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ABSTRACT

A tensor network is a diagram that specifies a way to “multiply”
a collection of tensors together to produce another tensor (or ma-
trix). Many existing algorithms for tensor problems (such as tensor
decomposition and tensor PCA), although they are not presented
this way, can be viewed as spectral methods on matrices built from
simple tensor networks. In this work we leverage the full power of
this abstraction to design new algorithms for certain continuous
tensor decomposition problems.

An important and challenging family of tensor problems comes
from orbit recovery, a class of inference problems involving group
actions (inspired by applications such as cryo-electron microscopy).
Orbit recovery problems over finite groups can often be solved via
standard tensor methods. However, for infinite groups, no general
algorithms are known. We give a new spectral algorithm based on
tensor networks for one such problem: continuous multi-reference
alignment over the infinite group SO(2). Our algorithm extends to
the more general heterogeneous case.
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1 INTRODUCTION

Algorithms for decomposing low-rank tensors have had a wide
range of applications in machine learning and statistics. They can
be leveraged to give efficient algorithms for phylogenetic recon-
struction [27], topic modeling [4], community detection [5], inde-
pendent component analysis [25] and learning various mixture
models [22, 23]. However there are important families of prob-
lems where the low-order moment tensors are known to achieve
statistically-optimal rates of estimation but there are no known
efficient algorithms for finding the parameters from the moments.

The familiar symmetric third-order tensor decomposition prob-
lem asks: Given a p X p X p low-rank tensor of the form

r

T:Z]a?3

can we recover the vectors ay, . ..,a, € RP? Whenr < pitis called
the undercomplete case and when r > p it is called the overcomplete
case. In the undercomplete case, Jennrich’s algorithm (see [25])
gives a polynomial time algorithm based on generalized eigende-
compositions that works provided that the vectors ay, . . ., a, are
linearly independent. In the overcomplete case, a line of work has
culminated in a polynomial time algorithm that works when the
vectors a; are random (i.i.d. Gaussian) and r < p3/2 [20, 21, 24].
In applications, the vectors ay, . . ., a, represent the parameters of
a model we would like to learn and T represents moments of the
distribution specified by the model whose entries we can estimate
from samples.

However, in some applications the parameters are not uniquely
defined, except up to equivalence under some continuous group
action. This leads to a new sort of problem that we call orbit tensor
decomposition in which we want to recover a vector 6 € R? given

a tensor of the form
T= / (A0)®3dA
AeA

where A is a known, possibly infinite, set of pXp matrices (equipped
with a measure over which to integrate). We assume furthermore
that A possesses a particular group symmetry which results in
nonuniqueness of the solution: € and A8 are equally-good solutions
for any A € A. There are important real-world applications such as
cryo-electron microscopy (cryo-EM) [3, 28, 36] and multi-reference
alignment (MRA) [1, 8, 11, 14, 18, 29, 31, 39] where these sort of
tensor decomposition problems arise when using the method of mo-
ments. Here A is a random rotation of a two- or three-dimensional
signal whose orientation we cannot control when we are measur-
ing it. Despite considerable interest in such problems there are few
algorithms with provable guarantees, in large part because working
with the symmetries of the group is challenging algorithmically.


https://doi.org/10.1145/3313276.3316357
https://doi.org/10.1145/3313276.3316357

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

We will focus on the continuous multi-reference alignment (con-
tinuous MRA) problem which can be described as follows. The goal
is to recover a signal 6 which is a real-valued function on the unit
circle in R%. We assume 0 is band-limited so that in the Fourier
basis we can think of 6 as a finite-dimensional vector 6 € RP. The
compact group G = SO(2) (rotations in the plane) acts on 6 by
rotating the signal around the unit circle. For g € G and 6 € R?
we denote the result of the rotation as g - 6 € R?. Now we observe
many independent samples of the form y; = g; - 6 + &; where g; is
a uniformly random element of SO(2) and &; is i.i.d. Gaussian noise.
In other words, we observe many copies of the true signal that are
both noisy and randomly-rotated. It is known that for this problem
(and a large class of similar problems), optimal sample complex-
ity in the large-noise limit is achieved by the method of moments
[1, 2, 8, 10]. First we use the samples to estimate the third mo-
ment T = fg g 0)®3dg. Recovering 6 (up to equivalence under

group action) is now an instance of the orbit tensor decomposition
problem from above.

Existing tensor methods fail because (i) T is no longer low-rank.
In fact T has an infinite number of components and when 0 is
generic would plausibly have essentially full rank. We can no longer
hope to decompose T by finding a rank-one term that we can sub-
tract off and lower the rank. Instead, we need to find a continuous
collection of rank-one tensors at once! (ii) We can only hope to re-
cover the orbit of 0, i.e. to recover a vector that (approximately) lies
in the orbit {g- 6 : g € G}. This symmetry implies that any finite-
rank decomposition of the tensor cannot be unique, which seems
to rule out many spectral methods such as Jennrich’s algorithm
(whose analysis relies on having a unique decomposition).

We remark that for discrete multi-reference alignment (discrete
MRA) where G is a finite group of rotations of order p, these issues
do not arise. In fact, the samples y; can be thought of as coming from
a mixture of p spherical Gaussians where the centers are related
(in that they are rotations of each other). By ignoring these interre-
lationships and learning the distribution as a mixture of spherical
Gaussians via tensor decomposition, it is possible to obtain algo-
rithms with provable guarantees [29]. In contrast, continuous MRA
is a continuous mixture model where we crucially must exploit the
relationship between the (infinitely-many) centers. The continuous
nature of our problem poses a fundamental challenge for applying
tensor methods. To overcome this, we will first randomly break
the symmetry and then apply a spectral method that resembles a
tailor-made variant of the tensor power method.

In this paper, we leverage this methodology to give a polynomial-
time algorithm for list recovery for the continuous MRA problem
and for its so-called heterogeneous generalization in which there
are multiple true signals 01,...,0K e RP and each sample comes
from a random one of them. (The homogeneous case K = 1 is
known to admit a simple “frequency marching” solution [14]; see
Section 2.4.1.) Here list recovery means that we output a list of
polynomially-many candidate vectors such that every true signal is
well correlated with at least one candidate. To achieve this, we need
to delicately exploit symmetries in the orbit of each 6%, but cope
with the fact that the orbits of different components are unrelated.
More broadly, our success gives us hope that our methodology
for designing tensor spectral methods can be adapted to a wide
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variety of problems that have thus far resisted attack. As in work
on overcomplete tensor decomposition [20, 21, 24], our analysis
assumes that the signals 0% are drawn at random (i.i.d. Gaussian).
To the best of our knowledge, our algorithm provides the first
polynomial-time solution to an orbit recovery problem over an
infinite group, other than a few special cases that admit ad hoc
closed-form solutions (see Section 2.4.1). In particular, we give the
first polynomial-time solution to a heterogeneous orbit recovery
problem over an infinite group.

We now motivate and describe our approach for the continuous
MRA problem. Many existing methods for overcomplete tensor
decomposition are based on the idea of finding a vector v € RP
that maximizes the cubic form (T, v®3) = X alf@S, v). If the a;
are random, it can be shown that approximately, the maximizers of
(T,v®3) are ay, . .., ar provided r < p3/2 [20]. A popular heuris-
tic for optimizing (T, v®3) over unit vectors is the tensor power
method, in which we iteratively update v € R? according to

v — Z Tijkvjvg- (1)
jk

Similarly to the matrix power method, the intuition here is that
by “multiplying” the tensor by itself, we are repeatedly amplify-
ing the signal without having the noise build up too much. There
are rigorous guarantees for this non-convex method for random
overcomplete tensor decomposition, but require a very warm start
(6, 7].

Perhaps fortuitously, unlike the matrix case there are many dif-
ferent ways that one can “multiply” third-order tensors together to
create other “power methods.” A tensor network is a diagram that
specifies a recipe for multiplying a collection of tensors together.
This concept has been used in areas such as quantum physics [16].
Tensor network notation is illustrated in Figure 1 and will be central
to our work. One of our key observations is that, although they
were not explained this way, many existing tensor methods in the
literature can be re-interpreted as spectral methods on matrices
derived from tensor networks. In particular, the spectral method of
[21] for random overcomplete tensor decomposition is based on the
tensor network shown in Figure 1(c); this method is a starting point
for our work. In Appendix B of the full version [26] we catalog
related results for the tensor PCA problem and how they can also
be described as coming from certain tensor networks.

The tensor network abstraction gives us freedom to explore
more complicated tensor networks, which helps us cope with the
symmetries of continuous MRA. Ultimately we will use the tensor
network in Figure 2. We will show that with decent probability over
a random tensor u, the top eigenvector of the associated matrix
is close to a vector in the orbit of 8. To accomplish this, we will
employ the trace moment method which, in our setting, gives us a
way to spectrally bound a certain noise term by counting certain
valid labelings of the edges of a much larger tensor network that
is obtained by stringing together many copies of Figure 2. The
constraints imposed on a valid labeling are dictated by the SO(2)
group structure.

We remark that our tensor T is quite sparse in the Fourier domain.
(This is in stark contrast to the situation in random overcomplete
tensor decomposition or tensor PCA.) In particular, T is p X p X p
but only supported on the ~ p? entries T;j for which i+ j+k =0.
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Figure 1: An introduction to tensor network notation. (a)
A single copy of the third-order tensor T (with entries
T,pc) has three legs, one for each mode. (b) Two copies of
T connected by contracting (summing over) the index i.
The result is the fourth-order tensor B,pcqg = 2 TapiTcdi-
(c) The spectral method in [21] uses the ({a,b}, {c,d})-
flattening of this tensor network (which is a p? x p> ma-
trix). We explain this in more detail in Section 3.3. Here
u is a random vector.
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Figure 2: In this paper we will analyze a spectral method
on the p? X p? matrix given by the ({a, b}, {c, d})-flattening

of the tensor network shown here. Here u is a random
order-5 tensor.

This comes from the fact that due to integrating over the group
action, T is a projection of §®3 onto a particular subspace (namely
the span of the degree-three invariant polynomials; see [10]). The
above sparsity pattern influences the combinatorics of the trace
moment method. In particular, our valid labelings (discussed above)
require that the three incoming legs to each copy of the tensor sum
to zero. This is a rather different sort of combinatorics problem
than typically arises in applications of the trace moment method
to random matrix theory, and at a high-level, is why we need such
a complex tensor network. In Appendix C of the full version [26],
we discuss in more detail the considerations behind choosing the
particular tensor network in Figure 2.

2 ORBIT RECOVERY PROBLEMS
2.1 Problem Statement

We now formally define orbit recovery problems including continu-
ous MRA. These are a class of problems for which the method of
moments gives rise to an orbit tensor decomposition problem.

Let G be a compact group. We do not formally define the notion
of a compact group here, but some examples of interest include: (i)
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any finite group, such as the symmetric group Sy (permutations of
{1,...,L}) and the cyclic group Z/L, (ii) 2-dimensional rotations
SO(2), and (iii) 3-dimensional rotations SO(3).

Let G act linearly on R?. A linear action means that each group
element g € G has an associated matrix p(g) € RP*P by which
it acts on R? (via matrix multiplication): for 6 € R we write
g - 0 = p(g)f. The matrices must be consistent with the group
structure, i.e. p(gh) = p(g)p(h) and p(e) = I where e € G is the
identity.

Given a compact group G acting linearly on R?, we define the
associated orbit recovery problem [10] as follows. (This has also been
called the group action channel [2].) Fori = 1,...,n we observe

yi=gi-0+¢&

where 6 € R? is the unknown signal, g; is drawn from Haar measure
(the “uniform distribution”) on G, and & ~ N(0, 02I). The random
variables g;, &; are all independent. The goal is to estimate 6 up to
group action, i.e. to output an estimator close to the orbit {g- 6 :
g € G} of 0.

The following are some motivating examples of orbit recovery
problems.

o (Discrete) multi-reference alignment (MRA) [1, 8, 11,
14, 18, 29]: This is the case where G is the cyclic group Z/p
acting on R? via cyclic permutation. Formally, for g € Z/p
(integers mod p), let (g - 0); = 6;_g (mod p)- This captures the
problem where we see many noisy copies of the same discrete
signal, each with a different offset. This has applications in
signal processing [31, 39] and structural biology [19, 37]. We
refer to the above problem as discrete MRA in contrast to
continuous MRA which will be defined later.

e Cryo-electron microscopy (cryo-EM) [3, 10, 28, 36]: Cryo-
EM is a popular biological imaging technique used to deduce
the 3-dimensional structure of a large molecule such as a
protein. This method was awarded the 2017 Nobel Prize in
Chemistry. The method produces data in the form of many
noisy 2-dimensional images of the 3-dimensional molecule,
but in each image the molecule is rotated to an unknown
orientation in 3-dimensional space. Here we think of § € R
as a representation of the molecule in some fixed basis (see
[10] for a precise definition). The group is G = SO(3) acting
by rotating the molecule. This is a generalization of the or-
bit recovery problem where we observe y; = II(g; - 0) + &;
where II is a fixed linear operator, namely the mapping from
a 3-dimensional molecule to a 2-dimensional image.

We will consider the heterogeneous extension of orbit recovery.
This is motivated by cryo-EM in situations where there are multiple
molecules (or multiple conformations of the same molecule) and
each image contains an unknown one of them. Formally, there are

K true signals 81, ..., 0% € R? and each sample takes the form

yi=gi 05 + ¢

where k; is drawn at random from [K] = {1,...,K}. In general,
one can consider an arbitrary distribution over [K], but we will
restrict ourselves to the case where k; is drawn uniformly from [K].
In the heterogeneous problem, the goal is to estimate 0L, ..., oK
up to permutation and group action.
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2.2 Continuous MRA

In this paper we will focus on the (heterogeneous) continuous
MRA problem, as it is a simple example of an orbit recovery prob-
lem over an infinite group. Here we take the group to be G =
SO(2), parametrized by angles g € [0, 27). (Haar measure is sim-
ply the uniform distribution on angles.) Let p be even. The sig-
nal is 6 € R? with entries indexed by the “frequencies” +j for
jelp/2) ={1,2,...,p/2}. We will denote this set of frequencies
by +[p/2] = {-p/2,...,-1,1,...,p/2} (note that 0 is not included
for convenience). The action of G on R? is block-diagonal with 2x 2
blocks: g € G acts on [0 6_;]T (with j > 0) via the matrix

cos(jg) —sin(jg)

sin(jg)  cos(jg)
It will sometimes be convenient to work in the Fourier basis: for
Jj>0,

éj = %(QJ + ie_j) and é_j = %(9] - ig—j) (2)

where i is the imaginary unit. If 6 ~ N(0,I/p), we have éj ~
N(0,1/(2p)) +iN(0,1/(2p)) with é_j = éj (complex conjugate). In
the Fourier basis, the action of G is diagonal, with g acting on éj by
the scalar exp(ijg).

2.3 Method of Moments

One method for approaching orbit recovery problems is to attempt
to learn the unknown group elements g;. This is the well-studied
synchronization approach [9, 11, 12, 15, 30, 35, 36].

An alternative approach uses the method of moments, which
seeks to estimate 0 directly from the moments of the samples with-
out attempting to estimate the g;. This was discovered first in the
case of MRA [1, 8, 29] and later extended to all groups [2, 10]. This
method is suited to the case where the noise o on each sample is
very large but we get many samples; in this regime we cannot hope
to accurately estimate g; but can still hope to recover 6.

We now describe the method of moments more formally. Con-
sider the heterogeneous problem with signals 6,...,0K € RP.
In the method of moments we use the samples y; to estimate the
moments

T1({6%}) = g 051 =

K
% 28l 0

1 K

El(g-0)g-05T1=—
i =17

T,({6%}) = ] EI(CR 0%)(g- 0%)7]

>q

K

Z (g Hk)®d

Td({ek})— [(q %)) =

Above, the expectation is over k drawn uniformly from [K] and g
drawn from Haar measure on G. It is possible to accurately estimate
the moments Ty, . .., T, given roughly n ~ 02 samples (recall &
is the noise level) [2, 10]. Thus we are interested in an inversion
procedure that recovers {6k} (up to permutation and orbit) given
Ty, ..., Ty, for d as small as possible. General algebraic techniques

Ankur Moitra and Alexander S. Wein

exist for testing how large d needs to be for this to be possible,
but this does not necessarily give a polynomial-time algorithm
to actually recover the signal from the moments [10]. For many
natural problems such as MRA and cryo-EM, it is known that d = 3
is sufficient (and necessary) [1, 8, 10, 29].

It is known that the method of moments is statistically optimal
in the limit ¢ — oo (with the group, group action, and dimension
p fixed) in the following sense [2, 8, 10]. On one hand, n ~ o
samples are sufficient to estimate the moments T1, . .., T;. On the
other hand, if two signals 6, 0" (or more generally, two collections
of K heterogeneous signals) produce the same T, ..., T;_; then at
least n ~ 24 samples are statistically required in order to distin-
guish between 0 and 0’. In other words, if the method of moments
requires moments up to d then any method requires at least o2¢
samples.

For the case of continuous MRA, it is easiest to work with the
moments in the Fourier domain: T;({6¥}) = % lele Egl(g- 6)®4]
where the action of g on 0 is diagonal: identifying g with an angle
g € [0, 27) we have (g - é)j = exp(ijg)éj (where i is the imaginary
unit). For ji, ..., jq € £[p/2] we can compute

K

N 1 A A

a0 coia = ¢ 2y i G-y O
=1

2.4 Efficient Algorithms

We have seen above that the optimal statistical procedure is to
compute moments T; and to use these to solve for {6%} consistent
with these moments. A priori, this is a polynomial system of equa-
tions which cannot be solved efficiently. In this section we survey
known polynomial-time methods for recovering the signal(s) from
the moments in special cases.

24.1 Frequency Marching. Both the discrete and continuous MRA
problems admit a closed-form solution called frequency marching
in the homogeneous case (K = 1). These methods are limited in the
sense that they rely heavily on the particular structure of MRA and
do not seem to extend to other groups or to the heterogeneous case
(even for K = 2).

For discrete MRA, the frequency marching approach is described
in [14]. An essentially-identical method works for continuous MRA,
which we describe here.

Consider the homogeneous continuous MRA problem. The goal
is to recover 0 from T5(#) and T3(0) under the assumption that
all Fourier coefficients of 6 are nonzero. Recall the structure of
moments (3). From T, we learn, for every j € [p/2], the value
éjé,j = éjéj = |éj|, i.e. we learn the magnitudes of the Fourier
coeflicients (the power spectrum). It suffices to recover the phases.
From T3 we learn the value éjl éjz éj3 for every j1,j2,j3 € £[p/2]
such that j; + jo + j3 = 0 (the bispectrum). Provided él # 0, each
orbit has a unique representative such that the phase ¢; of 91 is 0.
Thus we take ¢; = 0. Now use o 19 192 to learn ¢, use o_ 19 293
to learn ¢3, and so on until we have learned all the phases.

Another problem that admits a similar closed-form solution (in
the homogeneous case only) is cryo-ET (cryo-electron tomography),
a variant of cryo-EM without the projection step [10]. The cryo-EM
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problem remains open (even in the homogeneous case): there are
no known polynomial-time algorithms with provable guarantees.

2.4.2  Tensor Decomposition. Note that when G is a finite group,
the third moment Tj takes the form

K
TN = i ) 0,009

k=19g€G

which is a low-rank tensor (of rank K|G|) and is thus amenable
to standard tensor decomposition techniques. For homogeneous
discrete MRA, T3 is undercomplete and can be decomposed using
Jennrich’s algorithm [29], thus recovering (all shifts of) the signal.
For heterogeneous discrete MRA, T is overcomplete (rank exceeds
dimension) but Jennrich’s algorithm can still be used if we are
given a higher order moment tensor. For instance, if K < p/2 then
Jennrich’s algorithm can be used to decompose T5 [29]. However,
estimating T requires suboptimal sample complexity n ~ 10, If
we assume 0 are random (i.i.d. Gaussian) and K < P, we can
avoid this by using overcomplete methods to decompose T3 [38].
This result is an adaptation of methods for random overcomplete
tensor decomposition using the sum-of-squares hierarchy [24]. It is
conjectured that K < +/p is optimal for efficient methods that use
Ts [17, 38].

Remark 2.1. One property of (the analysis of) Jennrich’s algo-
rithm is that it is only guaranteed to work in cases where the tensor
has a unique decomposition. This is a serious barrier to using Jen-
nrich’s algorithm for problems over infinite groups. If G is infinite,
we might still hope that T3 = E¢[(g - 0)®°] (or a higher-order mo-
ment) has a low-rank decomposition and that this decomposition
tells us something about 6. However, even if this were true, we
could not use (the existing analysis of) Jennrich’s algorithm to find
such a decomposition because the decomposition would not be
unique: if T3 = 3[_; a?g then we also have T3 = ¥7_,(g - a;)®®
for any g € G. More generally, it seems that any spectral method
(which attempts to recover the signal as an eigenvector of some
matrix) cannot succeed unless it first breaks the symmetry; oth-
erwise there are infinitely-many solutions but a matrix only has
finitely-many eigenvectors. Our method will randomly break the
symmetry and then use a spectral method.

3 RESULTS AND TECHNIQUES

3.1 Notation

We say an event occurs with high probability if it has probability
1—0(1) (as p — o). We say an event occurs with overwhelming
probability if it occurs with probability 1 —1/8(p) where d(p) grows
faster than any polynomial in p (i.e. for any k € N, §(p) > w(p¥)).
The notation O(-) hides factors of log(p).

We write [p] = {1,2,...,p} and define +[p/2] as in Section 2.2.
The p X p identity matrix is denoted I, or simply I. We use || - ||
to denote the spectral (operator) norm of a matrix. We use || - ||¢
and || - || to denote the Frobenius and L™ norms (respectively)
of a matrix or tensor. For a tensor T, we use e.g. [|Tll(4,5}, {c,d} t0
denote the spectral norm of the ({a, b}, {c, d})-flattening of T. The
({a, b}, {c, d})-flattening of a 4-tensor T € (RP)®* is the p? x p?
matrix Myp cq = Taped-
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3.2 Main Result

We now state our main result on list recovery for heterogeneous
continuous MRA.

Turorem 3.1. Let 01, ..., 0K € RP be drawn independently from
N(0, Iy /p). Suppose we are given the tensor 7 =T + E € (RP)®3
where ||E|l0 < K=8p™*/polylog(p) and

T= i E (g 0%
k=17

with g drawn from Haar (uniform) measure on SO(2). For any ¢ > 0,
there is an algorithm that runs in timepo(l)/g‘1
unit vectors 7y, . .., 7, € RP withL = po(l)/‘€4 that has the following
guarantee. Suppose K < p5 for a universal constant § > 0. With high
probability over both 6, . . ., 0K and the algorithm’s randomness, for

every k € [K] there exists i € [L] such that (z;, 0%)2 > 1 — ¢ — o(1).

and outputs a list of

For any constant ¢, our algorithm runs in polynomial time. To the
best of our knowledge, this is the first polynomial-time algorithm
for a heterogeneous orbit recovery problem over an infinite group.
(A few homogeneous problems have frequency marching solutions;
see Section 2.4.1.) Moreover by Proposition 7.6 of [10], to compute
T satisfying the above condition on ||E||c, it is sufficient to take n =
O(c°K'8p?) samples. This exhibits statistically-optimal dependence
of ¢® on the noise level. We do not attempt to optimize the constant
8, but we expect that K ~ /p is optimal; see Appendix C of the full
version [26].

Our algorithm produces a list of candidate solutions but we
do not analyze how to hypothesis test to select the correct solu-
tion(s) from the list. We leave this as an open question for future
work. Heuristically, in the homogeneous case, one can evaluate
a candidate solution 7 by comparing T>(r) and T3(r) to our es-
timates for the true moments T2(0), T3(0). In the heterogeneous
case, we want to find vectors 71,...,7g from our list such that
T;({r}) = % 2115:1 T4(rx) is close to the true moments Td({Hk})
for d = 2,3. This is a linear system subject to a K-sparse constraint,
which could perhaps be solved using standard methods such as
£1-minimization.

3.3 Summary of Techniques

Our approach will draw inspiration from prior work on random
overcomplete third-order tensor decomposition. This is the problem
of recovering {ay, . ..,a,} from

T= Zr: a®? (4)

i=1

where the a; € R? are drawn independently from N(0,I/p). The
state-of-the-art theoretical results for this problem are a close-to-
linear-time spectral method that succeeds when r < p4/ 3 [21]
and a polynomial-time sum-of-squares method that succeeds when
r< p3/ 2 [24]. (It seems likely that no efficient algorithm can succeed
when r exceeds p3/ 2)

As a starting point for our techniques, we consider the spectral
method of [21] for random overcomplete tensor decomposition.
The key step of the algorithm is to construct (from T) the p? x p?
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matrix

M= ) @T@ea) @oaea)’ 6
i,jelr]

where u € R? is drawn randomly from N/(0,I) and T is obtained by
flattening the input tensor to a pxp? matrix: T = Yielr) ai(ai®a;)’.
The idea is that with some decent probability (inverse polynomial),
the random vector u will align reasonably well with some a;, and
this causes the top eigenvector of M (after applying a certain “pre-
conditioner”) to be close to a; ® a;.

We can re-interpret the matrix M in the graphical language of
tensor networks (see e.g. [16]), which we now describe. An order-d
tensor T € (RP)®4 is represented graphically as having d legs; the
case d = 3is shown in Figure 1(a). The legs are labeled with the three
indices a, b, ¢ that index into T. When two tensor legs are connected
by a wire, this indicates contraction of the corresponding indices.
For instance, the tensor network in Figure 1(b) represents the tensor
B e (R?)®* given by Bypeq = Yielp] TabiTcai- The matrix M from
(5) is the ({a, b}, {c, d})-flattening of the tensor C € (R?)®* that is
represented by Figure 1(c). Specifically,

Map,ca = Cabed = Z TacjTyakTijkti- (6)
i,j,ke[p]

One can check that (6) is equivalent to (5) when T is given by (4).

Now that we have expressed the matrix M from [21] as a tensor
network, this opens the door to exploring a whole class of new
spectral methods obtained by building various tensor networks out
of the input tensor T. For instance, for the continuous MRA problem
we will see that the tensor network in Figure 1(c) does not work
but that a larger one, shown in Figure 2, does. In Appendix C of
the full version [26] we explain in detail some of the considerations
involved in choosing this particular tensor network.

We now describe our algorithm in more detail. Similarly to [21],
our algorithm takes in a random guess u in order to break sym-
metry. Instead of a vector, u is now an order-5 tensor (with i.i.d.
N(0, 1) entries). (In Appendix C of the full version [26] we explain
the reason for this.) The hope is that u has better-than-random cor-
relation with %> for some 6 in the orbit of one of the true signals
0L, ..., 6K if this occurs then we will recover a vector close to 6.
Our algorithm takes u and the input tensor 7, and constructs a
p® x p? matrix M(7", u) according to the tensor network in Figure 2.
We would like it to be the case that if we correctly guess u = §%°
then M(7,0®%) ~ (6%%)(6%%)7, allowing us to recover 6. Due to
the combinatorics of the SO(2) structure, this is not the case for
M; however, luckily it is true after applying a particular simple
correction to M, resulting in a matrix M(7", u). (This correction
operates entrywise in the Fourier basis.) To extract a candidate
solution from M, we symmetrize it and compute its top eigenvector
v e RV’ (which we hope is close to #%2). We then re-shape v into a
p X p matrix, symmetrize it, and take the top eigenvector again in
order to produce a candidate solution. We then repeat the entire
process L times with fresh randomness u on each trial, in order to
obtain a list of L candidate vectors.

Roughly speaking, a key step in our analysis is to show a high-
probability upper bound on the spectral norm of our matrix M =
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M(T,u). To do this we use the trace moment method, a general-
purpose tool from random matrix theory which relies on computing

E[Tr(MMT)T)]. ™)

In general, this computation can be quite difficult for complicated
random matrices. However, even though M is quite complicated,
the fact that it is represented by a tensor network helps us here.
As shown in Figure 3, a tensor network for the quantity (7) can be
obtained by connecting 2q copies of M in a circle. Since M is itself
a tensor network, we need to connect 2q copies of that network
in a circle, creating an expanded tensor network. As a result, the
computation of (7) boils down to a combinatorics question involving
counting certain labelings of this expanded tensor network.

(a) (b) 4
| / \
A 4\ A
| AAﬁA/

Figure 3: (a) A real-valued rectangular matrix A. (b) The
tensor network representation of Tr[(AAT)?] is formed by
connecting 2g copies of A in a ring (here g = 3). Since A is
asymmetric, the orientation of the “A” symbols matters.

4 PROOF FOR CONTINUOUS MRA

4.1 Preliminaries

4.1.1 Concentration. First we have some basic concentration re-
sults for random vectors.

LemmA 4.1. If0 ~ N (0,1, /p) then
617 - 1] < 6(1/vp)
with overwhelming probability.

Proor. This follows from Bernstein’s inequality for subexpo-
nential random variables (see e.g. [33]). O

LEmMA 4.2. If0 ~ N(0, I, /p) then with overwhelming probability
we have for all i,

16:] < O(1/+/p)-
Proor. This follows from standard Gaussian tail bounds. O
The following concentration bound is a consequence of hyper-
contractivity (see e.g. Theorem 1.10 of [34]).

THEOREM 4.3. Consider a degree-q polynomial f(Y) = f(Y1,...,Yn)
of independent Gaussian random variables Y1, ..., Yp. Let o2 be the
variance of f(Y). There exists an absolute constant R > 0 such that

12 1/q
Pﬂﬂﬂ—ﬂﬂﬂﬂzﬂsﬂw%ﬁﬂ
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4.1.2  Fourier Basis. We will largely work in the Fourier domain.
Let A be the unitary matrix that converts from the Fourier repre-
sentation to the standard representation of a vector v € R?, ie.
0 = AG; see (2). We define the Fourier transform T of a tensor T as
depicted in Figure 4(b). One can check that AT A is the permutation
matrix that swaps indices i and —i, i.e. (ATA)ij = 1;=—j. Thus, as
shown in Figure 4(c), when two copies of A combine in a tensor
network, we denote this by a dotted line which is understood to
mean contraction with indices i and —i paired.

(a) (b)

(C)kA/[7

|
0
0 ~ T

\
/T\ -
NN
- ~

\
1
0

N —b—<1-4

1,

N
Figure 4: (a) The matrix A converts a vector’s Fourier rep-
resentation 0 to its standard representation 6. (b) We can
convert from T to T by attaching three copies of A. Note
that A is asymmetric and so the orientation of the A sym-
bols is important. (c) When two A’s connect as shown, this
has the effect of a contraction in which indices i and —i
are paired. We abbreviate this as a dotted line with one
end labeled i and the other end labeled —i. The tensor C
shown here is Cypcq = ; TabiTcd(—i)-

4.2 Main Technical Theorem

We now begin the proof of our main result (Theorem 3.1).

Our algorithm will build its list of candidate solutions by repeat-
ing a certain spectral method L times, with fresh randomness u
each time. The following main technical theorem shows that each
of these trials has a decent probability of success.

THEOREM 4.4 (MAIN TECHNICAL THEOREM). Let {6%}, § and T
be as in Theorem 3.1. Let K < p®. Letu € (RP)®> be drawn from
N(0, Lys). There is a matrix M(T",u) € RP*XP (computable in time
poly(p) from T and u) with the following guarantee. Let v € R be
the leading eigenvector of% [M(T",u) + M(7",u)"]. Re-shape' v to a
pXp matrixV and let t € R be the (unit-norm) leading eigenvector’
of%(V + VT). There is a deterministic predicate P{6FY) (defined
in Section 4.7) depending only on {0K}, that is satisfied with high
probability (over {6%Y). For fixed (6%} satisfying P({6%Y}), for any
k € [K] and any ¢ > 0, we have (z, 0%)2 > 1 — ¢ — o(1) with
pmbabilil‘yp_o(l)/g4 over the randomness of u.

We first see how our main technical theorem (Theorem 4.4)
implies our main theorem (Theorem 3.1).

Proor or THEOREM 3.1. To produce the list 71, ..., 77, the al-
gorithm draws independent samples u1,...,u;, ~ N(0,1s). For

!We will see that M(7, u) is a flattening of a 4-tensor, with entries M(T, ) ap, ca-
Thus v has entries v, and can be naturally thought of as a p X p matrix.

?Here the leading eigenvector is defined to be the one whose eigenvalue is largest in
absolute value.
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Figure 5: The p? x p? matrix M(7", u) is obtained by apply-
ing S to the ({a, b}, {c, d})-flattening of the tensor shown
here. The dotted lines and the Fourier transforms 9~ and
i are defined as in Figure 4.

i € [L], extract 7; from M(7,u;) as in Theorem 4.4. For fixed
k,lety = p’o(l)/‘g4 denote the success probability of a single
trial. For fixed k, the probability of success after L trials is at least
1-(1-y) > 1—exp(—yL). Taking a union bound over [K], the over-
all probability of failure is at most K exp(—yL) < p5 exp(—yL). To
make this o(1), it is sufficient to take L = log?(p)/y = po(l)/€4. O

We now begin the proof of the main technical theorem (Theo-
rem 4.4). The p? X p? matrix M(7", u) is the ({a, b}, {c, d})-flattening
of the tensor depicted in Figure 2, but with an additional post-
processing operator S applied to it. This operator is easiest to
describe in the Fourier domain: let S be the operator that acts
entrywise on a 4-tensor by multiplying the abcd entry by a non-
negative real number S,j,.4 to be specified later. We will have
Sabed = S(—a)(=b)(~c)(-d) and so S takes real 4-tensors to real 4-
tensors. We define

M(T,u) = (A ® A)[MT,w)](A® AT

where A is as in Section 4.1.2, and where M(7", u) is obtained by

applying S to the ({a, b}, {c, d})-flattening of the tensor depicted
in Figure 5.
Explicitly, we have

M(T»u)ab,cd = Sabed Z Z ﬁ—jl,—jz,—j3,—j4,—j57:i1,a, iz
i Js

Toeeesd9 J1seees
X 711'2,]'1,1'37:1'3,0, i47:i4,j2, i57:i5,b, is
X 7:i6»j3,i77:i7,d, ig7:is,j4,i97:i9,j5»i1 .
Recall 7 =T + E where
K
T = Z E [(g . Gk)®3] .
k=17

Let 6 be the signal we are hoping to recover. Let

Tk = I_z[;: [<g i ek)®3] )
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Recall u ~ N(0, Ips) € (RP)®5. Write u = 0((9k)®5 +uwitha L
(Gk)®5 . We will break down the matrix M(7", u) into the following
terms:

M(T,u) = M(T,u) + [M(T,u) - M(T, u)]
= aM(T, (9k)®5) + M(T, @) + [M(T,u) — M(T, u)]
= aM(T*, (6%)%%) + a[M(T, (0F)®®) — M(T*, (6¥)®%)]
+ M(T,q) + [M(T,u) — M(T, u)].

Here we have used the fact that M(7", u) is linear in u. We now
have four terms to bound separately.

4.3 Signal Term

Here we consider the signal term M(Tk, (6%)®5). Let ©F = (6% ®
ok )(Gk ® 0k)T, the matrix we would like to recover. Intuitively, we
will show that if we were to correctly guess u = (6%)®5 then the
resulting matrix matrix would be close to ©*. In order for this to be
true, we will need to choose the parameters S,p.4 appropriately.

PRrROPOSITION 4.5. Foranyk € [K], with overwhelming probability
over 0K,
IM(T, (6%)%%) - @] < o(1).

This section is devoted to proving Proposition 4.5. Recall

K
i Ak Ak Ak
Tiyigis = Li+iptis=0 Z 6;, 95,05,
k=1
and so
~k k pk pk
iyigis i 91'2 ei3 ‘

Without loss of generality, take k = 1. We have
M(Tla (91)®5)ab,cd = Sabed Sabed étlzéll,éclr é}j (8)

= Lij+ip+iz=00

where

Sabed = Z Z (L-iy+a+iz=0 "+ Loigrjs+ir=0)
5

IyeeesB9 J1penns]
A1 12 Al 12191 |2 Al 2
><(|9i1| ...|9i9| |9j1| "'|9j5| )

Here the indicator functions enforce that for each copy of 7 in
Figure 5, the three incident labels sum to zero. Define
Al 0 ifa=-borc=-d
Sabed = { 1/E[sgpcqal  otherwise.

The reason for zeroing out some S,p.4’s will not be apparent until
later (Section 4.4); this is crucially used in the proof of Lemma 4.19
for bounding the noise term M(T, i1). The reason for 1/E[s,pcq]
should be clear from (8).

We will show that s, concentrates near its expectation. We
start with a basic computation of the moments of 6! (which of
course holds for any 6%).

LeMMA 4.6. E|0}|?% = k! p~*. Ifky # kp then E[(81)F1 (9" )<2] =
0.Ifi # +j then éll and éjl are independent.

Proo¥. The third statement is immediate from (2), since 6! ~
N(0,1/p). The second statement is immediate from the fact that

the complex phase of éll is a uniformly random angle, and 911 = éll
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For the first statement, |9All |2 ~ # )(22, so use the known formula for

chi-squared moments: ]E[()(zz)k] = 2Kk O

We next show that for every a, b, ¢, d we have E[s z4.4] = O(p~?),
specifically:

LEMMA 4.7. There exist universal positive constants c1 and ca such
that for every a,b,c,d € +[p/2],

c1p”° < Elsgpeal < c2p™’.

Proor. Fix a, b, c, d. There is a (nonzero) term of s .4 for each
choice of indices iy, ..., i9,j1,...,j5 € £[p/2] such that for each
copy of 7 in Figure 5, the three incident indices sum to zero. There
are at most p5 (nonzero) terms in s,p.4 because once i, js, j4, j3, j1
are chosen, the zero-sum constraints uniquely determine at most
one possible value for the other indices. (We say “at most one” since
only indices in the set +[p/2] are valid.) Each term of s p.4 has
expectation at most 14! p~1# (by Lemma 4.6), so E[sgpcq] < 14! p~°.
This proves the upper bound.

The idea of the lower bound is to argue that s 5.4 has Q(p®)
terms and each term has expectation at least p~14. We defer the full
proof to Appendix A of the full version [26]. O

LEMMA 4.8. There exists a universal positive constant c3 such that

foreverya,b,c,d € £[p/2],
Var[sgpedl < c3 p—19.

Proor. The variance of a sum can be broken down as
Var(z Xi) = Z Var(x;) + Z Covar(x;, xj).
i i i#j
Each of the O(p®) terms of 5,54 has variance O(p~2%). There are
O(p1?) ways to choose two distinct terms of s,54. Only O(p?) of
these ways gives two terms that are dependent, in which case their
covariance is O(p~%3); otherwise they are independent and have

covariance zero. This means Var[sgpcq] < O@° -p 2 +p° - p728) =
op~1). o

By hypercontractivity (Theorem 4.3) we have with overwhelm-
ing probability, [sgpcq — Elsapeall < p~°-!. Thus, when a # —b
and ¢ # —d, we have [Sgpcd Saped — 1] < O(p~%1) (recall that
SabedSabed appears in (8)). For the entries witha = —b or ¢ = —d
(there are < 2p® such entries in M), we will simply use the bound

161 < O(1/vp).
We can now complete the proof of Proposition 4.5. Using (8),

IM(T?, (6")%°) - (8" ® 61)(6' ® )7 |
= |IM(T, (61)®%) - (6" ® 6")(8' ® 6")7 |
< |IM(T, (6M)®%) - (' ® 0")(0" ® 0))T||r
< \/}74 . é(p—o.l ,p—Z)Z + 2p3 . é(p—Z)Z
< o(1).

4.4 Noise Term

We now consider the noise term M(T, 1), i.e. the term created by
the “bad” component of u that is orthogonal to (6%)®°. This term is
the crux of the proof, where we will crucially use the assumption
K< p5 .
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PROPOSITION 4.9. There exists § > 0 such that if K < p‘S, we have
the following. There is a determinstic predicate P1({0F}) depending
only on {6K} that is satisfied with high probability. For any fixed
(6%} satisfying Py ({6%}), we have

IM(T, w)|| < O(vlogp)

with high probability over the randomness of u.

Remark 4.10. Note that # depends on which signal k € [K] we
have chosen as the target, since & L (Gk)®5. However, P; does not
depend on k, and the conclusion of Proposition 4.9 holds for any

fixed k.

This section is devoted to proving Proposition 4.9. We will use
the following result on random contractions of tensors.

THEOREM 4.11 ([24] COROLLARY 6.6). Let W € RP x RY x R”
be an order-3 tensor. Let i ~ N(0,%) with r X r covariance matrix
satisfying 0 < X < I. Then for anyt > 0,

Prlce 1o an Wiy, @) = ¢ (IWla, 2 v W, ) |

< 4(p + q) exp(—t2/2).

In our setting, we have M(T, i) = I ® I ® | )W where W is
given by the tensor network in Figure 6(a) (S is present but not
shown). Explicitly, the Fourier transform (defined as in Figure 4) of
W is
Wab,cd, jijsjsjsjs = Sabed Z T-iy,a,iy T-iy, jr,is T-is, ¢, ig Ty, o, B

11,.-519
X T—i5,b, is T—is,js, i7 T—i7,d, is T—ig,j4, iy T—l'g,]'s, i1+
By Theorem 4.11,

Pr[[|M(T, @)l > to] < 8p* exp(~t?/2) )
where

o =max{|Wll(a,b}, {c,d, j1. jorjsrjirss 1> Wl {a by 1, jos o arjs 1o L d} -

The two flattenings of W that appear in the definition of ¢ are
equivalent due to symmetry, so it suffices to consider just the first
one. The corresponding matrix is W € R**7 given by

We will bound ||W|| using the trace moment method:

THEOREM 4.12 (E.G. [32] PROPOSITION 5.2). For any real-valued
random matrix Y, for any integer ¢ > 1 and any ¢ > 0,

Pr < €.

E[Tr((YYT)9)] ) %
&£

i (

As illustrated in Figures 3 and 6, we can represent Tr(WWT)9)
as a tensor network by connecting (in a ring) 2q copies of the
tensor network for W. (We will take g = log p.) Call this new tensor
network Gy (see Figure 6). The computation of E[Te(WWT))] is
thus reduced to a combinatorial problem involving labelings of Gg,
which we next describe.
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Figure 6: (a) The tensor network for W. (The oper-
ator S is not shown but can be thought of as liv-
ing on the appropriate four edges.) The matrix %
is the ({a,b},{c,d, j1,j2.j3,ja, j5})-flattening. (b) Here we
see (part of) the tensor network G, that computes
Tr(WWT)9). There are 2q copies of the tensor network
from (a) (3 copies are shown here) connected in a ring
as in Figure 3. The outermost copy connects back to the
innermost copy, so that the entire network can be visual-
ized as living on the surface of a torus. Again, S is not
shown (it will be unimportant since we will bound its
contribution separately). Recall that connecting two “op-
posing” copies of A results in a dotted edge, as shown in
Figure 4.

Definition 4.13. A labeling L of G is described by the following.
For each edge e, label one end with a \(alue ie € £[p/2] and label the
other end with —i,. Call each copy of T in G a vertex, and label each
vertex v with a value k,, € [K]. Let L(v) = 1} +i,+i3=0 élkl” élkz” élk;’
where i1, iz, i3 are the three edge labels incident® to v.

Recall that Ty, 1,1, = 14, +4,+i5=0 Zle éfi éll‘; élkz The vertex labels ky,

correspond to the terms in this sum.

3Suppose an edge e is incident to a vertex v in a tensor network. There is a label +i,
at each end of e. The label at the v-end of e is considered incident to v.
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As shown in Figure 6, there are g layers, and layer ¢ (for £ =
1,2,...,q) has labels

0,60, 0, g0, {0000 0

(€
ceotbg .]()

ey

Layer numbers are defined modulo g, i.e. layer g + 1 refers to layer
1.
We now have

E[Ti(WW )] =E Y s, [ [ £@)
3 v

where: £ ranges over all labelings of G4; v ranges over all vertices
of Gy the expectation is over the randomness of 6',...,0K; and
the contributions from S are captured by

q
A
Sr = 1_[ S a0 pO) O g(€) S(— g(E+1))(—pE+D) ) (= e(0)(=d(0))-
=1

Definition 4.14. Define the number of repeated labels in a labeling
to be

o(L) = Z max{0, [# edges labeled with + i] — 1}.
ie[p/2]

Definition 4.15. For any k, call the set of vertices {v :
a region. The number of regions in a labeling is

r(L) = |{ko}v| = [# distinct k,, values].

ko = k}

Definition 4.16. Call L a valid labeling if Sy E],, L(v) # 0.

We have the following straightforward characterization of valid
labelings.

LEmMMA 4.17. L is valid if and only if

(i) for every vertex v, the three edge labels i1, iy, i3 incident to v
satisfy iy + iz + i3 = 0,
(ii) for every<, a® # b0 and ¢ # —d©), and
(i) for every i, each region has as many incident* i labels as inci-
dent —i labels.

Proor. Condition (i) is due to the factor 1; +,+;, in L(v). Con-
dition (ii) is due to the definition of S,p .4 (recall that we set certain
Sabcd values to zero). Condition (iii) comes from aggregating all
the 9:’ factors in [],, £(v) and applying Lemma 4.6. ]

LEmMA 4.18. For any valid labeling L with r(L) > 1, we have
(L) =z r(L)/2.

Proor. Since r(L) > 1, every region has at least two edges
crossing its boundary®, so there are at least r(£) such boundary
edges total. In a valid labeling, each of these boundary edges must
have the same label as at least one other boundary edge. This results
in at least r(£)/2 repeated labels. o

The following key lemma is proved in Appendix A of the full
version [26].

4If R is a region and e = (u, v) is an edge with u € R and v ¢ R then the label at the
u-end of e is considered incident to R.

5Tt is immediate from Lemma 4.17(iii) that a region must have an even number of
edges crossing its boundary. In fact, it is not hard to see that G4 has no cuts of size
two and so at least four edges must cross.
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LEMMA 4.19. The number of valid edge-labelings® with exactly
(L) repeated labels is at most 3[2(27¢)*](L)pt+99-(L)/25,

The interpretation of this is as follows. The important factor is
p”gq_C('C)/ 2. the rest is lower-order. Without requiring any re-
peated labels, the number of valid edge-labelings is ~ p+°9. Thus
the lemma shows that when repeated labels are required, the num-
ber of valid edge-labelings decreases substantially.

Remark 4.20. To achieve heterogeneity K < p‘s, one needs to
show that the number of valid labelings with r(£) regions is <
p1+94-0r(L) Together, Lemmas 4.18 and 4.19 show this for some
constant § > 0, but we have not attempted to optimize §. See
Appendix C of the full version [26] for more on this.

Using the above lemmas, we are able to bound E[Tr(WW T)7)]
as desired. We prove the following in Appendix A of the full version
[26].

LEmMA 4.21. With q = logp,
E[Tr(WWT))] < O(1)%p?

and so

{E[Te(WW D)]}/29 < 0(p!/7) < 0(1).

By Theorem 4.12, with probability at least 1 — 1/p (over the
randomness of 01, .. .,0%) we have ||W| < O(1); let this be the
predicate P1({6%}). Provided P;({6%}) holds, we then have by (9)
that

IM(T, )]l < cylogp
with probability at least 1 — SPZ_Q(CZ) (over the randomness of @).

Taking c to be a sufficiently large constant completes the proof.

4.5 Heterogeneous Signal Term

Here we consider the term M(T, (Hk)®5)—M(Tk , (Qk)®5 ). This term
is relatively benign compared to the previous one and we bound
it using a much simpler variant of the argument in the previous
section. For convenience we use K < p® here but we expect that the
previous term (not this one) would be the bottleneck if we wanted
to optimize §.

PROPOSITION 4.22. There exists & > 0 such that if K < p5 then
with high probability over {Qk} we have for every k € [K],

IM(T, (6%)®%) - M(TX, (6%)®%)|| < o(1).

This section is devoted to proving Proposition 4.22. By Markov’s
inequality, it is sufficient to show

EIM(T,(6)®) = M(T", (01)**)II}. < o(1/K)

so that we can take a union bound over all k € [K].

The value ||M(T, (91)®5)||]2, is depicted by the tensor network in
Figure 7. Similarly to the previous section, we consider labelings of
Figure 7. As before, each edge gets a label i, and each vertex gets a
label k. (Each 6! is also considered a vertex.)

By edge-labelings we mean choices for the edge labels i, but not the vertex labels v
Here valid means that (i) and (ii) in Lemma 4.17 are satisfied.
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Figure 7: The tensor network for |M(T, (91)®5)||12D. The
error term in (10) is obtained by only considering the
terms corresponding to particular labelings (see Defini-
tion 4.23).

Definition 4.23. In addition to the requirements in Lemma 4.17,
we define a valid labeling of Figure 7 to have two additional con-
straints: (i) each 6! has vertex label ky, = 1, and (ii) the inner and
outer ring of T’s each have a vertex for which k,, # 1.

By restricting to these valid labelings, we get an expression for
the error term that we want. Formally,

IM(T, (61)%°) = M(T*, (6)®)I7

= Z SabedS(-a)(=b)(=c)(~d) HL(U) (10)
valid £ v

where for a T vertex, £(v) is defined as in the previous section,

and for a §! vertex, £(v) = él] where —j is the incident label. The
proof of the following result can be found in the full version [26].

LEMMA 4.24. The number of valid labelings of Fig. 7 is O(K13p!3).

Let Smax = MaXgpeq Sapea < O(P°). Since 0 < B[], L(v) <
O(p~32), we have
E[IM(T, (6")%%) = M(T*, (0)®*)|} < Stoax Z E]_[ L(v)
valid £ v
< 0(p'™) - O(K™p'%) - 0(p™*) < O(K™/p)

which is 0(1/K) provided K < p1/20.

4.6 Error Term

Here we consider the term M(7", u) — M(T, u). This is the error term
due to the small error E that we allow in our input tensor. The
following result follows from crude and easy bounds; see the full
version [26] for the proof.
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PROPOSITION 4.25. There is a deterministic predicate Py({0F})
depending only on {6X} that occurs with high probability. Ing({@k b
is satisfied then

IM(T", w) = M(T, w)|| < O(K®p*||Elloo)

with overwhelming probability over u.

4.7 Putting it all Together
Here we complete the proof of Theorem 4.4. Recall u ~ N(0,]) €
RP’, 0k = (0k20%)(0*06F)T andu = a(6F)®5+iiwithii L (6F)®5.
As above, we write
M(Tu) = aM(T*, (6)%%) + al M(T, (6%)°) - M(T¥, (6%)®%)]
+ M(T,4) + [M(T,u) — M(T,u)].

Let the predicate P({6*}) be the intersection of the following high-
probability events:

e the conclusion of Proposition 4.5 holds for every k € [K],

o Pi({6%}) (from Proposition 4.9) holds,

o the conclusion of Proposition 4.22 holds,

o P,({6%}) (from Proposition 4.25) holds,

o for every k € [K], 1 - O(1/+p) < [16¥| < 1+ O(1/+/p).
For fixed 01, ..., 0K satisfying P({@k}), we have for any k,

o IM(TF, (6%)%%) - 0| < o(1),

o [|M(T, (6%)%%) — M(T*, (6%)%)|| < o(1),

o [|[M(T,a)|| < O(ylogp) with high probability over 4,

o ||M(T,u)—M(T,u)|| < o(1) with overwhelming probability

over u.
We have

a = (u, (05)°)/]1(6%)®°|1?
= (u, (09)° /11052 |1y /116%) 25| £ a/)16%|1°

where @ ~ N(0, 1) independently from i.
We have the Gaussian lower tail bound

1
Pr{a >t} > ! exp(—t2/2)
2

s

and so

Pr {d >C logp} > ~Cf2, 1)

1 1
2Ver Cwllogpp
We can write Msym (7", u) = %[M('T, W+MT,u) ] =a0k+B=
@0 /1165 |I° + B where

IBI - 161 £ B < o(1) @ + O(ylogp) < o(1) & + O(y/logp). (12)

Let w = (6% ® 0F)/||6%||> € (RP)®? so that wwT = ©F/||6%||%.
Let v € (R?)®? be the leading eigenvector of Msym(7, u) (with
[lo]] = 1), which is also the leading eigenvector of Msym(T, u) =
||9k||Msym(T, u) = aww’ + |16%||B. We have

(o, w)? + p= UTMsym(T, u)v > wTMsym(T, ww=a-p

and so (v, w)2 > 1 - %. Re-shape v into a p X p matrix V and let

V= %(\N/ +VT). Let 7 be the eigenvector of V corresponding to the

eigenvalue of largest absolute value. Let y = 0% /116% ||. Write
V=(V.yy")yy' +5’
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where [|B’||? < [|B||2 = |[VIIF - (V.yy")? < 1-(V,yy")* We
have

KV.yy Dl =Ty vyl < [7Ve < V,yy D) - (. y)® + 1Bl
and so
PR 14 N [ X CAT
N (A7 KV,yy ")l
Note that

Voyy")2 = (V,yy")? = (o, w)? > 1- %

and so, provided 2f/& < 1/2,

e
Vi/z @
Recall from (12) that if @ > C+/log p then /& < 0(1)+0(1)/C. Thus,

to have (z,y)? > 1 — & — o(1), it is sufficient to take C = O(1)/¢?.
—O(l)/LA.

(r.y)?

v

Using (11), the success probability is > p
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