of cylindrically and

spherically symmetric charged bunches with arbitrary initial distribution and initial

velocity that can be written as a function of the radial coordinate. We demonstrated

that this model predicts the density evolution of the initially uniform bunch when

the initial velocity distribution is linear under both spherical and cylindrical geome-

tries. In the cylindrical geometry, we showed that the shock that arises in the cold

Gaussian distribution slightly prior to the onset of the non-laminar regime can be

suppressed by introducing a initial radially-outward velocity distribution whose lin-

ear proportionality constant is of the order or greater than
√

qQtot,2
πmε0

. However, when

an analogous negative linear velocity distribution is introduced, the model disagrees

with simulations as the initial velocity results in a rapid violation of the laminar

assumption. Nonetheless, by adjusting the functional form of the initially velocity

distribution from r0
R to

√
1− e−

r20
2σ2r , we demonstrated that the model can predict

the evolution of the initially Gaussian distribution through the focus including the

emergence of a shock. This suggests that the laminar assumption for the Gaussian
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distribution is not violated by this functional form of the velocity distribution, at

least for the duration of time we simulated.

The velocity scales derived in this paper, vr2 and vr3, present the means to qual-

itatively understand when the laminar assumption can be made. For the uniform

distribution, vrd ∝ r0
R . Thus linear momentum kicks should result in the evolution

of the distribution remaining laminar even when the kick is inward; however, if

the inward kick has a functional form where the slope of the function is beyond

linear, say v0 ∝ r20
R2 , outer Lagrangian particle trajectories will cross the trajec-

tories of inner Lagrangian particles and the laminar assumption will be violated.

Analogously for the Gaussian distribution, vrd ∝
√

1− e−
r20
2σ2r , so it is the slope

of this function that matters; that is, the linear kick, where vrd ∝ r0
R , has slope

beyond

√
1− e−

r20
2σ2r resulting in violation of the laminar assumption. On the other

hand, using

√
1− e−

r20
2σ2r as the functional form of the velocity distribution, the den-

sity evolution of the laminar theory and the simulation remain in agreement even

through focal points as seen in this work. This brings us to the conclusion that such

non-linear focussing results in the beam retaining laminar flow through the focal

point until the laminar assumption is later violated by the shock dynamics as we

have discussed in our previous work.4

In other words, the model we have presented here provides an accurate descrip-

tion of the density evolution of a beam as it expands and focusses as long as the

beam dynamics exhibits laminar flow. The model also lends important insight into

the parameters that drive the beam into non-laminar conditions; specifically shortly

after the emergence of a shock and when the focussing kick has a functional form

beyond what is needed for the specific distribution. Of course, our theoretical ini-

tial distributions arguably still have zero emittance as v0 is exactly specified by

r0. The arguably comes from the fact that this initial velocity need not be linear

in r0, and hence the rms normalized emittance measure need not be zero; how-

ever, the initial local momentum width at each x is zero. On the other hand, the

initial spatial distribution in the simulations was sampled, and this process does

make the beam effectively warm as the sampling introduces disorder induced heat-

ing into the distribution.21 Despite the beam being having non-zero emittance after

initialization, though, the model correctly predicts the focussing behavior of both

the initially uniform and Gaussian distributions provided that the laminar criteria

are met. Presumably if the emittance is high enough, the model will fail, and an

exploration of this condition is reserved for future work; as is extending the analysis

presented here to the relativistic regime. The question of whether it is better to

remain within this laminar regime or to allow mixing is also worth investigating as

we now understand many of the conditions to prevent Lagrangian particle mixing.
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Appendix A. First order derivatives

In this appendix, we derivatives the expressions Eqs (21) - (24). We start this by

taking the derivative, ′ ≡ d
dr0

, of all parameters discussed in the main text. Starting

with the cumulative probabilities we have

P ′02 = 2πr0ρ02 (A.1)

P ′03 = 4πr20ρ03 (A.2)

Now the derivatives of the average probability-like distribution is

ρ̄′02 =
2ρ̄02
r0

(
ρ02
ρ̄02
− 1

)
(A.3)

ρ̄′03 =
3ρ̄03
r0

(
ρ03
ρ̄03
− 1

)
(A.4)

Next, the derivative of the initial energy term

E ′0 = mv0v
′
0 (A.5)

and then the derivatives of the energy scale terms

E ′r2 =
qQtot,2
ε0

r0ρ02 (A.6)

E ′r3 =
qQtot,3
ε0

r0

(
ρ03 −

1

3
ρ̄03

)
(A.7)

This can be used to show

v′r2 =
vr2
r0

ρ02
ρ̄02

(A.8)

v′r3 =
1

2

vr3
r0

(
3
ρ03
ρ̄03
− 1

)
(A.9)

For the cylindrical turn around point, we can write Eq. (7) as

rt2 = r0e
− E0

Er2

it follows

r′t2 =
rt2
r0
− rt2

(
E ′0
Er2
− E0E

′
r2

E2r2

)
=
rt2
r0

(
1− 2

v0
vr2

r0v
′
0

vr2
+ 2

v20
v2r2

ρ02
ρ̄02

)
(A.10)

For the spherical turn around point, we can write Eq. (8) as

rt3 =
r0

1 + E0
Er3

(A.11)
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it follows

r′t3 =
rt3
r0
− rt3

1 + E0
Er3

(
E ′0
Er3
− E0E

′
r3

E2r3

)
=
r2t3
r20

(
1− 2

v0
vr3

r0v
′
0

vr3
+ 3

v20
v2r3

ρ03
ρ̄03

)
(A.12)

Next, the derivative of the average probability-like densities at the turn-around

point are

ρ̄′t2 =
2ρ̄t2
rt2

(
r0
rt2

ρ02
ρ̄t2
− r′t2

)
(A.13)

ρ̄′t3 =
3ρ̄t3
rt3

(
r20
r2t3

ρ03
ρ̄t3
− r′t3

)
(A.14)

The derivative of the associated plasma frequencies are

ω′t2 =
ωt2
2ρ̄t2

ρ̄′t2

=
ωt2
r0

(
ρ02
ρ̄02
− r0
rt2

r′t2

)
(A.15)

ω′t3 =
ωt3
2ρ̄t3

ρ̄′t3

=
3

2

ωt3
r0

(
ρ03
ρ̄03
− r0
rt3

r′t3

)
(A.16)

Finally, the derivative of the transit time to the turn around point in the cylindrical

case is

t′t2 = − tt2
ωt2

ω′t2 + tt2
1

r0

(
2
v0
vr2

r0v
′
0

vr2
− 2

v20
v2r2

ρ02
ρ̄02

)
+

2

ωt2
e
v20
v2r2

(
1− 2

v0
vr2

F

(
v0
vr2

))(
v′0
vr2
− v0v

′
r2

v2r2

)
= − tt2

ωt2
ω′t2 +

2

ωt2

v0
vr2

e
v20
v2r2

1

r0

(
r0v
′
0

v0
− ρ02
ρ̄02

)
(A.17)
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and for spherical symmetry

t′t3 = − tt3
ωt3

ω′t3 +
1

ωt3

×

−1 +
v2r3
v20

v2r3
v20

1

2
(

1 +
v2r3
v20

)3/2 2
vr3
v0

(
v′r3
v0
− vr3v

′
0

v20

)

+

(
v′0
vr3
− v0v

′
r3

v2r3

)√1 +
v20
v2r3

+
v20
v2r3

1√
1 +

v20
v2r3


= − tt3

ωt3
ω′t3 +

1

ωt3

1√
1 +

v20
v2r3

(
− v0
vr3

(
v′r3
vr3
− v′0
v0

)

+
v0
vr3

(
v′0
v0
− v′r3
vr3

)(
1 + 2

v20
v2r3

))
= − tt3

ωt3
ω′t3 +

1

ωt3

v0
vr3

√
1 +

v20
v2r3

1

r0

(
1 + 2

r0v
′
0

v0
− 3

ρ03
ρ̄03

)
(A.18)
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