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ABSTRACT

The gelatinous, calciferous red alga Renouxia antillana was described in 1995 based on material from Guadeloupe, French West
Indies, and accommodated in a new family and order (Rhodogorgonaceae, Rhodogorgonales) along with the genus Rhodogorgon
from Belize and Caribbean Panama. For more than 20 years, Renouxia has remained monotypic, with rare reports in the
Caribbean and the Indo-Pacific (from Réunion Island to French Polynesia). DNA-based analyses of recently collected Renouxia
specimens from Egypt showed that they are not conspecific with the Caribbean R. antillana and are described asR.marerubra sp.
nov. Uncorrected p-distances between the Red Sea specimens and the generitype were 8.0% for COI, 6.5-7.3% for rbcL and 3.1%
for UPA. Morphological and anatomical features are also presented for the newly described species and compared to its
congener, with the first documented report of monoecism in the Rhodogorgonales. Besides the new record of Renouxia from
the Red Sea, the geographic distribution of the genus is here extended with additional records from Sri Lanka, Indonesia, as well
as the islands of Guam and Kosrae in theWestern Pacific. The UPA phylogeny suggests that these new distribution records may
also represent undescribed species, with representatives in two distinct genetic groups.
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INTRODUCTION

Littler et al. (1989) reported an unknown red alga

from the Caribbean as ‘quite an oddity’, with the

unusual presence of calcium carbonate within its

highly gelatinous fronds, to which no species name,

genus, order or even family could be assigned.

Six years later, the genus Renouxia Fredericq & J.

N.Norris was erected to accommodate the species

R. antillana Fredericq & J.N.Norris, a taxon that

was placed together with Rhodogorgon J.N.Norris &

K.E.Bucher in the new family Rhodogorgonaceae,

order Rhodogorgonales (Fredericq & Norris, 1995).

The order currently encompasses four species:

Renouxia antillana; Rhodenigma contortum J.A.

West, Verbruggen & Loiseaux; Rhodogorgon ramosis-

sima J.N. Norris & Bucher; and Rhodogorgon flagelli-

fera Huisman (Guiry & Guiry, 2019). Earlier, Ogden

(1992) synonymized Rhodogorgon carriebowensis J.N.

Norris & Bucher from Belize with R. ramosissima,

suggesting that habit differences resulted from differ-

ences in hydrodynamic conditions.

The genus Renouxia remained monotypic with new

records of the alga reported from the Caribbean

(Jamaica, Freshwater et al., 1994; Puerto Rico,

Ballantine et al., 2004), and from various tropical loca-

tions in the Indo-Pacific (Fig. 1, with ecoregions based on

Spalding et al., 2007): Tanzania and Rodrigues (de Clerck

et al., 2004), Réunion Island (Zubia et al., 2018), Thailand

(Liao & Aungtonya, 2000), Philippines (Kraft et al.,

1999), Papua New Guinea (Millar et al., 1999;

Coppejans & Millar, 2000), French Polynesia (Payri

et al., 2000), New Caledonia (Bittner et al., 2011),

American Samoa (Littler & Littler, 2003), and Fiji

(N’Yeurt, 2001). Besides the original 1995 description,

little is known about themorphological and reproductive

diversity of these Renouxia collections, with only a few

studies scarcely reporting on internal anatomy (e.g.

N’Yeurt, 2001; Lewmanomont & Noiraksa, 2010).

Although DNA sequences of Renouxia taxa have been

included in various studies (e.g. Freshwater et al., 1994;

LeGall & Saunders, 2007; Sauvage et al., 2016;West et al.,

2016; Lee et al., 2018), they were obtained from a limited

number of specimens (two from the Caribbean and one

CONTACT Daniela Gabriel danielalgabriel@gmail.com

EUROPEAN JOURNAL OF PHYCOLOGY

British
Phycological
Society
Understanding and using algae

2020, VOL. 55, NO. 2, 197–206
https://doi.org/10.1080/09670262.2019.1670362

© 2019 British Phycological Society

Published online 26 Nov 2019



from the Red Sea, the latter obtained in the present

study) and therefore represent a limited perspective on

the genetic diversity of the genus. The Rhodogorgonales,

along with the Corallinales, Hapalidiales and

Sporolithales, represent four well-supported, monophy-

letic orders in the subclass Corallinophycidae of the class

Florideophyceae (Yang et al., 2016; Lee et al., 2018).

Recent fieldwork conducted in the Red Sea, in the

Indo-Pacific and in some Pacific Islands revealed new

records of Renouxia antillana. The present work aims to

(1) use a multigene approach to assess the phylogenetic

position of the new specimens and their relationship to

other taxa in the Rhodogorgonales, and (2) describe the

morphological and reproductive features of Renouxia

from Egypt.

Materials and methods

Specimens resembling the typical habit of Renouxia

antillana were recently collected (Fig. 1) along the Red

Sea coast of Egypt (Fig. 2), in the Indo-Pacific basin

(Figs 3–5) and the Pacific Ocean (Fig. 6). Collection

data are provided in Supplementary table S1. Newly

collected specimens were preserved and characterized

following Gabriel et al. (2017), with microphotographs

andmeasurements (presented as length × width) taken

using an optical microscope (Leica DM2500, Wetzlar,

Germany) with a microphotography system (Leica

LAS V3.8). DNA was extracted and three genetic mar-

kers (mitochondrial COI, cytochrome c oxidase sub-

unit 1, 5’-prime end; plastid rbcL, ribulose-1,5-

bisphosphate carboxylase/oxygenase large subunit;

and the Universal Plastid Amplicon (UPA, domain

V of the plastid large subunit 23S, Sherwood et al.,

2010) were sequenced following the protocols in

Gabriel et al. (2017). Additional sequences were

retrieved from GenBank (Supplementary table S1)

and members of Sporolithales were used as an out-

group based on Yang et al. (2016) and Lee et al. (2018).

Sequence divergences were estimated in MEGA

v.7.0.18 (Kumar et al., 2016), using the uncorrected

p-distance method (Nei & Kumar, 2000), i.e. the

proportion of nucleotide sites at which the sequences

being compared are different without any correction

for multiple substitutions at the same site, substitution

rate biases, or differences in evolutionary rates among

Fig. 1. Geographic distribution of the genus Renouxia. Ecoregions (Spalding et al., 2007) with previous reports are shaded
in dark grey, and those with new reports in light grey. Collection sites of specimens included in the present study are
colour-coded according to the different putative species in Fig. 7 (see online version for colours). The type locality of
R. antillana (the type species of the genus) is shown by a black star.
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sites. Maximum likelihood (ML) and Bayesian infer-

ence (BI) phylogenetic analyses were implemented on

the CIPRES Science Gateway (https://www.phylo.org/;

Miller et al., 2010). ML analyses were conducted in

RAxML v.8 (Stamatakis, 2014) using the GTR+I+G

model and the default rapid hill-climbing algorithm.

Nodal support was estimated using a non-parametric

bootstrap estimate with 1000 replicates and a random

starting tree. Bayesian inference reconstructions were

performed in MrBayes v.3.2.6 (Ronquist et al., 2012),

using 10 million generations with two independent

runs of four Monte Carlo Markov chains (MCMC),

sampled every 1000 generations. After discarding the

initial 20% generations as burn-in, the remaining trees

were used to construct the 50% majority-rule consen-

sus tree to estimate the Bayesian posterior probabilities

(PP). Tree nodes with ML bootstrap value (BS) greater

than 80% and BI posterior probability (PP) greater

than 0.95 were considered as strongly supported

(Erixon et al., 2003).

Results

The level of genetic divergence of the different markers

was consistent with previous studies (e.g. Gabriel et al.,

2017), with COI being the most variable and UPA the

most conservative marker (Table 1, Supplementary table

S2). Likewise, the success of DNA sequencing varied

among markers, with UPA being the easiest and COI

the most difficult to amplify (Gabriel et al., 2017).

Uncorrected p-distances between the Red Sea specimens

and the generitype were 8.0% for COI, 6.5–7.3% for

rbcL and 3.1% for UPA. Although COI exhibited higher

divergence valueswithin the genus, rbcLpresented higher

values between the genera of Rhodogorgonaceae prob-

ably because of increased genetic saturation of COI at the

genus level (Gabriel et al., 2017).

Figs 2–6. In situ pictures of Renouxia spp. from different locations. Fig. 2. Renouxia marerubra sp. nov. (LAF6170) from
Hurghada, Egypt; Fig. 3. Renouxia sp. 1 (SGAD1801001) from Phuket, Thailand; Fig. 4. Renouxia sp. 3 (SGAD0911025)
from Ternate, Indonesia; Fig. 5. Renouxia sp. 3 (SGAD1606052) from Catanduanes, Philippines; Fig. 6. Renouxia sp. 4
(GH13674) from Kosrae, Federated States of Micronesia.
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Phylogenetic analyses of the two most informative

genes resulted in similar topologies (Fig. 7), therefore

COI and rbcL were concatenated into a single dataset

(Fig. 8), while UPA sequences were only used to report

new records of the genus (Fig. 9). The UPA phylogeny

suggests the existence of additional undescribed spe-

cies within two main groups of the genus Renouxia

(Fig. 9). One group, without strong BS and PP support,

has representatives from the Caribbean Sea

(R. antillana), the Red Sea (R. marerubra), the Bay of

Bengal (Renouxia sp. 1), and the Mariana Islands

(Renouxia sp. 2), while a second group includes

representatives from the Coral Triangle (Renouxia sp.

3) and the Caroline Islands (Renouxia sp. 4).

Based onmolecular andmorphological data, the new

species from the Red Sea is here described as follows:

Renouxia marerubra D.Gabriel, J.N.Norris &

Fredericq, sp. nov. (Figs 2, 10–29)

HOLOTYPE: LAF 5597 (monoecious gametophyte), col-

lected by D. Gabriel, T. Sauvage & W.E. Schmidt on

5 May 2012 at 17 m depth. Deposited in the Herbarium

of the University of Louisiana at Lafayette (LAF, USA).

Fig. 7. Phylogeny of the genus Renouxia, including R. marerubra sp. nov. (indicated in bold) based on Bayesian inference analyses
of COI sequences (left) and rbcL sequences (right). Bayesian inference posterior probabilities (PP) and Maximum likelihood
bootstrap (BS) presented as ‘PP/BS’ near branches ('-' indicates BS below 80). Scale bar indicates number of substitutions per site.
The other ingroup taxa are members of the Rhodogorgonales and the outgroup taxa are members of the Sporolithales.

Table 1. COI (lower left) and rbcL (upper right) uncorrected p-distances between members of the Rhodogorgonales. Note:
COI distance values are higher than rbcL within the genus, and lower between genera. p-distances are colour-coded from
low values in yellow to high values in green (see online version for colours).

Renouxia marerubra 

sp. nov. - Hurghada

Renouxia antillana -

Jamaica

Rhodenigma contortum -

Western Australia

Rhodogorgon ramosissima

- Jamaica

Renouxia marerubra

sp. nov. - Hurghada

6.5–7.3% 9.3% 12.6%

Renouxia antillana -

Jamaica

8.0% 9.1–9.8% 13.5–14.3%

Rhodenigma contortum -

Western Australia

7.7% 7.3% 13.7%

Rhodogorgon ramosissima

- Jamaica

10.9% 10.2% 8.8%
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TYPE LOCALITY: The Island, Dahab, Gulf of Aqaba,

Egypt (28°28'38.3"N, 34°30'45.6"E).

ETYMOLOGY: The name marerubra refers to its collec-

tion site in the Red Sea.

Description

Gelatinous pink thallus, from 1.9 to 3.6 cm in height and

2.3 to 4.3 cm inwidth (Figs 2, 10–13), sub-dichotomously

branched growing from a short firm stalk, attached to the

Fig. 8. Phylogenetic reconstruction of Renouxia, including R. marerubra sp. nov. (indicated in bold) based on Bayesian
inference of a concatenated dataset of COI and rbcL sequences. Bayesian inference posterior probabilities (PP) and
Maximum likelihood bootstrap (BS) presented as ‘PP/BS’ near branches ('-' indicates BS below 80). Scale bar indicates
number of substitutions per site. Additional ingroup taxa represent members of the Rhodogorgonales while the outgroup
taxa are members of the Sporolithales.

Fig. 9. Phylogenetic reconstruction of Renouxia based on Bayesian inference analysis of UPA sequences. Bayesian inference
posterior probabilities (PP) and Maximum likelihood bootstrap (BS) presented as ‘PP/BS’ near branches ('-' indicates PP
below 0.95 and BS below 80). Scale bar indicates number of substitutions per site. New Renouxia spp. records are indicated
in bold (Red Sea, Sri Lanka, Indonesia, Guam and Kosrae). The additional ingroup taxon is a member of the
Rhodogorgonales and the outgroup taxon is a member of the Sporolithales.
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Figs 10–12. In vivo pictures of Renouxia marerubra sp. nov. Fig. 10. Holotype, monoecious gametophyte, LAF5597. Fig. 11.
Monoecious gametophyte, LAF5598. Note the sub-dichotomous habit of the branches. Fig. 12. Sterile specimen, LAF6170. Note:
skeleton-like refractive axis formed by the shade of calciferous cells borne in the inner cortex. Scale bars = 1.0 cm.

Figs 13–20. Renouxia marerubra sp. nov. Fig. 13. Holotype (herbarium-pressed), monoecious gametophyte, LAF5597,
Dahab, Egypt. Fig. 14. Pseudo-dichotomously branched cortical fascicles with numerous rhizoids (arrows). Fig. 15.
Adventitious rhizoids (arrows) borne at or close to cortical dichotomies, growing inward to form the medulla. Fig. 16.
Clavulate calciferous cells (arrows) in inner cortex (calcite husks not visible in stained material). Note: remnants of
disrupted cell walls (arrowheads). Fig. 17. Partially dissolved calcite husks giving calciferous cells a hairy appearance
(arrows) in non-stained material. Fig. 18. Pseudo-dichotomous cortical fascicles bearing carpogonial branch initials
(arrows). Fig. 19. Mature two-celled carpogonial branch (arrow) in outer cortex. Fig. 20. Supporting cell (sc) bearing
a carpogonial branch comprised of a hypogynous cell (hy), carpogonium (cp) and elongated trichogyne (t). Note: darkly
staining carpogonium and tip of trichogyne. Scale bars: Fig. 13 = 1.0 cm, Fig. 14 = 200 μm, Figs 15, 18 = 100 μm, Figs 16,
19 = 50 μm, Figs 17, 20 = 20 μm.
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substratum by a discoid holdfast (0.2–0.5 cm in dia-

meter). A refractive axis reminiscent of a ‘skeleton’

(Figs 2, 11, 12) can be observed using strong lighting,

such as under a camera flash or over drawing light box.

This axis is not formed by a solid structure, but by the

overlap of calcite husks occurring at the same position on

cortical fascicles throughout the thallus. Cortical fascicles

are pseudo-dichotomously branched (Fig. 14) with

adventitious rhizoidal filaments growing inward towards

the medulla (Figs 14, 15). Inner cortex contains 1–2

clavulate calciferous cells (12–22 × 4–6 μm) per cortical

branch (Fig. 16), though calcite husks become dissolved

when stained. In unstainedmaterial, calciferous cells look

hairy (Fig. 17) due to partial dissolution of the husk

structures under prolonged preservation in diluted for-

malin/seawater. Remnants of disrupted cell walls are

found in inner cortical filaments, usually before

a dichotomy (Fig. 16).

Gametophyte monoecious. Numerous carpogonial

branch initials observed close to the outer cortex

(Fig. 18), although mature carpogonial branches are

usually found in the inner cortex (Figs 19, 20).

Carpogonial branch two-celled, sessile (Fig. 19) or

borne on a supporting cell (Fig. 20), composed of a

subhypogynous cell (8–19 × 4–5 μm), and a carpo-

gonium longer (14–28 μm) and thicker (4–6 μm)

than cortical cells in the same position, bearing

a straight, terminally enlarged trichogyne (123–195

μm). Carpogonium and the terminal, swollen portion

of trichogyne stain densely with aniline blue (Figs 19,

20). After presumed fertilization, the fertilized carpo-

gonium bifurcates (Fig. 21) and continues to branch,

resulting in numerous gonimoblast filaments (Figs

22, 23), which grow outwardly. At the thallus surface,

the tips of the gonimoblast thallus are enlarged and

produce carposporangia (Fig. 24). Mature carpospor-

angia were not observed, though structures composed

of a series of empty oval sporangial walls (24–34 ×

17–27 μm) were observed in the outer cortex (Figs 25,

26), grown from enlarged gonimoblast filaments,

from which secondary gonimoblast filaments are

issued (Fig. 26). It is possible that carpospores are

released sequentially as they mature from gonimo-

blast filaments. Outer cortical cells are enlarged and

darkly stained as they become spermatangial parent

cells (Fig. 27). A mature fan-like spermatangial clus-

ter is formed (Fig. 28), with 2–3 spermatangial parent

cells (4.2–5.1 × 1.9–2.6 μm), each bearing 1–3 sper-

matia (1.9–2.7 μm in diameter). After the release of

spermatia, cortical branches continue to grow beyond

the clusters of spermatangial parent cells, whose rem-

nants remain enlarged (13–22 × 5 μm) and

darkly stained in a mid-cortical zone (Fig. 29).

Tetrasporangia were not observed.

Additional specimens examined. LAF5598 (monoe-

cious gametophyte), LAF5599 (monoecious

gametophyte), Dahab; LAF6170 (sterile), Hurghada –

Northern Red Sea, Egypt.

Representative sequences deposited in GenBank.

MK174358 (COI), MK174342 (rbcL) and MK174346

(UPA), generated from specimen LAF6170. KU362135

(partial elongation factor Tu; Sauvage et al., 2016),

MH281629 (complete plastid genome) and MH281622

(complete mitochondrion genome), MK091141 (partial

5.8S ribosomal RNA, internal transcribed spacer 2, and

partial large subunit ribosomal RNA), MK091140 (par-

tial small subunit ribosomal RNA; Lee et al., 2018) are

also available for this specimen.

Remarks. Renouxia is not a monotypic genus as is

currently reported in Algaebase (Guiry & Guiry 2019).

The new species Renouxia marerubra differs from the

generitype R. antillana on the basis of its simpler,

shorter and more compact habit with a distinguishing

refractive axis, lower abundance of calciferous cells,

monoecious gametophyte, simpler development of

gonimoblasts and spermatangia, and less numerous

spermatia (Table 2). Intermediate carposporophyte for-

mations were not observed and therefore cannot be

compared with the generitype. The new species is pos-

sibly restricted to the Red Sea or the western Indian

Ocean.

Renouxia Fredericq & J.N.Norris (1995,

Cryptogamic Botany 5: 329) emend. mut. char. D.

Gabriel & Fredericq

Male and female reproductive structures on separate

(R. antillana) or on the same thalli (R. marerubra).

Remarks. Renouxia marerubra is the first taxon in the

order where monoecism was observed. Renouxia antil-

lana and Rhodogorgon ramosissima are dioecious. Only

monosporangia have been reported for R. flagelifera

while no reproductive structure is known for

Rhodenigma contortum. Additional emendation might

occur as more specimens are collected and microscopi-

cally investigated.

Discussion

New records of the genus Renouxia are presented for

Egypt (Red Sea), Sri Lanka, Indonesia, Guam and

Kosrae, extending the previously known geographic

limits of the genus further north in the Indian and

Pacific Oceans (Fig. 1). The expanded distribution

range suggests that Renouxia may be a Tethyan relict

(Leliaert et al., 2018), though this pattern may dis-

appear when more collections are added. The present

study proves that Renouxia is not monotypic and

might occur in many other tropical locations, where
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it could have been overlooked due to its resemblance

to sea anemones, soft corals or other gelatinous algae

(Littler & Littler, 2003). Herbivore pressure may have

led to the selection of different traits to improve

species fitness, but mimicry is rarely reported for

macroalgae (Richards & Huisman, 2014). Mimicry,

Table 2. Comparison of vegetative and reproductive characters between Renouxia spp.

R. antillana Fredericq & J.Norris R. marerubra sp. nov.

Habit Numerous broad lobes with blunt projections Sub-dichotomous branches with
a refringent axis

Calciferous cells Abundant (at least 4 per cortical branch) Occasional (1–2 per cortical branch)
Monoecism No Yes
Carposporangia development Involves the formation of intercalary gonimoblast cells fusing with

rhizoidal cells
Formed directly from gonimoblast

filamentsa

Spermatangia Several spermatangial parent cells per cluster (at least 5) Few spermatangial parent cells per
cluster (2–3)

a Structures resembling empty mature carposporangia were observed in only one specimen and this pattern should be confirmed with further sampling.

Figs 21–29. Renouxia marerubra sp. nov. Fig. 21. First gonimoblast initials (arrows). Fig. 22. Numerous gonimoblast
filaments (arrows). Fig. 23. Gonimoblast filaments (arrows) dividing and growing outwardly reaching the cortex surface.
Fig. 24. Gonimoblast filaments with swollen apical cells (arrows). Fig. 25. Remnant terminal carposporangial cell walls
(arrows) borne on swollen gonimoblast cells (arrowheads). Fig. 26. Remnant terminal and lateral carposporangial cell walls
(arrows) borne on swollen gonimoblast cells (arrowhead), from which secondary gonimoblast initials are issued (double
arrowheads). Fig. 27. Spermatangial parent cells (arrows) on the outer cortex. Fig. 28. Fan-like spermatangia bearing
numerous spermatia (arrows). Fig. 29. Old clusters of spermatangial parent cells (arrows) located in mid-cortex. Scale bars:
Figs 21–24, 27, 29 = 50 μm, Fig. 25 = 100 μm, Figs 26, 28 = 20 μm.
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however, has also been observed in Renouxia’s sister

genus Rhodogorgon, which was named after the strik-

ing resemblance of these algae to gorgonian corals

(Norris & Bucher, 1989; Richards & Huisman, 2014).

A few records of Renouxiawere previously thought to

possibly represent unknown species within the genus

(Littler & Littler, 2003; De Clerck et al., 2004; Le Gall &

Saunders, 2007; Bittner et al., 2011; West et al., 2016;

Zubia et al., 2018), but no further information was pro-

vided. Although rbcL and COI sequences could not be

generated in the present work for all specimens because

of failed amplification reactions, sequencing of these

genetic markers is necessary to confirm the existence of

new putative species and their respective genetic groups.

Moreover, the description of new species besides

Renouxia marerubrawill depend on adequate collections

of additional material for detailed morphological studies,

particularly to document reproductive characters.

Uncorrected p-distances between the Red Sea

specimens and the generitype were 8.0% for COI,

6.5-7.3% for rbcL and 3.1% for UPA. COI distance

values are higher than those of rbcL within the

genus, and lower between genera. Infrageneric

sequence divergence values of Renouxia were similar

to divergence values between species of Renouxia

and Rhodenigma contortum, suggesting that

Rhodenigma could be an alternate phase of an

unknown Renouxia species, as also previously sug-

gested by West et al. (2016). Monoecism is firstly

reported for the Rhodogorgonales, indicating the

current limited knowledge of this order. Molecular

and morphological studies of new collections are

required to further unveil the taxonomic diversity

within the genus Renouxia and the order

Rhodogorgonales (West et al., 2016). The order

seems to be more diverse in the Indo-Pacific, but

expanded sampling and sequencing of Atlantic spe-

cimens are necessary to confirm this pattern.
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