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ABSTRACT
It is well known that measurements of H0 from gravitational lens time delays scale as H0 ∝ 1
− κE, where κE is the mean convergence at the Einstein radius RE but that all available lens
data other than the delays provide no direct constraints on κE. The properties of the radial mass
distribution constrained by lens data are RE and the dimensionless quantity ξ = REα

′′
(RE)/(1

− κE), where α
′′
(RE) is the second derivative of the deflection profile at RE. Lens models with

too few degrees of freedom, like power-law models with densities ρ ∝ r−n, have a one-to-one
correspondence between ξ and κE (for a power-law model, ξ = 2(n− 2) and κE = (3 − n)/2 =
(2 − ξ )/4). This means that highly constrained lens models with few parameters quickly lead
to very precise but inaccurate estimates of κE and hence H0. Based on experiments with a
broad range of plausible dark matter halo models, it is unlikely that any current estimates of
H0 from gravitational lens time delays are more accurate than ∼10 per cent, regardless of the
reported precision.

Key words: gravitational lensing: strong – cosmological parameters – distance scale.

1 INTRODUCTION

Refsdal (1964) pointed out that the time delays between multiple
images in a gravitational lens could be used to determine the
Hubble constant. There was a long delay before the discovery of the
first lensed quasar (Walsh, Carswell & Weymann 1979) and then
considerable controversy over the measurement of the first time
delay (Schild 1990 versus Press, Rybicki & Hewitt 1992, resolved
in favour of the former by Kundić et al. 1997). The measurement of
delays is now routine (e.g. Bonvin et al. 2017, 2019; Courbin et al.
2018, recently) and the estimates are generally robust (e.g. Liao
et al. 2015). The challenge lies in their cosmological interpretation.
Individual lenses yield estimates of H0 with reported precisions of
4–10 per cent (see Table 1) with higher precisions depending on
averaging the estimates from large numbers of lenses. The present
state of the art comes from the H0LiCOW Collaboration, who report
a 2.4 per cent measurement of H0 using six gravitational lenses
(Wong et al. 2019).

The time delay �t in a lens is roughly proportional to
H−1

0 (1 − κE), where κE is the mean convergence (dimensionless
surface density)1 at the Einstein radius RE (Kochanek 2002). Unfor-
tunately, no gravitational lens observable other than the time delay
directly constrains κE (see e.g. Gorenstein, Falco & Shapiro 1988;
Kochanek 2002, 2006; Schneider & Sluse 2013; Sonnenfeld 2018;
Wertz, Orthen & Schneider 2018), so some additional constraint on

� E-mail: ckochanek@astronomy.ohio-state.edu
1To be more precise, it is proportional to 1 − 〈κ〉, where 〈κ〉 is the mean
surface density in the annulus bounded by the lensed images.

the mass distribution is required to determineH0 from a time delay. It
was quickly realized that stellar dynamical measurements, usually
just meaning the central velocity dispersion, could provide this
constraint (e.g. Grogin & Narayan 1996; Romanowsky & Kochanek
1999; Treu & Koopmans 2002).

If we explore simple lens models constrained by a stellar velocity
dispersion σ ∗, we find that the fractional uncertainty in H0 is
roughly equal to the fractional uncertainty in σ 2

∗ . Since the reported
uncertainties in σ ∗ for the H0LiCOW lenses range from 6 to
10 per cent (see Table 1), H0 should only be constrained to 12–
20 per cent. The H0 uncertainties reported by H0LiCOW of only
4–10 per cent (see Table 1) are, however, far smaller even after
including all other sources of uncertainty in the models (e.g. time
delays, the local environment, etc.). This means that the constraints
on κE and thus H0 must be coming from the lensing constraints
on the mass model rather than the stellar dynamical constraints. In
fact, the uncertainties in H0 are so small compared to those in σ ∗,
that the stellar dynamical measurements must be making almost no
contribution to the overall estimate of H0.

As already noted, lensing data cannot determine κE – it is a
fundamental degeneracy in the physics of gravitational lensing.
Lens models determine κE only because the mathematical structure
of any density model implies a relationship between the aspects of
the model constrained by lens data and the surface density at the
Einstein ring. If the density model has too few degrees of freedom
compared to the number of lensing constraints, then one quickly
obtains a very precise, but likely inaccurate, constraint on κE and
H0. Since the errors are systematic rather than random, there is
also no reason to believe that they are reduced by averaging over
multiple systems.
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Table 1. H0LiCOW lenses.

Lens σ ∗ H0 References
(km s−1) (km s−1 Mpc−1)

HE 0435−1223 222 ± 15 (7%) 73 ± 6 (8%) Wong et al. (2017)
PG 1115+080 281 ± 25 (9%) 83 ± 8 (10%) Tonry (1998), Chen et al.

(2019)
RX J1131−1231 323 ± 20 (6%) 80 ± 6 (8%) Suyu et al. (2013)
SDSS 1206+4332 290 ± 30 (10%) 69 ± 4 (6%) Agnello et al. (2016), Birrer

et al. (2019)
B1608+656 260 ± 15 (6%) 71 ± 3 (4%) Suyu et al. (2010)
WFI 2033−4723 250 ± 19 (8%) 72 ± 4 (6%) Rusu et al. (2019)

Most of these points have been made previously (e.g. Kochanek
2006; Schneider & Sluse 2013; Xu et al. 2016; Unruh, Schneider &
Sluse 2017; Sonnenfeld 2018). Here we make these arguments using
a different set of analytic results and numerical experiments, which
clearly show that the simple density models presently used for most
inferences about H0 from gravitational lens time delays suffer from
these problems and become increasingly unreliable as the reported
precision becomes smaller than ∼10 per cent. The arguments are
presented in Section 2, and we summarize the results in Section 3.

2 THE ROLE OF PARAMETERS IN THE MASS
MODEL

H0LiCOW basically uses two mass models for the lenses. The first
model is a simple power law producing a deflection angle of α(θ ) =
bn − 1θ2 − n. The model has two parameters, the Einstein radius b and
the power-law index n, where n= 2 is the singular isothermal sphere
(SIS) model. The second model combines the photometric model
of the lens galaxy with a Navarro–Frenk–White (NFW; Navarro,
Frenk & White 1997) profile

ρ ∝ 1

r(a + r)2
(1)

for the dark matter halo. In theory, this model has three parameters,
a mass-to-light ratio for the stellar profile, a density normalization
for the NFW profile, and its scale length a. In practice, the scale
length is constrained by a fairly strong prior to vary by only 10–
15 per cent, which effectively makes this a two-parameter model as
well.

In this section, we first review the basic problem that lensing data
mathematically cannot determine the surface density κE needed to
determineH0 and derive the property of lens models that lens data do
constrain. Next we illustrate the problem with a specific example
of how mass models with small numbers of parameters can lead
to increasingly precise but inaccurate estimates of κE. Finally, we
show that a range of plausible models for dark matter haloes when
modelled using the H0LiCOW mass distributions commonly have
fractional systematic errors in H0 of 10 per cent or more.

2.1 What do lens models measure?

We start by reviewing the basic problem. Consider a power-law
model for circular lens with two images at r1 and −r2 (r1 ≤ r2). The
lens equations require that

r1 − bn−1r2−n
1 = −r2 + bn−1r2−n

2 . (2)

We can then solve for the Einstein radius,

bn−1 = r1 + r2

r2−n
1 + r2−n

2

. (3)

Not surprisingly, with only one constraint, a solution can be found
for any power-law index. If we have an additional set of images at
r3 and −r4 (r4 ≤ r3 and r2 ≤ r4 ≤ r3 ≤ r1), then there is a unique
solution from solving the transcendental equations

r1 + r2

r2−n
1 + r2−n

2

= r3 + r4

r2−n
3 + r2−n

4

(4)

for the power-law index. Because the model has only two param-
eters, the mass distribution is now exactly defined everywhere up
to the uncertainties in the position measurements. In particular, the
convergence at the Einstein ring is now forced to be κE = (3 −
n)/2 that in turn forces a particular value for H0 given a time delay.
The mass distribution away from the Einstein ring is also fully
specified, eliminating any important constraint from the dynamical
data because the fractional uncertainties in lensing constraints are
generally far smaller than the fractional uncertainties in velocity
dispersions.

There are, however, two fundamental problems. First, as noted in
the Introduction, whatever the available lensing constraints, the one
quantity they do not directly constrain is the mean surface density
needed to convert a time delay intoH0. The conversion of the lensing
constraints into a value of κE is entirely set by the functional form
of the mass model and its flexibility. Second, the lens geometry has
absolutely no information on the mass distribution inside or outside
the annulus encompassing the lens images – the exactly determined
mass distribution for these regions is purely an extrapolation set by
the functional form of the mass model.

These two points are also easily demonstrated non-parametrically
(see Kochanek 2002, 2006). Let the mass of the lens between two
radii be

m(r1, r2) = 2
∫ r2

r1

u duκ(u), (5)

where κ(r) is the convergence (surface density) profile of the lens.
The deflection angle is then α(r) = r−1m(0, r) and the lens equations
require that

r1 − r−1
1 m(0, r1) = −r2 + r−1

2 m(0, r2). (6)

Now m(0, r1) = m(0, r2) + m(r2, r1), so

m(0, r2) = r1r2 − 〈κ〉21r2(r1 − r2), (7)

where

〈κ〉ij = 2

r2
j − r2

i

∫ rj

ri

u duκ(u) (8)

is the mean convergence in the annulus bounded by r1 and r2. For
a thin annulus, the Einstein radius is R2

E = r1r2 independent of the
surface density, and the mean surface density is the quantity that
determines the H0 given the time delay since H0 ∝ 1 − 〈κ〉21.
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Stellar dynamics essentially provides an independent constraint on
m(0, r2), thereby allowing an estimate of 〈κ〉21 and hence H0.

Adding additional lensing constraints does nothing to remove the
degeneracy. Suppose r1 and r2 bound the region containing lensed
images, and we again add an additional pair of lensed images with
r2 < r4 < r3 < r1. There is now a second constraint equation
like equation (6). The non-parametric parameters of the model
are now m(0, r2), 〈κ〉24, 〈κ〉43, and 〈κ〉31, leaving us with four
parameters to be constrained by two equations. Viewed as a non-
parametric model, the number of parameters expands faster than
the number of constraints and the H0 degeneracy problem cannot be
eliminated no matter how many additional pairs of lensed images are
added.

The annulus encompassing the lensed images of the quasar and
its host is typically rather narrow, so using a simple functional
form to describe the mass distribution in this annulus is likely quite
reasonable. The problems are (1) that the constraints only apply over
the annulus containing the lensed images – any prediction of the
mass distribution beyond the annulus is purely an extrapolation, and
(2) that they cannot constrain the quantity κE needed to determine
H0. We can illustrate this by first determining what property of a lens
is constrained by the data, and then by constructing a model where
two radically different radial mass distributions and predictions for
H0 are essentially indistinguishable using lens data.

Suppose we locally expand the deflection angle as a Taylor series
near the Einstein radius, RE,

α(r) 
 RE + 2(κE − 1)(r − RE) + 1

2
α′′

E(r − RE)2, (9)

where κE is the convergence and α′′
E is the second derivative of the

deflection profile at RE. The lens equation for a source at radius β

is then

β = −2(κE − 1)(r − RE) + 1

2
α′′

E(r − RE)2 (10)

for one image and with the signs flipped on the right-hand side of
the equation for the other image. We can divide both sides by 1 −
κE, to get

β̂ = 2(r − RE) + 1

2
α̂′′

E(r − RE)2, (11)

where β̂ = β/(1 − κE) and α̂′′
E = α′′

E/(1 − κE). Since the source
position β is not an observable, equation (11) means that for images
near the Einstein ring, lens models determine α̂′′

E and two lens
models are indistinguishable if they have the same α̂′′

E. Alternatively,
we can introduce the dimensionless quantity

ξ = REα̂′′
E = REα′′(RE)

1 − κE
(12)

as the second property of the radial mass distribution after RE that
can be well constrained by lens data. Because the uncertainties in
RE are generally small, the uncertainties in ξ will be dominated by
the uncertainties in α̂′′

E.
Many previous studies have found that lens models modelled as

a power law with ρ ∝ r−n favour logarithmic slopes n 
 2 close to
the n = 2 slope of an isothermal sphere (e.g. Rusin & Kochanek
2005; Gavazzi et al. 2007; Koopmans et al. 2009; Auger et al. 2010;
Bolton et al. 2012). This does not mean that the typical slope of
the density distribution on the scale of the Einstein radius has n

 2. Instead, there is a one-to-one relation that ξ = 2(n − 2) for
the power-law models and the true physical constraint implied by
finding n 
 2 is that ξ 
 0. It is again important to emphasize that
lens models do not determine κE, the quantity needed to estimate
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Figure 1. Probability of the power-law index n for a Hernquist (1990)
model lens with an Einstein radius of RE = 1.3s for circular (red, solid)
and ellipsoidal (black, dashed) models fitting either one source producing
two images (‘1 src’) or four sources producing 12 images (‘4 src’). For the
circular lens, matching the values of ξ predicts that the best-fitting power-
law model should have n = 2. The solid line shows the dependence of the
convergence at the Einstein radius κE(n) on the power-law index, where the
point labelled ‘true value’ is the correct value for the input model.

H0. The functional form chosen for the mass model implies some
value of κE given the value of ξ , but a different mass model will lead
to a different value of κE for the same value of ξ . For the power-law
models, κE = (3 − n)/2 = (2 − ξ )/4, with κE = 1/2 for n = 2 or ξ =
0. However, a different mass model will predict a different value of
κE for the same value of ξ .

2.2 A demonstration of the problem

Consider the Hernquist (1990) model,

ρ ∝ 1

r(s + r)3
, (13)

where the scale radius is related to the effective radius by s
 0.55Re.
For a Hernquist (1990) model lens, the value of ξ depends on the
position of the Einstein radius relative to the break radius RE/s, and
ξ = 0 for RE/s 
 1.3, where κE 
 0.35 is the convergence. If we
model this lens as a power law, we should find that n 
 2 with κE 

0.5 as the convergence. This means that the power-law lens model
will produce a fractional error in H0 of f = Htrue/Hmodel − 1 

30 per cent.

Fig. 1 shows a sequence of four cases fitting this example of a
Hernquist (1990) lens model with a power-law model. We ignore
the generation of faint third images by the Hernquist (1990) model
and the flux ratios of the images. For computing a goodness of fit,
we assume astrometric uncertainties of 0.003s for the image and
lens positions and no constraints on the ellipticity of the lens or the
external shear for the ellipsoidal models. The shear and ellipticity
parameters remain reasonable without additional constraints. We fit
the fake data using LENSMODEL (Keeton 2001, 2011) with the χ2

goodness of fit computed on the image plane.
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1728 C. S. Kochanek

We first considered two circular lens models. In the first, we place
one image at 1.1RE, which has a second image at −0.89998RE. Note
that the image separation of 1.9998RE is essentially indistinguish-
able from the 2RE that would be produced by an SIS model. As seen
in Fig. 1, this data can be perfectly fit (χ2 ≡ 0) independent of the
slope of the power law as expected from equation (3). For the second
model, we added three additional sources that produced outer
images at 1.05RE, 1.2RE, and 1.3RE, respectively. The separations of
the three resulting image pairs are also essentially indistinguishable
from the 2RE prediction of an SIS model. If we fit these four image
pairs, we now find that the model is strongly constrained to have
n = 2, as expected from matching the values of ξ . The best model
(n = 1.974) is still a perfect fit with χ2 = 0.015 for 3 degrees of
freedom. The surface density at the Einstein ring implied by the
model is, however, completely wrong, leading to a 30 per cent error
inH0. Adding more lensing constraints will never solve the problem
– the χ2 distribution will simply steadily narrow around n 
 2 with
smaller and smaller uncertainties in both n and the implied value of
κE.

We next considered the same cases but with an ellipsoidal lens
in an external shear. We gave the Hernquist (1990) model a surface
density axial ratio of q = 0.65 and added an external shear of γ =
0.05 at a randomly chosen angle. For the ellipsoidal models, we
view s as the intermediate axis scale length and again normalize
the mass so that RE = 1.3s (LENSMODEL uses the major axis scale
length of sq−1/2 to define the models). We again placed images at
1.05RE, 1.1RE, 1.2RE, and 1.3RE and random angles around the lens
and then found their companion images. The two images closer to
RE produced four images, and the two further from RE produced
two images, so we now have 12 images in total.

We first repeated the fits using the four-image system associated
with an image at 1.1RE. We again find a good fit, but at n 
 1.7 with
χ2 = 0.004. Formally, the model has fewer constraints than parame-
ters (−1 degrees of freedom). The goodness of fit is not independent
of n but clearly selects a preferred range, albeit with relatively large
uncertainties. We are confident that this is a consequence of the
limited degrees of freedom in the angular structure of the mass
model. The density distribution of the Hernquist (1990) model out
to RE drops more slowly than the n = 2 power-law model, so for the
same quadrupole it will have larger higher order multipoles. The
power-law models compensate by shifting to lower n, less centrally
concentrated mass distributions. Kochanek (2006) has an extensive
discussion on the angular structure of lens models.

If we now add in the other three sources and fit all 12 images,
Fig. 1 shows that n is again tightly constrained but still offset to lower
n than the circular models. The sense of the shift only exacerbates
the problems for H0, since these models have surface densities at RE

even higher than the n = 2 SIS model and so are still further from
the input model. The best-fitting models at n 
 1.88 are statistically
good fits with χ2 = 3.3 for 3 degrees of freedom. Adding additional
sources producing multiple images simply narrows the probability
distribution P(n).

Fig. 2 shows the consequences of adding dynamical constraints to
the lensing constraints illustrated in Fig. 1. We assume a measured
dispersion equal to the true dispersion for a Hernquist (1990) model
inside the aperture R < s with a 10 per cent uncertainty. The
circular model with only one two-image lens system plus dynamics
comes closest to yielding models with the correct value of κE,
since the joint probability distribution is simply the dynamical
probability distribution as the lens model imposes no constraint
on n. For the elliptical model with one four-image lens system,
the dynamical constraint shifts the lensing distribution to be more
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Figure 2. Changes in the probability distributions for n from Fig. 1 after
adding a 10 per cent estimate of the velocity dispersion centred on the true
value. The models are labelled as in Fig. 1. The dynamical constraints shift
the probability distributions to better agree with the true value if the lens
constraints are weak (only one source), but the changes are negligible when
the lens constraints are strong (four sources). For the circular single-source
model, the probability peaks at the value of n producing the input velocity
dispersion.

consistent with the correct value of κE. For both the circular and
ellipsoidal models with four sources, the probability distributions
are essentially unchanged after adding the dynamical constraint.
The lens model is so strongly constrained by the lens data that the
relatively weaker dynamical constraints have little effect.

We tried a broad range of additional numerical examples for
a range of mass models. In circular models, the solution always
converges to match the ξ of the input model. In ellipsoidal models
with external shear, there are modest shifts from the ξ of the
input model. These experiments explain the puzzle discussed in
the Introduction. In mass models with few degrees of freedom
and very strong lensing constraints, the lens data ‘pins’ the mass
model to match the ξ required by the data. The weaker dynamical
constraints then have little effect and estimates of H0 (i.e. κE) show
little sensitivity to changes in the velocity dispersion. Unfortunately,
Figs 1 and 2 also show that the accuracy of the estimate of H0 was
greatly reduced rather than enhanced by the use of the additional
strong lensing constraints.

2.3 Consequences

By matching lens models in ξ , it is now easy to show the
consequences of using different mass models in the case of circular
lenses. We used an input mass distribution consisting of a de
Vaucouleurs (1948) (deV) model for the stars plus a dark halo.
Qualitatively similar results are obtained if we chose a different
density distribution for the stars. We scaled everything by the
effective radius Re of the deV model and generated models with 0,
25, or 50 per cent of the mass inside the Einstein radius RE coming
from the halo. We considered four halo models. The first is simply
the NFW model of equation (1). The second is the generalization
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Figure 3. Fractional errors in H0 for an input deV+NFW halo modelled as a power law (top left) or a deV+NFW halo model (other panels). In the power law
panel the dark matter fraction is fDM = 0 per cent (solid), 25 per cent (dotted), or 50 per cent (dashed) for input NFW scale lengths of a/RE = 5 (top), 10 or
20 (bottom). For the NFW panels, the input NFW scale length is a/RE = 5 (top right) 10 (lower left), or 20 (lower right), and the model NFW scale length is
a/RE = 5 (dotted), 10 (solid), or 20 (dashed) in each panel. Results are shown for dark matter fractions of fDM = 25 or 50 per cent with larger fractional errors
for larger dark matter fractions. When fDM = 0 per cent or the input and model NFW scale lengths are the same, the fractional error is zero. The locations of
the H0LiCOW lenses in RE/Re are indicated by the lens names.

of the NFW (gNFW) profile

ρ ∝ 1

rγ
(
a2 + r2

)(m−γ )/2 (14)

introduced as a lens model by Muñoz, Kochanek & Keeton (2001).
This asymptotically matches generalizations of the NFW model at
large and small radii, but the change in structure near the break
radius makes the deflection profiles analytic. The case γ = 1, m =
3 is similar to the NFW model, while γ = 3/2, m = 3 is similar to
the model favoured by Moore et al. (1999). The third is the Einasto
(1965) profile

ρ ∝ exp

[
− 2

α

(( r

a

)α

− 1
)]

, (15)

where 0.15 <∼ α <∼ 0.30 models may better fit halo simulations than
the NFW model (e.g. Merritt et al. 2005; Navarro et al. 2010; Reed,
Koushiappas & Gao 2011). The Einasto (1965) models are most
easily treated numerically.

These first three models are for dark matter haloes unaffected by
baryons, but the actual halo structures of galaxies are modified by
the presence and evolution of the baryons. In particular, the baryons
adiabatically compress the dark matter orbits as they cool and shrink

relative to the dark matter. As a fourth halo model, we use the simple
model of adiabatic compression from Blumenthal et al. (1986).
We start with an NFW halo and make the final distribution of the
baryons a Hernquist (1990) density profile with the same effective
radius as the deV model we use for the lens model. We use a NFW
concentration of c = 10, so that the virial radius is rv = ca = 10a,
and a baryonic mass fraction of 15.7 per cent (Planck Collaboration
VI 2018). We then combine this adiabatically compressed NFW
profile with the deV model for the stars, again assuming that either
25 or 50 per cent of the projected mass inside the Einstein ring
comes from the halo – we did not force the dark matter fraction
implied by the adiabatically compressed model.

Following H0LiCOW, we model the input system using either the
power-law mass distribution (‘PL’) or the input stellar distribution,
here a de Vaucouleurs (1948) model, combined with an NFW model
for the halo (‘deV+NFW’). We assumed that the effective radii
of the two deV models were fixed and identical. With the break
radius a of the NFW model fixed, both mass models have two
parameters that we determine by matching the Einstein radius and
ξ of the input model as function of the Einstein radius relative to
the effective radius RE/Re. Given the input κ input and model κmodel

surface densities at the Einstein radius, we can then compute the
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Figure 4. Fractional errors in H0 for an input deV+gNFW halo modelled as a power law (‘PL’, left-hand panels) or a deV+NFW halo model (deV+NFW,
right-hand panels). In the top panels, the asymptotic slope m = 3 is fixed and the inner density slope exponent of the gNFW model is γ = 1/2 (dotted), γ = 1
(solid), or γ = 3/2 (dashed). In the lower panels, the inner exponent is fixed to γ = 1 while the asymptotic slope is m = 2.7 (dotted), m = 3 (solid), and m =
3.3 (dashed). The scale length is fixed to a/Re = 10 for both the gNFW and NFW models and the dark matter fraction is either fDM = 25 or 50 per cent, with
larger fractional errors for larger fDM.

fractional error in H0 as

f = Htrue

Hmodel
− 1 = 1 − κinput

1 − κmodel
− 1. (16)

This has the sense that the models underestimate (overestimate) H0

if f > 0 (f < 0).
We first consider models where the input halo is NFW using

input break radii of a/RE = 5, 10, and 20. H0LiCOW sets a 

(58 ± 8) h−1 kpc based on the stacked weak lensing analysis of
the Sloan Advanced Camera for Surveys (ACS) lens sample by
Gavazzi et al. (2007). This roughly corresponds to a/Re 
 10 for
most of the H0LiCOW lenses. Whether from Gavazzi et al. (2007)
or simulations (e.g. Bullock et al. 2001; Reed et al. 2011; Dutton &
Macciò 2014), a/Re 
 10 is roughly the correct scale. However,
while the 15 per cent uncertainty in a found by Gavazzi et al. (2007)
and used by H0LiCOW may be a realistic estimate of the uncertainty
in the mean scale length, it greatly underestimates the plausible
range of scale lengths for individual lenses. The lens galaxies have
a finite spread in halo mass, and halo concentrations have significant
scatter at fixed halo mass (e.g. Dutton & Macciò 2014). There are
further dependencies on the redshifts of formation and observation.
Hence, the factor of 2 range around a/Re = 10 we use for illustration
is relatively realistic even if a/Re = 10 is the true mean halo scale
length of lenses. Fig. 3 shows fractional errors from modelling these

lenses using either a power-law model or deV+NFW models with
the same three break radii.

If lenses happen to have deV+NFW mass distributions with
fDM = 25 per cent and a/RE = 10, then the power-law models
do remarkably well, with fractional errors of only 1–2 per cent
for the range of RE/Re spanned by the lenses. However, for any
other dark matter fraction or scale length, the fractional errors
quickly exceed 5 per cent. The exact values of the systematic errors
found for the power-law models are quite sensitive to changing
the stellar mass distribution. For example, for this deV+NFW
model, the fractional error for RE = 1.3s = 0.72Re is 15 per cent
instead of the 30 per cent fractional error we found for the
same Einstein radius in the Hernquist (1990)+NFW model of
Section 2.2.

The other three panels of Fig. 3 show the results for the
deV+NFW model and the consequences of differences in the NFW
break radius. If the input and model break radii match, or there
is no dark matter (fDM = 0 per cent), then the lens model can
exactly reproduce the input model and the fractional errors are
zero. However, if the lens model scale length is greater (less) than
the true scale length, H0 is underestimated (overestimated) with
the magnitude of the error increasing with the dark matter fraction.
Changing the stellar distribution, but still using the same stellar
mass distribution to both generate and model the lens, seems to
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Figure 5. As in Fig. 4 but adding the results for both models having a/Re = 5 and 20. The same halo scale length is still used for both input gNFW and model
NFW profiles. The spread increases further if we allow the scale lengths to differ as in Fig. 3.

have little effect on systematic errors found when modelling the
system by the stellar density plus an NFW halo.

Next we consider the gNFW models (equation 14), where we can
vary the inner (γ ) and outer (m) logarithmic slopes of the profile and
the scale length a. Fig. 4 shows the results where both the gNFW
and NFW profiles have a/Re = 10. The first point to note is that
even with the same scale length and exponents matching those of
the NFW profile (γ = 1, m= 3), there are significant changes in the
fractional errors for H0 whether using the power-law or deV+NFW
models. As before, the shifts increase as the dark matter fraction
increases. Varying the outer slope m has relatively little effect on
the results for the 2.7 ≤ m ≤ 3.3 range shown. Varying the inner
slope over the range 1/2 ≤ γ ≤ 3/2 creates quite large shifts, where
the models tend to underestimate (overestimate) H0 as we make
the inner profile steeper (shallower). The limit γ = 3/2 is the slope
favoured by Moore et al. (1999). As shown in Fig. 5, changing the
scale length a to a/Re = 5 or a/Re = 20 produces significant changes
compared to a/Re = 10 even though we continue to use the same
break radius for both the input gNFW mass model and the lens
NFW model. We do not show the cases where we allow the two
break radii to differ, but this leads to still broader ranges for the
fractional errors that are qualitatively similar to the effects for the
deV+NFW models in Fig. 3.

Fig. 6 shows the results for the Einasto (1965) halo models with
a dark matter fraction of fDM = 25 per cent. The fractional errors
depend on the parameter α, shifting towards more positive fractional

errors as α is reduced. As with the other halo models, more compact
haloes and haloes of one scale length modelled by one with a smaller
scale length are also shifted towards more positive fractional errors.
The typical scale of the systematic errors for fDM = 25 per cent
is again of order 10 per cent for reasonable ranges of the model
parameters, rising to ∼20 per cent for fDM = 50 per cent.

Fig. 7 shows the results for the adiabatically compressed NFW
haloes with a dark matter fraction of fDM = 25 per cent. The
adiabatically compressed haloes are more centrally concentrated,
so it is not surprising that the main qualitative change from the
NFW models in Fig. 3 is to shift the fractional errors to larger
positive values. The qualitative shifts seen in Fig. 7 are also found
if we adiabatically compress the Einasto (1965) profiles and are
presumably generic.

So far, we have assumed that the shape of the stellar density
distribution is exactly the same in both generating and modelling
the lens, leaving only the mass-to-light ratio as a parameter of the
lens models. Photometric models of the lens galaxies generally
leave small fractional residuals, so if the stellar distributions have
constant mass-to-light ratios this is likely a safe assumption until
pursuing ∼1 per cent fractional uncertainties in H0. However, it is
routine to find that surface brightness profiles depend on the filter
of observation or equivalently that early-type galaxies have colour
gradients indicative of radial changes in age or metallicity that in
turn imply changes the stellar mass-to-light ratio (see e.g. the review
by Kormendy & Djorgovski 1989) Thus, as a final experiment, we
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Figure 6. Fractional errors in H0 for deV+Einasto models with fDM = 25 per cent and α = 0.15, 0.20, 0.25, and 0.30. The top left-hand panel uses power-law
models for Einasto haloes with a/Re = 5 (dashed), 10 (solid), and 20 (dotted). The remaining panels show deV+NFW models applied to Einasto profiles with
a/RE = 5 (top right), 10 (lower left), and 20 (lower right). The NFW models use a/Re = 5 (dashed), 10 (solid), and 20 (dotted).

gave the input stellar mass distribution a gradient in its mass-to-light
ratio. We multiplied the input deV density distribution by

1 + μ

(
R − Re

Re

)
(17)

but modelled the stellar mass distribution using just the input deV
density distribution (i.e. μ ≡ 0). For illustration we used μ = ±0.2,
so a 20 per cent change in the mass-to-light ratio per effective
radius. We did not worry about the mass-to-light ratio becoming
negative for large radii when μ < 0, as all that matters is the mass-
to-light ratio from the centre to RE, and the Einstein radii are well
inside the radius where the model becomes problematic. As shown
in Fig. 8, modest gradients in the stellar mass-to-light ratio can
easily lead to 5–10 per cent systematic errors in estimates of H0

even if the photometric profile of the lens in some filter is exactly
known.

3 DISCUSSION

Estimates of H0 from lens time delays are controlled by the
convergence (surface density) κE at the Einstein radius RE, with
H0 ∝ 1 − κE. No differential lens data (image separations, flux
ratios, etc.) other than the time delays ever directly constrains κE –
it is a fundamental degeneracy in the mathematics of lensing (see
e.g. Gorenstein et al. 1988; Kochanek 2002, 2006; Schneider &

Sluse 2013; Wertz et al. 2018). Lens data constrain two properties
of the radial mass distribution: (1) the Einstein radius RE; and (2)
the dimensionless number ξ = REα

′′
(RE)/(1 − κE), where α

′′
(RE)

is the second derivative of the deflection profile at the Einstein
radius. Any lens with constraints from more than one set of lensed
images will strongly constrain RE and ξ . If the (radial) mass model
has only two parameters, this will also lead to tight constraints on
κE and hence H0 because the model has no additional degrees of
freedom. For example, in power-law lens models with deflection
profiles α(R) = bn − 1R2 − n, RE = b, ξ = 2(n − 2), and κE = (3
− n)/2 = (2 − ξ )/4. But the constraint on κE is purely dictated
by the mathematical structure of the lens model and not by the
lens data. We demonstrate this point in detail for a particular model,
admittedly chosen to lead to an alarming 30 per cent fractional error
in H0.

We carried out an extensive survey of the consequences of using
strong lens constraints by simply matching RE and ξ between mass
models. For the input models, we considered lenses consisting of
a de Vaucouleurs (1948) model combined with a broad range of
physically reasonable halo models [the Navarro et al. (1997) NFW
model, generalizations of the NFW model, the Einasto (1965)
model, and an adiabatically compressed NFW model]. We then
determined the corresponding best fit that would be found using
the two standard H0LiCOW lens models: the power-law model or
the combination of the input de Vaucouleurs (1948) model with
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Figure 7. Fractional errors in H0 for adiabatically compressed NFW haloes. The top left-hand panel shows the results for the power-law models and the other
three panels are for the deV+NFW models where the input model has a/RE = 5 (top right), 10 (lower left), or 20 (lower right) and the lens model has a/RE =
5 (dashed), 10 (solid), or 20 (dotted). All panels include both the fDM = 25 and 50 per cent cases.

an NFW halo. From the difference between the true and model
values of κE we can estimate the resulting fractional error in H0.
The typical scale of the systematic error in H0 is ∼10 per cent.
On the one hand, this seems remarkably good given the simplicity
of the mass models. On the other hand, it also means that the
accuracy of all current estimates of H0 from gravitational lens time
delays is ∼10 per cent independent of the reported precision of the
measurement.

As emphasized by Schneider & Sluse (2013), using mass models
with additional degrees of freedom, so that determining RE and
ξ does not force a particular value of κE in our language, is the
easiest way to ensure that the precision of the measurement does not
exceed the accuracy even in the presence of very strong constraints
from the lens data. The power-law model should clearly simply be
abandoned – while it is adequate for ∼10 per cent estimates of H0 it
is essentially useless if higher accuracies are needed. Combining
the stellar distribution with an NFW model can capture much
of this uncertainty if the scale radius of the NFW component is
allowed a significant dynamic range. The current H0LiCOW models
generally constrain the scale length to 10–15 per cent, essentially
making it a two-parameter model like the power-law models. Even
to the extent that NFW models are correct, the scatter of lenses
in mass and the spread of concentrations seen at fixed mass mean
that the scale length should really be allowed to vary by a factor
of ∼2.

While we have emphasized the radial structure of the density
distribution because it then allows us to carry out a large model
survey, one should have similar concerns about the number of
degrees of freedom in the angular structure. In our example from
Section 2.2 of a lens producing a large fractional error in H0,
the problems only worsened when we considered a non-circular
version of the same lens. The angular structure of the lens drove
the models to have a radial density distribution with κE even more
divergent from the true value than in the circular models. Models
need to have enough angular degrees of freedom that the angular
structure beyond the quadrupole is not largely determined by the
radial mass distribution of a single ellipsoidal density distribution
(see Kochanek 2006).

There will remain a fundamental problem. While mass models
with more degrees of freedom can capture the uncertainties in H0

created by the uncertainties in halo structure, these are largely
systematic rather than random problems. For example, if haloes
were truly NFW models with a factor of 2 random scatter in the
NFW scale length, then we might legitimately average the results
from multiple lenses to produce a joint estimate of H0 with smaller
uncertainties than for the individual lenses. However, if the freedom
from allowing a broad range of scale lengths is really compensating
for the fact that the real mass distribution is systematically different
from the mean behaviour of the model, then there is no reduction
in the uncertainties from averaging multiple lenses.
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Figure 8. Fractional errors in H0 for models with mass-to-light ratio gradients. Results are shown for fractional changes per Re of μ = −0.2 (top), 0 and 0.2
(bottom). The upper left-hand panel for the power-law models shows the cases with fDM = 0, 25, and 50 per cent. The other three panels are for the deV+NFW
models where the input model has fDM = 25 per cent and a/RE = 5 (top right), 10 (lower left), or 20 (lower right) and the lens model has a/RE = 5 (dashed),
10 (solid), or 20 (dotted). Generally the μ = 0.2 case is at the top and the μ = −0.2 case is at the bottom.
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