
Optimal rates of estimation for
multi-reference alignment
Afonso S. Bandeira∗, Philippe Rigollet†, and Jonathan Weed‡

Courant Institute of Mathematical Sciences, New York University
Massachusetts Institute of Technology
Massachusetts Institute of Technology

Abstract. This paper describes optimal rates of adaptive estimation of
a vector in the multi-reference alignment model, a problem with impor-
tant applications in fields such as signal processing, image processing,
and computer vision, among others. We describe how this model can
be viewed as a multivariate Gaussian mixture model under the con-
straint that the centers belong to the orbit of a group. This enables us
to derive matching upper and lower bounds that feature an interesting
dependence on the signal-to-noise ratio of the model. Both upper and
lower bounds are articulated around a tight local control of Kullback-
Leibler divergences that showcases the central role of moment tensors
in this problem.
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1. INTRODUCTION

The multi-reference alignment problem and its variants arise in various sci-
entific and engineering applications such as structural biology [SVN+05, TS12,
Sad89], image recognition [Bro92], and signal processing [ZvdHGG03]. A striking
feature of this class of problems is that each observation is not only observed in a
noisy setting but is also altered by an latent transformation that reflects underly-
ing heterogeneity of the data. The precise nature of this transformation depends
on the specific application, but it can often be characterized as the action of the
unknown element of a known group.

1.1 The multi-reference alignment problem

Consider the multi-reference alignment problem on IRd under cyclic shifts [BCSZ14].
The goal in this problem is to produce an estimate of a vector θ ∈ IRd (of-
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ten thought of as a signal) from noisy cyclic shifted observations. More con-
cretely, one observes n independent random vectors Y1, . . . , Yn ∈ IRd given by
Yi = R`iθ + σξi, where `i is an unknown parameter (shift) in [d] := {1, . . . , d};
R`i is a latent cyclic shift by `i coordinates: the jth coordinate of R`iθ ∈ IRd is
given by

(
R`iθ)j = θj+`i(mod d); and ξi ∼ N (0, Id), i.i.d.

Note that R`i is a linear operator from IRd to IRd that can be represented by
a matrix. For example when d = 3, we have

R1 =

 0 1 0
0 0 1
1 0 0

 , R2 =

 0 0 1
1 0 0
0 1 0

 , and R3 =

 1 0 0
0 1 0
0 0 1


However, since cyclic shifts in IRd form a group isomorphic to quotient ring Zd :=
Z/dZ of integers modulo d, we write R`i ∈ Zd for simplicity.

The action of Zd on IRd also has a simple representation in the Fourier domain,
where the group acts on the phases of the Fourier coefficients. Denoting by θ̂ the
discrete Fourier transform of the vector θ, we obtain that the rotated vector R`θ
satisfies

(1.1) R̂`θj = e2πj`i/dθ̂j for −bd/2c ≤ j ≤ dd/2e.

In practical applications, the signal θ arises as the discretization of some underly-
ing continuous signal. Therefore, instead of focusing on the group Zd, we consider
instead the action of the circle group U(1) of unit-norm complex numbers, where
given z ∈ U(1) we define the operator Rz on IRd by its action on the Fourier
transform θ̂:

(1.2) R̂zθj = zj θ̂j for −bd/2c ≤ j ≤ bd/2c.

We define the group of such operators by F and call Rz a fractional cyclic shift.
We assume throughout that d is odd, since for real signals not all fractional cyclic
shifts are well defined when j = d/2. This group is both slightly easier to analyze
and better corresponds to the situation in practice. Moreover, a comparison of
Equations 1.1 and 1.2 shows when d is large the groups Zd and F are essentially
equivalent. For the sake of exposition, in the sequel, we will focus on F and omit
the adjective “fractional” when referring to shifts.

Multi-reference alignment is directly used in structural biology [Dia92, TS12];
radar [ZvdHGG03]; crystalline simulations [SSK13]; and image registration in a
number of important contexts, such as in geology, medicine, and paleontology
[SSK13, FZB02]. As a results, variants of this problem for groups other than F
have received some attention, but rarely in statistics. We note parallel research
efforts that have investigated a Boolean version of this problem [APS17].

Another important related problem is that of molecule reconstruction in Cryo-
Electron Microscopy (Cryo-EM). Cryo-EM is an important technique used to
determine three-dimensional structures of biological macromolecules. (It was con-
sidered the Nature method of the year in 2015 [Edi15, Nog15]). As in the multi-
reference alignment problem described above, one of the main difficulties with
this imaging technique is that these molecules are imaged at different unknown
orientations and each molecule can only be imaged once due to the destruc-
tive nature of the process. More precisely, each measurement consists of a to-
mographic projection of a rotated (by an unknown rotation in SO(3)) copy of
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the molecule. The task is then to reconstruct the molecule density from many
such measurements. This reconstruction problem has also received significant at-
tention, primarily from computational perspectives, but its statistical properties
remain largely unexplored.

We present in this paper the first statistical analysis for Euclidean MRA and
describe natural classes of signals whose complexity spans the spectrum of sta-
tistical rates achievable in this context. Although we focus on F or its subgroups
rather than SO(3), the two frameworks share many features. In particular, our
results exhibit non-trivial minimax rates that are inherent to this class of prob-
lems.

1.2 The Synchronization Approach

The difficulty of the multi-reference alignment problem resides in the fact that
both the signal θ ∈ IRd and the shifts z1, . . . , zn ∈ F are unknown and the
latter are therefore latent variables. If the shifts were known, one could easily
estimate θ by taking the average of R−1

zi Yi, i = 1, . . . , n. In fact, this simple ob-
servation is the basis of the leading current approach called the “synchronization
approach” [BCSZ14, BCS15] to this problem. Specifically, synchronization aims
at recovering the latent variables Rzi by solving a problem of the form

(1.3) min
z′1,...,z

′
n∈U(1)

∑
1≤i,j≤n

∥∥R−1
z′i
Yi −R−1

z′j
Yj
∥∥2
.

Denoting by R̂zi the solutions of (1.3), one can then estimate θ by the average
of R̂−1

zi Yi, i = 1, . . . , n.
Synchronization problems can be formulated as estimation problems on a

graph. More precisely, one can associate each observation Yi to a graph node,
each of which has a hidden label gi ∈ G for some group G of transformations.
(In our case, G ∼= F .) The pairwise data, which we identify with edges of the
graph, reveals information about ratios gi(gj)

−1. In the the context of (1.3), this
information is simply ‖R−1

`′i
Yi−R−1

`′j
Yj‖2. Despite synchronization problems being

computationally hard in general, certain theoretical guarantees have been derived
under specific noise models that are unfortunately not realistic for the problems of
interest in this paper. For example, it is often assumed that the edge observations
are independent instead of the more relevant independence of vertices. Among
the most prominent methods are spectral methods [Sin11, BSS11], semidefinite
relaxations [BCSZ14, BCS15, ABBS14, BBS16, JMRT16, BBV16], and methods
based on Approximate Message Passing [PWBM16] and other modified power
methods [Bou16, CC16]. Synchronization also enjoyed many interesting connec-
tions with geometry (see [GBM16] for an example).

When the noise is smaller entrywise than the signal θ, synchronization ap-
proach yields acceptable results because macroscopic features underlying signal
are still visible. However, in applications, the noise level is often significantly
larger than signal, and it is on this regime that we focus our attention. An illus-
tration of the difference between these regimes appears in Figure 1.

Unfortunately, for the high noise regimes we are interested here the shifts are
impossible to reliably estimate, regardless of the number of samples [ADBS16,
WW84]. In fact, it is not difficult to see that even if we had access to θ, one would
still not be able to reliably estimate the shifts in a high noise regime.
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Figure 1: Instances of the multi-reference alignment problem, at low (left column)
and high (right column) noise levels. The true underlying signal appears in gray,
and the noised version appears in red. When the noise level is low, large features
of the signal are still visible despite the noise; in the presence of large noise,
however, the signals cannot reliably be synchronized.

1.3 Notation

Denote by W ∈ Cd×d the discrete Fourier transform matrix, with entries given
by

Wjk =
1√
d

exp(2πijk/d) , 1 ≤ j, k ≤ d .

The normalization factor 1/
√
d is chosen so that the resulting matrixW is unitary.

Given θ ∈ IRd, let θ̂ = Wθ be its Fourier transform. We will index θ̂ from
−bd/2c to bd/2c.

The symbol ‖ · ‖ denotes the `2 norm on IRd. For any positive integer d, we
write [d] = {1, . . . , d}.

Given a vector t, let t⊗k denote the order-k tensor formed by taking the k-
fold tensor product of t with itself. Denote by ‖A‖ the Hilbert-Schmidt norm of
a tensor A, defined by ‖A‖2 = 〈A,A〉, where 〈·, ·〉 denotes the entrywise inner
product.

A tensor A is symmetric if Ai1...ik = Aiπ(1)...iπ(k) for any permutation π of [k].
For such tensors, the value Ai1...ik depends only on the multiset {i1, . . . , ik}.

We define a cyclic shift of θ ∈ IRd by a unit-norm complex number z by
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specifying its action on the Fourier transform of θ:

R̂z(θ)k = zkθ̂k for k = −bd/2c, . . . , bd/2c.

The group of cyclic shifts is known as the circle group and we denote it by F .
Note that it is isomorphic to several well known groups such as SO(2) and IR/Z.

Recall that the Kullback-Leibler (KL) divergence between two distributions P
and Q such that P � Q is given by

D(P ‖Q) =

∫
log
(dP
dQ

)
dP .

It is well known that D(P ‖Q) ≥ 0, with equality holding iff P = Q almost surely.

1.4 Organization of the paper

In Section 2, we propose a new approach to MRA using Gaussian mixture mod-
els. Then, in Section 3 we present our main result, Theorem 1, providing minimax
rates for the multi-reference alignment problem under cyclic shifts. In Section 4
we draw precise connections between the Kullback-Leibler (KL) divergence of
sampled distributions from two different signals and the distance between their
invariant moment tensors. This relation does not depend on the precise nature
of the cyclic shifts and holds for any compact subgroup of the orthogonal group.
In Section 5 we give guarantees for the maximum likelihood estimator (MLE):
Theorem 4 gives a general guarantee for the MLE under conditions on the KL
divergence that were obtained in Section 4 and in Section 5.2 a modified MLE
is developed for the specific problems of shifts. This modified MLE provides the
upper bounds in Theorem 1. Section 6 concludes by establishing the lower bound
in Theorem 1; the proof involves finding pairs of different signals with several
matching invariant moment tensors.

2. GAUSSIAN MIXTURE MODEL

We propose an alternative to the synchronization approach discussed above
that completely bypasses the estimation of the shifts `1, . . . , `n in favor of es-
timating θ directly. To do so, we recast our model as a continuous mixture of
Gaussians whose centers are algebraically constrained. Since the Gaussian distri-
bution is invariant under cyclic shift, we can without loss of generality assume
that the shifts R`i are independent and uniformly distributed over F . Indeed, to
achieve this setup, we transform the observations Yi into RUiYi, where Ui is uni-
formly distributed over U(1) and independent of all other random variables. Since
Ui + `i is also uniformly distributed over U(1), these new observations are drawn
from a mixture of Gaussians with uniform mixing weights and centers given by
R`θ, ` ∈ U(1). In particular, these centers are linked together by a rigid algebraic
structure: they are the orbit of θ ∈ IRd under the action of F . We summarize this
observation into our basic model.

Let Y1, . . . , Yn ∈ IRd be n independent copies of Y ∈ IRd where

(2.1) Y = Rθ + σξ,

where θ ∈ IRd is the unknown parameter of interest, R is drawn uniformly (i.e.,
according to the Haar probability measure) from F and ξ ∼ N (0, Id) is indepen-
dent Gaussian noise. Denote by Pθ the distribution of a random variable Y that
satisfies (2.1).
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Define the maximum likelihood estimator (MLE) θ̃n by

(2.2) θ̃n = argmax
θ∈IRd

n∑
i=1

log IER
[

exp
(
− 1

2σ2
‖Yi −Rθ‖2

)]
.

We postpone the discussion of computational efficiency to a companion pa-
per [PWB+17] and focus here on the statistical properties of this estimator. In
particular, we show that a small modification of it optimally solves the multi-
reference alignment problem in a certain sense.

Although the goal of this problem is to recover the unknown parameter θ, it
is not hard to see that we can only hope to identify θ up to a global cyclic shift.
We therefore define a (pseudo-)metric on IRd that deems two vectors θ, φ ∈ IRd

to be close if they are close up to some element of F . To this end, define

ρ(θ, φ) = min
R∈F
‖θ −Rφ‖ .

We assume throughout that the noise variance σ2 is known. This assumption is
realistic in many applications such as imaging or signal processing. In other cir-
cumstances, it may be calibrated using cross-validation, for example. Throughout
this paper, we assume that c ≤ ‖θ‖ ≤ 1, where c > 0 is a universal constant so
that σ captures entirely the (inverse) signal-to-noise ratio. We note that, com-
paratively, IE‖σξi‖2 = σ2d.

Gaussian mixture models have been extensively studied in the statistical lit-
erature since their introduction by Pearson [Pea94] in the nineteenth century
(see e.g. [MP00] for an overview). As illustrated by the extant literature, mixture
models are quite rich and broadly applicable to a variety of statistical problems
ranging from clustering to density estimation. As a result, various statistical per-
spectives may apply when studying the performance of estimators. In the context
of multi-reference alignment, we are naturally interested in estimating θ or, equiv-
alently, the centers. It has been established that in general, the rate of estimation
of the centers may scale like n−C/d for d centers that can be arbitrarily close
(see for example [MV10] and more recently [HK15] for an interesting explanation
from the point of view of model misspecification). This curse of dimensionality
arises from the minimax point of view where centers may be arbitrarily close,
with a distance that may depend on the number of observations, thus leading to
nonparametric rates of estimation. Instead, when the centers are well separated,
the general conditions of [Wal49] are satisfied so that the MLE converges at the
parametric rate 1/

√
n . In our case, when the mixture is continuous, Assump-

tion 1, below, plays an analogous role in ensuring convergence at the parametric
rate. When such conditions are met, the Fisher information determines how the
statistical performance of the MLE scales with the noise level σ. This question
is central to signal processing problems such as multi-reference alignment, where
σ is quite large, since it determines the order of magnitude of the sample size n
required to achieve a certain accuracy.

Exact computation of the Fisher information matrix in this model is out of
reach and instead, we focus on the scaling of the quantity

√
nρ(θ̃n, θ) with the

signal-to-noise ratio of the problem, where θ̃n is the MLE (2.2).
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3. MAIN RESULTS

As mentioned above,
√
nρ(θ̃, θ) depends asymptotically on the Fisher infor-

mation of the model, which can be related to the curvature of the Kullback-
Leibler divergence around its minimum. Conversely, (lack of) curvature of the
Kullback-Leibler divergence around its minimum is what controls minimax lower
bounds. To address both problems at once, we follow an idea originally intro-
duced in [LNS99] in the context of functional estimation and further developed
by [CL11, WY16]. In the multi-reference alignment model, this approach allows
us to relate Kullback-Leibler divergence to moment tensors, which can in turn
be controlled using Fourier-theoretic arguments. It will follow from this analysis
that the difficulty of estimating a particular signal θ depends on the support of
the Fourier transform θ̂ of θ. In particular, define the positive support psupp(θ̂)
of θ̂ by

psupp(θ̂) = {j | j ∈ {1, . . . , d/2}, θ̂j 6= 0} .

We make the following assumption, which guarantees that the MLE converges
at a parametric rate.

Assumption 1. There exists an absolute constant c > 1, not depending on
n, such that c−1 ≤ |θ̂j | ≤ c for all j ∈ psupp(θ̂). We denote by T the set of such
vectors.

We emphasize that this is the situation of most interest to practitioners: the
existence of very small, but non-zero, coordinates whose values approaches 0
with n should rightly be considered pathological. In a way, Assumption 1 rules
out certain artificial difficult situations analogous to classical difficulties arising in
estimating mixtures of Gaussians, such as distinguishing the mixture .5N (+ε, 1)+
.5N (−ε, 1) from the single Gaussian N (0, 1) for very small ε. Moreover, it enables
us to restrict our attention to a compact set of parameters and bypass some
technical complications.

The following theorem reveals a surprising phenomenon: even under Assump-
tion 1, the multi-reference alignment problem suffers from the curse of dimen-
sionality.

Theorem 1. Let 2 ≤ s ≤ bd/2c. Let Ts be the set of vectors θ ∈ T satisfying
Assumption 1 and psupp(θ̂) ⊂ [s]. Then,

(3.1) inf
Tn

sup
θ∈Ts

IEθ[ρ(Tn, θ)] �
σ2s−1

√
n

(1 + on(1)) ,

where the infimum is taken over all estimators Tn of θ and where the symbol �
hides constants depending on d but on no other parameter. A modified MLE θ̌n
defined in (5.11) achieves this rate.

A few remarks are in order. Note first that the curse of dimensionality is in-
herent to the minimax paradigm. Indeed, our proof of the lower bound describes
a class of signals that satisfy Assumption 1 but have a very specific Fourier spec-
trum. Such signals drive the worst case bound of order σ2s−1/

√
n. This limitation

is overcome in a companion paper [PWB+17], where we show that even Fourier
dense signals θ may be estimated as the same rate as signals in T2 as long as they
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are generic enough. Second, our proof techniques do not allow us to remove the σ
dependence of the term on(1). In particular, for small values of n, this term may
actually dominate the upper bound. We conjecture that this issue is an artifact
of the proof technique and note that preliminary numerical results in [PWB+17]
support this claim.

The rest of this paper is devoted to the proof of the main results in Theorem 1.

4. INFORMATION GEOMETRY

In this section, we develop several new tools to obtain precise bounds on the
divergence D(Pθ ‖Pφ) for pairs of signals θ and φ. On the one hand, it is well
known that upper bounds on the divergence translate into minimax lower bounds
using LeCam’s method [LeC73]. On the other hand, we also show how to trans-
form lower bounds on D(Pθ ‖Pφ) into uniform upper bounds on the performance
of the MLE. Note that this analysis departs from the classical pointwise rate of
convergence for MLE that guarantees a rate of convergence n−1/2 for each fixed
choice of parameter as n → ∞. Our tools strengthen this result considerably.
Indeed, we show that for reasonable choices of θ, the MLE achieves a rate of
n1/2 uniformly over all choices of θ. We refer the reader to [HK15] for examples
of other Gaussian mixture problems where the pointwise and uniform rates of
estimation differ.

For convenience, we abbreviate D(Pθ ‖Pφ) by D(θ ‖φ). The following Lemma
collects several useful facts about the function D(θ ‖φ). A proof appears in Ap-
pendix A.

Lemma 2. Let R have uniform distribution over any subgroup G of the or-
thogonal group in d dimensions. Fix θ, φ ∈ IRd. The following holds
(i) If ϑ = θ − IERθ and ϕ = φ− IERφ, then

D(θ ‖φ) = D(ϑ ‖ϕ) +
1

2σ2
‖IE[Rθ]− IE[Rφ]‖2 .

(ii) If ρ(θ, φ) = ε and ‖θ‖, ‖φ‖ ≤ 1, then

D(θ ‖φ) =
1

2σ2
‖IE[Rθ]− IE[Rφ]‖2 +

1

4σ4
‖IE[(Rθ)⊗2]− IE[(Rφ)⊗2]‖2 +

O(ε2)

σ6
,

where O(ε2) hides a constant, which may depend on d but is otherwise independent
of θ, φ, and σ.

The following Theorem provides a tight bound on the quantity D(θ ‖φ) in
terms of Hilbert-Schmidt distance between the moment tensors IE[(Rθ)⊗k] and
IE[(Rφ)⊗k]. Specifically, we show that the divergence D(θ ‖φ) is of order σ−2kε2

where k is the smallest natural number such that the moment tensors IE[(Rθ)⊗k]
and IE[(Rφ)⊗k] differ significantly. This theorem is not specific to cyclic shifts
and holds for any compact subgroup of the orthogonal group.

Theorem 3. Let θ be a fixed vector in IRd such that ‖θ‖ ≤ 1. Let φ ∈ IRd

be such that ρ(θ, φ) = ε ≤ ‖θ‖. Let R be a random element drawn according to
the Haar probability measure on any compact subgroup G of the orthogonal group
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in d dimensions. For all m ≥ 1, let ∆m = IE[(Rθ)⊗m − (Rφ)⊗m]. If there exists
k ≥ 1 such that, as ε→ 0,

‖∆m‖ = o(ε) for m = 1, . . . , k − 1, and ‖∆k‖ = Ω(ε) ,

then ‖∆k‖ = Θ(ε). Moreover, for σ ≥ 1 there exist universal constants c and C̄
and constant Cd that depends only on d, all positive and such that

ck

σ2kk!
‖∆k‖2 − Cd

ε2

σ2k+2
≤ D(θ ‖φ) ≤ 2

σ2kk!
‖∆k‖2 + C̄

ε2

σ2k+2
.

In particular, there exists positive σ0, ε0 that depend on d such that for all
σ ≥ σ0, and θ, φ such that ‖θ‖ ≤ 1, ρ(θ, φ) ≤ ε0, it holds

D(θ ‖φ) � σ−2kρ2(θ, φ) ,

where the symbol � hides constants depending on d but on no other parameters.

Proof. The divergence D(θ ‖φ) and the tensors IE[(Rφ)⊗m] are unaffected
if we replace φ by Rφ for any R ∈ G. Hence without loss of generality, we can
assume that ‖θ − φ‖ = ρ(θ, φ) = ε.

We first establish that for any m ≥ 1, the quantities ‖∆m‖ are indeed of order
at most ε. Specifically, we prove that

(4.1) ‖IE[(Rθ)⊗m − (Rφ)⊗m]‖2 ≤ m22m−1ε2

for all m ≥ 1 and ε ∈ (0, 1). This implies that ‖∆k‖ = Θ(ε).
To prove (4.1), note that by Jensen’s inequality,

‖IE[(Rθ)⊗m − (Rφ)⊗m]‖2 ≤ IE‖(Rθ)⊗m − (Rφ)⊗m‖2 = ‖θ⊗m − φ⊗m‖2 .

Expanding the norm yields

‖θ⊗m − φ⊗m‖2 = ‖θ‖2m − 2〈θ, φ〉m + ‖φ‖2m

= ‖θ‖2m(1− 2(1 + γ)m + (1 + 2γ + δ2)m) ,

where δ = ε/‖θ‖ and γ = 〈θ, φ−θ〉/‖θ‖2 is such that |γ| ≤ δ by Cauchy-Schwarz.
Using Lemma B.1 in the Supplementary Materials, we conclude that

‖θ‖2m − 2〈θ, φ〉m + ‖φ‖2m ≤ ‖θ‖2mm22m−1δ2 ≤ m22m−1ε2 ,

as desired.
If k < 3, then the claim follows directly from Lemma 2 (ii).
We therefore assume k ≥ 3. Then ‖IE[Rθ−Rφ]‖ = o(ε), so Lemma 2 (i) implies

D(θ ‖φ) = o(ε2) +D(ϑ ‖ϕ) ,

where ϑ = θ− IERθ and ϕ = φ− IERφ. Hence we can replace θ and φ by ϑ and ϕ
without affecting D(θ ‖φ) by more than o(ε2). We therefore assume without loss
of generality that IERθ = IERφ = 0.
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We first show the upper bound. Denote by g the density of a standard d-
dimensional Gaussian random variable. For all ζ ∈ IRd, let fζ denote the density
of Pζ . Then

fζ(y) = IER
1

σ
g(σ−1(y −Rζ)) =

1

σ
g(σ−1y)e−

‖ζ‖2

2σ2 IERe
y>Rζ
σ2 .

Let χ2(θ, φ) denote the χ2-divergence between Pθ and Pφ, defined by

χ2(θ, φ) =

∫
(fθ(y)− fφ(y))2

fθ(y)
dy .

Since IERθ = 0 by assumption, Jensen’s inequality implies

fθ(y) ≥ 1

σ
g(σ−1y)e−

‖θ‖2

2σ2 eIER
y>Rθ
σ2 =

1

σ
g(σ−1y)e−

‖θ‖2

2σ2 .

Hence

(fθ(y)− fφ(y))2

fθ(y)
≤ e

‖θ‖2

2σ2
(
e−
‖θ‖2

2σ2 IERe
y>Rθ
σ2 − e−

‖φ‖2

2σ2 IERe
y>Rφ
σ2
)2( 1

σ
g(σ−1y)

)
.

Integrating this quantity with respect to y yields a bound on the χ2 divergence.
Let ξ ∼ N (0, Id) and observe that

χ2(θ, φ) ≤ IEξ

[
e
‖θ‖2

2σ2
(
e−
‖θ‖2

2σ2 IERe
σξ>Rθ
σ2 − e−

‖φ‖2

2σ2 IERe
σξ>Rφ
σ2

)2]
= IEξ,R,R′

[
e
‖θ‖2

2σ2
(
e−
‖θ‖2

σ2 e
ξ>(R+R′)θ

σ − 2e−
‖θ‖2+‖φ‖2

2σ2 e
ξ>(Rθ+R′φ)

σ

+ e−
‖φ‖2

σ2 e
ξ>(R+R′)φ

σ
)]
,

where R and R′ are independent elements selected uniformly from G.
Taking expectations with respect to ξ yields

χ2(θ, φ) ≤ 2IER
[
e
θ>Rθ
σ2 − 2e

θ>Rφ
σ2 + e

φ>Rφ
σ2
]
,

Where we used that e‖θ‖
2/(2σ2) ≤ 2 for σ ≥ 1 and ‖θ‖2 ≤ 1.

The random variables Rθ and Rφ have moment generating functions that
converge in a neighborhood of the origin, hence

χ2(θ, φ) ≤
∑
m≥0

2

σ2mm!
IER

[
(θ>Rθ)m − 2(θ>Rφ)m + (φ>Rφ)m

]
=
∑
m≥0

2

σ2mm!
‖∆m‖2

≤ 2

σ2kk!
‖∆k‖2 + ε2

∑
m≥k+1

2m2

σ2mm!
+ o(ε2)

≤ 2

σ2kk!
‖∆k‖2 + C̄

ε2

σ2k+2
.

The upper bound then follows from the inequality D(θ ‖φ) ≤ χ2(θ, φ) [Tsy09].
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We now turn to the lower bound. As before, we assume that k ≥ 3 and define

d1(θ, φ) =

∫
|fθ(y)− fφ(y)| dy .

Recall that by Pinsker’s Inequality, we have D(θ ‖φ) ≥ 1
2d

2
1(θ, φ). Moreover,

d1(θ, φ) =
1

(2π)d/2σ

∫ ∣∣IEe− ‖y−Rθ‖22σ2 − IEe−
‖y−Rφ‖2

2σ2
∣∣ dy

= IEξ
∣∣IER[e 2σξ>Rθ−‖θ‖2

2σ2
∣∣ξ]− IER

[
e

2σξ>Rφ−‖φ‖2

2σ2
∣∣ξ]∣∣ , ξ ∼ N (0, Id)

= e−
‖φ‖2

2σ2 IEξ
∣∣IER[e ξ>Rθσ

∣∣ξ]e ‖φ‖2−‖θ‖22σ2 − IER
[
e
ξ>Rφ
σ

∣∣ξ]∣∣ .
We now show that |‖θ‖2 − ‖φ‖2| = o(ε). Indeed

∣∣‖θ‖2 − ‖φ‖2∣∣ =
∣∣IE d∑

i=1

[
(Rθ)2

i − (Rφ)2
i

]∣∣
≤

d∑
i=1

∣∣IE[(Rθ)2
i ]− IE[(Rφ)2

i ]
∣∣

≤
d∑

i,j=1

∣∣IE[(Rθ)i(Rθ)j ]− IE[(Rφ)i(Rφ)j ]
∣∣

≤ d‖IE(Rθ)⊗2 − (Rφ)⊗2‖ = d‖∆2‖ = o(ε) ,

where we applied Cauchy-Schwarz to get the second inequality and last equality
follows from the assumption of the theorem when k ≥ 3. Since ‖θ‖ ≤ 1 and σ ≥ 1,
we have

e
‖φ‖2−‖θ‖2

2σ2 = 1 + o(ε) and
‖φ‖2

2σ2
≤ 1

for ε small enough. It yields

d1(θ, φ) ≥ e−1IEξ
∣∣IER[e ξ>Rθσ

∣∣ξ](1 + o(ε)
)
− IER

[
e
ξ>Rφ
σ

∣∣ξ]∣∣
≥ e−1IEξ

∣∣IER[e ξ>Rθσ

∣∣ξ]− IER
[
e
ξ>Rφ
σ

∣∣ξ]∣∣− e ‖θ‖22σ2
−1o(ε)

= e−1IEξ
∣∣ ∑
m≥1

1

σmm!
〈∆m, ξ

⊗m〉
∣∣− o(ε)

≥ e−1IEξ
∣∣ 1

σkk!
〈∆k, ξ

⊗k〉
∣∣− e−1

∑
m 6=k

IEξ
∣∣ 1

σmm!
〈∆m, ξ

⊗m〉
∣∣− o(ε)

≥ ck

σk
√
k!
‖∆k‖ − e−1

∑
m 6=k

√
(d+m)m

σmm!
‖∆m‖ − o(ε)

≥ ck

σk
√
k!
‖∆k‖ − Cd

ε

σk+1

where in the penultimate inequality, we employ a Khinchine-type inequality due
to [Bob00], details of which appear as Lemma B.2 in the Supplementary Materials.
Together with Pinsker’s inequality and the fact that ‖∆k‖ = Θ(ε) where ε =
ρ(θ, φ), this completes the proof of the lower bound.
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5. MAXIMUM LIKELIHOOD ESTIMATION

Let Y1, . . . , Yn be i.i.d observations from the model (2.1) and consider the MLE
θ̃n that was defined in (2.2). In this section, we prove our main statistical result,
that is a uniform upper bound on the rate of convergence of the MLE.

Our proof technique extends beyond the framework of the MRA model and
can be broadly applied to derive uniform rates of convergence for the MLE from
tight bounds on the KL divergence like Theorem 3. While similar ideas are often
employed to obtain pointwise rates of convergence, extension to uniform rates
requires novel elements. From here on, positive constants may depend on d unless
noted otherwise.

We first establish an upper bound for the MLE under a general lower bound for
the KL divergence. Then we specialize this result to obtain the minimax upper
bounds over Ts that are presented in Theorem 1.

5.1 A general upper bound

Theorem 4. Let R be a random element drawn according to the Haar prob-
ability measure on any compact subgroup G of the orthogonal group in d dimen-
sions. Assume that there exist k ≥ 1 and positive σ0, ε0, c0 that depend on d such
that the following hold: for all σ ≥ σ0, and θ, φ such that θ ∈ T ,

D(θ ‖φ) ≥ Cσ−2kρ2(θ, φ) ∀φ ∈ IRd ρ(θ, φ) ∈ [0, ε0) ,(5.1)

D(θ ‖φ) ≥ Cσ−` ∀φ ∈ IRd ρ(θ, φ) ∈ [ε0, c0σ) ,(5.2)

D(θ ‖φ) ≥ Cσ−2kρ2(θ, φ) ∀φ ∈ IRd ρ(θ, φ) ∈ [c0σ,∞) .(5.3)

Then the MLE θ̃n satisfies uniformly over such θ,

(5.4) IEθ[ρ(θ̃n, θ)] ≤ C
σk√
n

+ Cσ
log n

n
,

where Cσ ≤ Cσ2`+10k.

Proof. The symbols c and C denote constants whose value may change from
line to line. In the rest of this proof, we write θ̃ = θ̃n to denote the MLE.

The main goal of the proof is to combine control of the curvature of the function
D with control of the deviations of the log-likelihood function.

Define the event E = {ρ(θ̃, θ) ≤ ε} where ε ≤ ε0. Since D is invariant under
the action of G, we can assume without loss of generality that ρ(θ̃, θ) = ‖θ̃ − θ‖.
We first establish that on this event ‖θ̃ − θ‖ can be controlled in terms of the
metric induced by the Hessian of D at θ.

Fix θ ∈ IRd and denote by H the Hessian of the function φ 7→ D(θ ‖φ) evalu-
ated at φ = θ. For any u ∈ IRd, define ‖u‖H =

√
u>Hu.

On E , D(θ ‖ θ̃) ≥ Cσ−2kρ2(θ, θ̃) and ρ(θ, θ̃) = ‖θ̃ − θ‖ so using a third order
Taylor expansion, we get∣∣D(θ ‖ θ̃)− 1

2
‖θ̃ − θ‖2H

∣∣ ≤ C ‖θ̃ − θ‖3
σ3

≤ Cεσ2k−3‖θ̃ − θ‖2H .

Therefore, there exists a C such that if ε < Cσ3−2k, we get

(5.5) D(θ ‖ θ̃) ≥ 1

4
‖θ̃ − θ‖2H ≥ Cσ−2k‖θ̃ − θ‖2 .
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We now control the geometry of the log-likelihood function near θ. Define

Dn(θ ‖φ) =
1

n

n∑
i=1

log
fθ
fφ

(Yi) ,

where Yi are i.i.d from Pθ and we recall that fζ is the density of Pζ , ζ ∈ IRd. Note
that Dn(θ ‖ θ) = 0, so Dn(θ ‖ θ̃) ≤ 0.

Since θ is held fixed throughout the proof, we abbreviate D(θ ‖φ) and Dn(θ ‖φ)
as D(φ) and Dn(φ), respectively.

Using a second order Taylor expansion, we get

D(θ̃)−Dn(θ̃) = −∇Dn(θ)>h+
1

2
h>∇2(D −Dn)(θ̄)h ,

where h = θ̃ − θ and θ̄ lies on a segment between θ̃ and θ.
For all ζ ∈ T , write Hn(ζ) for the Hessian of Dn(φ) evaluated at φ = ζ, and

similarly let H(ζ) be the Hessian of D(φ) evaluated at φ = ζ. We obtain

(5.6)
1

4
‖h‖2H ≤ D(θ̃)−Dn(θ̃) ≤ −∇Dn(θ)>h+

1

2
h>(H(θ̄)−Hn(θ̄))h .

For the first term, we note that if H were invertible (and hence ‖·‖H a genuine
metric), then it is well known (see, e.g. [HUL01]) that

sup
u:‖u‖H=1

−∇Dn(θ)>u = ‖∇Dn(θ)‖∗H = ‖∇Dn(θ)‖H−1 ,

where ‖ · ‖∗H , the dual norm to ‖ · ‖H , is such that ‖ · ‖∗H = ‖ · ‖H−1 . In general,
H is not invertible, but we still have ‖ · ‖∗H = ‖ · ‖H† , where H† denotes the
Moore-Penrose pseudo-inverse of the matrix H.

To control the second, note first that by (5.5), it holds ‖h‖ ≤ Cσk‖h‖H . There-
fore,

h>(H(θ̄)−Hn(θ̄))h ≤ Cσk‖h‖H‖h‖ sup
φ∈Bε

‖H(φ)−Hn(φ)‖op ,

where Bε := {φ ∈ IRd : ρ(φ, θ) ≤ ε}.
Combining the above three bounds and dividing by ‖h‖H , we get that on E ,

1

4
‖h‖H ≤ ‖Dn(θ)‖H† + Cσ2k sup

φ∈Bε
‖H(φ)−Hn(φ)‖2op + ‖h‖2 ,

where we applied Young’s inequality.
On the other hand, using (5.5), we have ‖h‖H ≥ Cσ−kρ(θ̃, θ). Therefore, ap-

plying the Cauchy-Schwarz inequality and Chebyshev’s inequality, we get

IE[ρ(θ̃, θ)] = IE[ρ(θ̃, θ)1IE ] + IE[ρ(θ̃, θ)1IEc ]

≤ CσkIE[‖h‖H1IE ] +
(
IE[ρ2(θ̃, θ)]

)1/2(
IP(Ec)

)1/2
≤ CσkIE[‖h‖H1IE ] + ε−1IE[ρ2(θ̃, θ)] .

Thus,
(5.7)

IE[ρ(θ̃, θ)] ≤ C
(
σkIE‖Dn(θ)‖H†+σ3kIE sup

φ∈Bε
‖H(φ)−Hn(φ)‖2op+(σk+ε−1)IE[ρ2(θ̃, θ)]

)
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It suffices to control the right side of the above inequality. The main term is
the first one: Jensen’s inequality and the second Bartlett identity imply

(5.8) IE‖Dn(θ)‖H† ≤
√

tr(H†IE[Dn(θ)Dn(θ)>]) =

√
1

n
tr(H†H) ≤

√
d

n
.

Standard matrix concentration bounds can be applied to show

(5.9) IE sup
φ∈Bε

‖H(φ)−Hn(φ)‖2op ≤ C
log n

nσ4
.

A proof of (5.9) appears as Lemma B.4 in the Supplementary Materials.
Likewise, a standard slicing argument, Lemma B.5 in the Supplementary Ma-

terials, implies

(5.10) IE[ρ2(θ̃, θ)] ≤ Cσ
(8k−4)∧(2`+2)

n
.

Plugging (5.8), (5.9), and (5.10) into (5.7), we get

IE[ρ(θ̃, θ)] ≤ C
( σk√

n
+
σ5k−4 log n

n
+
σ(9k−4)∧(2`+k+2)

nε

)
,

as desired.

5.2 A modified MLE

The MLE itself may not achieve the optimal rate of convergence because the
lower bound (5.1) may not be satisfied with the optimal choice of k when φ
is a specific perturbation of θ. Namely, in the specific case of cyclic shifts, the
divergence D(φ) is not curved enough in directions that perturb a null Fourier
coefficient of θ. To overcome this limitation, we split the sample Y1, . . . , Yn into
two parts: with the first part we estimate the support of θ̂ under Assumption 1 and
with the second part, we compute a maximum likelihood estimator constrained
to have the estimated support.

Specifically, assume for simplicity that we have a sample Y1, . . . , Y2n of size
2n and split it into two samples Y1 = {Y1, . . . , Yn} and Y2 = {Yn+1, . . . , Y2n} of
equal size.

5.2.1 Fourier support estimation We use the first subsample Y1 to construct a
set S̃ that coincides with psupp(θ̂) with high probability. For any j = −bd/2c, . . . , bd/2c,
define,

Mj =
1

n

n∑
i=1

|(̂Yi)j |
2 − σ2 .

Define the set S̃ by

S̃ =
{
j ∈ {−bd/2c, . . . , bd/2c} : Mj ≥ Cσ2

√
log n

n

}
The following proposition shows that S̃ = psupp(θ̂) with high probability.
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Proposition 5. Fix θ ∈ IRd. Assume that n/(log n) ≥ Cσ4. Then

IP[S̃ 6= psupp(θ̂)] ≤ Cσ
4

n
.

Proof. This follows from standard concentration arguments. A full proof ap-
pears in the Supplementary Materials.

5.2.2 Constrained MLE We use the second sample to construct a constrained
MLE. To that end, for any S ⊂ {1, . . . , bd/2c}, define the projection PS by

P̂S(φ)j =


φ̂j if j ∈ S ∪ −S
φ̂0 if j = 0
0 otherwise.

The image of PS is a (2|S| + 1)-dimensional real vector space. For convenience,
write φS = PSφ for any vector φ ∈ IRd.

Recall that Y2 = {Yn+1, . . . , Y2n} denotes the second subsample and define
Y S

1 , . . . , Y
S
n by

Y S
i = PSYn+i + σ(I − PS)ξi i = 1, . . . , n .

where the ξi ∼ N (0, Id) are i.i.d, independent from Y2.
Define the modified MLE θ̌n by

(5.11) θ̌n = argmax
φ∈Im(PS̃)

1

n

n∑
i=1

log fφ(Y S̃
i ) .

Proposition 6. Fix 2 ≤ s ≤ bd/2c, θ ∈ Ts and let S = psupp(θ̂). Then,
there exist positive σ0, ε0, c0 that depend on d such that the following hold: for all
σ ≥ σ0,

D(θ ‖φ) ≥ Cσ−4s+2ρ2(θ, φ) ∀φ ∈ Im(PS) ρ(θ, φ) ∈ [0, ε0) ,(5.12)

D(θ ‖φ) ≥ Cσ−4s+2 ∀φ ∈ Im(PS) ρ(θ, φ) ∈ [ε0, c0σ) ,(5.13)

D(θ ‖φ) ≥ Cσ−2ρ2(θ, φ) ∀φ ∈ Im(PS) ρ(θ, φ) ∈ [c0,∞) .(5.14)

A proof appears in Appendix A.

5.3 Proof of upper bound in Theorem 1

Define R = {S̃ = psupp(θ̂)} and observe that

IE[ρ(θ̌n, θ)] ≤ IE[ρ(θ̌n, θ)1IR] + IE[ρ(θ̌n, θ)1IRc ] .

The first term is controlled by combining Proposition 6 and Theorem 4 to get

IE[ρ(θ̌n, θ)1IR] ≤ Cσ
2s−1

√
n

+ Cσ
log n

n
,

where Cσ ≤ Cσ28s−14.
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To bound the second term, we use the Cauchy-Schwarz inequality and Propo-
sition 5 to get

IE[ρ(θ̌n, θ)1IRc ] ≤ C
σ2

√
n

√
IE[ρ(θ̌n, θ)2]

We now show that IE[ρ(θ̌n, θ)
2] is bounded uniformly over all choices of S̃ by a

constant multiple of σ2 using a similar slicing argument as the one employed in
the proof of Lemma B.5 in the Supplementary Materials.

By the triangle inequality,

ρ(θ̌n, θ) ≤ ρ(θ̌n, θS̃) + ρ(θS̃ , θ) ≤ ρ(θ̌n, θS̃) + 1 .

In view of (5.14), we have

ρ(θ̌n, θS̃)2 ≤ (c0σ)2 + Cσ2D(θS̃ ‖ θ̌n) ≤ (C◦σ)2(1 +Gn(θS̃ ‖ θ̌n)) ,

for some constant C◦, where

Gn(θS̃ ‖ θ̌n) = D(θS̃ ‖ θ̌n)−Dn(θS̃ ‖ θ̌n) .

For j ≥ 0, define Sj = {φ ∈ IRd : 2jσ ≤ ρ(φ, θS̃) ≤ 2j+1σ} and let J be such
that C◦ ≤ 2J ≤ 2C◦. Observe that

IE[ρ(θ̌n, θS̃)2] ≤ 4(C◦σ)2 +
∑
j≥J

IE[ρ(θ̌n, θS̃)21I(θ̌n ∈ Sj)]

≤ 4(C◦σ)2 + σ2
∑
j>J

22j+2IP[ sup
φ∈Sj

Gn(θS̃ ‖φ) > C
22j

n
]

≤ 4(C◦σ)2 + Cσ2
∑
j≥0

22j exp(−C22j) ≤ Cσ2 ,

where we used (B.7) from the Supplementary Materials in the third inequality.
We obtain

IE[ρ(θ̌n, θ)
2] ≤ 2IE[ρ(θ̌n, θS̃)2] + 2 ≤ Cσ2 .

We have established that

IE[ρ(θ̌n, θ)] ≤ C
(σ2s−1

√
n

+ σ26s−13 log n

n
+
σ3

n

)
,

which completes the proof of Theorem 1.

6. MINIMAX LOWER BOUNDS

Our minimax lower bounds rely ultimately on Le Cam’s classical two-point
testing method [LeC73]. In particular, the version that we use requires an upper
bound on the KL divergence, which can be obtained using Theorem 3 and a
moment matching argument.
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6.1 Moment matching

The lower bound of Theorem 1 follows from Proposition 7.

Proposition 7. Fix 2 ≤ s ≤ bd/2c and let θ, φ ∈ IRd satisfy

θ̂m = φ̂m = 0 for m /∈ {±(s− 1),±s}

and
|θ̂m| = |φ̂m| for m ∈ {±(s− 1),±s}.

If R is drawn uniformly from F , then for any m = 1, . . . , 2s− 2, it holds

IER[(Rθ)⊗m] = IER[(Rφ)⊗m]

Proof. Fix m ≤ 2s − 2. Since IER[(Rθ)⊗m] and IER[(Rφ)⊗m] are symmetric
tensors, to show that they are equal it suffices to show that

〈IER[(Rθ)⊗m], u⊗m〉 = 〈IER[(Rφ)⊗m], u⊗m〉 ∀u ∈ IRd

or equivalently, that

(6.1) IER[(u>Rθ)m] = IER[(u>Rφ)m] ∀u ∈ IRd .

Consider the set P = {ζ : |ζ̂j | = |θ̂j | , ∀ j} and note that θ, φ ∈ P. We show
that the function ζ 7→ IER[(u>Rζ)m] is constant on P, which readily yields (6.1).
For a fixed shift Rz ∈ F , we obtain

u>Rzζ = 〈û, R̂zζ〉 =

bd/2c∑
j=−bd/2c

û−j ζ̂jz
j ,

so

(u>Rzζ)m =

bd/2c∑
j1,...,jm=−bd/2c

zj1+···+jm
m∏
n=1

û−jn ζ̂jn .

Taking expectations with respect to a uniform choice of z yields

(6.2) IER[(u>Rζ)m] =
∑

j1+···+jm=0

m∏
n=1

û−jn ζ̂jn ,

where the sums are over all choices of coordinates j1, . . . , jm ∈ {−bd/2c, . . . , bd/2c}
whose sum is 0.

The Fourier transform of ζ is supported only on coordinates ±(s − 1) and
±s, so we may restrict our attention to sums involving only those coordinates.
Suppose j1 + · · ·+ jm = 0. Define

α = |{i : ji = s− 1}| β = |{i : ji = −(s− 1)}|
γ = |{i : ji = s}| δ = |{i : ji = −s}|

By assumption j1 + · · ·+ jm = 0, so the tuple (α, β, γ, δ) is a solution to

α(s− 1) + β(−(s− 1)) + γ(s) + δ(−s) = 0
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or, equivalently,

(α− β)(s− 1) + (γ − δ)s = 0

Since s− 1 and s are coprime, (α− β) and (γ − δ) must be multiples of s and
s−1, respectively. Since |α−β|+ |γ− δ| ≤ m < 2s−1, in fact α−β = γ− δ = 0.

Therefore the only m-tuples (j1, . . . , jm) that appear in the sum on the right-
hand side of (6.2) are those in which +(s − 1) and −(s − 1) occur an equal
number of times and +s and −s occur an equal number of times. For such m-
tuples, the product

∏m
n=1 û−jn ζ̂jn can be reduced to a product of terms of the form

û−(s−1)ûs−1ζ̂s−1ζ̂−(s−1) and û−sûsζ̂sζ̂−s. Since u and ζ are real vectors, ûj û−j =

|uj |2 and ζ̂j ζ̂−j = |ζ̂j |2 for all j = −bd/2c, . . . , bd/2c, so

m∏
n=1

û−jn ζ̂jn = (|ûs−1|2|ζ̂s−1|2)a(|ûs|2|ζ̂s|2)b ,

where a and b are the number of occurrences of the pairs ±(s − 1) and ±s,
respectively. This quantity depends only on the moduli |ζ̂s| and |ζ̂s−1|, hence it is
the same for all ζ ∈ P. This completes the proof of (6.1) and therefore the proof
of the proposition.

6.2 Proof of lower bound in Theorem 1

Fix z = eiδ for δ = c1σ
2s−1/

√
n for some constant c1 > 0. Let τ be given by

τ̂j =

{
1/2 if |j| = s− 1 or s,
0 otherwise.

Let φn be given by

φ̂nj =


1/2 if |j| = s− 1,
z/2 if j = s,
z∗/2 if j = −s,
0 otherwise.

Note that the support of φ̂n and τ̂ lies in [−s, s] and that ‖φn − τ‖ and ρ(φn, τ)
are both bounded by c2σ

2s−1/
√
n, where c2 can be made arbitrarily small by

taking c1 small enough.
Theorem 3 and Proposition 7 imply that

D(Pnτ ‖Pnφn) ≤ Cnσ−4s+2ρ2(φn, τ) ≤ c3 ,

for a positive constant c3 that can be made arbitrarily small by taking c1 small
enough. Using standard minimax lower bounds techniques [Tsy09], we get the
desired result.

APPENDIX A: OMITTED PROOFS

Proof of Lemma 2. We first prove the following simple expression:

D(Pθ ‖Pφ) = D(θ ‖φ) =
1

2σ2
(‖φ‖2 − ‖θ‖2) + IE log

IE[e
1
σ2

(θ+σξ)>Rθ | ξ]
IE[e

1
σ2

(θ+σξ)>Rφ | ξ]
,
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where ξ ∼ N (0, Id).
This claim follows directly from the definition of divergence. Denoting by g(y)

the density of a standard Gaussian random variable with respect to the Lebesgue
measure on IRd, we can write

dPθ
dPφ

(y) =
IE[g((y −Rθ)/σ)]

IE[g((y −Rφ)/σ)]

=
IE
[
exp

(
− 1

2σ2 (‖y‖2 − 2y>Rθ + ‖Rθ‖2)
])

IE
[
exp

(
− 1

2σ2 (‖y‖2 − 2y>R′φ+ ‖R′φ‖2)
])

= exp

(
1

2σ2
(‖φ‖2 − ‖θ‖2)

)
IE
[
exp

(
1
σ2 y
>Rθ

])
IE
[
exp

(
1
σ2 y>R′φ

]) ,
since R is orthogonal. Hence

D(θ ‖φ) = IEY∼Pθ log
dPθ
dPφ

(Y )

=
1

2σ2
(‖φ‖2 − ‖θ‖2) + IEY∼Pθ log

IE[e
1
σ2
Y >Rθ | Y ]

IE[e
1
σ2
Y >Rφ | Y ]

.

When Y ∼ Pθ, we can write Y = R′θ + σξ for a standard Gaussian vector
ξ and rotation R′ independent of R. Since R′ is orthogonal, this has the same
distribution as R′(θ+σξ). If R and R′ are independent and uniform, then (R′)>R
has the same distribution as R, so

Y >Rθ =d (θ + σξ)>Rθ .

Therefore

(A.1) D(θ ‖φ) =
1

2σ2
(‖φ‖2 − ‖θ‖2) + IEξ log

IE[e
1
σ2

(θ+σξ)>Rθ | ξ]
IE[e

1
σ2

(θ+σξ)>Rφ | ξ]
.

We now prove both parts of the Lemma
(i) For convenience write θ̄ = IERθ and φ̄ = IERφ. These vectors satisfy Rθ̄ = θ̄
and Rφ̄ = φ̄ for all R. Hence

(θ + σξ)>Rθ = (θ̄ + ϑ+ σξ)>R(θ̄ + ϑ)

= (ϑ+ σξ)>Rϑ+ (θ̄ + σξ)>θ̄ ,

and similarly
(θ + σξ)>Rφ = (ϑ+ σξ)>Rϕ+ (θ̄ + σξ)>φ̄ .

Plugging these quantities into the expression for D(θ ‖φ) yields

D(θ ‖φ) =
1

2σ2
(‖φ‖2 − ‖θ‖2) + IEξ log

IE[e
1
σ2

(ϑ+σξ)>Rϑ+(θ̄+σξ)>θ̄ | ξ]
IE[e

1
σ2

(ϑ+σξ)>Rϕ+(θ̄+σξ)>φ̄ | ξ]

=
1

2σ2
(‖φ‖2 − ‖θ‖2) +

1

σ2
IEξ(θ̄ + σξ)>(θ̄ − φ̄) + IEξ log

IE[e
1
σ2

(ϑ+σξ)>Rϑ | ξ]
IE[e

1
σ2

(ϑ+σξ)>Rϕ | ξ]

=
1

2σ2
(‖φ̄‖2 − ‖θ̄‖2) +

1

σ2
(‖θ̄‖2 − θ̄>φ̄) +D(ϑ ‖ϕ)

=
1

2σ2
‖IE[Rθ −Rφ]‖2 +D(ϑ ‖ϕ) .
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(ii) The previous claim implies that it suffices to show

D(θ ‖φ) =
1

4σ4
‖IE[(Rθ)⊗2 − (Rφ)⊗2]‖2 + σ−6O(ε2)

for θ and φ satisfying IERθ = IERφ = 0.
We accomplish this by expanding the expression for D(θ ‖φ) given above as a

power series in σ−1. Recall

D(θ ‖φ) =
1

2σ2
(‖φ‖2 − ‖θ‖2) + IEξ log

IE[e
1
σ2

(θ+σξ)>Rθ | ξ]
IE[e

1
σ2

(θ+σξ)>Rφ | ξ]
.

Given a random variable X, write

KX(t) = log IE exp(t>X)

for the cumulant generating function of X. Then

log
IE[e

1
σ2

(θ+σξ)>Rθ | ξ]
IE[e

1
σ2

(θ+σξ)>Rφ | ξ]
= KRθ

(
1

σ2
(θ − σξ)

)
−KRφ

(
1

σ2
(θ − σξ)

)
.

Denote by κm and λm the mth cumulant tensors of Rθ and Rφ respectively. Then

D(θ ‖φ) =
1

2σ2
(‖φ‖2 − ‖θ‖2) + IE

∑
m≥1

1

σ2mm!
〈κm − λm, (θ − σξ)⊗m〉 .

Since κ1 = IERθ and λ1 = IERφ,

κ1 − λ1 = IERθ − IERφ = 0 ,

so the first term in the sum vanishes. Moreover, since ξ is a standard Gaussian,
IE[ξ⊗m] = 0 for all odd m.

Rearranging to collect powers of σ−1 yields

D(θ ‖φ) =
1

σ2
T2 +

1

σ4
T4 + o(σ−4) ,

where

T2 =
1

2
(‖φ‖2 − ‖θ‖2 + IE〈κ2 − λ2, ξ⊗2〉)

T4 =
1

2
〈κ2 − λ2, θ⊗2〉+

1

2
IE〈κ3 − λ3, θ ⊗ ξ⊗2〉+

1

4!
IE〈κ4 − λ4, ξ⊗4〉 .

Straightforward calculation yields

IE〈κ2 − λ2, ξ⊗2〉 = ‖θ‖2 − ‖φ‖2

〈κ2 − λ2, θ⊗2〉 = IE[(θ>Rθ)2 − (φ>Rθ)2]

IE〈κ3 − λ3, θ ⊗ ξ⊗2〉 = 0

IE〈κ4 − λ4, ξ⊗4〉 = 6IE[(φ>Rφ)2 − 6(θ>Rθ)2] .

Combining the above two displays, we conclude

T2 = 0

T4 =
1

4
IE[(θ>Rθ)2 − 2(φ>Rθ)2 + (φ>Rφ)] =

1

4
‖IE[(Rθ)⊗2 − (Rφ)⊗2]‖2 ,

and the claim follows.
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Proof of Proposition 6. We first suppose ρ(θ, φ) ≤ ε0.
For any φ ∈ IRd, we have IE[Rφ] = d−1/2φ̂01, where 1 is the all-ones vector

of IRd and φ̂0 is known as the DC component of φ. Therefore ϕ = φ − IE[Rφ]
has Fourier transform ϕ̂ = φ̂− φ̂0d

−1/2W1 = φ̂− φ̂0e0, where e0 is the vector of
IRd indexed over {−bd/2c, . . . , bd/2c} with 1 on the 0 coordinate and 0 on other
coordinates. In other words, the Fourier transform of ϕ is the same as that of φ
except that its DC component ϕ̂0 is set to 0. Similarly, the Fourier transform of
ϑS is the same as that of θ except that its DC component ϑ̂0 is set to 0.

By Part (i) of Lemma 2,

(A.2) D(φ) =
1

2σ2
‖IE[Rθ −Rφ]‖2 +D(ϑ ‖ϕ) ,

Write ρ(θ, φ) = ε and suppose first that |θ̂0 − φ̂0| ≥ 1
2ε. Then (A.2) implies

D(φ) ≥ 1

2σ2
‖IE[Rθ −Rφ]‖2 =

1

2σ2
(θ̂0 − φ̂0)2 ≥ ε2

8dσ2
≥ Cσ−4s+2ε2 .

Next, if |θ̂0 − φ̂0| < 1
2ε, then

ρ(ϑS , ϕ)2 = ρ(θS , φ)2 − |θ̂0 − φ̂0|2 ≥ 3ε2/4 .

Thus, it suffices to show that

D(ϑ ‖ϕ) ≥ Cσ−4s+2ρ(ϑ, ϕ)2 .

There are two cases: either ϑS and ϕ have essentially the same power spectrum
(i.e., |ϑ̂k| ≈ |ϕ̂k| for all k) or their power spectra are very different. We will treat
these two cases separately.

Recall that for each j ∈ S, by assumption c−1 ≤ |ϑ̂j | ≤ c. Consider the polar

form ϕ̂j/ϑ̂j = mje
iδj , where mj ≥ 0. Since D(ϕ) = D(Rϕ) for all cyclic shifts,

we may assume that ‖ϑ− ϕ‖ = ε, so that |1−mj | ≤ Cε for all j.
Suppose first that |1−mj | ≥ Cε for some j ∈ S. Lemma 2 (ii) yields

D(ϕ) =
1

4σ4
‖IE[(Rϑ)⊗2 − (Rϕ)⊗2]‖2 + C

ε2

σ6

≥ 1

4σ4
(|ϑ̂j |2 − |ϕj |2)2 + C

ε2

σ6

≥ c−2

4σ4
|ϑ̂j |2(1−mj)

2 + C
ε2

σ6

≥ c−4

4σ4
(1−mj)

2 − C ε
2

σ6
≥ Cσ−4ε2 .

Hence D(ϕ) ≥ Cσ−4s+2ε2.
Next, suppose on the contrary that |1−mj | = o(ε) for all j ∈ S. Since ‖ϑ−ϕ‖ =

ε, we can take the relative phase δj in the polar form to be such that δj ≤ Cε for
all j. By Theorem 3, it is enough to show that there exists an m ≤ 2s − 1 such
that

‖IE[(Rϑ)⊗m − (Rϕ)⊗m]‖2 = Ω(ε2) .
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Denote by p the smallest integer in S and observe that

ε2 = ρ(ϑ, ϕ)2 = min
z:|z|=1

bd/2c∑
j=−bd/2c

|1−mjz
jeiδj |2|ϑ̂j |2 ≤ C

∑
j∈S
|1−mje

−jδp/peiδj |2 .

Therefore, there exists a coordinate ` ∈ S \ {p} such that

(A.3) |1− ei(pδ`−`δp)/p|2 = |1−m`e
i(pδ`−`δp)/p|2 + o(ε2) ≥ Cε2 .

Choose m = `+ p. Since `, p ∈ S ⊆ [s] and ` 6= p, the bound m ≤ 2s− 1 holds.
As in the proof of Proposition 7, we have that

‖IE[(RϑS)⊗m − (Rϕ)⊗m]‖2 =
∑

j1+···+jm=0

∣∣∣∣∣
m∏
n=1

ϑ̂jn −
m∏
n=1

ϕ̂jn

∣∣∣∣∣
2

=
∑

j1+···+jm=0

∣∣∣∣∣1−
m∏
n=1

mjne
i
∑m
n=1 δjn

∣∣∣∣∣
2 m∏
n=1

|ϑ̂jn |2 .

Each term in the above sum is positive. One valid solution to the equation j1 +
· · ·+ jm = 0 is j1 = · · · = j` = −p and j`+1 = · · · = jm = `. We obtain

‖IE[(RϑS)⊗m − (Rϕ)⊗m]‖2 ≥ C

∣∣∣∣∣1−
m∏
n=1

mjne
i(pδ`−`δp)

∣∣∣∣∣
2

= |1− ei(pδ`−`δp)|2 + o(ε2) .

Observe that for δ` and δp small enough, it holds

|1− ei(pδ`−`δp)|2 ≥ |1− ei(pδ`−`δp)/p|2 ≥ Cε2

where the last inequality follows from (A.3). Combining the above two displays
proves (5.12).

Now suppose ρ(θ, φ) ≥ ε0. To show that D(θ ‖φ) ≥ Cσ−4s+2, it suffices to
show by the chain rule for divergence that

D(PNθ ‖PNφ ) ≥ c for some N ≤ Cσ4s−2 ,

where c and C are positive constants. We will show the existence of a test which
correctly distinguishes PNθ from PNφ with probability at least 2/3; the claim will
then follow from the Neyman-Pearson lemma and Pinsker’s inequality.

We first show the existence of such a test when ‖φ‖2 ≥ 2. Let N = γσ4 ≤
γσ4s−2 for s ≥ 2, with γ > 0 to be chosen later. Let {Yi}Ni=1 be samples from
either PNθ or PNφ , and define a test ψ : Rd×N → {θ, φ} by

ψ(Y1, . . . , YN ) =

{
θ if 1

N

∑N
i=1 ‖Yi‖2 ≤ σ2 + 1.5

φ otherwise.

An easy computation shows that

IEθ[
1

N

N∑
i=1

‖Yi‖2] = σ2 + ‖θ‖2 ≤ σ2 + 1 IEφ[
1

N

N∑
i=1

‖Yi‖2] = σ2 + ‖φ‖2

varθ[
1

N

N∑
i=1

‖Yi‖2] ≤ 4σ2 + 2σ4

N
≤ C

γ
varφ[

1

N

N∑
i=1

‖Yi‖2] ≤ C

γ
(σ−2‖φ‖2 + 1) .
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Together with Chebyshev’s inequality, we get that that for ‖φ‖2 ≥ 2,

Pθ(ψ = φ) + Pφ(ψ = θ) ≤ C

γ
≤ 1/3 ,

For γ large enough, as desired.
Next, suppose that ‖φ‖2 ≤ 2. For positive integers j, k, denote by (j, k) their

greatest common divisor. Given a vector ζ ∈ Rd, denote by P the following set
of polynomials in the entries of ζ̂:

p0(ζ) = ζ̂0,

pj(ζ) = ‖ζ̂j‖2 for 1 ≤ j ≤ bd/2c,

pjk(ζ) = ζ̂
j/(j,k)
−k ζ̂

k/(j,k)
j for 1 ≤ j, k ≤ bsc.

If ρ(θ, φ) > 0, then by [KI93, Corollary 2], there exists at least one polynomial
p ∈ P such that

p(θ) 6= p(φ) .

It is easy to see that all the polynomials in P are invariant under the group
action; that is,

p(ζ) = p(Rζ)

for any R ∈ F and p ∈ P. This implies that, given a p ∈ P, the value p(ζ)
can be computed from the moment tensors IE[(Rζ + σξ)⊗k] for 1 ≤ k ≤ 2s − 1.
Indeed, the entries of IE[(Rζ + σξ)⊗k] for 1 ≤ k ≤ 2s − 1 generate the ring of
invariant polynomials in the entries of ζ̂ of degree at most 2s− 1, which includes
the set P. Given samples Y1, . . . , Yn from Pζ , the tensor IE[(Rζ + σξ)⊗k] can be
consistently estimated by computing the empirical moment tensors. We obtain
that there exists a constant M , depending on s but not on σ, such that for any
p ∈ P there exists an unbiased estimator p̃(ζ) for p(ζ) with variance at most
Mσ4s−2/N for any ζ ∈ {θ, φ}.

For all θ ∈ Rd, define Bθ,ε0 = {φ : ρ(θ, φ) ≤ ε0, ‖φ‖2 ≤ 2}. It is clear that Bθ,ε0
is compact so that

δ = inf
θ:‖θ‖2≤1

inf
φ∈Bθ,ε0

min
p∈P:p(φ)6=p(θ)

|p(φ)− p(θ)| > 0 .

Note that δ does not depend on θ or φ. Set N = γδ−2Mσ4s−2, where γ is to be
chosen later. Since ρ(θ, φ) ≥ ε0 by assumption, there exists a p ∈ P such that
|p(φ)− p(θ)| ≥ δ.

Let ψ : Rd×N → {θ, φ} be the test

ψ(Y1, . . . , Yn) = argmin
ζ∈{θ,φ}

|p̃(ζ)− p(ζ)| .

By Chebyshev’s inequality, we have

Pθ(ψ = φ) + Pφ(ψ = θ) ≤ C

γ
≤ 1/3 ,

for γ sufficiently large.
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To conclude the proof, observe that by the chain rule, Pinsker’s inequality, and
the Neyman-Pearson lemma respectively, we get

D(θ ‖φ) =
1

N
D(PNθ ‖PNφ ) ≥ C

N
≥ Cσ−4s+2 .

The desired result (5.13) follows.
Finally, let ρ(θ, φ) ≥ c0σ where c0 = 32

√
2d. By (A.1), since ‖θ‖ ≤ 1, we have

D(φ) ≥ 1

2σ2
(‖φ‖2 − 1) + IEξ log

IE[e
1
σ2

(θ+σξ)>Rθ | ξ]
IE[e

1
σ2

(θ+σξ)>Rφ | ξ]
,

where ξ ∼ N (0, Id). Next, using the Cauchy-Schwarz inequality and Jensen’s
inequality, we get

IEξ log
IE[e

1
σ2

(θ+σξ)>Rθ | ξ]
IE[e

1
σ2

(θ+σξ)>Rφ | ξ]
≥ −1 + ‖φ‖

σ2
IE‖θ + σξ‖ ≥ −1 + ‖φ‖

σ2

√
1 + dσ2

Hence, for ‖φ‖ ≥ 16σ
√

2d, we get D(φ) ≥ ‖φ‖2/(8σ2). Moreover, by the triangle
inequality, ‖φ‖/2 ≤ ρ(φ, θ) ≤ 2‖φ‖ for all such φ. We obtainthat for all φ ∈ IRd

such that ρ(φ, θ) ≥ c0σ, it holds D(φ) ≥ ‖φ − θ‖2/(32σ2), which implies the
desired result (5.14).

APPENDIX B: SUPPLEMENTARY MATERIALS

Lemma B.1. For any δ ∈ (0, 1), γ ∈ [−δ, δ], it holds

1− 2(1 + γ)m + (1 + 2γ + δ2)m ≤ m22m−1δ2

Proof. Fix δ ∈ (0, 1) and consider the function γ 7→ f(γ, δ) = 1−2(1+γ)m+
(1+2γ+δ2)m. Computing the derivative of f , it is easy to see that f is decreasing
on (−δ,−δ2) and increasing on (−δ2, δ) so that it achieves its maximum either
at −δ or at δ.

Consider the function δ 7→ g(δ) = f(δ, δ) = 1 − 2(1 + δ)m + (1 + δ)2m and
observe that g(−δ) = f(−δ, δ). Since g(0) = g′(0) = 0, and

g′′(δ) = 2m(1 + δ)m−2[(2m− 1)(1 + δ)m − (m− 1)] ≤ m22m ∀ δ ∈ [−1, 1] ,

it follows from a second order Taylor expansion that

g(δ) ≤ m22m−1δ2

Lemma B.2. Let ξ ∼ N (0, Id) be a standard d-dimensional Gaussian. Then
for any symmetric order-m tensor and A ∈ IRdm there exists constant c = c(A),
independent of m and d, such that

cm
√
m!‖A‖ ≤ IE|〈A, ξ⊗m〉| ≤

√
(d+m)m‖A‖ .
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Proof. Assume without loss of generality that ‖A‖ = 1. The upper bound
follows readily from the Cauchy-Schwarz inequality and the fact that ‖ξ‖2 ∼ χ2

d,

IEξ|〈A, ξ⊗m〉| ≤ IEξ‖ξ⊗m‖ = IEξ‖ξ‖m ≤ (d+m)m/2 .

To prove the lower bound, we first show that

(B.1) IEξ[〈A, ξ⊗m〉2] ≥ m! .

We do so by expressing the left side in terms of multivariate Hermite polynomials.
Recall that the Hermite polynomials {hk(x)}k≥0 can be normalized to satisfy

the following two properties:

1. The function hk(x) is a polynomial with leading term xk/
√
k!,

2. The functions {hk}k≥0 form an orthonormal basis of of L2(µ), where µ
denotes the standard Gaussian measure on IR.

Given a multi-index α ∈ INd, define the multivariate Hermite polynomial hα
by

hα(x1, . . . , xd) =

d∏
i=1

hαi(xi) .

The multivariate Hermite polynomials form an orthonormal basis for the space
IR[x1, . . . , xd] of d-variate polynomial functions with respect to the inner product
over L2(µ⊗d).

Multivariate Hermite polynomials satisfy the following useful property: Given
two multi-indices α, β ∈ INd such that |α| = |β|, we now show that

(B.2) 〈xβ, hα〉 =
√
α!δαβ ,

where δ denotes the Kronecker symbol. Indeed, on the one hand if α 6= β, then
since |α| = |β| there exists an index i such that αi > βi. By the definition of
the univariate Hermite polynomials, xβi ∈ span(h1(x), . . . , hβi(x)), hence orthog-
onality of the polynomials hαi and hj for 1 ≤ j ≤ βi implies

〈xβ, hα〉 =

d∏
i=1

〈xβi , hαi〉 = 0 .

On the other hand, if α = β, then

〈xα, hα〉 =

d∏
i=1

〈xαi , hαi〉 =

d∏
i=1

√
αi! =

√
α! .

The order-m tensor A can be identified with a multilinear—thus polynomial—
map from IRd to IR:

A(x1, . . . , xd) =
∑

i1,...,im

Ai1...imxi1 . . . xim =
∑

α∈INd:|α|=m

m!

α!
Aαx

α ,

where in the second equality, we used the fact that A is symmetric. Together
with (B.2), it yields that for any |α| = m,

〈A, hα〉 =
m!√
α!
Aα .



26 BANDEIRA, RIGOLLET AND WEED

Moreover, since ‖A‖ = 1, we also have∑
α∈INd:|α|=m

m!

α!
A2
α = 1 ,

so that ∑
α∈INd:|α|=m

〈A, hα〉2 = m! .

Therefore, using Plancherel’s formula, we get that for any m ≥ 0,

IEξ[〈A, ξ⊗m〉2] = 〈A,A〉 =
∑
α∈INd

〈A, hα〉2 ≥
∑

α∈INd:|α|=m

〈A, hα〉2 = m! ,

as claimed.
To prove the claimed lower bound on IEξ|〈A, ξ⊗m〉|, we employ the following

Khinchine-type inequality:

Theorem B.3 ([Bob00, Theorem 2]). Let f = f(x1, . . . , xm) be a degree m
polynomial and let X ∼ N (0, Im) be a standard Gaussian vector in IRm. Then
there exists a universal constant c such that√

IE[f(X)2] ≤ cmIE[|f(X1, . . . , Xm)|] .

Applying Theorem B.3 to (B.1) yields the claim.

Lemma B.4. Let H(ζ) and Hn(ζ) be the Hessians of D(φ) and Dn(φ), re-
spectively, evaluated at φ = ζ. If Bε := {φ ∈ IRd : ρ(φ, θ) ≤ ε}, then

IE sup
φ∈Bε

‖H(φ)−Hn(φ)‖2op ≤ C
log n

nσ4
.

Proof. The matrix Hn(φ) can be written as a sum of independent random
matrices:

Hn(φ) =
1

n

n∑
i=1

Hi(φ) , Hi(φ) = ∇2
φ log

pθ
pφ

(Yi) .

Using symmetrization, we get

(B.3) IE sup
φ∈Bε

‖H(φ)−Hn(φ)‖2op ≤
4

n2
IE sup

φ∈Bε

∥∥ n∑
i=1

εiHi(φ)
∥∥2

op
,

where ε1, . . . , εn are i.i.d Rademacher random variables that are independent of
the observations Y1, . . . , Y1 and IEHn(φ) = H(φ).

Using a third order derivative calculation, we find that φ 7→ Hi(φ) satisfies
the following Lipschitz property. For any u, φ, η ∈ IRd, such that ‖u‖ = 1 and
φ, η ∈ Bε, we have

|u>Hi(φ)u− u>Hi(η)u| ≤ C 1 + |ξi|3

σ3
‖φ− η‖

where ξi is the noise in (2.1).
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Fix γ ∈ (0, ε) and le Z be a γ-net of Bε. In other words, we require that

max
φ∈Bε

min
η∈Z
‖η − φ‖ ≤ γ .

We can always choose Z to have cardinality |Z| ≤ (Cε/γ)d for some universal
constant C > 0. Then, by Young’s inequality, we get

(B.4) sup
φ∈Bε

∥∥ n∑
i=1

εiHi(φ)
∥∥2

op
≤ C γ

2

σ6

( n∑
i=1

|ξi|3
)2

+ C max
φ∈Z

∥∥ n∑
i=1

εiHi(φ)
∥∥2

op

The expectation of the first term is controlled using the fact that

(B.5) IE
( n∑
i=1

|ξi|3
)2

=
n∑

i,j=1

IE[|ξiξj |3] ≤ Cn2 .

For second term, we employ a standard matrix concentration bound [Tro15, The-
orem 4.6.1] to get that

IE
[

exp
(
t‖

n∑
i=1

εiHi(φ)‖2op

)∣∣Y1, . . . , Yn
]
≤ d exp

( t2
2
‖

n∑
i=1

Hi(φ)2‖op

)
.

Using standard arguments (see, e.g., [BLM13]), this implies

IE
[

max
φ∈Z

∥∥ n∑
i=1

εiHi(φ)
∥∥2

op

]
≤ C(log |Z|)IE

[
max
φ∈Z

∥∥ n∑
i=1

Hi(φ)2
∥∥

op

]
≤ C(log |Z|)nIE

[
max
φ∈Z
‖H1(φ)2‖op

]
As before, computing a second order derivative, we can show that

‖H1(φ)2
∥∥

op
≤ ‖H1(φ)

∥∥2

op
≤ C(1 + |ξ|4)/σ4 .

The above two displays yield

IE
[

max
φ∈Z

∥∥ n∑
i=1

εiHi(φ)
∥∥2

op

]
≤ C log(ε/γ)

σ4
n

Combining the last display with (B.3), (B.4), and (B.5), we get

(B.6) IE sup
φ∈Bε

‖H(φ)−Hn(φ)‖2op ≤ C
(γ2

σ6
+

log(ε/γ)

nσ4

)
≤ C log n

nσ4
,

for γ = n−1/2.

Lemma B.5. Assume the conditions of Theorem 4 hold. Then the MLE θ̃n
satisfies

IE[ρ(θ̃, θ)2] ≤ Cσ
(8k−4)∧(2`+2)

n
.



28 BANDEIRA, RIGOLLET AND WEED

Proof. As in the proof of Theorem 4, since θ is fixed, we simply write D(φ) =
D(θ ‖φ) and define

Dn(φ) =
1

n

n∑
i=1

log
fθ
fφ

(Yi) ,

where Yi are i.i.d from model (2.1) and we recall that fζ is the density of Pζ , ζ ∈
IRd.

We first establish using Lemma B.7 that the process {Gn(φ)}φ∈IRd defined by
Gn(φ) = D(φ) − Dn(φ) is a subgaussian process with respect to the Euclidean
distance with variance proxy cσ2/n for some constant c > 0, i.e., that for any
λ ∈ IR, we have

IE[exp(λ(Gn(φ)−Gn(ζ)))] ≤ exp
(
c
λ2σ2

n
‖φ− ζ‖2

)
.

We then apply the following standard tail bound.

Proposition B.6 ([Ver17, Theorem 8.5.4]). If {Xφ}φ is a (standard) sub-
gaussian process on IRd with respect to the Euclidean metric and Bδ(θ) is a ball
of radius δ around θ, then

IP[ sup
φ∈Bδ(θ)

(Xφ −Xθ) ≥ Cδ + x] ≤ Ce−Cx2/δ2 .

The rescaled process σ
√
nGn is standard subgaussian process with respect to

the Euclidean metric, so applying Proposition B.6 and noting that Dn(θ) = 0
yields

(B.7) IP

[
sup

φ∈Bδ(θ)
Gn(φ) ≥ C δ

σ
√
n

+ x

]
≤ C exp

(
− Cnσ

2x2

δ2

)
.

For convenience, write vn =
√
n(θ̃− θ), where θ̃ is a MLE satisfying ‖θ̃− θ‖ =

ρ(θ̃, θ). We wish to show that IE[‖vn‖2] is bounded by a constant that depends
on σ but not on n.

Define E to be the compact subset of IRd defined by

E =
{
φ ∈ IRd : ε0 ≤ ρ(θ, φ) ≤ c0σ

}
,

where c0 and ε0 are defined in Theorem 4. In particular, for any φ /∈ E, it holds
D(φ) ≥ Cσ−2kρ(θ, φ)2.

We employ the so-called slicing (a.k.a peeling) method. Define the sequence
{αj}j≥0 where α0 = 0 and αj = Cσj(2k−1) for j ≥ 1 for some large enough
constant C > 0. For any j ≥ 0, define Sj = {φ ∈ IRd : αj ≤

√
nρ(φ, θ) ≤

αj+1} \ E and observe that

IE[‖vn‖2] = IE[‖vn‖2 | θ̃ ∈ E]IP[θ̃ ∈ E] +
∑
j≥0

IE[‖vn‖2 | θ̃ ∈ Sj ]IP[θ̃ ∈ Sj ]

≤ c2
0σ

2IP[θ̃ ∈ E] + Cσ8k−4 +
∑
j≥2

α2
j+1IP[θ̃ ∈ Sj ] .(B.8)

We now show that if θ̃ ∈ Sj , j ≥ 2, then Gn(θ̃) = D(θ̃) − Dn(θ̃) is large.
To that end, observe that on the one hand, by definition of the MLE, we have
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Dn(θ̃) ≤ Dn(θ) = 0. On the other hand, D(θ̃) ≥ Cσ−2kρ(θ̃, θ)2. Hence, if θ̃ ∈ Sj ,
then Gn(θ̃) ≥ Cσ−2kρ(θ̃, θ)2 ≥ Cσ−2kα2

j/n. It yields

IP[θ̃ ∈ Sj ] ≤ IP
[

sup
φ∈Sj

Gn(φ) ≥ Cσ−2k
α2
j

n

]
≤ IP

[
sup

φ∈Bαj+1√
n

(θ)
Gn(φ) ≥ Cσ−2k

α2
j

n

]
.

Recall αj = Cσj(2k−1) so that σ−2kα2
j ≥ Cαj+1/σ, j ≥ 2 and apply (B.7) with

δ = αj+1/
√
n and x = Cσ−2kα2

j/n to get

IP
[

sup
φ∈Bαj+1√

n

(θ)
Gn(φ) ≥ Cσ−2k

α2
j

n

]
≤ C exp

(
− C

α4
j

α2
j+1σ

4k−2

)
≤ C exp

(
− Cσ2j(2k−1)

)
.

It yields

(B.9)
∑
j≥2

α2
j+1IP[θ̃ ∈ Sj ] ≤ C

∑
j≥2

σ4j(2k−1) exp
(
− Cσ2j(2k−1)

)
≤ C .

When θ̃ ∈ E, we use (5.2) to conclude that if n ≥ σ2` then

IP[θ̃ ∈ E] ≤ IP
[

sup
φ∈E

Gn(φ) ≥ Cσ−`
]
≤ C exp

(
− Cnσ−2`

)
,

where in the last inequality, we used (B.7). Together with (B.8) and (B.9), it
implies the desired result.

Lemma B.7. The process {Gn(φ)}φ∈IRd defined by Gn(φ) = D(φ)−Dn(φ) is

a subgaussian process with respect to the `2 distance on IRd with variance proxy
c/(nσ2) for some constant c > 0, i.e., that for any λ ∈ IR, we have

IE[exp(λ(Gn(φ)−Gn(ζ)))] ≤ exp
(
λ2 c

nσ2
‖φ− ζ‖2

)
.

Proof. By definition of Gn and the densities fζ and fφ, we have

Gn(φ)−Gn(ζ) = D(φ)−D(ζ)−Dn(φ) +Dn(ζ)

= IE[log fζ(Y )− log fφ(Y )]− 1

n

n∑
i=1

[log fζ(Yi)− log fφ(Yi)]

= IE
[

log
IER exp(−‖Y−Rζ‖

2

2σ2 )

IER exp(−‖Y−Rφ‖
2

2σ2 )

]
− 1

n

n∑
i=1

log
IER exp(−‖Yi−Rζ‖

2

2σ2 )

IER exp(−‖Yi−Rφ‖
2

2σ2 )

= IE
[

log
IER exp(Y >Rζ/σ2)

IER exp(Y >Rφ/σ2)

]
− 1

n

n∑
i=1

log
IER exp(Y >i Rζ/σ

2)

IER exp(Y >i Rφ/σ
2)

= IE[∆(Y )]− 1

n

n∑
i=1

∆(Yi) ,

where

∆(Y ) = log
IER exp(Y >Rζ/σ2)

IER exp(Y >Rφ/σ2)
.
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Next, using a standard symmetrization argument, we get

(B.10) IE[exp(λ(Gn(φ)−Gn(ζ)))] ≤
n∏
i=1

IE[exp(
2λ

n
εi∆(Yi))] ,

where ε1, . . . , εn are i.i.d Rademacher random variables that are independent of
the sample Y1, . . . , Yn. Next, observe that using the Cauchy-Schwarz inequality,
we get that the function ζ 7→ log IER exp(Y >i Rζ/σ

2) is ‖Yi‖/σ2-Lipschitz with
respect to the Euclidean distance. Hence |∆(Yi)| ≤ ‖Yi‖‖φ − ζ‖/σ2. Moreover,
it follows from (2.1) that conditionally on R`i , the random variable ‖Yi‖2/σ2 ∼
χ2
d(1/σ

2) follows a noncentral χ2 distribution with d degrees of freedom and
noncentrality parameter ‖θ‖2/σ2 = 1/σ2 ≤ 1. In particular ‖Yi‖2/σ2 has a finite
moment generating function in the neighborhood of the origin, and we obtain for
some constant c small enough that

IE
[

exp
(
c
σ2(εi∆(Yi))

2

‖φ− ζ‖2
)]
≤ IE

[
exp

(
c
‖Yi‖2

σ2

)]
≤ e .

It implies (see, e.g., [Ver17] proposition 2.5.2) that

IE
[

exp(
2λ

n
εi∆(Yi))

]
≤ exp(λ2 c

n2σ2
‖φ− ζ‖2)

for all λ ∈ IR. Together with (B.10), this yields the desired result.

Lemma B.8. Fix θ ∈ IRd. Assume that n/(log n) ≥ Cσ4. For any j =
−bd/2c, . . . , bd/2c, define,

Mj =
1

n

n∑
i=1

|(̂Yi)j |
2 − σ2 .

Define the set S̃ by

S̃ =
{
j ∈ {−bd/2c, . . . , bd/2c} : Mj ≥ Cσ2

√
log n

n

}
Then

IP[S̃ 6= psupp(θ̂)] ≤ Cσ
4

n
.

Proof. It is straightforward to check that IE[Mj ] = |θ̂k|2. To calculate the
variance, we note that

|(̂Yi)k|
2 − |θ̂k|2 − σ2 = 2σ<((̂Riθ)k (̂ξi)k) + σ2(|(̂ξi)k|

2 − 1) .

Hence var[|(̂Yi)k|2 − σ2] ≤ Cσ4, and var[Mj ] ≤ Cσ4/n.

Moreover, the random variable |(̂Yi)k|2 − σ2 is a σ2-subexponential random
variable. Indeed,

|(̂Yi)k|
2 − |θ̂k|2 − σ2 ≤ 2σ|(̂ξi)k|+ σ2(|(̂ξi)k|

2 − 1) ≤ 2σ2(|(̂ξi)k|
2 − 1) + σ2 + 1 .
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The variable (̂ξi)0 is a standard Gaussian, and for k 6= 0 the variable (̂ξi)k is a

standard complex Gaussian, hence |(̂ξi)k|2 is a rescaled χ2 random variable with

at most 2 degrees of freedom. Hence |(̂ξi)k|2 is sub-exponential with constant

variance proxy, so that |(̂Yi)k|2 − σ2 is σ2-subexponential.

If j ∈ psupp(θ̂), then by Chebyshev’s inequality

IP[j /∈ S̃] = IP
[
Mj ≤ Cσ2

√
log n

n

]
≤ C σ4

n
(
|θ̂j |2 − Cσ2

√
logn
n

)2 ≤ Cσ4

n
.

On the other hand, if j /∈ psupp(θ̂), then IE[Mj ] = 0 and by Bernstein’s
inequality

IP[j ∈ S̃] = IP[Mj ≥ Cσ2

√
log n

n
] ≤ C

n
.

The proof follows using a union bound.
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