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ABSTRACT
A tensor network is a diagram that specifies a way to “multiply”

a collection of tensors together to produce another tensor (or ma-

trix). Many existing algorithms for tensor problems (such as tensor

decomposition and tensor PCA), although they are not presented

this way, can be viewed as spectral methods on matrices built from

simple tensor networks. In this work we leverage the full power of

this abstraction to design new algorithms for certain continuous

tensor decomposition problems.

An important and challenging family of tensor problems comes

from orbit recovery, a class of inference problems involving group

actions (inspired by applications such as cryo-electron microscopy).

Orbit recovery problems over finite groups can often be solved via

standard tensor methods. However, for infinite groups, no general

algorithms are known. We give a new spectral algorithm based on

tensor networks for one such problem: continuous multi-reference

alignment over the infinite group SO(2). Our algorithm extends to

the more general heterogeneous case.
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1 INTRODUCTION
Algorithms for decomposing low-rank tensors have had a wide

range of applications in machine learning and statistics. They can

be leveraged to give efficient algorithms for phylogenetic recon-

struction [27], topic modeling [4], community detection [5], inde-

pendent component analysis [25] and learning various mixture

models [22, 23]. However there are important families of prob-

lems where the low-order moment tensors are known to achieve

statistically-optimal rates of estimation but there are no known

efficient algorithms for finding the parameters from the moments.

The familiar symmetric third-order tensor decomposition prob-

lem asks: Given a p × p × p low-rank tensor of the form

T =
r∑
i=1

a⊗3i

can we recover the vectors a1, . . . ,ar ∈ R
p
? When r ≤ p it is called

the undercomplete case and when r > p it is called the overcomplete
case. In the undercomplete case, Jennrich’s algorithm (see [25])

gives a polynomial time algorithm based on generalized eigende-

compositions that works provided that the vectors a1, . . . ,ar are
linearly independent. In the overcomplete case, a line of work has

culminated in a polynomial time algorithm that works when the

vectors ai are random (i.i.d. Gaussian) and r ≲ p3/2 [20, 21, 24].
In applications, the vectors a1, . . . ,ar represent the parameters of

a model we would like to learn and T represents moments of the

distribution specified by the model whose entries we can estimate

from samples.

However, in some applications the parameters are not uniquely

defined, except up to equivalence under some continuous group
action. This leads to a new sort of problem that we call orbit tensor
decomposition in which we want to recover a vector θ ∈ Rp given

a tensor of the form

T =

∫
A∈A
(Aθ )⊗3dA

whereA is a known, possibly infinite, set ofp×pmatrices (equipped

with a measure over which to integrate). We assume furthermore

that A possesses a particular group symmetry which results in

nonuniqueness of the solution: θ andAθ are equally-good solutions

for anyA ∈ A. There are important real-world applications such as

cryo-electron microscopy (cryo-EM) [3, 28, 36] and multi-reference

alignment (MRA) [1, 8, 11, 14, 18, 29, 31, 39] where these sort of

tensor decomposition problems arise when using the method of mo-

ments. Here A is a random rotation of a two- or three-dimensional

signal whose orientation we cannot control when we are measur-

ing it. Despite considerable interest in such problems there are few

algorithms with provable guarantees, in large part because working

with the symmetries of the group is challenging algorithmically.

https://doi.org/10.1145/3313276.3316357
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We will focus on the continuous multi-reference alignment (con-
tinuous MRA) problem which can be described as follows. The goal

is to recover a signal θ which is a real-valued function on the unit

circle in R2. We assume θ is band-limited so that in the Fourier

basis we can think of θ as a finite-dimensional vector θ ∈ Rp . The
compact group G = SO(2) (rotations in the plane) acts on θ by

rotating the signal around the unit circle. For д ∈ G and θ ∈ Rp

we denote the result of the rotation as д · θ ∈ Rp . Now we observe

many independent samples of the form yi = дi · θ + ξi where дi is
a uniformly random element of SO(2) and ξi is i.i.d. Gaussian noise.

In other words, we observe many copies of the true signal that are
both noisy and randomly-rotated. It is known that for this problem

(and a large class of similar problems), optimal sample complex-

ity in the large-noise limit is achieved by the method of moments

[1, 2, 8, 10]. First we use the samples to estimate the third mo-

ment T =
∫
д∈G (д · θ )

⊗3dд. Recovering θ (up to equivalence under

group action) is now an instance of the orbit tensor decomposition

problem from above.

Existing tensor methods fail because (i) T is no longer low-rank.

In fact T has an infinite number of components and when θ is

generic would plausibly have essentially full rank. We can no longer

hope to decompose T by finding a rank-one term that we can sub-

tract off and lower the rank. Instead, we need to find a continuous

collection of rank-one tensors at once! (ii) We can only hope to re-

cover the orbit of θ , i.e. to recover a vector that (approximately) lies

in the orbit {д · θ : д ∈ G}. This symmetry implies that any finite-

rank decomposition of the tensor cannot be unique, which seems

to rule out many spectral methods such as Jennrich’s algorithm

(whose analysis relies on having a unique decomposition).

We remark that for discrete multi-reference alignment (discrete
MRA) where G is a finite group of rotations of order p, these issues
do not arise. In fact, the samplesyi can be thought of as coming from

a mixture of p spherical Gaussians where the centers are related

(in that they are rotations of each other). By ignoring these interre-

lationships and learning the distribution as a mixture of spherical

Gaussians via tensor decomposition, it is possible to obtain algo-

rithms with provable guarantees [29]. In contrast, continuous MRA

is a continuous mixture model where we crucially must exploit the

relationship between the (infinitely-many) centers. The continuous

nature of our problem poses a fundamental challenge for applying

tensor methods. To overcome this, we will first randomly break

the symmetry and then apply a spectral method that resembles a

tailor-made variant of the tensor power method.

In this paper, we leverage this methodology to give a polynomial-

time algorithm for list recovery for the continuous MRA problem

and for its so-called heterogeneous generalization in which there

are multiple true signals θ1, . . . ,θK ∈ Rp and each sample comes

from a random one of them. (The homogeneous case K = 1 is

known to admit a simple “frequency marching” solution [14]; see

Section 2.4.1.) Here list recovery means that we output a list of

polynomially-many candidate vectors such that every true signal is

well correlated with at least one candidate. To achieve this, we need

to delicately exploit symmetries in the orbit of each θk , but cope
with the fact that the orbits of different components are unrelated.

More broadly, our success gives us hope that our methodology

for designing tensor spectral methods can be adapted to a wide

variety of problems that have thus far resisted attack. As in work

on overcomplete tensor decomposition [20, 21, 24], our analysis

assumes that the signals θk are drawn at random (i.i.d. Gaussian).

To the best of our knowledge, our algorithm provides the first

polynomial-time solution to an orbit recovery problem over an

infinite group, other than a few special cases that admit ad hoc
closed-form solutions (see Section 2.4.1). In particular, we give the

first polynomial-time solution to a heterogeneous orbit recovery
problem over an infinite group.

We now motivate and describe our approach for the continuous

MRA problem. Many existing methods for overcomplete tensor

decomposition are based on the idea of finding a vector v ∈ Rp

that maximizes the cubic form ⟨T ,v⊗3⟩ = ⟨
∑r
i=1 a

⊗3
i ,v⟩. If the ai

are random, it can be shown that approximately, the maximizers of

⟨T ,v⊗3⟩ are a1, . . . ,ar provided r ≲ p3/2 [20]. A popular heuris-

tic for optimizing ⟨T ,v⊗3⟩ over unit vectors is the tensor power
method, in which we iteratively update v ∈ Rp according to

vi ←
∑
jk

Ti jkvjvk . (1)

Similarly to the matrix power method, the intuition here is that

by “multiplying” the tensor by itself, we are repeatedly amplify-

ing the signal without having the noise build up too much. There

are rigorous guarantees for this non-convex method for random

overcomplete tensor decomposition, but require a very warm start

[6, 7].

Perhaps fortuitously, unlike the matrix case there are many dif-

ferent ways that one can “multiply” third-order tensors together to

create other “power methods.” A tensor network is a diagram that

specifies a recipe for multiplying a collection of tensors together.

This concept has been used in areas such as quantum physics [16].

Tensor network notation is illustrated in Figure 1 and will be central

to our work. One of our key observations is that, although they

were not explained this way, many existing tensor methods in the

literature can be re-interpreted as spectral methods on matrices

derived from tensor networks. In particular, the spectral method of

[21] for random overcomplete tensor decomposition is based on the

tensor network shown in Figure 1(c); this method is a starting point

for our work. In Appendix B of the full version [26] we catalog

related results for the tensor PCA problem and how they can also

be described as coming from certain tensor networks.

The tensor network abstraction gives us freedom to explore

more complicated tensor networks, which helps us cope with the

symmetries of continuous MRA. Ultimately we will use the tensor

network in Figure 2. We will show that with decent probability over

a random tensor u, the top eigenvector of the associated matrix

is close to a vector in the orbit of θ . To accomplish this, we will

employ the trace moment method which, in our setting, gives us a

way to spectrally bound a certain noise term by counting certain

valid labelings of the edges of a much larger tensor network that

is obtained by stringing together many copies of Figure 2. The

constraints imposed on a valid labeling are dictated by the SO(2)

group structure.

We remark that our tensorT is quite sparse in the Fourier domain.

(This is in stark contrast to the situation in random overcomplete

tensor decomposition or tensor PCA.) In particular, T is p × p × p
but only supported on the ∼ p2 entries Ti jk for which i + j + k = 0.
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(a) (b) (c)

Figure 1: An introduction to tensor network notation. (a)
A single copy of the third-order tensor T (with entries
Tabc ) has three legs, one for each mode. (b) Two copies of
T connected by contracting (summing over) the index i.
The result is the fourth-order tensor Babcd =

∑
i TabiTcdi .

(c) The spectral method in [21] uses the ({a,b}, {c,d})-
flattening of this tensor network (which is a p2 × p2 ma-
trix). We explain this in more detail in Section 3.3. Here
u is a random vector.

u

T

T T

T

T

TT

T

T

a
c

b

d

Figure 2: In this paper we will analyze a spectral method
on the p2×p2 matrix given by the ({a,b}, {c,d})-flattening
of the tensor network shown here. Here u is a random
order-5 tensor.

This comes from the fact that due to integrating over the group

action, T is a projection of θ ⊗3 onto a particular subspace (namely

the span of the degree-three invariant polynomials; see [10]). The

above sparsity pattern influences the combinatorics of the trace

moment method. In particular, our valid labelings (discussed above)

require that the three incoming legs to each copy of the tensor sum

to zero. This is a rather different sort of combinatorics problem

than typically arises in applications of the trace moment method

to random matrix theory, and at a high-level, is why we need such

a complex tensor network. In Appendix C of the full version [26],

we discuss in more detail the considerations behind choosing the

particular tensor network in Figure 2.

2 ORBIT RECOVERY PROBLEMS
2.1 Problem Statement
We now formally define orbit recovery problems including continu-

ous MRA. These are a class of problems for which the method of

moments gives rise to an orbit tensor decomposition problem.

Let G be a compact group. We do not formally define the notion

of a compact group here, but some examples of interest include: (i)

any finite group, such as the symmetric group SL (permutations of

{1, . . . ,L}) and the cyclic group Z/L, (ii) 2-dimensional rotations

SO(2), and (iii) 3-dimensional rotations SO(3).

Let G act linearly on Rp . A linear action means that each group

element д ∈ G has an associated matrix ρ(д) ∈ Rp×p by which

it acts on Rp (via matrix multiplication): for θ ∈ Rp we write

д · θ = ρ(д)θ . The matrices must be consistent with the group

structure, i.e. ρ(дh) = ρ(д)ρ(h) and ρ(e) = I where e ∈ G is the

identity.

Given a compact group G acting linearly on Rp , we define the
associated orbit recovery problem [10] as follows. (This has also been

called the group action channel [2].) For i = 1, . . . ,n we observe

yi = дi · θ + ξi

where θ ∈ Rp is the unknown signal,дi is drawn fromHaar measure
(the “uniform distribution”) on G, and ξi ∼ N(0,σ

2I ). The random
variables дi , ξi are all independent. The goal is to estimate θ up to

group action, i.e. to output an estimator close to the orbit {д · θ :

д ∈ G} of θ .
The following are some motivating examples of orbit recovery

problems.

• (Discrete) multi-reference alignment (MRA) [1, 8, 11,
14, 18, 29]: This is the case where G is the cyclic group Z/p
acting on Rp via cyclic permutation. Formally, for д ∈ Z/p
(integers mod p), let (д · θ )i = θi−д (mod p). This captures the

problemwherewe seemany noisy copies of the same discrete

signal, each with a different offset. This has applications in

signal processing [31, 39] and structural biology [19, 37]. We

refer to the above problem as discrete MRA in contrast to

continuous MRA which will be defined later.

• Cryo-electronmicroscopy (cryo-EM) [3, 10, 28, 36]: Cryo-
EM is a popular biological imaging technique used to deduce

the 3-dimensional structure of a large molecule such as a

protein. This method was awarded the 2017 Nobel Prize in

Chemistry. The method produces data in the form of many

noisy 2-dimensional images of the 3-dimensional molecule,

but in each image the molecule is rotated to an unknown

orientation in 3-dimensional space. Here we think of θ ∈ Rp

as a representation of the molecule in some fixed basis (see

[10] for a precise definition). The group is G = SO(3) acting

by rotating the molecule. This is a generalization of the or-

bit recovery problem where we observe yi = Π(дi · θ ) + ξi
where Π is a fixed linear operator, namely the mapping from

a 3-dimensional molecule to a 2-dimensional image.

We will consider the heterogeneous extension of orbit recovery.

This is motivated by cryo-EM in situations where there are multiple

molecules (or multiple conformations of the same molecule) and

each image contains an unknown one of them. Formally, there are

K true signals θ1, . . . ,θK ∈ Rp and each sample takes the form

yi = дi · θ
ki + ξi

where ki is drawn at random from [K] = {1, . . . ,K}. In general,

one can consider an arbitrary distribution over [K], but we will
restrict ourselves to the case where ki is drawn uniformly from [K].
In the heterogeneous problem, the goal is to estimate θ1, . . . ,θK

up to permutation and group action.
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2.2 Continuous MRA
In this paper we will focus on the (heterogeneous) continuous
MRA problem, as it is a simple example of an orbit recovery prob-

lem over an infinite group. Here we take the group to be G =
SO(2), parametrized by angles д ∈ [0, 2π ). (Haar measure is sim-

ply the uniform distribution on angles.) Let p be even. The sig-

nal is θ ∈ Rp with entries indexed by the “frequencies” ±j for
j ∈ [p/2] = {1, 2, . . . ,p/2}. We will denote this set of frequencies

by ±[p/2] = {−p/2, . . . ,−1, 1, . . . ,p/2} (note that 0 is not included
for convenience). The action ofG on Rp is block-diagonal with 2×2

blocks: д ∈ G acts on [θ j θ−j ]
⊤
(with j > 0) via the matrix(

cos(jд) − sin(jд)
sin(jд) cos(jд)

)
.

It will sometimes be convenient to work in the Fourier basis: for

j > 0,

ˆθ j =
1

√
2

(θ j + iθ−j ) and
ˆθ−j =

1

√
2

(θ j − iθ−j ) (2)

where i is the imaginary unit. If θ ∼ N(0, I/p), we have
ˆθ j ∼

N(0, 1/(2p)) + iN(0, 1/(2p)) with ˆθ−j = ˆθ j (complex conjugate). In

the Fourier basis, the action ofG is diagonal, with д acting on
ˆθ j by

the scalar exp(ijд).

2.3 Method of Moments
One method for approaching orbit recovery problems is to attempt

to learn the unknown group elements дi . This is the well-studied
synchronization approach [9, 11, 12, 15, 30, 35, 36].

An alternative approach uses the method of moments, which
seeks to estimate θ directly from the moments of the samples with-

out attempting to estimate the дi . This was discovered first in the

case of MRA [1, 8, 29] and later extended to all groups [2, 10]. This

method is suited to the case where the noise σ on each sample is

very large but we get many samples; in this regime we cannot hope

to accurately estimate дi but can still hope to recover θ .
We now describe the method of moments more formally. Con-

sider the heterogeneous problem with signals θ1, . . . ,θK ∈ Rp .
In the method of moments we use the samples yi to estimate the

moments

T1({θ
k }) = E

k,д
[д · θk ] =

1

K

K∑
k=1
E
д
[д · θk ]

T2({θ
k }) = E

k,д
[(д · θk )(д · θk )⊤] =

1

K

K∑
k=1
E
д
[(д · θk )(д · θk )⊤]

...

Td ({θ
k }) = E

k,д
[(д · θk )⊗d ] =

1

K

K∑
k=1
E
д
[(д · θk )⊗d ].

Above, the expectation is over k drawn uniformly from [K] and д
drawn from Haar measure onG . It is possible to accurately estimate

the moments T1, . . . ,Td given roughly n ∼ σ 2d
samples (recall σ

is the noise level) [2, 10]. Thus we are interested in an inversion

procedure that recovers {θk } (up to permutation and orbit) given

T1, . . . ,Td , for d as small as possible. General algebraic techniques

exist for testing how large d needs to be for this to be possible,

but this does not necessarily give a polynomial-time algorithm

to actually recover the signal from the moments [10]. For many

natural problems such as MRA and cryo-EM, it is known that d = 3

is sufficient (and necessary) [1, 8, 10, 29].

It is known that the method of moments is statistically optimal

in the limit σ →∞ (with the group, group action, and dimension

p fixed) in the following sense [2, 8, 10]. On one hand, n ∼ σ 2d

samples are sufficient to estimate the moments T1, . . . ,Td . On the

other hand, if two signals θ ,θ ′ (or more generally, two collections

of K heterogeneous signals) produce the same T1, . . . ,Td−1 then at

least n ∼ σ 2d
samples are statistically required in order to distin-

guish between θ and θ ′. In other words, if the method of moments

requires moments up to d then any method requires at least σ 2d

samples.

For the case of continuous MRA, it is easiest to work with the

moments in the Fourier domain: T̂d ({θ
k }) = 1

K
∑K
k=1 Eд[(д ·

ˆθ )⊗d ]
where the action of д on θ is diagonal: identifying д with an angle

д ∈ [0, 2π ) we have (д · ˆθ )j = exp(ijд) ˆθ j (where i is the imaginary

unit). For j1, . . . , jd ∈ ±[p/2] we can compute

T̂d ({θ
k })j1, ..., jd =

1

K

K∑
k=1

1j1+· · ·+jd=0
ˆθkj1 · · ·

ˆθkjd . (3)

2.4 Efficient Algorithms
We have seen above that the optimal statistical procedure is to

compute moments Ti and to use these to solve for {θk } consistent
with these moments. A priori, this is a polynomial system of equa-

tions which cannot be solved efficiently. In this section we survey

known polynomial-time methods for recovering the signal(s) from

the moments in special cases.

2.4.1 Frequency Marching. Both the discrete and continuous MRA

problems admit a closed-form solution called frequency marching
in the homogeneous case (K = 1). These methods are limited in the

sense that they rely heavily on the particular structure of MRA and

do not seem to extend to other groups or to the heterogeneous case

(even for K = 2).

For discrete MRA, the frequency marching approach is described

in [14]. An essentially-identical method works for continuous MRA,

which we describe here.

Consider the homogeneous continuous MRA problem. The goal

is to recover θ from T2(θ ) and T3(θ ) under the assumption that

all Fourier coefficients of θ are nonzero. Recall the structure of

moments (3). From T2 we learn, for every j ∈ [p/2], the value

ˆθ j ˆθ−j = ˆθ j ˆθ j = | ˆθ j |, i.e. we learn the magnitudes of the Fourier

coefficients (the power spectrum). It suffices to recover the phases.

From T3 we learn the value
ˆθ j1

ˆθ j2
ˆθ j3 for every j1, j2, j3 ∈ ±[p/2]

such that j1 + j2 + j3 = 0 (the bispectrum). Provided
ˆθ1 , 0, each

orbit has a unique representative such that the phase ϕ1 of ˆθ1 is 0.

Thus we take ϕ1 = 0. Now use
ˆθ−1 ˆθ−1 ˆθ2 to learn ϕ2, use ˆθ−1 ˆθ−2 ˆθ3

to learn ϕ3, and so on until we have learned all the phases.

Another problem that admits a similar closed-form solution (in

the homogeneous case only) is cryo-ET (cryo-electron tomography),

a variant of cryo-EM without the projection step [10]. The cryo-EM
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problem remains open (even in the homogeneous case): there are

no known polynomial-time algorithms with provable guarantees.

2.4.2 Tensor Decomposition. Note that when G is a finite group,

the third moment T3 takes the form

T3({θ
k }) =

1

K |G |

K∑
k=1

∑
д∈G
(д · θk )⊗3

which is a low-rank tensor (of rank K |G |) and is thus amenable

to standard tensor decomposition techniques. For homogeneous

discrete MRA, T3 is undercomplete and can be decomposed using

Jennrich’s algorithm [29], thus recovering (all shifts of) the signal.

For heterogeneous discrete MRA, T3 is overcomplete (rank exceeds

dimension) but Jennrich’s algorithm can still be used if we are

given a higher order moment tensor. For instance, if K ≤ p/2 then
Jennrich’s algorithm can be used to decompose T5 [29]. However,
estimating T5 requires suboptimal sample complexity n ∼ σ 10

. If

we assume θk are random (i.i.d. Gaussian) and K ≲
√
p, we can

avoid this by using overcomplete methods to decompose T3 [38].
This result is an adaptation of methods for random overcomplete

tensor decomposition using the sum-of-squares hierarchy [24]. It is

conjectured that K ≲
√
p is optimal for efficient methods that use

T3 [17, 38].

Remark 2.1. One property of (the analysis of) Jennrich’s algo-

rithm is that it is only guaranteed to work in cases where the tensor

has a unique decomposition. This is a serious barrier to using Jen-

nrich’s algorithm for problems over infinite groups. If G is infinite,

we might still hope that T3 = Eд[(д · θ )
⊗3] (or a higher-order mo-

ment) has a low-rank decomposition and that this decomposition

tells us something about θ . However, even if this were true, we

could not use (the existing analysis of) Jennrich’s algorithm to find

such a decomposition because the decomposition would not be

unique: if T3 =
∑r
i=1 a

⊗3
i then we also have T3 =

∑r
i=1(д · ai )

⊗3

for any д ∈ G. More generally, it seems that any spectral method

(which attempts to recover the signal as an eigenvector of some

matrix) cannot succeed unless it first breaks the symmetry; oth-

erwise there are infinitely-many solutions but a matrix only has

finitely-many eigenvectors. Our method will randomly break the

symmetry and then use a spectral method.

3 RESULTS AND TECHNIQUES
3.1 Notation
We say an event occurs with high probability if it has probability

1 − o(1) (as p → ∞). We say an event occurs with overwhelming
probability if it occurs with probability 1−1/δ (p)where δ (p) grows

faster than any polynomial in p (i.e. for any k ∈ N, δ (p) ≥ ω(pk )).
The notation Õ(·) hides factors of log(p).

We write [p] = {1, 2, . . . ,p} and define ±[p/2] as in Section 2.2.

The p × p identity matrix is denoted Ip or simply I . We use ∥ · ∥

to denote the spectral (operator) norm of a matrix. We use ∥ · ∥F
and ∥ · ∥∞ to denote the Frobenius and L∞ norms (respectively)

of a matrix or tensor. For a tensor T , we use e.g. ∥T ∥{a,b }, {c,d } to
denote the spectral norm of the ({a,b}, {c,d})-flattening of T . The
({a,b}, {c,d})-flattening of a 4-tensor T ∈ (Rp )⊗4 is the p2 × p2

matrixMab,cd = Tabcd .

3.2 Main Result
We now state our main result on list recovery for heterogeneous

continuous MRA.

Theorem 3.1. Let θ1, . . . ,θK ∈ Rp be drawn independently from
N(0, Ip/p). Suppose we are given the tensor T = T + E ∈ (Rp )⊗3

where ∥E∥∞ ≤ K−8p−4/polylog(p) and

T =
K∑
k=1
E
д

[
(д · θk )⊗3

]
with д drawn from Haar (uniform) measure on SO(2). For any ε > 0,
there is an algorithm that runs in time pO (1)/ε

4

and outputs a list of
unit vectors τ1, . . . ,τL ∈ Rp with L = pO (1)/ε

4

that has the following
guarantee. Suppose K ≤ pδ for a universal constant δ > 0. With high
probability over both θ1, . . . ,θK and the algorithm’s randomness, for
every k ∈ [K] there exists i ∈ [L] such that ⟨τi ,θk ⟩2 ≥ 1 − ε − o(1).

For any constant ε , our algorithm runs in polynomial time. To the

best of our knowledge, this is the first polynomial-time algorithm

for a heterogeneous orbit recovery problem over an infinite group.

(A few homogeneous problems have frequency marching solutions;

see Section 2.4.1.) Moreover by Proposition 7.6 of [10], to compute

T satisfying the above condition on ∥E∥∞, it is sufficient to taken =
Õ(σ 6K18p8) samples. This exhibits statistically-optimal dependence
of σ 6

on the noise level. We do not attempt to optimize the constant

δ , but we expect that K ∼
√
p is optimal; see Appendix C of the full

version [26].

Our algorithm produces a list of candidate solutions but we

do not analyze how to hypothesis test to select the correct solu-

tion(s) from the list. We leave this as an open question for future

work. Heuristically, in the homogeneous case, one can evaluate

a candidate solution τ by comparing T2(τ ) and T3(τ ) to our es-

timates for the true moments T2(θ ),T3(θ ). In the heterogeneous

case, we want to find vectors τ1, . . . ,τK from our list such that

Td ({τk }) =
1

K
∑K
k=1Td (τk ) is close to the true moments Td ({θ

k })

for d = 2, 3. This is a linear system subject to a K-sparse constraint,
which could perhaps be solved using standard methods such as

ℓ1-minimization.

3.3 Summary of Techniques
Our approach will draw inspiration from prior work on random

overcomplete third-order tensor decomposition. This is the problem

of recovering {a1, . . . ,ar } from

T =
r∑
i=1

a⊗3i (4)

where the ai ∈ R
p
are drawn independently from N(0, I/p). The

state-of-the-art theoretical results for this problem are a close-to-

linear-time spectral method that succeeds when r ≲ p4/3 [21]

and a polynomial-time sum-of-squares method that succeeds when

r ≲ p3/2 [24]. (It seems likely that no efficient algorithm can succeed

when r exceeds p3/2.)
As a starting point for our techniques, we consider the spectral

method of [21] for random overcomplete tensor decomposition.

The key step of the algorithm is to construct (from T ) the p2 × p2
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matrix

M =
∑

i, j ∈[r ]

⟨u, T̃ (ai ⊗ aj )⟩ · (ai ⊗ aj )(ai ⊗ aj )
⊤

(5)

where u ∈ Rp is drawn randomly fromN(0, I ) and T̃ is obtained by

flattening the input tensor to ap×p2 matrix: T̃ =
∑
i ∈[r ] ai (ai ⊗ai )

⊤
.

The idea is that with some decent probability (inverse polynomial),

the random vector u will align reasonably well with some ai , and
this causes the top eigenvector ofM (after applying a certain “pre-

conditioner”) to be close to ai ⊗ ai .
We can re-interpret the matrixM in the graphical language of

tensor networks (see e.g. [16]), which we now describe. An order-d

tensor T ∈ (Rp )⊗d is represented graphically as having d legs; the
cased = 3 is shown in Figure 1(a). The legs are labeledwith the three

indices a,b, c that index intoT . When two tensor legs are connected

by a wire, this indicates contraction of the corresponding indices.

For instance, the tensor network in Figure 1(b) represents the tensor

B ∈ (Rp )⊗4 given by Babcd =
∑
i ∈[p]TabiTcdi . The matrixM from

(5) is the ({a,b}, {c,d})-flattening of the tensor C ∈ (Rp )⊗4 that is
represented by Figure 1(c). Specifically,

Mab,cd = Cabcd =
∑

i, j,k ∈[p]

Tac jTbdkTi jkui . (6)

One can check that (6) is equivalent to (5) when T is given by (4).

Now that we have expressed the matrixM from [21] as a tensor

network, this opens the door to exploring a whole class of new

spectral methods obtained by building various tensor networks out

of the input tensorT . For instance, for the continuous MRA problem

we will see that the tensor network in Figure 1(c) does not work

but that a larger one, shown in Figure 2, does. In Appendix C of

the full version [26] we explain in detail some of the considerations

involved in choosing this particular tensor network.

We now describe our algorithm in more detail. Similarly to [21],

our algorithm takes in a random guess u in order to break sym-

metry. Instead of a vector, u is now an order-5 tensor (with i.i.d.

N(0, 1) entries). (In Appendix C of the full version [26] we explain

the reason for this.) The hope is that u has better-than-random cor-

relation with θ ⊗5 for some θ in the orbit of one of the true signals

θ1, . . . ,θK ; if this occurs then we will recover a vector close to θ .
Our algorithm takes u and the input tensor T , and constructs a

p2 ×p2 matrix M̃(T ,u) according to the tensor network in Figure 2.

We would like it to be the case that if we correctly guess u = θ ⊗5

then M̃(T ,θ ⊗5) ≈ (θ ⊗2)(θ ⊗2)⊤, allowing us to recover θ . Due to
the combinatorics of the SO(2) structure, this is not the case for

M̃ ; however, luckily it is true after applying a particular simple

correction to M̃ , resulting in a matrix M(T ,u). (This correction
operates entrywise in the Fourier basis.) To extract a candidate

solution fromM , we symmetrize it and compute its top eigenvector

v ∈ Rp
2

(which we hope is close to θ ⊗2). We then re-shape v into a

p × p matrix, symmetrize it, and take the top eigenvector again in

order to produce a candidate solution. We then repeat the entire

process L times with fresh randomness u on each trial, in order to

obtain a list of L candidate vectors.

Roughly speaking, a key step in our analysis is to show a high-

probability upper bound on the spectral norm of our matrixM =

M(T ,u). To do this we use the trace moment method, a general-

purpose tool from randommatrix theory which relies on computing

E[Tr((MM⊤)q )]. (7)

In general, this computation can be quite difficult for complicated

random matrices. However, even though M is quite complicated,

the fact that it is represented by a tensor network helps us here.

As shown in Figure 3, a tensor network for the quantity (7) can be

obtained by connecting 2q copies ofM in a circle. SinceM is itself

a tensor network, we need to connect 2q copies of that network
in a circle, creating an expanded tensor network. As a result, the

computation of (7) boils down to a combinatorics question involving

counting certain labelings of this expanded tensor network.

(a) (b)

Figure 3: (a) A real-valued rectangular matrix A. (b) The
tensor network representation of Tr[(AA⊤)q ] is formed by
connecting 2q copies of A in a ring (here q = 3). Since A is
asymmetric, the orientation of the “A” symbols matters.

4 PROOF FOR CONTINUOUS MRA
4.1 Preliminaries
4.1.1 Concentration. First we have some basic concentration re-

sults for random vectors.

Lemma 4.1. If θ ∼ N(0, Ip/p) then��∥θ ∥2 − 1�� ≤ Õ(1/
√
p)

with overwhelming probability.

Proof. This follows from Bernstein’s inequality for subexpo-

nential random variables (see e.g. [33]). □

Lemma 4.2. If θ ∼ N(0, Ip/p) then with overwhelming probability
we have for all i ,

|θi | ≤ Õ(1/
√
p).

Proof. This follows from standard Gaussian tail bounds. □

The following concentration bound is a consequence of hyper-
contractivity (see e.g. Theorem 1.10 of [34]).

Theorem 4.3. Consider a degree-q polynomial f (Y ) = f (Y1, . . . ,Yn )
of independent Gaussian random variables Y1, . . . ,Yn . Let σ 2 be the
variance of f (Y ). There exists an absolute constant R > 0 such that

Pr [| f (Y ) − E[f (Y )]| ≥ t] ≤ e2 · e
−

(
t2

Rσ 2

)
1/q

.
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4.1.2 Fourier Basis. We will largely work in the Fourier domain.

Let ∆ be the unitary matrix that converts from the Fourier repre-

sentation to the standard representation of a vector v ∈ Rp , i.e.

θ = ∆ ˆθ ; see (2). We define the Fourier transform T̂ of a tensor T as

depicted in Figure 4(b). One can check that ∆⊤∆ is the permutation

matrix that swaps indices i and −i , i.e. (∆⊤∆)i j = 1i=−j . Thus, as
shown in Figure 4(c), when two copies of ∆ combine in a tensor

network, we denote this by a dotted line which is understood to

mean contraction with indices i and −i paired.

(a) (b) (c)

Figure 4: (a) The matrix ∆ converts a vector’s Fourier rep-
resentation ˆθ to its standard representation θ . (b) We can
convert from T̂ to T by attaching three copies of ∆. Note
that ∆ is asymmetric and so the orientation of the ∆ sym-
bols is important. (c)When two∆’s connect as shown, this
has the effect of a contraction in which indices i and −i
are paired. We abbreviate this as a dotted line with one
end labeled i and the other end labeled −i. The tensor C
shown here is Cabcd =

∑
i T̂abiT̂cd (−i).

4.2 Main Technical Theorem
We now begin the proof of our main result (Theorem 3.1).

Our algorithm will build its list of candidate solutions by repeat-

ing a certain spectral method L times, with fresh randomness u
each time. The following main technical theorem shows that each

of these trials has a decent probability of success.

Theorem 4.4 (main technical theorem). Let {θk }, δ and T
be as in Theorem 3.1. Let K ≤ pδ . Let u ∈ (Rp )⊗5 be drawn from
N(0, Ip5 ). There is a matrixM(T ,u) ∈ Rp

2×p2 (computable in time

poly(p) from T and u) with the following guarantee. Let v ∈ Rp
2

be
the leading eigenvector of 1

2
[M(T ,u) +M(T ,u)⊤]. Re-shape1 v to a

p×p matrixV and let τ ∈ Rp be the (unit-norm) leading eigenvector2

of 1

2
(V + V⊤). There is a deterministic predicate P({θk }) (defined

in Section 4.7) depending only on {θk }, that is satisfied with high
probability (over {θk }). For fixed {θk } satisfying P({θk }), for any
k ∈ [K] and any ε > 0, we have ⟨τ ,θk ⟩2 ≥ 1 − ε − o(1) with
probability p−O (1)/ε

4

over the randomness of u.

We first see how our main technical theorem (Theorem 4.4)

implies our main theorem (Theorem 3.1).

Proof of Theorem 3.1. To produce the list τ1, . . . ,τL , the al-

gorithm draws independent samples u1, . . . ,uL ∼ N(0, Ip5 ). For

1
We will see that M (T, u) is a flattening of a 4-tensor, with entries M (T, u)ab,cd .
Thus v has entries vab and can be naturally thought of as a p × p matrix.

2
Here the leading eigenvector is defined to be the one whose eigenvalue is largest in

absolute value.

û

ˆT

ˆT
ˆT

ˆT

ˆT

ˆT
ˆT

ˆT

ˆT

i2
-i2

i3
-i3

i4

-i4

i5

-i5

i6

-i6

i7
-i7

i8
-i8

i9

-i9

i1

-i1

a

j1

-j1

c

j2
-j2

b
j3

-j3

d

j4

-j4

j5 -j5

Figure 5: The p2 × p2 matrix M̂(T ,u) is obtained by apply-
ing ˆS to the ({a,b}, {c,d})-flattening of the tensor shown
here. The dotted lines and the Fourier transforms ˆT and
û are defined as in Figure 4.

i ∈ [L], extract τi from M(T ,ui ) as in Theorem 4.4. For fixed

k , let γ = p−O (1)/ε
4

denote the success probability of a single

trial. For fixed k , the probability of success after L trials is at least

1−(1−γ )L ≥ 1−exp(−γL). Taking a union bound over [K], the over-

all probability of failure is at most K exp(−γL) ≤ pδ exp(−γL). To

make this o(1), it is sufficient to take L = log
2(p)/γ = pO (1)/ε

4

. □

We now begin the proof of the main technical theorem (Theo-

rem 4.4). The p2×p2 matrixM(T ,u) is the ({a,b}, {c,d})-flattening
of the tensor depicted in Figure 2, but with an additional post-

processing operator S applied to it. This operator is easiest to

describe in the Fourier domain: let
ˆS be the operator that acts

entrywise on a 4-tensor by multiplying the abcd entry by a non-

negative real number Sabcd to be specified later. We will have

Sabcd = S(−a)(−b)(−c)(−d ) and so S takes real 4-tensors to real 4-

tensors. We define

M(T ,u) = (∆ ⊗ ∆)[M̂(T ,u)](∆ ⊗ ∆)⊤

where ∆ is as in Section 4.1.2, and where M̂(T ,u) is obtained by

applying
ˆS to the ({a,b}, {c,d})-flattening of the tensor depicted

in Figure 5.

Explicitly, we have

M̂(T ,u)ab,cd = Sabcd
∑

i1, ...,i9

∑
j1, ..., j5

û−j1,−j2,−j3,−j4,−j5
ˆT−i1,a,i2

× ˆT−i2, j1,i3
ˆT−i3,c,i4

ˆT−i4, j2,i5
ˆT−i5,b,i6

× ˆT−i6, j3,i7
ˆT−i7,d,i8

ˆT−i8, j4,i9
ˆT−i9, j5,i1 .

Recall T = T + E where

T =
K∑
k=1
E
д

[
(д · θk )⊗3

]
.

Let θk be the signal we are hoping to recover. Let

T k = E
д

[
(д · θk )⊗3

]
.
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Recall u ∼ N(0, Ip5 ) ∈ (R
p )⊗5. Write u = α (θk )⊗5 + ũ with ũ ⊥

(θk )⊗5. We will break down the matrixM(T ,u) into the following

terms:

M(T ,u) = M(T ,u) + [M(T ,u) −M(T ,u)]

= αM(T , (θk )⊗5) +M(T , ũ) + [M(T ,u) −M(T ,u)]

= αM(T k , (θk )⊗5) + α[M(T , (θk )⊗5) −M(T k , (θk )⊗5)]

+M(T , ũ) + [M(T ,u) −M(T ,u)].

Here we have used the fact that M(T ,u) is linear in u. We now

have four terms to bound separately.

4.3 Signal Term
Here we consider the signal term M(T k , (θk )⊗5). Let Θk = (θk ⊗

θk )(θk ⊗ θk )⊤, the matrix we would like to recover. Intuitively, we

will show that if we were to correctly guess u = (θk )⊗5, then the

resulting matrix matrix would be close to Θk
. In order for this to be

true, we will need to choose the parameters Sabcd appropriately.

Proposition 4.5. For any k ∈ [K], with overwhelming probability
over θk ,

∥M(T k , (θk )⊗5) − Θk ∥ ≤ o(1).

This section is devoted to proving Proposition 4.5. Recall

T̂i1i2i3 = 1i1+i2+i3=0

K∑
k=1

ˆθki1
ˆθki2

ˆθki3

and so

T̂ ki1i2i3 = 1i1+i2+i3=0
ˆθki1

ˆθki2
ˆθki3 .

Without loss of generality, take k = 1. We have

M̂(T 1, (θ1)⊗5)ab,cd = Sabcd sabcd ˆθ1a
ˆθ1b
ˆθ1c
ˆθ1d (8)

where

sabcd =
∑

i1, ...,i9

∑
j1, ..., j5

(
1−i1+a+i2=0 · · ·1−i9+j5+i1=0

)
×

(
| ˆθ1i1 |

2 · · · | ˆθ1i9 |
2 | ˆθ1j1 |

2 · · · | ˆθ1j5 |
2

)
.

Here the indicator functions enforce that for each copy of
ˆT in

Figure 5, the three incident labels sum to zero. Define

Sabcd ≜

{
0 if a = −b or c = −d
1/E[sabcd ] otherwise.

The reason for zeroing out some Sabcd ’s will not be apparent until
later (Section 4.4); this is crucially used in the proof of Lemma 4.19

for bounding the noise term M(T , ũ). The reason for 1/E[sabcd ]
should be clear from (8).

We will show that sabcd concentrates near its expectation. We

start with a basic computation of the moments of
ˆθ1 (which of

course holds for any
ˆθk ).

Lemma 4.6. E| ˆθ1i |
2k = k!p−k . If k1 , k2 then E[( ˆθ1i )

k1 ( ˆθ1
−i )

k2 ] =

0. If i , ±j then ˆθ1i and ˆθ1j are independent.

Proof. The third statement is immediate from (2), since θ1 ∼
N(0, I/p). The second statement is immediate from the fact that

the complex phase of
ˆθ1i is a uniformly random angle, and

ˆθ1
−i =

ˆθ1i .

For the first statement, | ˆθ1i |
2 ∼ 1

2p χ
2

2
, so use the known formula for

chi-squared moments: E[(χ2
2
)k ] = 2

kk!. □

We next show that for every a,b, c,d we have E[sabcd ] = Θ(p−9),
specifically:

Lemma 4.7. There exist universal positive constants c1 and c2 such
that for every a,b, c,d ∈ ±[p/2],

c1 p
−9 ≤ E[sabcd ] ≤ c2 p

−9.

Proof. Fix a,b, c,d . There is a (nonzero) term of sabcd for each

choice of indices i1, . . . , i9, j1, . . . , j5 ∈ ±[p/2] such that for each

copy of
ˆT in Figure 5, the three incident indices sum to zero. There

are at most p5 (nonzero) terms in sabcd because once i9, j5, j4, j3, j1
are chosen, the zero-sum constraints uniquely determine at most

one possible value for the other indices. (We say “at most one” since

only indices in the set ±[p/2] are valid.) Each term of sabcd has

expectation at most 14!p−14 (by Lemma 4.6), so E[sabcd ] ≤ 14!p−9.
This proves the upper bound.

The idea of the lower bound is to argue that sabcd has Ω(p5)
terms and each term has expectation at least p−14. We defer the full

proof to Appendix A of the full version [26]. □

Lemma 4.8. There exists a universal positive constant c3 such that
for every a,b, c,d ∈ ±[p/2],

Var[sabcd ] ≤ c3 p
−19.

Proof. The variance of a sum can be broken down as

Var(
∑
i
xi ) =

∑
i
Var(xi ) +

∑
i,j

Covar(xi ,x j ).

Each of the O(p5) terms of sabcd has variance O(p−28). There are
O(p10) ways to choose two distinct terms of sabcd . Only O(p

9) of

these ways gives two terms that are dependent, in which case their

covariance is O(p−28); otherwise they are independent and have

covariance zero. This means Var[sabcd ] ≤ O(p5 ·p−28 +p9 ·p−28) =
O(p−19). □

By hypercontractivity (Theorem 4.3) we have with overwhelm-

ing probability, |sabcd − E[sabcd ]| ≤ p−9.1. Thus, when a , −b
and c , −d , we have |Sabcd sabcd − 1| ≤ O(p−0.1) (recall that
Sabcdsabcd appears in (8)). For the entries with a = −b or c = −d
(there are ≤ 2p3 such entries in M̂), we will simply use the bound

| ˆθ1i | ≤ Õ(1/
√
p).

We can now complete the proof of Proposition 4.5. Using (8),

∥M(T 1, (θ1)⊗5) − (θ1 ⊗ θ1)(θ1 ⊗ θ1)⊤∥

= ∥M̂(T 1, (θ1)⊗5) − ( ˆθ1 ⊗ ˆθ1)( ˆθ1 ⊗ ˆθ1)⊤∥

≤ ∥M̂(T 1, (θ1)⊗5) − ( ˆθ1 ⊗ ˆθ1)( ˆθ1 ⊗ ˆθ1)⊤∥F

≤

√
p4 · Õ(p−0.1 · p−2)2 + 2p3 · Õ(p−2)2

≤ o(1).

4.4 Noise Term
We now consider the noise term M(T , ũ), i.e. the term created by

the “bad” component of u that is orthogonal to (θk )⊗5. This term is

the crux of the proof, where we will crucially use the assumption

K ≤ pδ .
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Proposition 4.9. There exists δ > 0 such that if K ≤ pδ , we have
the following. There is a determinstic predicate P1({θk }) depending
only on {θk } that is satisfied with high probability. For any fixed
{θk } satisfying P1({θk }), we have

∥M(T , ũ)∥ ≤ O(
√
logp)

with high probability over the randomness of ũ.

Remark 4.10. Note that ũ depends on which signal k ∈ [K] we

have chosen as the target, since ũ ⊥ (θk )⊗5. However, P1 does not
depend on k , and the conclusion of Proposition 4.9 holds for any

fixed k .

This section is devoted to proving Proposition 4.9. We will use

the following result on random contractions of tensors.

Theorem 4.11 ([24] Corollary 6.6). LetW ∈ Rp × Rq × Rr

be an order-3 tensor. Let ũ ∼ N(0, Σ) with r × r covariance matrix
satisfying 0 ⪯ Σ ⪯ I . Then for any t ≥ 0,

Pr

ũ

[
∥(I ⊗ I ⊗ ũ⊤)W ∥{1}, {2} ≥ t

(
∥W ∥{1}, {2,3} ∨ ∥W ∥{1,3}, {2}

)]
≤ 4(p + q) exp(−t2/2).

In our setting, we have M(T , ũ) = (I ⊗ I ⊗ ũ⊤)W whereW is

given by the tensor network in Figure 6(a) (
ˆS is present but not

shown). Explicitly, the Fourier transform (defined as in Figure 4) of

W is

Ŵab,cd, j1 j2 j3 j4 j5 = Sabcd
∑

i1, ...,i9

T̂−i1,a,i2T̂−i2, j1,i3T̂−i3,c,i4T̂−i4, j2,i5

× T̂−i5,b,i6T̂−i6, j3,i7T̂−i7,d,i8T̂−i8, j4,i9T̂−i9, j5,i1 .

By Theorem 4.11,

Pr

ũ
[∥M(T , ũ)∥ ≥ tσ ] ≤ 8p2 exp(−t2/2) (9)

where

σ = max{∥W ∥{a,b }, {c,d, j1, j2, j3, j4, j5 }, ∥W ∥{a,b, j1, j2, j3, j4, j5 }, {c,d }}.

The two flattenings ofW that appear in the definition of σ are

equivalent due to symmetry, so it suffices to consider just the first

one. The corresponding matrix is W̃ ∈ R2×7 given by

W̃ab,cd j1 j2 j3 j4 j5 =Wab,cd, j1 j2 j3 j4 j5 .

We will bound ∥W̃ ∥ using the trace moment method:

Theorem 4.12 (e.g. [32] Proposition 5.2). For any real-valued
random matrix Y , for any integer q ≥ 1 and any ε > 0,

Pr

[
∥Y ∥ >

(
E[Tr((YY⊤)q )]

ε

) 1

2q
]
< ε .

As illustrated in Figures 3 and 6, we can represent Tr((W̃W̃ ⊤)q )
as a tensor network by connecting (in a ring) 2q copies of the

tensor network forW̃ . (We will take q = logp.) Call this new tensor

network Gq (see Figure 6). The computation of E[Tr((W̃W̃ ⊤)q )] is
thus reduced to a combinatorial problem involving labelings of Gq ,

which we next describe.

(a)

∆
∆

∆

∆∆

∆
∆

T̂

T̂
T̂

T̂

T̂

T̂
T̂

T̂

T̂

∆

∆

a

j1
c

j2

bj3d

j4

j5

(b)

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂

T̂T̂T̂
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-ĩ (1)
4

i (1)
4

-i (1)
4
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-ĩ (1)
6

i (1)
6

-i (1)
6
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-b (1)
b (1)
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Figure 6: (a) The tensor network for W . (The oper-
ator Ŝ is not shown but can be thought of as liv-
ing on the appropriate four edges.) The matrix W̃
is the ({a,b}, {c,d, j1, j2, j3, j4, j5})-flattening. (b) Here we
see (part of) the tensor network Gq that computes
Tr((W̃W̃ ⊤)q ). There are 2q copies of the tensor network
from (a) (3 copies are shown here) connected in a ring
as in Figure 3. The outermost copy connects back to the
innermost copy, so that the entire network can be visual-
ized as living on the surface of a torus. Again, ˆS is not
shown (it will be unimportant since we will bound its
contribution separately). Recall that connecting two “op-
posing” copies of ∆ results in a dotted edge, as shown in
Figure 4.

Definition 4.13. A labeling L of Gq is described by the following.

For each edge e , label one end with a value ie ∈ ±[p/2] and label the
other end with−ie . Call each copy of T̂ inGq a vertex, and label each
vertex v with a value kv ∈ [K]. Let L(v) = 1i1+i2+i3=0

ˆθkvi1
ˆθkvi2

ˆθkvi3
where i1, i2, i3 are the three edge labels incident

3
to v .

Recall that T̂i1i2i3 = 1i1+i2+i3=0
∑K
k=1

ˆθki1
ˆθki2

ˆθki3 . The vertex labels kv
correspond to the terms in this sum.

3
Suppose an edge e is incident to a vertex v in a tensor network. There is a label ±ie
at each end of e . The label at the v -end of e is considered incident to v .
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As shown in Figure 6, there are q layers, and layer ℓ (for ℓ =

1, 2, . . . ,q) has labels

a(ℓ),b(ℓ), c(ℓ),d(ℓ), i
(ℓ)
1
, . . . , i

(ℓ)
9
, ĩ
(ℓ)
1
, . . . , ĩ

(ℓ)
9
, j
(ℓ)
1
, . . . , j

(ℓ)
5
.

Layer numbers are defined modulo q, i.e. layer q + 1 refers to layer

1.

We now have

E[Tr((W̃W̃ ⊤)q )] = E
∑
L

SL
∏
v
L(v)

where: L ranges over all labelings of Gq ; v ranges over all vertices

of Gq ; the expectation is over the randomness of θ1, . . . ,θK ; and
the contributions from S are captured by

SL ≜
q∏
ℓ=1

Sa(ℓ)b (ℓ)c (ℓ)d (ℓ) S(−a(ℓ+1))(−b (ℓ+1))(−c (ℓ))(−d (ℓ)).

Definition 4.14. Define the number of repeated labels in a labeling

to be

c(L) =
∑

i ∈[p/2]

max{0, [# edges labeled with ± i] − 1}.

Definition 4.15. For any k , call the set of vertices {v : kv = k}
a region. The number of regions in a labeling is

r (L) = |{kv }v | = [# distinct kv values].

Definition 4.16. Call L a valid labeling if SL E
∏

v L(v) , 0.

We have the following straightforward characterization of valid

labelings.

Lemma 4.17. L is valid if and only if

(i) for every vertex v , the three edge labels i1, i2, i3 incident to v
satisfy i1 + i2 + i3 = 0,

(ii) for every ℓ, a(ℓ) , −b(ℓ) and c(ℓ) , −d(ℓ), and
(iii) for every i , each region has as many incident4 i labels as inci-

dent −i labels.

Proof. Condition (i) is due to the factor 1i1+i2+i3 in L(v). Con-
dition (ii) is due to the definition of Sabcd (recall that we set certain

Sabcd values to zero). Condition (iii) comes from aggregating all

the
ˆθvi factors in

∏
v L(v) and applying Lemma 4.6. □

Lemma 4.18. For any valid labeling L with r (L) > 1, we have
c(L) ≥ r (L)/2.

Proof. Since r (L) > 1, every region has at least two edges

crossing its boundary
5
, so there are at least r (L) such boundary

edges total. In a valid labeling, each of these boundary edges must

have the same label as at least one other boundary edge. This results

in at least r (L)/2 repeated labels. □

The following key lemma is proved in Appendix A of the full

version [26].

4
If R is a region and e = (u, v) is an edge with u ∈ R and v < R then the label at the

u-end of e is considered incident to R .
5
It is immediate from Lemma 4.17(iii) that a region must have an even number of

edges crossing its boundary. In fact, it is not hard to see that Gq has no cuts of size

two and so at least four edges must cross.

Lemma 4.19. The number of valid edge-labelings6 with exactly
c(L) repeated labels is at most 3[2(27q)2]c(L)p1+9q−c(L)/25.

The interpretation of this is as follows. The important factor is

p1+9q−c(L)/25; the rest is lower-order. Without requiring any re-

peated labels, the number of valid edge-labelings is ∼ p1+9q . Thus
the lemma shows that when repeated labels are required, the num-

ber of valid edge-labelings decreases substantially.

Remark 4.20. To achieve heterogeneity K ≲ pδ , one needs to

show that the number of valid labelings with r (L) regions is ≲
p1+9q−δr (L). Together, Lemmas 4.18 and 4.19 show this for some

constant δ > 0, but we have not attempted to optimize δ . See
Appendix C of the full version [26] for more on this.

Using the above lemmas, we are able to bound E[Tr((W̃W̃ ⊤)q )]
as desired. We prove the following in Appendix A of the full version

[26].

Lemma 4.21. With q = logp,

E[Tr((W̃W̃ ⊤)q )] ≤ O(1)qp2

and so
{E[Tr((W̃W̃ ⊤)q )]}1/2q ≤ O(p1/q ) ≤ O(1).

By Theorem 4.12, with probability at least 1 − 1/p (over the

randomness of θ1, . . . ,θK ) we have ∥W̃ ∥ ≤ O(1); let this be the
predicate P1({θ

k }). Provided P1({θ
k }) holds, we then have by (9)

that

∥M(T , ũ)∥ ≤ c
√
logp

with probability at least 1 − 8p2−Ω(c
2)
(over the randomness of ũ).

Taking c to be a sufficiently large constant completes the proof.

4.5 Heterogeneous Signal Term
Here we consider the termM(T , (θk )⊗5)−M(T k , (θk )⊗5). This term
is relatively benign compared to the previous one and we bound

it using a much simpler variant of the argument in the previous

section. For convenience we useK ≤ pδ here but we expect that the

previous term (not this one) would be the bottleneck if we wanted

to optimize δ .

Proposition 4.22. There exists δ > 0 such that if K ≤ pδ then
with high probability over {θk } we have for every k ∈ [K],

∥M(T , (θk )⊗5) −M(T k , (θk )⊗5)∥ ≤ o(1).

This section is devoted to proving Proposition 4.22. By Markov’s

inequality, it is sufficient to show

E∥M(T , (θ1)⊗5) −M(T 1, (θ1)⊗5)∥2F ≤ o(1/K)

so that we can take a union bound over all k ∈ [K].
The value ∥M(T , (θ1)⊗5)∥2F is depicted by the tensor network in

Figure 7. Similarly to the previous section, we consider labelings of

Figure 7. As before, each edge gets a label ie and each vertex gets a

label kv . (Each ˆθ1 is also considered a vertex.)

6
By edge-labelings we mean choices for the edge labels ie but not the vertex labels vk .
Here valid means that (i) and (ii) in Lemma 4.17 are satisfied.
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Figure 7: The tensor network for ∥M(T , (θ1)⊗5)∥2F . The
error term in (10) is obtained by only considering the
terms corresponding to particular labelings (see Defini-
tion 4.23).

Definition 4.23. In addition to the requirements in Lemma 4.17,

we define a valid labeling of Figure 7 to have two additional con-

straints: (i) each
ˆθ1 has vertex label kv = 1, and (ii) the inner and

outer ring of T̂ ’s each have a vertex for which kv , 1.

By restricting to these valid labelings, we get an expression for

the error term that we want. Formally,

∥M(T , (θ1)⊗5) −M(T 1, (θ1)⊗5)∥2F

=
∑

valid L

SabcdS(−a)(−b)(−c)(−d )
∏
v
L(v) (10)

where for a T̂ vertex, L(v) is defined as in the previous section,

and for a
ˆθ1 vertex, L(v) = ˆθ1

−j where −j is the incident label. The

proof of the following result can be found in the full version [26].

Lemma 4.24. The number of valid labelings of Fig. 7 is O(K18p13).

Let Smax = maxabcd Sabcd ≤ O(p9). Since 0 ≤ E
∏

v L(v) ≤
O(p−32), we have

E∥M(T , (θ1)⊗5) −M(T 1, (θ1)⊗5)∥2F ≤ S2
max

∑
valid L

E
∏
v
L(v)

≤ O(p18) ·O(K18p13) ·O(p−32) ≤ O(K18/p)

which is o(1/K) provided K ≤ p1/20.

4.6 Error Term
Here we consider the termM(T ,u)−M(T ,u). This is the error term
due to the small error E that we allow in our input tensor. The

following result follows from crude and easy bounds; see the full

version [26] for the proof.

Proposition 4.25. There is a deterministic predicate P2({θk })
depending only on {θk } that occurs with high probability. If P2({θk })
is satisfied then

∥M(T ,u) −M(T ,u)∥ ≤ Õ(K8p4∥E∥∞)

with overwhelming probability over u.

4.7 Putting it all Together
Here we complete the proof of Theorem 4.4. Recall u ∼ N(0, I ) ∈

Rp
5

,Θk = (θk⊗θk )(θk⊗θk )⊤ andu = α(θk )⊗5+ũ with ũ ⊥ (θk )⊗5.
As above, we write

M(T ,u) = αM(T k , (θk )⊗5) + α[M(T , (θk )⊗5) −M(T k , (θk )⊗5)]

+M(T , ũ) + [M(T ,u) −M(T ,u)].

Let the predicate P({θk }) be the intersection of the following high-

probability events:

• the conclusion of Proposition 4.5 holds for every k ∈ [K],

• P1({θ
k }) (from Proposition 4.9) holds,

• the conclusion of Proposition 4.22 holds,

• P2({θ
k }) (from Proposition 4.25) holds,

• for every k ∈ [K], 1 − Õ(1/
√
p) ≤ ∥θk ∥ ≤ 1 + Õ(1/

√
p).

For fixed θ1, . . . ,θK satisfying P({θk }), we have for any k ,

• ∥M(T k , (θk )⊗5) − Θk ∥ ≤ o(1),
• ∥M(T , (θk )⊗5) −M(T k , (θk )⊗5)∥ ≤ o(1),

• ∥M(T , ũ)∥ ≤ O(
√
logp) with high probability over ũ,

• ∥M(T ,u) −M(T ,u)∥ ≤ o(1) with overwhelming probability

over u.

We have

α = ⟨u, (θk )⊗5⟩/∥(θk )⊗5∥2

= ⟨u, (θk )⊗5/∥(θk )⊗5∥⟩/∥(θk )⊗5∥ ≜ α̃/∥θk ∥5

where α̃ ∼ N(0, 1) independently from ũ.
We have the Gaussian lower tail bound

Pr{α̃ ≥ t} ≥
1

2

√
2π

t−1 exp(−t2/2)

and so

Pr

{
α̃ ≥ C

√
logp

}
≥

1

2

√
2π

1

C
√
logp

p−C
2/2. (11)

We can writeMsym(T ,u) ≜ 1

2
[M(T ,u)+M(T ,u)⊤] = α Θk + B =

α̃ Θk/∥θk ∥5 + B where

∥B∥ · ∥θk ∥ ≜ β ≤ o(1)α +O(
√
logp) ≤ o(1) α̃ +O(

√
logp). (12)

Let w = (θk ⊗ θk )/∥θk ∥2 ∈ (Rp )⊗2 so that ww⊤ = Θk/∥θk ∥4.
Let v ∈ (Rp )⊗2 be the leading eigenvector of Msym(T ,u) (with

∥v ∥ = 1), which is also the leading eigenvector of M̃sym(T ,u) =

∥θk ∥Msym(T ,u) = α̃ww⊤ + ∥θk ∥B. We have

α̃ ⟨v,w⟩2 + β ≥ v⊤M̃sym(T ,u)v ≥ w⊤M̃sym(T ,u)w ≥ α̃ − β

and so ⟨v,w⟩2 ≥ 1 −
2β
α̃ . Re-shape v into a p × p matrix Ṽ and let

V = 1

2
(Ṽ + Ṽ⊤). Let τ be the eigenvector ofV corresponding to the

eigenvalue of largest absolute value. Let y = θk/∥θk ∥. Write

V = ⟨V ,yy⊤⟩yy⊤ + B′
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where ∥B′∥2 ≤ ∥B′∥2F = ∥V ∥F − ⟨V ,yy
⊤⟩2 ≤ 1 − ⟨V ,yy⊤⟩2. We

have

|⟨V ,yy⊤⟩| = |y⊤Vy | ≤ |τ⊤Vτ | ≤ |⟨V ,yy⊤⟩| · ⟨τ ,y⟩2 + ∥B′∥

and so

⟨τ ,y⟩2 ≥ 1 −
∥B′∥

|⟨V ,yy⊤⟩|
≥ 1 −

√
1 − ⟨V ,yy⊤⟩2

|⟨V ,yy⊤⟩|
.

Note that

⟨V ,yy⊤⟩2 = ⟨Ṽ ,yy⊤⟩2 = ⟨v,w⟩2 ≥ 1 −
2β

α̃

and so, provided 2β/α̃ ≤ 1/2,

⟨τ ,y⟩2 ≥ 1 −

√
2β/α̃√
1/2

= 1 − 2

√
β

α̃
.

Recall from (12) that if α̃ ≥ C
√
logp then β/α̃ ≤ o(1)+O(1)/C . Thus,

to have ⟨τ ,y⟩2 ≥ 1 − ε − o(1), it is sufficient to take C = O(1)/ε2.

Using (11), the success probability is ≥ p−O (1)/ε
4

.
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