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ABSTRACT

We examine the problem of estimating the mass range corresponding to the observed red
supergiant (RSG) progenitors of Type IIP supernovae. Using Monte Carlo simulations designed
to reproduce the properties of the observations, we find that the approach of Davies & Beasor
significantly overestimates the maximum mass, yielding an upper limit of M,/Mg = 20.5 £ 2.6
for an input population with My/Mg = 18. Our preferred Bayesian approach does better, with
My/Mg = 18.6 £ 2.1 for the same input populations, but also tends to overestimate Mj,. For the
actual progenitor sample and a Salpeter initial mass function, we find M, /Mg = 19.01f‘2‘:83
for the Eldridge & Tout mass—luminosity relation used by Smartt and Davies & Beasor, and
My/Mg =21 .28f‘2‘:§§ for the Sukhbold, Woosley & Heger mass—luminosity relation. Based
on the Monte Carlo simulations, we estimate that these are overestimated by (3.3 = 0.8) M.

The red supergiant problem remains.

Key words: stars: massive —supernovae: general.

1 INTRODUCTION

Particularly as the archive of Hubble Space Telescope images of
nearby galaxies has grown, there has been steady progress in
identifying the progenitors of core-collapse supernovae (ccSNe,
see the reviews by Smartt 2015; Smartt 2009 ). In Kochanek
et al. (2008), we pointed out that there appeared to be a deficit
of higher mass progenitor stars. This point was made more clear
with better statistics for Type IIP ccSNe by Smartt et al. (2009).
The progenitors of Type IIP ccSNe are red supergiants (RSGs),
and Smartt et al. (2009) found progenitors with masses between
8.5M1% and (16.5 % 1.5) M, while RSGs in the Local Group are
found with masses of up to 25 M. Smartt et al. (2009) termed this
the ‘red supergiant problem’. There is also evidence to support the
existence of a problem from studies of stellar populations near SNe
or SN remnants (see, e.g. Diaz-Rodriguez et al. 2018; Auchettl et al.
2019) and the lack of the X-ray bright SNe that would be expected
given the higher mass-loss rates of the more massive progenitors
(Dwarkadas 2014).

The red supergiant problem could be solved by eliminating
the gap between the highest observed progenitor masses and the
predicted maximum masses at which stars explode as RSGs. One
possibility is to modify stellar evolution and mass-loss to reduce the
maximum mass of stars exploding as RSGs and have them instead
explode as Type Ib or Type Ic ccSNe (Groh et al. 2013). To be a
solution, they need to explode as stripped stars, not blue supergiants.
Almost no SN light curves are consistent with the explosions of
BSGs (1 in 92 in Smartt 2009) and no BSG progenitors (other than
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SN 1987A) have been identified even though they should be no
more difficult to be identified than RSG progenitors.

A second possibility is to posit that the luminosities, and hence the
masses, of the observed progenitors have been underestimated due
to unrecognized foreground or circumstellar extinction (Walmswell
& Eldridge 2012; Beasor & Davies 2016; Davies & Beasor 2018).
Note, however, that it is easy to overestimate the effects of dust
(Kochanek, Khan & Dai 2012). A third possibility is to argue that
the difference between the maximum masses of progenitors and
the expected maximum masses of RSGs is statistically insignificant
(Davies & Beasor 2018). Zapartas et al. (2020) find that the effects
of binary evolution have essentially no consequences for the red
supergiant problem.

The alternative physical explanation is that the missing progen-
itors are not being found because the more massive RSGs are not
exploding as SNe and instead become black holes (Kochanek et al.
2008). Stars in the mass range of the missing RSG progenitors
have internal structures that are particularly difficult to explode
(O’Connor & Ott 2011; Ugliano et al. 2012; Pejcha & Thompson
2015; Sukhbold et al. 2016), and failed explosions of these RSGs
provide the first natural explanation for the observed masses of
Galactic black holes Kochanek (2014, 2015). Furthermore, our
search for failed SNe with the Large Binocular Telescope (Gerke,
Kochanek & Stanek 2015; Adams et al. 2017a,b) has identified one
excellent candidate for a failed ccSN whose estimated progenitor
mass is exactly in the range needed to explain the red supergiant
problem and the masses of the Galactic black holes. The failed ccSN
rate implied by the discovery of one candidate is also consistent with
theoretical expectations.

In this paper, we reconsider the problem of estimating the mass
range of RSG progenitors. We assume that stars explode in a mass
range from M; to M, with a Salpeter (1955) power-law initial
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mass function (IMF), dn/dM oc M~! =¥ with x = 1.35. In modern
examinations of the explodability of stars (e.g. O’Connor & Ott
2011; Ugliano et al. 2012; Pejcha & Thompson 2015; Sukhbold
et al. 2016), the relationship between mass and outcome is more
complex, with explosions and failures interspersed in mass, but there
is still effectively a maximum mass. The objective is to estimate the
two mass limits M; and M,,. In particular, Davies & Beasor (2018)
carries out an analysis to find an upper limit of M, /Mg = 19.01’%2
,which is significantly above the estimate of M/Mg = 16.5 £ 1.5 by
Smartt (2009). Davies & Beasor (2018) further argue that this should
be corrected to Mp/Mg = 25 because the highest mass observed
progenitor must lie below M}, leading to an underestimate of the
limit that requires an upward correction.

A simple way to examine this question is to use Monte Carlo
simulations designed to closely mimic the properties of the obser-
vations and then analyse them to see how well the input mass limits
are recovered. We will consider both the Davies & Beasor (2018)
analysis method and a Bayesian approach that is similar in spirit to
the original Smartt (2009) analysis. In Section 2, we describe the
calculations, and in Section 3, we discuss the results.

2 METHODS

For this paper, we simply adopt the tabulation of the properties of 24
Type 1I progenitors from Davies & Beasor (2018). The progenitors
are characterized by a distance modulus, @, a broad-band filter
magnitude or magnitude limit, m,, an estimated extinction for that
wavelength, A; , and a bolometric correction, BC, . Davies & Beasor
(2018) treat SN 2009md slightly differently, but we filled in the
missing values in their Table 4 so as to reproduce their estimates of
the progenitor luminosity and its uncertainties. Associated with each
quantity is an uncertainly: o, 0,, 04, and ogc. We also require
statistical distributions for these quantities. Davies & Beasor (2018)
treat the distributions as Gaussians except for the bolometric correc-
tion, which is viewed as uniformly distributed between BC; — opc
and BC;, + opc. Davies & Beasor (2018) round negative extinctions
in the tails of the Gaussian extinction distribution upwards to zero.
There are 14 flux measurements and 10 upper limits. Where there
are flux limits, they are all 3 o limits, with the exception of a 5o
limit for SN 2002hh. As a slight simplification, we convert this into
a 3 o limit so that all the limits can be treated uniformly.

Given these quantities, the progenitor luminosity L is

L
. (0]

The data really determines only a minimum and maximum progen-
itor luminosity, but this can be converted into a mass range given
a mass—luminosity relation. Fig. 1 shows the end-of-life mass—
luminosity relations from Schaller et al. (1992), Eldridge & Tout
(2004), Groh et al. (2013), and Sukhbold et al. (2018). Smartt
(2009) and Davies & Beasor (2018) primarily used the Eldridge &
Tout (2004) models after eliminating the luminous asymptotic giant
branch (AGB) phase for lower mass stars. Each model has some
mass above which the models cease to be RSGs at death. Sukhbold
et al. (2018) includes models with their standard mass-loss rate, half
that rate and one-tenth of that rate, with the stars remaining as RSGs
up to 26, 39, and 60 M. In Fig. 1, these three mass-loss sequences
are virtually indistinguishable, essentially because the mass of the
envelope has no effect on the luminosity of the helium core.

For our calculations, we need a mass—luminosity relation that
extends beyond the mass range assumed to explode as an RSG,
so we use the low-mass-loss models from Sukhbold et al. (2018)
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Figure 1. End-of-life mass—luminosity relations from Schaller et al. (1992)
(red dotted, filled squares), Eldridge & Tout (2004) (black dashed), non-
rotating Groh et al. (2013) (blue solid, filled squares), rotating Groh et al.
(2013) (blue solid, open squares), and Sukhbold et al. (2018) (red solid). The
three mass-loss models from Sukhbold et al. (2018) lie almost on top of one
another. Only the Eldridge & Tout (2004) models include high-luminosity
AGB phase at lower masses.

extended to lower mass (< 12 M) using the models from Schaller
et al. (1992) since the two sets of models overlap. For ease of
calculation,

1 L 4.610 +2.2671 M 0.494 log? M

0g — = 4. . 0o —_— — V. (0]

£ 1o &\ loM, & \lom,
()

and

M L L

log — = 1.180 + 0.489log [ ——— ) + 0.056 log? [ ———

% M, " o (105 L@) * o (105 Lo)
(3)

provide very good polynomial fits to the resulting mass—luminosity
relationfor5 < M < 60 Mg. The shape of the polynomials also fits
the Eldridge & Tout (2004) models well, but the leading constants
become 4.703 and 1.131 for the luminosity and mass, respectively.
The offsets mean that the Sukhbold et al. (2018) models are
24 per cent less luminous at fixed mass and 12 per cent more massive
at fixed luminosity than the Eldridge & Tout (2004) models.

Like Davies & Beasor (2018), we simply assume a Salpeter
(1955) IMF, dN/dM o« M~ = with x = 1.35 leading to an integral
distribution of progenitor masses of

Ml—x M

Psn(< M) = ———————
SN ( ) M — M

“

over the mass range M; < M < M,,. This can then be inverted to get
the mass

Msn(P) =M, [1—P (1 N\ 5
sn(P) =M, |1— _<ﬁ1) ) ©)
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corresponding to a fraction P of the progenitor distribution. The goal
is to estimate the two mass limits M, and M}, given the properties of
the progenitors.

We build Monte Carlo test samples similar to the data as follows.
First, we estimate the 1 o noise level for each of the 24 SNe. For
the flux limits, this simply means dividing the stated flux limit by
the stated statistical significance. For those with measurements, we
assume, as is almost certainly the case, that the noise is background
dominated. We then convert the progenitor magnitude and its error
into a flux and its error, and the flux error should correspond to
the 1o noise level of the data. Next, we assume a minimum and
a maximum mass, where we used M; = 8 My and M, = 18 Mg
or 21 Mg, and then randomly draw a mass using equation (5) for
each SN. This provides a luminosity through equation (2), which we
convert into an apparent magnitude by randomly drawing a distance
modulus (Gaussian), extinction (Gaussian rounded up to zero), and
abolometric correction (uniform) using equation (1). If the resulting
magnitude is above 3 o, it is treated as a measurement and if it is
below, we use the flux limit instead. This produces a random sample
of progenitors and limits with the statistical properties of the data.

Davies & Beasor (2018) make 10> Monte Carlo trials to estimate
the mass limits. For each trial, they randomly draw distances
(Gaussian), magnitudes (Gaussian), extinctions (Gaussian rounded
up to zero), and bolometric corrections (uniform) for each SN i to
derive a luminosity L;, which is then converted into a mass M. For
the progenitors with only upper flux limits, the magnitude is taken
to be the stated limit, leading to an upper limit on the luminosity
and mass for the progenitor in the trial. They then sort the masses
and mass limits, discarding any upper mass limits above the highest
mass measurement, to leave N objects. If we index these objects
asj=0to N — 1 and define u; = 1 for detections and u; = 0 for
non-detections, they minimize the statistic

’

N . 2
=3 {Mj—MSN (N,J_l)} ©6)

Jj=0

to estimate M, and M;. Note that only the detections (1; = 1)
contribute to the statistic, with the highest mass detection having
Mgsn = M. The lowest mass detection or upper limit has Mgy =
M,. The distribution of the resulting 10° values of the M; and M,
that minimize this fit statistic for each Monte Carlo trial provides
their estimate of the allowed minimum and maximum progenitor
masses. Since the masses are just weighted uniformly in the 2,
and only the maximum likelihood estimates of M and M), are used
from each trial, there is no need to define the usual error term in the
denominator of the x2.

We prefer a more Bayesian approach that is similar to the original
procedures of Smartt et al. (2009), although we will keep the same
input data and the relations between fluxes and luminosities as
used by Davies & Beasor (2018). We first construct the relative
probability distribution that progenitor i has mass M given the data
d. For a source with a detection, we compute

Pi(M;|d) /dlLdAAdBCAP(//L)P(Ak)P(BCA)

2
X exp (_ (mmod - m)\) > ’ (7)

2
207

where the model magnitude m,,¢ comes from rearranging equa-
tion (1). For the upper limits, we compute the probability given the
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mass that the flux would not exceed the 3 o flux limit,
Fi(M;|d) o /deAdeCx P(u)P(A;)P(BC,)
x Erfc <7Fm(’d _ 3UF) , (3)
ﬁGF

where the various magnitudes must be converted into fluxes
and Erfc(x) is the complementary error function. P(u), P(A;)
and ,P(BC;) are the same probability distributions as were used
above. We do not need the normalizations of these probability
distributions.

Next we must compute the probability of these mass probability
distributions given the progenitor mass function. We again use
the same fixed relationships between mass and luminosity. For
each progenitor, we need to marginalize over the luminosity
to get

My
Pi(My, Myld) /M dM; Pi(M;|d)P(M;|M,, My), )
1
where P(M;|M,, M) = dP(< M)/dM is the probability of having
mass M; given M, and My, derived from equation (4). Note that
we are maximizing the probability of the detections having their
observed fluxes, and the probability that the non-detections are not
detected. The final probability distribution for the parameters of the
mass function is then

P(My, My|d) o< P(My) P(Mp)IT; Pi(My, My|d), (10)

although in practice we compute log P(M;, M |d) to avoid floating
point underflow problems. We use standard logarithmic priors for
the mass limits, with P(M)) Ml_1 and P(M,) x Mh_l. The final
distribution is normalized so that f PM,, My,|d)dM,dM;, = 1, and
the distribution for one mass limit is found by projecting out the
other (i.e. P(Mi|d) = [dMyP(M,, My|d)).

3 RESULTS AND DISCUSSION

To compare these two approaches, we generated 500 simulated
progenitor data sets with minimum and maximum masses of
M, = 8 Mg and M, = 18 M, and then analysed them using either
the approach of Davies & Beasor (2018) or the Bayesian method
outlined in Section 2. The results are shown in Figs 2 and 3,
respectively. If we characterize the results by the median and 1o
confidence range of the mass estimates, the Davies & Beasor (2018)
algorithm finds M;/Mg = 9.347025 and My, /Mg = 20.01175}. The
results are biased to be higher than the input masses, which is oppo-
site to the sense expected by Davies & Beasor (2018). Our Bayesian
approach yields M;/Mg, = 8.447072 and My, /Mg = 18.551] 5, so
it is also biased to higher masses, but by a smaller amount. The
scatters in the results for M, are comparable (0.61 versus 0.73 Mg,),
but the Bayesian estimates of M}, show significantly less scatter
(2.62 versus 2.07 Mg,). Using different mass limits produces similar
results. For example, if we raise the upper limit to My, = 21 Mg, we
find My, /Mg = 22.957312 for the Davies & Beasor (2018) method
and 21.27178 for the Bayesian method.

The mass estimates from the two statistical approaches are
strongly correlated, as shown in Fig. 4. Simulated data, which
lead to an overestimate of My by one method, also produce
an overestimate by the other method; but the Bayesian method
produces mass estimates systematically closer to the input values.
Examining the cases with the highest mass estimates, there is a
fairly general pattern. The highest mass model star producing a
magnitude measurement has a mass close to My. The randomly
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Figure 2. The results for 500 simulated progenitor data sets using the
Davies & Beasor (2018) approach to estimating the minimum and maximum
progenitor mass. Each case has a point at the median and error bars
encompassing 68 per cent ("10) of the probability are shown for 20 per cent
of the trials. The input values are indicated by the dashed lines.
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Figure 3. The results for the same 500 simulated progenitor data sets using
the Bayesian method presented in Section 2.

selected distance modulus, extinction, bolometric correction, and
magnitude error combine to produce a model magnitude that is
brighter than the magnitude that would be found using the nominal
values for these quantities. Then, when the model is a fit to estimate
M,,, the solutions are biased high.

The systems with large mass uncertainties are also the reason why
the additional upward correction added by Davies & Beasor (2018)
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Davies M, /Mg

Bayesian M, /M,

Figure 4. Estimates of M}, for the Bayesian and Davies & Beasor (2018)
methods for each of the 500 simulated progenitor data sets. The estimates
are strongly correlated, but the Bayesian estimates are systematically lower
and closer to the input value. The dashed lines mark the input value of
My, = 18 M and the diagonal line corresponds to equal mass estimates.

should not be included. If the mass uncertainties are sufficiently
small, then the value of M), estimated from a finite-sized sample will
be an underestimate of the true limit as they argue. But this holds
only until the typical offset of the highest mass progenitor in the
sample from the true upper limit is comparable to the uncertainties in
the masses. Once the uncertainties are larger, the analysis is subject
to a form of Malmquist bias, where it becomes increasingly likely
that an intrinsically lower mass (or equivalently, lower luminosity)
star will be interpreted as a star above the true upper mass limit.
Based on our Monte Carlo simulations, this appears to be the regime
appropriate to the existing progenitor data.

For both approaches, there is a correlation between the uncertain-
ties in My, and the degree to which M, is overestimated, as shown
in Fig. 5 for the Bayesian simulations. The larger the uncertainties
towards larger masses are, the more the mean of the estimator is
biased high. For the M}, = 18 M, simulations and the uncertainties
estimated for the actual progenitor sample below, these correlations
would predict that the Davies & Beasor (2018) estimate is biased
high by (2.6 £ 1.6) M, and the Bayesian estimate is biased high by
(3.3 £0.8) Me.

Finally, if we analyse the actual progenitor data, we find the
results given in Table 1. We include the estimates from Smartt
(2015) and Davies & Beasor (2018) using the Eldridge & Tout
(2004) mass—luminosity relation (labelled ET0O4) and then the
results using the implementation of both the Davies & Beasor
(2018) method (labelled Davies) and the Bayesian method (labelled
Bayes). We then repeat the results on the Sukhbold et al. (2018)
scale (labelled S18), although these are simply an offset in the mass
scale. Including our knowledge that these analyses yield estimates
of My that are biased to be high, we see that the existence of
the red supergiant problem is quite secure unless the maximum
mass of stars that undergo core collapse as RSGs can be driven
below 20 M.
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Figure 5. The correlation between the estimate of the positive (upwards)
error bar on the Bayesian estimate of M} and the overestimate of M.
The larger the estimated uncertainty, the larger the overestimate of Mj. A
vertical bar shows the positive uncertainty estimate for the Bayesian analysis
of the actual sample. The Davies & Beasor (2018) method shows a similar
correlation.

Table 1. Mass limits for the progenitor sample.

Model M(L) Mi/Mg My/Meo
Smartt (2015) ET04 9.5%93 165733
Davies & Beasor (2018) ETO04 7.5%03 19.0%33

H 0.25 2.22
Davies ET04 7491033 19.051735
Bayes ET04 6.301048 19.01+504
Smartt (2015) S18 10.0193 18.539

: 0.28 2.48
Davies S18 8.387030 21.33%158
Bayes S18 7.067031 21.28%33%

Note. The mass—luminosity relation M(L) is either that of ET04 (Eldridge
& Tout 2004) or S18 (Sukhbold et al. 2018), where the latter yields a mass
about 12% higher for the same luminosity. The uncertainties are 1 o except
for the Smartt (2015) estimates which are at 95% confidence.
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