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ABSTRACT
We examine the problem of estimating the mass range corresponding to the observed red
supergiant (RSG) progenitors of Type IIP supernovae. Using Monte Carlo simulations designed
to reproduce the properties of the observations, we find that the approach of Davies & Beasor
significantly overestimates the maximum mass, yielding an upper limit ofMh/M� = 20.5 ± 2.6
for an input population with Mh/M� = 18. Our preferred Bayesian approach does better, with
Mh/M� = 18.6 ± 2.1 for the same input populations, but also tends to overestimate Mh. For the
actual progenitor sample and a Salpeter initial mass function, we find Mh/M� = 19.01+4.04

−2.04

for the Eldridge & Tout mass–luminosity relation used by Smartt and Davies & Beasor, and
Mh/M� = 21.28+4.52

−2.28 for the Sukhbold, Woosley & Heger mass–luminosity relation. Based
on the Monte Carlo simulations, we estimate that these are overestimated by (3.3 ± 0.8) M�.
The red supergiant problem remains.
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1 INTRODUCTION

Particularly as the archive of Hubble Space Telescope images of
nearby galaxies has grown, there has been steady progress in
identifying the progenitors of core-collapse supernovae (ccSNe,
see the reviews by Smartt 2015; Smartt 2009 ). In Kochanek
et al. (2008), we pointed out that there appeared to be a deficit
of higher mass progenitor stars. This point was made more clear
with better statistics for Type IIP ccSNe by Smartt et al. (2009).
The progenitors of Type IIP ccSNe are red supergiants (RSGs),
and Smartt et al. (2009) found progenitors with masses between
8.5+1.0

−1.5 and (16.5 ± 1.5) M�, while RSGs in the Local Group are
found with masses of up to 25 M�. Smartt et al. (2009) termed this
the ’red supergiant problem’. There is also evidence to support the
existence of a problem from studies of stellar populations near SNe
or SN remnants (see, e.g. Dı́az-Rodrı́guez et al. 2018; Auchettl et al.
2019) and the lack of the X-ray bright SNe that would be expected
given the higher mass-loss rates of the more massive progenitors
(Dwarkadas 2014).

The red supergiant problem could be solved by eliminating
the gap between the highest observed progenitor masses and the
predicted maximum masses at which stars explode as RSGs. One
possibility is to modify stellar evolution and mass-loss to reduce the
maximum mass of stars exploding as RSGs and have them instead
explode as Type Ib or Type Ic ccSNe (Groh et al. 2013). To be a
solution, they need to explode as stripped stars, not blue supergiants.
Almost no SN light curves are consistent with the explosions of
BSGs (1 in 92 in Smartt 2009) and no BSG progenitors (other than
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SN 1987A) have been identified even though they should be no
more difficult to be identified than RSG progenitors.

A second possibility is to posit that the luminosities, and hence the
masses, of the observed progenitors have been underestimated due
to unrecognized foreground or circumstellar extinction (Walmswell
& Eldridge 2012; Beasor & Davies 2016; Davies & Beasor 2018).
Note, however, that it is easy to overestimate the effects of dust
(Kochanek, Khan & Dai 2012). A third possibility is to argue that
the difference between the maximum masses of progenitors and
the expected maximum masses of RSGs is statistically insignificant
(Davies & Beasor 2018). Zapartas et al. (2020) find that the effects
of binary evolution have essentially no consequences for the red
supergiant problem.

The alternative physical explanation is that the missing progen-
itors are not being found because the more massive RSGs are not
exploding as SNe and instead become black holes (Kochanek et al.
2008). Stars in the mass range of the missing RSG progenitors
have internal structures that are particularly difficult to explode
(O’Connor & Ott 2011; Ugliano et al. 2012; Pejcha & Thompson
2015; Sukhbold et al. 2016), and failed explosions of these RSGs
provide the first natural explanation for the observed masses of
Galactic black holes Kochanek (2014, 2015). Furthermore, our
search for failed SNe with the Large Binocular Telescope (Gerke,
Kochanek & Stanek 2015; Adams et al. 2017a,b) has identified one
excellent candidate for a failed ccSN whose estimated progenitor
mass is exactly in the range needed to explain the red supergiant
problem and the masses of the Galactic black holes. The failed ccSN
rate implied by the discovery of one candidate is also consistent with
theoretical expectations.

In this paper, we reconsider the problem of estimating the mass
range of RSG progenitors. We assume that stars explode in a mass
range from Ml to Mh with a Salpeter (1955) power-law initial
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mass function (IMF), dn/dM ∝ M(−1 − x) with x = 1.35. In modern
examinations of the explodability of stars (e.g. O’Connor & Ott
2011; Ugliano et al. 2012; Pejcha & Thompson 2015; Sukhbold
et al. 2016), the relationship between mass and outcome is more
complex, with explosions and failures interspersed in mass, but there
is still effectively a maximum mass. The objective is to estimate the
two mass limits Ml and Mh. In particular, Davies & Beasor (2018)
carries out an analysis to find an upper limit of Mh/M� = 19.0+2.5

−1.3

,which is significantly above the estimate ofMh/M� = 16.5 ± 1.5 by
Smartt (2009). Davies & Beasor (2018) further argue that this should
be corrected to Mh/M� = 25 because the highest mass observed
progenitor must lie below Mh, leading to an underestimate of the
limit that requires an upward correction.

A simple way to examine this question is to use Monte Carlo
simulations designed to closely mimic the properties of the obser-
vations and then analyse them to see how well the input mass limits
are recovered. We will consider both the Davies & Beasor (2018)
analysis method and a Bayesian approach that is similar in spirit to
the original Smartt (2009) analysis. In Section 2, we describe the
calculations, and in Section 3, we discuss the results.

2 METHODS

For this paper, we simply adopt the tabulation of the properties of 24
Type II progenitors from Davies & Beasor (2018). The progenitors
are characterized by a distance modulus, μ, a broad-band filter
magnitude or magnitude limit, mλ, an estimated extinction for that
wavelength, Aλ, and a bolometric correction, BCλ. Davies & Beasor
(2018) treat SN 2009md slightly differently, but we filled in the
missing values in their Table 4 so as to reproduce their estimates of
the progenitor luminosity and its uncertainties. Associated with each
quantity is an uncertainly: σμ, σm, σ A, and σ BC. We also require
statistical distributions for these quantities. Davies & Beasor (2018)
treat the distributions as Gaussians except for the bolometric correc-
tion, which is viewed as uniformly distributed between BCλ − σ BC

and BCλ + σ BC. Davies & Beasor (2018) round negative extinctions
in the tails of the Gaussian extinction distribution upwards to zero.
There are 14 flux measurements and 10 upper limits. Where there
are flux limits, they are all 3 σ limits, with the exception of a 5 σ

limit for SN 2002hh. As a slight simplification, we convert this into
a 3 σ limit so that all the limits can be treated uniformly.

Given these quantities, the progenitor luminosity L is

2.5 log

(
L

78.6L�

)
= −mλ + μ + Aλ − BCλ. (1)

The data really determines only a minimum and maximum progen-
itor luminosity, but this can be converted into a mass range given
a mass–luminosity relation. Fig. 1 shows the end-of-life mass–
luminosity relations from Schaller et al. (1992), Eldridge & Tout
(2004), Groh et al. (2013), and Sukhbold et al. (2018). Smartt
(2009) and Davies & Beasor (2018) primarily used the Eldridge &
Tout (2004) models after eliminating the luminous asymptotic giant
branch (AGB) phase for lower mass stars. Each model has some
mass above which the models cease to be RSGs at death. Sukhbold
et al. (2018) includes models with their standard mass-loss rate, half
that rate and one-tenth of that rate, with the stars remaining as RSGs
up to 26, 39, and 60 M�. In Fig. 1, these three mass-loss sequences
are virtually indistinguishable, essentially because the mass of the
envelope has no effect on the luminosity of the helium core.

For our calculations, we need a mass–luminosity relation that
extends beyond the mass range assumed to explode as an RSG,
so we use the low-mass-loss models from Sukhbold et al. (2018)
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Figure 1. End-of-life mass–luminosity relations from Schaller et al. (1992)
(red dotted, filled squares), Eldridge & Tout (2004) (black dashed), non-
rotating Groh et al. (2013) (blue solid, filled squares), rotating Groh et al.
(2013) (blue solid, open squares), and Sukhbold et al. (2018) (red solid). The
three mass-loss models from Sukhbold et al. (2018) lie almost on top of one
another. Only the Eldridge & Tout (2004) models include high-luminosity
AGB phase at lower masses.

extended to lower mass (< 12 M�) using the models from Schaller
et al. (1992) since the two sets of models overlap. For ease of
calculation,

log
L

L�
= 4.610 + 2.267 log

(
M

10 M�

)
− 0.494 log2

(
M

10 M�

)
(2)

and

log
M

M�
= 1.180 + 0.489 log

(
L

105 L�

)
+ 0.056 log2

(
L

105 L�

)
(3)

provide very good polynomial fits to the resulting mass–luminosity
relation for 5 < M < 60 M�. The shape of the polynomials also fits
the Eldridge & Tout (2004) models well, but the leading constants
become 4.703 and 1.131 for the luminosity and mass, respectively.
The offsets mean that the Sukhbold et al. (2018) models are
24 per cent less luminous at fixed mass and 12 per cent more massive
at fixed luminosity than the Eldridge & Tout (2004) models.

Like Davies & Beasor (2018), we simply assume a Salpeter
(1955) IMF, dN/dM ∝ M(−x − 1) with x = 1.35 leading to an integral
distribution of progenitor masses of

PSN(< M) = M−x
l − M−x

M−x
l − M−x

h

(4)

over the mass range Ml ≤ M ≤ Mh. This can then be inverted to get
the mass

MSN(P ) = Ml

[
1 − P

(
1 −

(
Mh

Ml

)−x
)]−1/x

, (5)
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corresponding to a fractionP of the progenitor distribution. The goal
is to estimate the two mass limits Ml and Mh given the properties of
the progenitors.

We build Monte Carlo test samples similar to the data as follows.
First, we estimate the 1 σ noise level for each of the 24 SNe. For
the flux limits, this simply means dividing the stated flux limit by
the stated statistical significance. For those with measurements, we
assume, as is almost certainly the case, that the noise is background
dominated. We then convert the progenitor magnitude and its error
into a flux and its error, and the flux error should correspond to
the 1 σ noise level of the data. Next, we assume a minimum and
a maximum mass, where we used Ml = 8 M� and Mh = 18 M�
or 21 M�, and then randomly draw a mass using equation (5) for
each SN. This provides a luminosity through equation (2), which we
convert into an apparent magnitude by randomly drawing a distance
modulus (Gaussian), extinction (Gaussian rounded up to zero), and
a bolometric correction (uniform) using equation (1). If the resulting
magnitude is above 3 σ , it is treated as a measurement and if it is
below, we use the flux limit instead. This produces a random sample
of progenitors and limits with the statistical properties of the data.

Davies & Beasor (2018) make 105 Monte Carlo trials to estimate
the mass limits. For each trial, they randomly draw distances
(Gaussian), magnitudes (Gaussian), extinctions (Gaussian rounded
up to zero), and bolometric corrections (uniform) for each SN i to
derive a luminosity Li, which is then converted into a mass Mi. For
the progenitors with only upper flux limits, the magnitude is taken
to be the stated limit, leading to an upper limit on the luminosity
and mass for the progenitor in the trial. They then sort the masses
and mass limits, discarding any upper mass limits above the highest
mass measurement, to leave N

′
objects. If we index these objects

as j = 0 to N
′ − 1 and define ui = 1 for detections and ui = 0 for

non-detections, they minimize the statistic

χ2 =
N ′∑

j=0

uj

[
Mj − MSN

(
j

N ′ − 1

)]2

(6)

to estimate Ml and Mh. Note that only the detections (uj ≡ 1)
contribute to the statistic, with the highest mass detection having
MSN = Mh. The lowest mass detection or upper limit has MSN =
Ml. The distribution of the resulting 105 values of the Ml and Mh

that minimize this fit statistic for each Monte Carlo trial provides
their estimate of the allowed minimum and maximum progenitor
masses. Since the masses are just weighted uniformly in the χ2,
and only the maximum likelihood estimates of Ml and Mh are used
from each trial, there is no need to define the usual error term in the
denominator of the χ2.

We prefer a more Bayesian approach that is similar to the original
procedures of Smartt et al. (2009), although we will keep the same
input data and the relations between fluxes and luminosities as
used by Davies & Beasor (2018). We first construct the relative
probability distribution that progenitor i has mass M given the data
d. For a source with a detection, we compute

Pi(Mi |d) ∝
∫

dμdAλdBCλP (μ)P (Aλ)P (BCλ)

× exp

(
− (mmod − mλ)2

2σ 2
m

)
, (7)

where the model magnitude mmod comes from rearranging equa-
tion (1). For the upper limits, we compute the probability given the

mass that the flux would not exceed the 3 σ flux limit,

Pi(Mi |d) ∝
∫

dμdAλdBCλP (μ)P (Aλ)P (BCλ)

× Erfc

(
Fmod − 3σF√

2σF

)
, (8)

where the various magnitudes must be converted into fluxes
and Erfc(x) is the complementary error function. P(μ), P(Aλ)
and ,P(BCλ) are the same probability distributions as were used
above. We do not need the normalizations of these probability
distributions.

Next we must compute the probability of these mass probability
distributions given the progenitor mass function. We again use
the same fixed relationships between mass and luminosity. For
each progenitor, we need to marginalize over the luminosity
to get

Pi(Ml, Mh|d) ∝
∫ Mh

Ml

dMiPi(Mi |d)P (Mi |Ml, Mh), (9)

where P(Mi|Ml, Mh) = dP(< M)/dM is the probability of having
mass Mi given Ml and Mh derived from equation (4). Note that
we are maximizing the probability of the detections having their
observed fluxes, and the probability that the non-detections are not
detected. The final probability distribution for the parameters of the
mass function is then

P (Ml,Mh|d) ∝ P (Ml)P (Mh)�iPi(Ml, Mh|d), (10)

although in practice we compute log P(Ml, Mh|d) to avoid floating
point underflow problems. We use standard logarithmic priors for
the mass limits, with P (Ml) ∝ M−1

l and P (Mh) ∝ M−1
h . The final

distribution is normalized so that
∫
P(Ml, Mh|d)dMldMh ≡ 1, and

the distribution for one mass limit is found by projecting out the
other (i.e. P(Ml|d) = ∫

dMhP(Ml, Mh|d)).

3 RESULTS AND DISCUSSION

To compare these two approaches, we generated 500 simulated
progenitor data sets with minimum and maximum masses of
Ml = 8 M� and Ml = 18 M�, and then analysed them using either
the approach of Davies & Beasor (2018) or the Bayesian method
outlined in Section 2. The results are shown in Figs 2 and 3,
respectively. If we characterize the results by the median and 1 σ

confidence range of the mass estimates, the Davies & Beasor (2018)
algorithm finds Ml/M� = 9.34+0.58

−0.69 and Mh/M� = 20.01+2.61
−1.84. The

results are biased to be higher than the input masses, which is oppo-
site to the sense expected by Davies & Beasor (2018). Our Bayesian
approach yields Ml/M� = 8.44+0.70

−0.65 and Mh/M� = 18.55+1.95
−1.90, so

it is also biased to higher masses, but by a smaller amount. The
scatters in the results for Ml are comparable (0.61 versus 0.73 M�),
but the Bayesian estimates of Mh show significantly less scatter
(2.62 versus 2.07 M�). Using different mass limits produces similar
results. For example, if we raise the upper limit to Mh = 21 M�, we
find Mh/M� = 22.95+2.12

−1.71 for the Davies & Beasor (2018) method
and 21.27+2.68

−1.87 for the Bayesian method.
The mass estimates from the two statistical approaches are

strongly correlated, as shown in Fig. 4. Simulated data, which
lead to an overestimate of Mh by one method, also produce
an overestimate by the other method; but the Bayesian method
produces mass estimates systematically closer to the input values.
Examining the cases with the highest mass estimates, there is a
fairly general pattern. The highest mass model star producing a
magnitude measurement has a mass close to Mh. The randomly
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Figure 2. The results for 500 simulated progenitor data sets using the
Davies & Beasor (2018) approach to estimating the minimum and maximum
progenitor mass. Each case has a point at the median and error bars
encompassing 68 per cent (’1σ ’) of the probability are shown for 20 per cent
of the trials. The input values are indicated by the dashed lines.
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Figure 3. The results for the same 500 simulated progenitor data sets using
the Bayesian method presented in Section 2.

selected distance modulus, extinction, bolometric correction, and
magnitude error combine to produce a model magnitude that is
brighter than the magnitude that would be found using the nominal
values for these quantities. Then, when the model is a fit to estimate
Mh, the solutions are biased high.

The systems with large mass uncertainties are also the reason why
the additional upward correction added by Davies & Beasor (2018)
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20
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Figure 4. Estimates of Mh for the Bayesian and Davies & Beasor (2018)
methods for each of the 500 simulated progenitor data sets. The estimates
are strongly correlated, but the Bayesian estimates are systematically lower
and closer to the input value. The dashed lines mark the input value of
Mh = 18 M� and the diagonal line corresponds to equal mass estimates.

should not be included. If the mass uncertainties are sufficiently
small, then the value of Mh estimated from a finite-sized sample will
be an underestimate of the true limit as they argue. But this holds
only until the typical offset of the highest mass progenitor in the
sample from the true upper limit is comparable to the uncertainties in
the masses. Once the uncertainties are larger, the analysis is subject
to a form of Malmquist bias, where it becomes increasingly likely
that an intrinsically lower mass (or equivalently, lower luminosity)
star will be interpreted as a star above the true upper mass limit.
Based on our Monte Carlo simulations, this appears to be the regime
appropriate to the existing progenitor data.

For both approaches, there is a correlation between the uncertain-
ties in Mh and the degree to which Mh is overestimated, as shown
in Fig. 5 for the Bayesian simulations. The larger the uncertainties
towards larger masses are, the more the mean of the estimator is
biased high. For the Mh = 18 M� simulations and the uncertainties
estimated for the actual progenitor sample below, these correlations
would predict that the Davies & Beasor (2018) estimate is biased
high by (2.6 ± 1.6) M� and the Bayesian estimate is biased high by
(3.3 ± 0.8) M�.

Finally, if we analyse the actual progenitor data, we find the
results given in Table 1. We include the estimates from Smartt
(2015) and Davies & Beasor (2018) using the Eldridge & Tout
(2004) mass–luminosity relation (labelled ET04) and then the
results using the implementation of both the Davies & Beasor
(2018) method (labelled Davies) and the Bayesian method (labelled
Bayes). We then repeat the results on the Sukhbold et al. (2018)
scale (labelled S18), although these are simply an offset in the mass
scale. Including our knowledge that these analyses yield estimates
of Mh that are biased to be high, we see that the existence of
the red supergiant problem is quite secure unless the maximum
mass of stars that undergo core collapse as RSGs can be driven
below 20 M�.
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Figure 5. The correlation between the estimate of the positive (upwards)
error bar on the Bayesian estimate of Mh and the overestimate of Mh.
The larger the estimated uncertainty, the larger the overestimate of Mh. A
vertical bar shows the positive uncertainty estimate for the Bayesian analysis
of the actual sample. The Davies & Beasor (2018) method shows a similar
correlation.

Table 1. Mass limits for the progenitor sample.

Model M(L) Ml/M� Mh/M�

Smartt (2015) ET04 9.5+0.5
−2.0 16.5+2.5

−2.5

Davies & Beasor (2018) ET04 7.5+0.3
−0.2 19.0+2.5

−1.3

Davies ET04 7.49+0.25
−0.27 19.05+2.22

−1.30

Bayes ET04 6.30+0.48
−0.54 19.01+4.04

−2.04

Smartt (2015) S18 10.0+0.5
−1.5 18.5+3.0

−4.0

Davies S18 8.38+0.28
−0.30 21.33+2.48

−1.46

Bayes S18 7.06+0.54
−0.61 21.28+4.52

−2.28

Note. The mass–luminosity relation M(L) is either that of ET04 (Eldridge
& Tout 2004) or S18 (Sukhbold et al. 2018), where the latter yields a mass
about 12% higher for the same luminosity. The uncertainties are 1 σ except
for the Smartt (2015) estimates which are at 95% confidence.
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