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ABSTRACT
We broadly explore the effects of systematic errors on reverberation mapping lag uncertainty
estimates from JAVELIN and the interpolated cross-correlation function (ICCF) method. We
focus on simulated light curves from random realizations of the light curves of five intensively
monitored AGNs. Both methods generally work well even in the presence of systematic
errors, although JAVELIN generally provides better error estimates. Poorly estimated light-
curve uncertainties have less effect on the ICCF method because, unlike JAVELIN, it does not
explicitly assume Gaussian statistics. Neither method is sensitive to changes in the stochastic
process driving the continuum or the transfer function relating the line light curve to the
continuum. The only systematic error we considered that causes significant problems is if the
line light curve is not a smoothed and shifted version of the continuum light curve but instead
contains some additional sources of variability.

Key words: galaxies: nuclei – quasars: general.

1 INTRODUCTION

The masses of supermassive black holes (SMBHs) are critical to
understanding active galactic nuclei (AGNs), their evolution and
their effect on host galaxies. In nearby normal galaxies, direct
SMBH mass measurements can be made using the kinematics
of stars (e.g. van der Marel 1994; Gebhardt & Thomas 2009) or
gas (e.g. Harms et al. 1994; Barth et al. 2016). These techniques
require both high spatial resolution to resolve the black hole’s
region of influence and that the accretion activity is low enough
to allow observations of the stars and gas. This restricts these
measurements to nearby, inactive or mildly active galaxies. In
AGNs, the reverberation mapping (RM) technique provides an
approach to measuring the black hole mass using variability.
Without the need for spatial resolution, RM allows SMBH mass
measurements in active galaxies at (in principle) any distance.

RM follows the response of the broad-line region (BLR) emission
lines to the variations in the continuum emission from the accretion
disc. We can express the relation between the emission line and the
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continuum variations using a ‘transfer function’1 �(v, τ ) for the
response of the line emission with line-of-sight velocity v after a
time delay τ from a change in the continuum. Resolving the velocity
dependence of �(v, τ ) requires high cadence and signal-to-noise
data (e.g. Blandford & McKee 1982; Horne et al. 2004), so most
RM studies consider only a 1D ‘delay map’ �(τ ) for the overall
response of the line. In a linear echo model, the emission-line light
curve is

L(t) = L0 +
∫

�(τ ) �C(t − τ ) dτ (1)

where L0 is a constant that depends on the non-varying continuum
level, �(τ ) is the transfer function, and �C(t − τ ) is the varying
component of the continuum. The mean (centroid) time lag

〈τ 〉 =
∫ ∞

0 t�(t) dt∫ ∞
0 �(t) dt

(2)

1�(v, τ ) is also referred as the ‘response function’, depending on whether
it is weighted by emissivity or responsivity. It is not critical to distinguish
between these terms for this paper, so we only use the term ‘transfer function’
here.

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/4/6045/5673498 by Serials D
ivision user on 24 June 2020

http://orcid.org/0000-0003-0644-9282
http://orcid.org/0000-0001-6966-6925
mailto:yu.2231@osu.edu


6046 Z. Yu et al.

is then related to the black hole mass by

MBH = f c〈τ 〉�v2

G
(3)

where f is a dimensionless ‘virial factor’ determined by the structure
and kinematics of the BLR and �v is the width of the broad emission
line.

In addition to RM studies of emission-line lags, continuum RM
studies measured the lags between different wavelengths of the
continuum. The standard thin accretion disc model is hottest near
the centre and colder at larger radii (e.g. Shakura & Sunyaev 1973;
Shields 1978). If the continuum variability is driven by variable
irradiation from the central regions, variability at longer wavelength
will lag that at shorter wavelength. The continuum lag therefore
encodes the size of the accretion disc as a function of temperature.
Continuum RM studies have yielded lag measurements from both
intensively monitored nearby AGNs (e.g. Shappee et al. 2014;
Edelson et al. 2015; Fausnaugh et al. 2016; Cackett et al. 2018;
McHardy et al. 2018) and more distant objects from large sky
surveys (e.g. Jiang et al. 2017; Mudd et al. 2018; Homayouni et al.
2018; Yu et al. 2019).

Various algorithms have been used to estimate lags, such as
the interpolated cross-correlation function (ICCF, e.g. Gaskell &
Peterson 1987; Peterson et al. 1998, 2004), the discrete cross-
correlation function (e.g. Edelson & Krolik 1988), regularized
linear inversion (e.g. Krolik & Done 1995; Skielboe et al. 2015),
the z-transformed cross-correlation function (ZDCF, e.g. Alexander
1997, 2013), the Fourier cross-spectrum (mainly for X-ray RM, e.g.
Zhang 2002; Uttley et al. 2014; Epitropakis & Papadakis 2016),
JAVELIN (e.g. Zu, Kochanek & Peterson 2011; Zu et al. 2013), and
CREAM (e.g. Starkey, Horne & Villforth 2016). There have been
many comparisons of these methods (e.g. Koen 1994; Kovačević
et al. 2014; King et al. 2015; I-Hsiu Li et al. 2019). Here we focus
on the effects of systematic errors for the two most commonly used
algorithms, the ICCF method and JAVELIN.

The ICCF method linearly interpolates the light curves and
calculates the CCF. Either the centroid τ cent or the peak τ peak of the
CCF can be an estimate of the time lag. For the lag uncertainty, the
algorithm randomly picks a subset of the epochs (with replacement)
and/or randomizes the flux to create a number of independent
realizations of the light curves. These realizations build up the cross-
correlation centroid distribution (CCCD) and cross-correlation peak
distribution (CCPD), and the widths of these distributions are used
as the estimate of the lag uncertainty.

JAVELIN combines an approach originally introduced for grav-
itational lensing time delays (Press, Rybicki & Hewitt 1992a,b)
with recent statistical models for quasar variability (e.g. Kelly,
Bechtold & Siemiginowska 2009; Kozłowski et al. 2010; MacLeod
et al. 2010; Zu et al. 2013). It models the AGN variability using a
damped random walk (DRW) with a covariance function

S(�t) = σ 2
DRW exp(−|�t/τDRW|) (4)

where σ DRW and τDRW are the amplitude and characteristic time-
scale, respectively. The DRW is a ‘red noise’ process at short time-
scales with a power spectral density (PSD) slope of −2. The PSD
flattens on time-scales much larger than τDRW. JAVELIN assumes
that the line light curve is a shifted, smoothed and scaled version of
the continuum light curve (i.e. equation 1), and fits for the time lag,
the width of a top-hat transfer function and the scaling factor that
best reproduces the light curves using a Markov Chain Monte Carlo
(MCMC) algorithm. It estimates the lag uncertainty as the width of
the posterior probability density distribution.

A number of studies have noted that ICCF and JAVELIN tend to
derive different uncertainties, generally in the sense that the ICCF
error estimates are larger (e.g. Fausnaugh et al. 2017; Grier et al.
2017; McHardy et al. 2018; Mudd et al. 2018; Czerny et al. 2019;
Edelson et al. 2019). This has driven a range of speculations as
to both the origin of the difference and as to which estimates are
more reliable. Some considerations are the effect of incorrect light-
curve error estimates, deviations of quasar variability from the DRW
model and choices of the transfer function (a top hat by default in
JAVELIN).

Correct lag uncertainty estimates are critical to the RM method.
For example, lag uncertainty estimates directly affect the estimates
of the intrinsic scatter in the scaling relation between the BLR
size and the continuum luminosity (e.g. Kaspi et al. 2000; Bentz
et al. 2013), which is widely used in single-epoch black hole mass
estimates. Correct continuum lag uncertainties are important in
constraining the accretion models and understanding the apparent
discrepancy between the thin disc model and some observations
(e.g. Shappee et al. 2014; Fausnaugh et al. 2016; Jiang et al. 2017).
Therefore, a systematic study of these issues for the lag uncertainty
estimates is necessary.

In this paper, we use observationally constrained simulated light
curves to probe the effect of a broad range of systematic errors on the
JAVELIN and ICCF methods. We focus on high-cadence light curves
and do not consider sampling strategies or gaps due to weather,
diurnal cycle, etc., as these have been examined in detail in previous
studies (e.g. Horne et al. 2004; King et al. 2015; Shen et al. 2015;
Yu et al. 2019; I-Hsiu Li et al. 2019). The structure of the paper is
as follows. Section 2 describes the observations used to build the
simulated light curves and the simulation methodology. In Section 3,
we discuss the JAVELIN and ICCF results for all the different model
configurations. We summarize our findings in Section 4.

2 METHODOLOGY

We base most of our simulations on the observed continuum light
curves of four AGNs: NGC 5548, NGC 4151, NGC 4593, and Mrk
509. We show these observed light curves in Fig. 1. For NGC 5548,
we adopt the 1367Å light curve from the Hubble Space Telescope
(HST) as part of the AGN Space Telescope and Optical RM (AGN
STORM) Project (De Rosa et al. 2015). HST monitored NGC 5548
with the Cosmic Origins Spectrograph from 2014 February 17 to
July 22. The light curve includes 171 epochs with a typical cadence
of about one day. We use the Swift UVW2-band light curves for
the other three AGNs. Swift monitored NGC 4151 in 2016 from
February 20 to April 29, yielding a light curve that consists of
319 visits with nearly five visits per day (Edelson et al. 2017).
The light curve of NGC 4593 contains 148 epochs with a cadence
of about 96 min from July 13 to 18 in 2016 and a cadence of
about 192 min in the following 16.2 d (McHardy et al. 2018). The
observations of Mrk 509 span from March 17 to December 15 in
2017 with 257 epochs separated by about one day (Edelson et al.
2019). We also carry out several tests using DRW light curves
unconstrained by these observed light curves or using the Kepler
light curve of Zw 229−15 (Edelson et al. 2014) for the simulated
continuum.

We create simulated continuum light curves constrained by the
observed light curves following the formalism of Zu et al. (2011)
from Rybicki & Press (1992) based on theories of interpolation and
prediction with a Gaussian process (e.g. Lewis & Odell 1971; Rao
1973; O’Hagan 1978). Let vector y = (y1, y2 . . . yNp ) represent the
light curve with Np data points. The light curve y = s + n + L q is
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Figure 1. The HST 1367Å light curves of NGC 5548 (upper left), the Swift UVW2-band light curves of NGC 4151 (upper right), NGC 4593 (bottom left), and
Mrk 509 (bottom right) used in our experiments.

a combination of the intrinsic signal s, the noise n, and a general
trend L q. If the systematic trend is a constant background, L is a
Np × 1 matrix with all elements equal to one, and q is the best-
fitting constant flux. While we only use a constant background,
the linear parameters can also be used as a method to detrend the
light curve as a polynomial (a0 + a1t + a2t2, etc.) or any other
linear combination of functions. We define the signal covariance
matrix S = 〈ss〉 and the noise covariance matrix N = 〈nn〉. The
signal covariance matrix S depends on the assumed stochastic
process for the quasar variability. If the noise is uncorrelated, the
noise covariance matrix N is diagonal, and the diagonal elements
are Nii = σ 2

i , where σ i is the measurement error for the ith
epoch.

Rybicki & Press (1992) showed that for a given observed light
curve y, a signal covariance matrix S specified by the assumed
stochastic process and a noise covariance matrixN, the least-squares
estimate of the mean of light curves consistent with the data is

ŝ = SC−1( y − Lq̂) (5)

and the best-fitting linear coefficients are

q̂ = CqL
T C−1 y (6)

where C = S + N and Cq = (LT C−1L)−1. The dispersion of the
light curves around the mean is

〈�s2〉 = S − ST C⊥S (7)

where C−1
⊥ = C−1 − C−1LCqL

T C−1. Simulated light curves con-
strained by an observed light curve can also be constructed. The
matrices S and N are given entries for the epochs both with and
without data, while the noise is set to infinity (i.e. the corresponding
entry in N−1 is zero) for the epochs without data. The model ŝ is
constructed as before, but we then add a random component u with

the covariance matrix

Q = (S−1 + N−1)−1. (8)

To construct u, we Cholesky decompose Q = MT M, and the
random component is simply u = Mr , where r is a vector of
independent Gaussian random deviates with zero mean and unit
standard deviation (see Zu et al. 2011).

We fit the four observed light curves with JAVELIN. The time
baselines of these light curves are too short to well constrain the
time-scale τDRW, so we fix τDRW to the estimated value from the
empirical relation of MacLeod et al. (2010),

log(τDRW) = A + B log(λRF/4000Å)

+C(Mi + 23) + D log(MBH/109M�) (9)

where λRF is the rest-frame wavelength of the observation, Mi is the
i-band absolute magnitude, MBH is the black hole mass, and (A, B, C,
D) = (2.4, 0.17, 0.03, 0.21). We use the best-fitting light curves and
DRW parameters (when using the DRW model) to create simulated
constrained light curves with 20 times the cadence of the observed
light curves. We then resample the high-cadence simulated light
curves to the cadence of the observed light curves through linear
interpolations. Since the resampled light curves have much lower
cadence than the original ones, the linear interpolation is adequate
for the resampling. The exact value of τDRW is not critical to the
results. For example, even if we fix τDRW in JAVELIN to 1/10 or
10 times the standard value, there is little effect on the lag estimates.
Therefore, only a rough estimate of τDRW is needed.

Given the mean noise of the observed light curve 〈σ i〉, we add
Gaussian noise of dispersion Xi〈σ i〉 to the simulated light curves,
where the coefficient Xi may depend on the epoch. For the analysis of
the light curves, we say that the error is Yi〈σ i〉, where this assigned
uncertainty may differ from the actual noise (i.e. Xi �= Yi). We
convolve the noiseless high-cadence continuum light curves with
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Table 1. Simulation results for different sources and model configurations. Columns (1) and (2) give the configuration descriptions and the object names,
respectively. Columns (3)–(5) give the median of (tfit − t0) from JAVELIN, CCCD and CCPD, respectively, where t0 is the input lag and tfit is the best-fitting lag
from the algorithms. Columns (6)–(8) give the scatter σ obs in (tfit − t0), defined as half the difference between the 16th and 84th percentile. Columns (9)–(11)
give the mean error estimates σ est from the algorithms. Columns (12)–(14) give the ratio η = σ est/σ obs, where η > 1 (η < 1) means that the lag uncertainties
are over (under) estimated.

Configurations Object name Median (tfit − t0) (d) σ obs (d) σ est (d) η

JAVELIN CCCD CCPD JAVELIN CCCD CCPD JAVELIN CCCD CCPD JAVELIN CCCD CCPD

Baseline NGC 5548 0.026 0.035 0.023 0.046 0.065 0.052 0.051 0.184 0.080 1.11 2.82 1.54
NGC 4151 − 0.002 − 0.160 − 0.038 0.102 0.168 0.099 0.114 0.257 0.259 1.12 1.53 2.60
NGC 4593 0.000 − 0.110 − 0.013 0.034 0.043 0.045 0.036 0.077 0.077 1.06 1.81 1.71
Mrk 509 0.017 − 1.207 − 0.055 0.095 0.199 0.089 0.104 0.388 0.159 1.09 1.95 1.80

Overestimated errors NGC 5548 0.011 0.039 0.021 0.046 0.079 0.091 0.102 0.220 0.126 2.24 2.78 1.39
(Yi = 2) NGC 4151 0.041 − 0.160 − 0.034 0.119 0.157 0.114 0.295 0.410 0.492 2.48 2.61 4.32

NGC 4593 − 0.003 − 0.132 − 0.025 0.035 0.054 0.038 0.077 0.114 0.132 2.21 2.12 3.51
Mrk 509 0.048 − 1.303 − 0.101 0.131 0.212 0.094 0.241 0.425 0.297 1.84 2.00 3.18

Underestimated errors NGC 5548 0.014 0.021 0.024 0.064 0.077 0.052 0.037 0.172 0.068 0.59 2.24 1.31
(Yi = 0.5) NGC 4151 0.015 − 0.174 − 0.007 0.124 0.179 0.107 0.063 0.196 0.185 0.50 1.09 1.74

NGC 4593 − 0.001 − 0.110 − 0.014 0.043 0.051 0.039 0.030 0.065 0.057 0.70 1.26 1.46
Mrk 509 0.013 − 1.198 − 0.019 0.119 0.194 0.087 0.053 0.372 0.126 0.44 1.92 1.45

Outliers NGC 5548 0.027 0.033 0.026 0.054 0.081 0.064 0.051 0.184 0.084 0.96 2.28 1.32
(fout = 0.1, Xi = 2) NGC 4151 0.007 − 0.159 − 0.017 0.127 0.166 0.130 0.108 0.266 0.286 0.85 1.60 2.19

NGC 4593 − 0.007 − 0.124 − 0.021 0.038 0.051 0.045 0.036 0.079 0.083 0.96 1.57 1.83
Mrk 509 0.019 − 1.267 − 0.056 0.113 0.178 0.093 0.102 0.377 0.180 0.90 2.12 1.94

Outliers NGC 5548 0.020 0.021 0.019 0.057 0.089 0.071 0.053 0.186 0.091 0.93 2.10 1.29
(fout = 0.2, Xi = 2) NGC 4151 0.006 − 0.186 − 0.034 0.140 0.188 0.142 0.104 0.276 0.318 0.74 1.47 2.24

NGC 4593 − 0.004 − 0.123 − 0.021 0.046 0.052 0.048 0.037 0.082 0.088 0.80 1.56 1.86
Mrk 509 0.026 − 1.222 − 0.054 0.117 0.192 0.119 0.099 0.386 0.184 0.84 2.01 1.54

Outliers NGC 5548 0.017 0.028 0.031 0.094 0.109 0.087 0.053 0.192 0.098 0.57 1.77 1.13
(fout = 0.4, Xi = 2) NGC 4151 0.013 − 0.179 − 0.017 0.187 0.216 0.179 0.094 0.298 0.358 0.50 1.38 2.00

NGC 4593 0.003 − 0.132 − 0.022 0.056 0.071 0.064 0.039 0.086 0.100 0.69 1.21 1.55
Mrk 509 0.030 − 1.306 − 0.085 0.191 0.256 0.146 0.100 0.393 0.213 0.52 1.53 1.46

Correlated errors NGC 5548 0.024 0.021 0.023 0.045 0.058 0.051 0.051 0.182 0.080 1.14 3.15 1.57
(Same sign) NGC 4151 0.004 − 0.165 − 0.032 0.091 0.127 0.100 0.113 0.252 0.262 1.25 1.98 2.63

NGC 4593 − 0.003 − 0.115 − 0.014 0.035 0.053 0.044 0.036 0.077 0.076 1.04 1.44 1.74
Mrk 509 0.016 − 1.189 − 0.082 0.078 0.166 0.093 0.105 0.378 0.174 1.34 2.28 1.87

Correlated errors NGC 5548 0.012 0.016 0.018 0.065 0.130 0.072 0.054 0.184 0.088 0.83 1.42 1.22
(Matern 3/2) NGC 4151 − 0.017 − 0.257 − 0.040 0.357 0.841 0.274 0.139 0.275 0.342 0.39 0.33 1.25

NGC 4593 − 0.003 − 0.120 − 0.018 0.045 0.065 0.055 0.036 0.078 0.080 0.82 1.20 1.47
Mrk 509 0.051 − 1.261 − 0.093 0.175 0.388 0.166 0.106 0.367 0.177 0.60 0.95 1.07

a transfer function �(τ ) to create emission-line light curves. The
transfer function �(τ ) has a small random mean lag t0 between
2 and 4 d. This is simply to produce random offsets between the
continuum and the line measurement epochs. While these small lag
values were originally motivated by the small continuum lags, the
particular value of the lag is unimportant for our simulations and the
discussions are equally applicable to both line RM and continuum
RM. We resample and add noise to the line light curves following
the same process as for the continuum.

We focus on constrained realizations of actual AGN light curves
to avoid any concern that the model light curves are somehow
not representative of real AGNs. We did carry out a full set of
experiments with unconstrained random realizations of light curves,
and they produce similar results to those we describe below. There
is one easily understood difference. We know that the constrained
realizations will yield well-defined lags since they are based on light
curves chosen for analysis and publication because they yielded
lags. What we are concerned with here is whether those lags are
accurate in the sense that the estimated lag and its uncertainty are
consistent with the true lag.

Random light-curve realizations with the same cadence and noise
levels are not guaranteed to yield lags because sometimes the
light curve has no significant features (i.e. curvature, maxima, and
minima) to allow a lag estimate. In such cases, any analysis will fail
to give a significant lag measurement. As noted in the Introduction,
the probability that a given sampling strategy will yield a light curve
that will produce a lag has been well studied (e.g. Horne et al. 2004;
King et al. 2015; Shen et al. 2015; Yu et al. 2019; I-Hsiu Li et al.
2019), which is why we do not make it a focus of our study.

3 RESULTS

We use JAVELIN and PYCCF (Sun, Grier & Peterson 2018), a PYTHON

interface for the ICCF method, to measure the lags from the
simulated light curves. For PYCCF, we create 8000 realizations with
both flux randomization (FR) and random sub-sampling (RSS), and
adopt the realizations with rpeak > 0.5 to compute the ICCF lag
uncertainties, where rpeak is the peak value of each CCF. Nearly all
realizations pass the rpeak cut. For each CCF, we use the region with
r > 0.8rpeak to calculate the centroid and the peak. We compare the
input lag t0 and the output lags tfit and characterize the results by
four parameters: (1) the median of (tfit − t0); (2) the width σ obs of
the (tfit − t0) distribution, defined as half the difference between
the 16th and 84th percentile; (3) the mean σ est of the algorithm
error estimates calculated as half the difference between the 16th
and 84th percentile of the JAVELIN posterior probability distribution,
CCCD or CCPD for each realization; and (4) the ratio η = σ est/σ obs

between the estimated uncertainty σ est and the observed scatter
σ obs, where σ obs is an estimate of the ‘true’ uncertainty of the lag
measurements and η indicates whether the algorithms overestimate
(η > 1) or underestimate (η < 1) the lag uncertainties. We show
these parameters for all the cases we consider in Tables 1–4. Fig. 2
illustrates the parameter ranges for the different cases we consider.

3.1 Baseline configuration

We first create simulated light curves that satisfy all the assumptions
made by JAVELIN. We adopted DRW models with the parameters
(σDRW, τDRW) = (17.38, 125), (0.72, 136), (0.49, 86), (0.77, 146)
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Table 2. Same as Table 1, but for different model configurations.

Configurations Object name Median (tfit − t0) (d) σ obs (d) σ est (d) η

JAVELIN CCCD CCPD JAVELIN CCCD CCPD JAVELIN CCCD CCPD JAVELIN CCCD CCPD

Isosceles-triangular �(τ ) NGC 5548 0.003 0.012 0.011 0.045 0.077 0.055 0.049 0.184 0.082 1.09 2.39 1.50
NGC 4151 − 0.080 − 0.219 − 0.101 0.087 0.159 0.089 0.108 0.258 0.240 1.24 1.62 2.69
NGC 4593 0.036 − 0.074 0.027 0.025 0.052 0.035 0.033 0.077 0.066 1.30 1.49 1.88
Mrk 509 0.033 − 1.176 − 0.030 0.093 0.177 0.093 0.103 0.394 0.158 1.10 2.23 1.71

Forward-triangular �(τ ) NGC 5548 0.002 0.013 0.007 0.049 0.074 0.054 0.050 0.184 0.081 1.02 2.47 1.50
NGC 4151 − 0.079 − 0.231 − 0.096 0.094 0.167 0.095 0.111 0.255 0.249 1.18 1.52 2.63
NGC 4593 0.032 − 0.078 0.021 0.033 0.051 0.039 0.034 0.077 0.068 1.03 1.51 1.75
Mrk 509 0.034 − 1.228 − 0.031 0.090 0.214 0.103 0.102 0.371 0.157 1.13 1.73 1.52

Long-tail �(τ ) NGC 5548 − 0.110 − 0.014 − 0.175 0.075 0.076 0.142 0.077 0.177 0.142 1.03 2.32 1.00
NGC 4151 − 0.162 − 0.307 − 0.443 0.161 0.190 0.221 0.174 0.260 0.476 1.08 1.37 2.15
NGC 4593 − 0.323 − 0.679 − 0.694 0.105 0.131 0.137 0.098 0.124 0.210 0.94 0.94 1.53
Mrk 509 − 0.040 − 0.248 − 0.109 0.133 0.190 0.149 0.137 0.545 0.264 1.03 2.87 1.77

Double-exponential �(τ ) NGC 5548 − 0.136 − 0.016 − 0.140 0.060 0.067 0.110 0.069 0.178 0.111 1.15 2.64 1.01
NGC 4151 − 0.200 − 0.306 − 0.350 0.143 0.157 0.171 0.159 0.256 0.413 1.11 1.63 2.41
NGC 4593 − 0.240 − 0.441 − 0.379 0.067 0.069 0.092 0.065 0.101 0.163 0.96 1.45 1.77
Mrk 509 − 0.043 − 0.269 − 0.093 0.118 0.178 0.105 0.131 0.547 0.233 1.11 3.07 2.21

Edge-on ring’s �(τ ) NGC 5548 − 0.048 − 0.016 − 0.019 0.059 0.068 0.163 0.081 0.178 0.177 1.36 2.64 1.09
NGC 4151 − 0.111 − 0.348 − 0.324 0.161 0.187 0.291 0.184 0.277 0.567 1.14 1.48 1.95
NGC 4593 0.086 − 1.014 − 1.549 0.131 0.959 1.030 0.152 0.229 0.391 1.16 0.24 0.38
Mrk 509 − 0.025 − 0.294 − 0.077 0.107 0.177 0.149 0.142 0.543 0.289 1.32 3.07 1.93

‘Kepler’ process NGC 5548 0.002 0.035 0.005 0.043 0.069 0.051 0.055 0.175 0.084 1.28 2.55 1.65
(τc = 2 d) NGC 4151 − 0.011 − 0.163 − 0.034 0.105 0.165 0.125 0.128 0.251 0.311 1.21 1.52 2.48

NGC 4593 − 0.002 − 0.113 − 0.014 0.029 0.046 0.040 0.038 0.074 0.077 1.29 1.61 1.92
Mrk 509 0.005 − 1.210 − 0.094 0.102 0.207 0.096 0.115 0.387 0.179 1.12 1.87 1.86

‘Kepler’ process NGC 5548 − 0.003 0.029 0.008 0.040 0.071 0.056 0.057 0.172 0.086 1.44 2.43 1.54
(τc = 8 d) NGC 4151 0.007 − 0.128 − 0.024 0.122 0.168 0.128 0.137 0.246 0.341 1.12 1.47 2.66

NGC 4593 0.001 − 0.114 − 0.006 0.033 0.054 0.042 0.038 0.075 0.079 1.18 1.39 1.88
Mrk 509 0.018 − 1.173 − 0.067 0.106 0.165 0.102 0.124 0.374 0.187 1.17 2.26 1.84

‘Kepler’ process NGC 5548 0.002 0.041 0.011 0.048 0.069 0.064 0.058 0.170 0.081 1.19 2.47 1.27
(τc = 30 d) NGC 4151 0.016 − 0.174 − 0.037 0.121 0.165 0.137 0.144 0.247 0.367 1.19 1.50 2.69

NGC 4593 0.002 − 0.111 − 0.009 0.035 0.045 0.044 0.038 0.075 0.080 1.10 1.66 1.81
Mrk 509 0.030 − 1.204 − 0.058 0.099 0.132 0.081 0.127 0.366 0.188 1.29 2.77 2.33

Table 3. Simulation results from varying the backgrounds of the line light curves. Column (2) gives the random seed used to generate the background variation.
The notation ‘random’ means we used a different random seed for each realization. Column (3) gives the standard deviation σ bkg of the background variation.
Other columns have the same meaning as Table 1.

Object name Random seed σ bkg Median (tfit − t0) (d) σ obs (d) σ est (d) η

JAVELIN CCCD CCPD JAVELIN CCCD CCPD JAVELIN CCCD CCPD JAVELIN CCCD CCPD

NGC 5548 20 3.430 0.206 0.530 0.250 0.123 0.075 0.078 0.127 0.209 0.136 1.04 2.78 1.75
20 6.002 0.430 0.867 0.401 0.249 0.096 0.139 0.239 0.264 0.211 0.96 2.74 1.51
30 3.430 0.030 0.189 0.081 0.130 0.071 0.057 0.140 0.221 0.127 1.07 3.12 2.24
30 6.002 − 0.067 0.335 0.137 0.215 0.092 0.082 0.232 0.274 0.195 1.08 2.98 2.38

random 3.430 0.019 0.066 0.057 0.179 0.375 0.166 0.136 0.212 0.129 0.76 0.56 0.78
random 6.002 − 0.063 0.050 0.042 0.330 0.683 0.293 0.231 0.265 0.196 0.70 0.39 0.67

NGC 4151 40 0.150 0.929 1.121 0.520 0.293 0.212 0.235 0.167 0.263 0.420 0.57 1.24 1.79
40 0.262 1.877 1.909 1.283 0.330 0.267 0.363 0.170 0.284 0.586 0.52 1.07 1.61
50 0.150 0.074 0.556 0.059 0.152 0.232 0.140 0.118 0.315 0.343 0.78 1.36 2.46
50 0.262 0.167 1.332 0.082 0.430 0.660 0.275 0.447 0.674 0.571 1.04 1.02 2.08

random 0.150 0.139 0.093 0.034 0.775 1.575 0.628 0.151 0.306 0.429 0.19 0.19 0.68
random 0.262 − 0.077 − 0.393 − 0.134 2.134 3.305 1.857 0.984 0.502 0.704 0.46 0.15 0.38

NGC 4593 60 0.064 − 5.631 − 0.298 − 0.060 3.351 0.099 0.054 3.728 0.108 0.109 1.11 1.09 2.03
60 0.111 − 5.940 − 6.012 − 6.058 0.557 1.447 0.690 3.321 0.914 1.063 5.97 0.63 1.54
70 0.064 0.100 0.157 0.106 0.109 0.058 0.065 6.424 0.861 0.891 58.89 14.87 13.79
70 0.111 0.101 − 16.176 − 16.244 3.458 8.607 8.586 7.823 3.273 3.343 2.26 0.38 0.39

Random 0.064 − 0.046 − 0.085 − 0.014 1.307 0.295 0.122 5.151 0.393 0.404 3.94 1.33 3.32
Random 0.111 − 0.826 − 0.848 − 0.323 3.177 7.787 7.906 5.034 1.357 1.409 1.58 0.17 0.18

Mrk 509 80 0.417 2.257 6.766 2.159 0.444 0.340 0.264 0.305 0.842 0.634 0.69 2.48 2.40
80 0.729 3.597 21.705 17.775 0.973 0.516 11.641 0.689 1.023 13.166 0.71 1.98 1.13
90 0.417 − 3.480 − 4.502 − 1.037 0.765 0.364 0.350 0.605 0.951 0.876 0.79 2.61 2.50
90 0.729 − 7.618 − 8.109 − 6.199 1.941 0.250 0.543 1.390 0.888 2.170 0.72 3.55 3.99

Random 0.417 0.388 − 0.563 − 0.027 2.545 4.658 1.850 0.377 0.727 0.556 0.15 0.16 0.30
Random 0.729 − 0.262 − 0.395 0.029 3.944 9.468 3.999 0.800 1.055 1.255 0.20 0.11 0.31

for NGC 5548, NGC 4151, NGC 4593, and Mrk 509, respectively,
where τDRW is in units of days and σ DRW is in the same flux units as
the observed light curves. We created 200 realizations of the simu-
lated continuum for each object. For each realization, we construct
the line light curves by convolving the simulated continuum with
a normalized top-hat transfer function with a width of 0.6 d and a
random lag between 2 and 4 d. The particular value of the lag is

unimportant here. We use some spread so that the alignment of the
continuum and the line epochs varies. We assume Gaussian uncor-
related and correctly estimated noise like that in the observations
(i.e. Xi ≡ Yi ≡ 1). We then estimated the lags for all 800 light curves
with both JAVELIN and ICCF. Several JAVELIN lag distributions for
NGC 4593 show a weak secondary peak at ∼−10 d due to aliasing.
Since this effect is well understood, we only consider the lag
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Table 4. Results from simulated light curves based on the Kepler light curves of Zw 229−15. The Kepler light curves are sampled at the cadence of the Swift
light curves of either NGC 4151 or NGC 4593. Columns (2) and (3) give the start and end time of the time intervals where we sample the Kepler light curve,
respectively. Other columns have the same meaning as Table 1.

Cadence Start time End time Median (tfit − t0) (d) σ obs (d) σ est (d) η

(HJD − 2400000) (HJD − 2400000) JAVELIN CCCD CCPD JAVELIN CCCD CCPD JAVELIN CCCD CCPD JAVELIN CCCD CCPD

NGC 4151 55641.515 55710.915 − 0.000 − 0.038 − 0.064 0.134 0.296 0.174 0.182 0.514 0.440 1.36 1.74 2.53
Cadence 56321.668 56391.068 0.019 0.051 0.021 0.105 0.125 0.137 0.123 0.204 0.314 1.17 1.64 2.30

55757.235 55826.635 0.030 − 0.719 − 0.037 0.187 0.541 0.220 0.208 0.889 0.535 1.11 1.64 2.43
56134.419 56203.819 − 0.000 0.084 0.005 0.057 0.098 0.072 0.069 0.134 0.163 1.21 1.37 2.26

NGC 4593 55400.383 55423.083 0.009 − 0.445 − 0.018 0.072 0.102 0.081 0.083 0.205 0.193 1.14 2.02 2.39
Cadence 55871.416 55894.116 0.015 − 0.277 − 0.017 0.092 0.393 0.111 0.112 0.448 0.247 1.22 1.14 2.23

56210.391 56233.091 0.065 − 0.616 − 0.108 0.093 0.082 0.113 0.106 0.175 0.242 1.14 2.14 2.15
56277.349 56300.049 0.019 − 0.230 − 0.055 0.068 0.081 0.084 0.076 0.128 0.175 1.12 1.58 2.08

Figure 2. Comparison of the median (tfit − t0) (upper left), σ obs (upper right), σ est (bottom left), and η (bottom right) estimates for the different cases. For the
background variation cases, we only include the two with changing random seeds for each realization. For each case, the red circles, blue squares, and green
empty diamonds are drawn at the maximum and the minimum parameter values for the four AGNs from JAVELIN, CCCD and CCPD, respectively. We add
small shifts along the y-axis for each case to avoid overlapping between the points and lines. In the bottom right panel, the black dashed line is drawn at η = 1.
The CCCD results for the median (tfit − t0) in Mrk 509 deviate significantly from the input, so we did not include those results in the upper left panel of the
figure for visibility.

distribution between −2 to 8 d for the uncertainty estimates in our
analysis.

Fig. 3 shows the distribution of the difference (tfit − t0) between
the best-fitting lags tfit and the input lags t0 for NGC 5548. We only
show the results for NGC 5548 as an example in the main body of
the paper and include the results for the other three objects in the
online journal. The median of the (tfit − t0) distributions from all
algorithms shows a slight offset from zero by around 0.02 d. This

is likely a small artefact from the sampling or convolution process
used to produce the simulated light curves. However, the 0.02 d
offset is small compared the lag uncertainties and will not affect
our conclusions. JAVELIN gives the smallest scatter σ obs and the
smallest error estimates σ est among the three distributions, while
CCCD gives the largest σ obs and σ est. All algorithms overestimate
the lag uncertainties with η > 1. The JAVELIN lag uncertainties are
closest to the ‘true’ uncertainty with η ≈ 1.1, while the CCCD and

MNRAS 491, 6045–6064 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/4/6045/5673498 by Serials D
ivision user on 24 June 2020



RM lag uncertainties 6051

Figure 3. Distribution of the difference between the best-fitting lags tfit and the input lags t0 for NGC 5548. The black dashed lines are drawn at the median
of the distribution (tfit − t0), while the red dotted lines are drawn at the mean of the 1σ upper and lower limits estimated by the algorithms. The upper left
corner of each panel reports the scatter σ obs in the (tfit − t0) distributions, the mean error estimates σ est from the algorithms and the ratio η = σ est/σ obs. The
left-hand, middle, and right-hand panels show the results from JAVELIN, CCCD, and CCPD, respectively.

CCPD methods overestimate the lag uncertainties with η ≈ 3 and
1.5, respectively. We briefly explored restricting the ICCF method
to only FR or only RSS rather than both. In most cases, this reduced
the ratio η, but not in any systematic pattern, with FR sometimes
having the greater effect and other times RSS. The ICCF method
can underestimate the lag uncertainties (i.e. η < 1) with only FR or
only RSS for some cases, while still overestimate the uncertainties
(i.e. η > 1) for the others.

The other three objects generally show similar results to NGC
5548. The only poorly estimated lags, in the sense that the medians
of (tfit − t0) are more than 2σ est, are the CCCD estimates for
Mrk 509 with a median (tfit − t0) = −1.2 d and σ est = 0.38 d.
JAVELIN consistently comes closest to correctly estimating the lag
uncertainties with η ≈ 1.1, while the CCCD and CCPD methods
overestimate the uncertainties with η from 1.5 to 2.8. CCCD
overestimates the lag uncertainty more severely than CCPD for
some objects, while CCPD performs worse for the others. These
differences between the uncertainty estimates from JAVELIN and
ICCF are similar to those found in real RM campaigns (e.g.
Fausnaugh et al. 2017; McHardy et al. 2018; Edelson et al.
2019).

We take these results as a ‘baseline’ for comparison with other
cases. For the observed scatter σ obs, the estimated uncertainty σ est

and the ratio η, we say the parameter differs ‘significantly’ from
the baseline if the parameter changes by more than 25 per cent.
For the median (tfit − t0), we do not say a change is significant
as long as its absolute value is less than 0.1 d. We focus on the
bulk behaviour in each case and do not discuss the behaviour of the
individual objects in detail unless the results are driven by particular
light-curve features.

3.2 Effect of input errors

In real RM campaigns, the uncertainties in the light curves may not
be correctly estimated due to, for example, seeing-induced aperture
effects on the spectra (e.g. Peterson et al. 1995). This will have
consequences for the lag uncertainties. We consider several potential
problems with the single-epoch error estimates.

3.2.1 Incorrect error estimates

We first artificially overestimate or underestimate the single-epoch
uncertainties. The light curves are unchanged from the baseline
configuration, but we either double (Yi = 2) or halve (Yi = 0.5)
the uncertainties assigned to both the continuum and the line light

curves, while keeping the actual noise unchanged (Xi = 1). That is,
we feed the algorithms with single-epoch errors that are two times
larger or smaller than the noise that was actually added to the light
curves.

We show the results in Fig. 4. Since the changes in this case have
no effect on the ‘shape’ of the light curves, it is not surprising to
find only small differences in the median (tfit − t0) and the observed
scatter σ obs from the baseline case. When overestimating the
uncertainties, the observed scatter σ obs only varies slightly, except
for the JAVELIN results for Mrk 509 and the CCPD results for NGC
5548. When underestimating the uncertainties, σ obs consistently
increases for JAVELIN, while it changes little for CCCD and CCPD.
Both algorithms give larger lag uncertainties when overestimating
the single-epoch uncertainties and smaller lag uncertainties while
underestimating the single-epoch uncertainties. The ratio η roughly
doubles/halves for JAVELIN when we double/halve the uncertainties,
as expected from its strong assumption of Gaussian χ2 uncertainties.
On the other hand, the change in η for CCCD and CCPD is
generally smaller, and η even slightly drops rather than increases
when overestimating the uncertainties for NGC 5548. The ICCF
method does not directly use the single-epoch uncertainties, which
makes it less sensitive to incorrect estimates of the single-epoch
uncertainties, albeit at the price of significantly overestimating the
lag uncertainties if the error estimates are correct.

3.2.2 Outliers

Rather than having incorrect error estimates for all epochs, a light
curve can contain ‘outliers’ that have intrinsically larger scatter than
estimated. To simulate this, we select foutNp points to be ‘outliers’
in both the continuum and the line light curves, where Np is the total
number of epochs and fout is the outlier fraction. We increase the
intrinsic scatter of each outlier to Xi = 2 while keeping the intrinsic
scatter of all other epochs at Xi = 1. While we tried outliers with
larger scatters (e.g. Xi = 8), those outliers generally stand out from
the light curves and can easily be identified and removed, so we
do not consider those cases. We keep the assigned uncertainties
unchanged for all epochs (Yi = 1) so that the algorithms assume
there are no outliers, and we consider outlier fractions of fout =
0.1, 0.2, 0.4.

Fig. 5 shows the results for NGC 5548. The medians of (tfit

− t0) show only small changes for both algorithms. The scatter
σ obs consistently increases with higher fout. The only exception is
the CCCD results for NGC 4593, where the σ obs for fout = 0.1
and fout = 0.2 are almost identical. The error estimate σ est stays
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Figure 4. Same as Fig. 3, but for different configurations. The top row shows the results from overestimating the single-epoch errors, while the bottom row
shows the results from underestimating the single-epoch errors.

nearly the same for JAVELIN, while it slightly increases at higher
fout for CCCD and CCPD. The ratio η consistently drops when
fout increases, except for the CCPD results for NGC 4593. Both
algorithms are more likely to underestimate the lag uncertainties for
large number of outliers, although this brings the ratio η for ICCF
closer to unity from significantly overestimating the uncertainties
in the baseline case. Like the previous cases, the ICCF results are
less sensitive to the large outlier fraction, since the mistakes in
single-epoch uncertainties affect JAVELIN directly but affect ICCF
only indirectly.

3.2.3 Correlated errors

Correlations between the single-epoch errors may also affect the
lag uncertainty estimates. One approach to simulating correlated
errors is to make the noise added to the corresponding epochs
of the continuum and the line light curves have the same sign.
For example, if the noise added to an epoch of the continuum
light curve is positive, then we require that the noise added to the
line epoch for that date is also positive, although the amplitude
can be different. In this case, the single-epoch errors between the
continuum and the line light curves are correlated. This effect can be
created in RM campaigns by flux calibration errors which bias the
light-curve errors toward the same direction. The top row of Fig. 6
shows the results with this error correlation. The parameters for
both JAVELIN and ICCF are generally consistent with the baseline
configuration. The only exceptions are the CCCD results for NGC
4151 where the observed scatter σ obs drops by about 25 per cent and
the ratio η increases by about 30 per cent. The overall behaviour of
the algorithms with such correlated error indicates that it has little
impact on the lag measurements.

Another approach to adding correlated errors is to generate the
noise with a Gaussian process. The method of adding noise in the
baseline configuration is equivalent to a Gaussian process specified
by a covariance matrix Nij = σ 2

ns δij, where σ ns = Xi〈σ i〉 and δij is
the Kronecker delta function. We can make the noise correlated by

adding non-zero off-diagonal terms

Nij = σ 2
ns δij + k(ti, tj) . (10)

Here, we model the correlated errors using a 3/2 power Matern
(1960) kernel

k(ti, tj) = a2

(
1 +

√
3|ti − tj|

τk

)
exp

(
−

√
3|ti − tj|

τk

)
. (11)

Some studies on exoplanet transits (e.g. Johnson et al. 2015) use
this kernel to model the correlated errors in transit light curves due
to the variability of the host star. The parameter a characterizes the
amplitude of the correlated errors and the parameter τ k describes
the time-scale on which the errors are correlated. Here, we adopt
a = σ ns and τ k = 0.1 τ DRW. We separately add the correlated
noise generated through this method to the continuum and line light
curves but then assume the standard diagonal noise matrix for the
algorithms. Fig. 7 illustrates the difference between uncorrelated
Gaussian and the correlated noise produced by the Matern 3/2
process. This error correlation model makes the noise tend to have
the same sign on time-scales of τ k.

We show the results for this correlated noise model in the bottom
row of Fig. 6. For bothJAVELIN and ICCF, there is no significant
change in the median of (tfit − t0). The estimated uncertainties σ est

increase by about 30 per cent for the NGC 4151 CCPD results.
Otherwise the estimated uncertainties σ est are generally consistent
with the baseline. The observed scatter σ obs generally becomes
significantly larger, and the ratio η drops as a result. The change in
σ obs and η is most significant for the CCCD method and for NGC
4151. Unmodelled correlated noise appears to broaden the (tfit − t0)
distribution and cause a non-negligible drop in η (i.e. it makes the
algorithms more likely to underestimate the lag uncertainty). These
temporally correlated errors have a bigger effect than the random
outliers, because they are effectively a distortion in the light-curve
shapes. This means they can act like a violation of the assumptions
of equation (1) that the line light curve is a smoothed and delayed
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Figure 5. Same as Fig. 3, but for the light curves with outliers for NGC 5548. The left-hand, middle, and right-hand columns show the results from JAVELIN,
CCCD, and CCPD, respectively. The top, middle, and bottom rows show the results from fout = 0.1, 0.2, 0.4, respectively, where fout is the fraction of the
outliers.

Figure 6. Same as Fig. 3, but for different configurations. The top row shows the results from making the errors of the continuum and the line light curves the
same sign. The bottom row is for the case where we model the correlated errors with the Matern 3/2 model.
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Figure 7. Comparison of the noise added to the simulated continuum light curve for NGC 5548 based on uncorrelated Gaussian errors (upper panel) and
correlated errors from the Matern 3/2 model (lower panel). The upper left corner of each panel shows the parameters of noise models (equations 10 and 11).
The blue dashed lines are drawn where the added noise equals zero.

version of the continuum. We explore this further in Section 3.5
where we explicitly add additional variability to the light curves.

3.3 Effect of transfer functions

In reality, the transfer function �(τ ) is not the top-hat function
that we have assumed so far and is used in JAVELIN. McHardy
et al. (2018) obtained a transfer function consisting of a strong peak
followed by a long tail between the X-ray, UV and optical bands
in NGC 4593. Horne et al. (in prep) recovered the emission-line
transfer functions in NGC 5548, which generally show peaks at
short lags and minor bumps at longer lags. Previous examinations
of changing the transfer functions (e.g. Rybicki & Kleyna 1994; Zu
et al. 2013) have found little effect on lag estimates.

Here we use five transfer functions other than the top hat,
including an isosceles triangle, a ‘forward’ triangle, a combination
of two forward triangles to produce a narrow peak with a long
tail, a combination of two exponentials and the transfer function of
an edge-on ring. We set the width of the single triangular transfer
functions to be the same as the width of the previous top-hat function
and use the same mean lags as in the baseline configurations. For the
combination of two triangles, we set the width of the second triangle
to be 10 times the width of the top hat, so the function looks like
a forward triangle followed by a long tail. The double-exponential
transfer function has the analytic form

�(t) = A(1 − e−x)e−y , (12)

where x = (t − t0)/w1 and y = (t − t0)/w2. We adopt w1 equal
to the top-hat width and w2 = 1.2 d so that the function has
similar width to the double-triangular transfer function. We unify
the function with A = (w1 + w2)/w2

2 ≈ 1.26, and the time offset t0

is determined given w1, w2, and the mean lag 〈τ 〉. The normalized
transfer function of an edge-on ring has the analytic form

�(t) = 1/π√
t(2〈τ 〉 − t)

, (13)

where 〈τ 〉 is the mean lag. Fig. 8 shows examples of the four
transfer functions which by construction all have a mean lag of 2 d.
In making these comparisons, it is important to use the correct mean
lags (equation 2) for the different transfer functions. While this is
not crucial for the symmetric transfer functions, the mean lag for
asymmetric transfer functions is not at the mid-point.

We show the results in Fig. 9. For the isosceles and forward
triangles, the medians of the (tfit − t0) distribution remain close to
zero. The scatter σ obs, the estimated uncertainty σ est and the ratio
η are generally consistent with the baseline configurations. For the
forward triangle with a long tail and the double-exponential transfer
function, the algorithms tend to systematically underestimate the
lag in the sense that the median (tfit − t0) is negative, although the
systematic shifts are small relative to the input lags. This is not
surprising because by more heavily smoothing the light curve, it is
more difficult to detect the tail than the peak, which will tend to give
the narrow peak more weight and lead to the bias. The observed
scatter σ obs and the estimated uncertainty σ est increase in general,
especially for JAVELIN and CCPD, while η stays nearly unchanged
except for the NGC 4593 and Mrk 509 CCCD results and the NGC
5548 CCPD results.

For the edge-on ring, the median (tfit − t0) of the NGC 4593 ICCF
results deviates significantly from zero, while the others generally
show similar behaviour to the baseline results. Both σ obs and σ est

increase in most cases, especially for NGC 4593. The significantly
larger σ obs leads to small η for the NGC 4593 ICCF results,
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Figure 8. Examples of the isosceles-triangular transfer function (top), the
forward-triangular transfer function, the triangular transfer function with a
long tail, the double-exponential transfer function and the transfer function
of an edge-on ring (bottom). The transfer function parameters are given in
each panel. The transfer functions are normalized to have the same peak
value for visibility. The red dashed line is drawn at 2 d, the mean lag of the
transfer functions.

indicating that ICCF does not work well in this specific case. This
is not surprising. NGC 4593 has the shortest observational baseline
and the large temporal width of the edge-on ring transfer function
leads to a significant smoothing of the light-curve variability. In
general, the error ratio η does not change significantly for the
JAVELIN and the other ICCF results. Overall, the form of the transfer
function is not critical to the lag measurement for either algorithm.

The widths of the top-hat and the triangular transfer functions
used above were small relative to the observational time baseline.
We tried a top-hat transfer function with a width w that is roughly
10 per cent of the temporal length of the light curve. We adopt
w = (17, 7, 3, 27) d for NGC 5548, NGC 4151, NGC 4593,
and Mrk 509, respectively. This leads to much more smoothing

of the line light curve relative to the continuum. We use a random
lag between w/2 and w/2 + 2 d for each realization. The bottom
row of Fig. 9 shows the results for NGC 5548. The median (tfit

− t0) shows larger deviation from zero relative to the baseline
results for ICCF, while it does not change significantly for JAVELIN.
The observed scatter σ obs and the estimated uncertainty σ est both
increase, while the ratio η stays nearly unchanged. We also tried the
forward-triangular transfer functions with these larger widths. We
got similar results except for the systematic shift due to the more
weighted peak than the tail as discussed above. However, the shift
is only ∼3 per cent of the overall width of the transfer function.
More strongly smoothing the light curve increases the uncertainties
as expected, but the qualitative properties of the algorithms are
unchanged. We expect this would hold if repeated for the other
model transfer functions.

JAVELIN assumes a top-hat transfer function and fits for the top-
hat width and scale in addition to the lag. While JAVELIN is generally
able to recover the input lag, it usually cannot accurately recover
the top-hat width. Essentially, the top-hat width and the scale factor
between the line and continuum light curves are roughly degenerate
when fitting typical data (see Zu et al. 2011). In order to probe
whether the large uncertainties in these parameters affect the lag
measurements, we fit the simulated light curves in the baseline
configurations with the top-hat width fixed to twice/half the input
value. Fig. 10 shows the results from NGC 5548. There is no
significant change in the median (tfit − t0), the observed scatter
σ obs, the estimated uncertainty σ est and the ratio η. We also tried
fixing the scale to incorrect values and obtained similar results.

3.4 Effect of the stochastic process

Several studies of Kepler light curves found that AGN variability
deviates from the DRW model and can have a steeper PSD on
time-scales shorter than ∼ month (e.g. Mushotzky et al. 2011;
Kasliwal et al. 2015; Smith et al. 2018). Zu et al. (2013) also saw
weak evidence of this in Optical Gravitational Lensing Experiment
(OGLE) light curves. We use two methods to explore the effects
of the deviations from the DRW model, particularly at short time-
scales.

3.4.1 Kepler covariance model

In the first test, we continue to use light curves constrained to
resemble our four AGNs but generated using a different stochastic
process. We use the ‘Kepler’ process adopted by Yu et al. (2019),
with the covariance function

S(�t) = σ 2 [(1 + C) exp(−|�t/τ1|) − C exp(−|�t/τ2|)] (14)

where C = τ 2/(τ 1 − τ 2), σ is an amplitude equivalent to σ DRW, and
τ 1 is a time-scale equivalent to τDRW in the DRW model. We can vary
τ 2 < τ 1 to produce a cut-off in the structure function at short time-
scales. However, τ 2 is not an intuitive indicator of the cut-off time-
scale, since the ‘Kepler’ structure function starts to deviate from
DRW at several times τ 2. We therefore define a cut-off time-scale
τ c at which the ‘Kepler’ structure function has 85 per cent the power
of DRW. We adopt τc = 2, 8, 30 d and numerically solve for τ 2

given each τ c. Fig. 11 compares the DRW and the ‘Kepler’ structure
functions. This covariance function allows a cut-off at a wider range
of time-scales than the ‘Kepler-exponential’ model from Zu et al.
(2013) without the problem of a non-positive definite matrix.

We then create simulated light curves using the ‘Kepler’ process
with other parameters fixed to those in the baseline configuration.
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Figure 9. Same as Fig. 3, but for different transfer functions.

Fig. 12 compares a realization of the DRW and the ‘Kepler’
process light curves for NGC 5548 with τ c = 8 d and using
the same random seed so that the differences are only due
to the change in the structure functions. The ‘Kepler’ process

light curve has less power at short time-scales and is therefore
smoother than the DRW light curve. However, after we resample
and add noise to the light curves, the differences are rather
subtle.
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Figure 10. Same as Fig. 3, but for the JAVELIN results with fixed top-hat width. The left-hand panel shows the JAVELIN results for the baseline configurations
(same as the first panel of Fig. 3). The middle and right-hand panels show theJAVELIN results with the top-hat width fixed to twice and half the input values,
respectively.

Figure 11. Structure functions of the DRW and the ‘Kepler’ covariance
models for NGC 5548. The blue solid line represents the DRW, while the
red dashed, blue dashed–dotted, and green dotted lines represent the ‘Kepler’
covariance model with τc = 2, 8, 30 d, respectively.

Fig. 13 shows the JAVELIN and ICCF results for the ‘Kepler’
process light curves. In most cases there is no strong variation
in the median (tfit − t0), the observed scatter σ obs, the estimated
uncertainty σ est and the ratio η. The CCPD results for NGC 4151
give larger σ obs and σ est relative to the baseline, while the ratio η

stays nearly the same. For τ c = 8 d, the ratio η from JAVELIN for
NGC 5548 increases by about 30 per cent due to a slight drop of
σ obs and a slight rise of σ est. Overall, the deviations from the DRW
model on short time-scales do not have a significant impact on the
lag measurements.

3.4.2 Observed Kepler light curve

Our second test is to use the Kepler light curve of Zw 229−15
(Edelson et al. 2014) shown in the top panel of Fig. 14. We select
four time intervals within the Kepler baseline that have the same
length as the Swift observations of NGC 4151 or NGC 4593, where
few epochs within these intervals lie in the gaps of the Kepler
light curve. We do not use the observations of NGC 5548 or Mrk
509 because their time baselines are too long to fit into a single
Kepler quarter. In each time interval, we resample the Kepler light
curve to the cadence of the Swift observations and use it as the
simulated continuum light curve. We assign uncertainties to the
resampled epochs so that the ratio of the single-epoch uncertainty
to the standard deviation of the light curve is the same as the Swift

light curves. The simulated continuum light curve in each interval
can be viewed as an independent ‘realization’ of the observed Kepler
light curve. We then create 200 simulated line light curves for each
of the four ‘realizations’ following the procedures in Section 2.
The bottom panel of Fig. 14 shows an example of the Kepler-based
simulated light curves. The light curve shows weaker variations on
short time-scales than the DRW model.

Table 4 gives the JAVELIN and ICCF results for the four ‘real-
izations’ for these simulated light curves and Fig. 15 shows the
results for NGC 4593. The median (tfit − t0) generally stays close
to zero, except the CCCD results for NGC 4593 and one realization
of NGC 4151. It is not meaningful to directly compare the observed
scatter σ obs and the estimated uncertainties σ est to the baseline
results since the light-curve shapes are different. However, the ratio
η still indicates the correctness of the lag uncertainty estimates.
In most cases, the ratio η does not change significantly relative to
the baseline results. This again indicates that any deviation of the
continuum from the DRW assumption has little effect on the lag
measurements.

For some of the Kepler realizations, the CCCD results have an
observed scatter σ obs much larger than the other realizations. Most of
these light curves show strong systematic trends, which can make it
hard for the ICCF method to recover lags. If we detrend these light
curves by fitting and subtracting a linear trend, CCCD generally
shows better performance with smaller scatter σ obs relative to the
cases before detrending. The detrending also gives an η ratio closer
to the other realizations, and none of the realizations produce
significantly different η from the baseline results for the CCCD
method after the detrending. We repeated this Kepler light-curve
test with additional tens of ‘realizations’ for the NGC 4593 Swift
cadence, and we got similar results except for the light curves where
there is little variability after detrending and we do not expect a lag
measurement.

3.5 Varying backgrounds

RM makes the strong assumption that the line light curve is a
smoothed and shifted version of the observed continuum light curve
with a constant background level. However, Horne et al. (in prep)
found that this linear model fails for the observed light curves of
NGC 5548, and they needed a time-dependent background L0(t)
instead of the constant background level L0 in equation (1) to obtain
a good fit. This varying background may also explain the anomalous
decoupling of the far-UV continuum and the broad-line variations
found by Goad et al. (2016). The most significant feature of the L0(t)
found by Horne et al. (in prep) is a drop from MJD 56740 to 56810
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Figure 12. Comparison of the simulated continuum light curve for NGC 5548 based on the DRW and the ‘Kepler’ process models. The top panel shows the
high-cadence noiseless light curves. The black solid line is the DRW light curve, while the red dashed line is the ‘Kepler’ process light curve. The middle
panel shows the light curves as they would be observed by the AGN STORM campaign in both cadence and noise. The black squares and red circles are the
DRW and the ‘Kepler’ process light curves, respectively. The bottom panel shows the residual from subtracting the DRW and the ‘Kepler’ process light curves
divided by the mean light-curve errors. The black solid line and the red circles represent the residuals for the unsampled and sampled light curves, respectively.

followed by a more rapid rise back until MJD 56840. The origin
of this variation is not well understood. It may appear because
the observed continuum is not the relevant extreme UV ionizing
continuum, or due to the change of the line-of-sight covering factor
of the obscurers absorbing the soft X-rays (e.g. Mathur et al. 2017;
Dehghanian et al. 2018; Goad et al. 2019; Kriss et al. 2019).

We model this sort of behaviour by a set of Legendre polynomials.
For a line light curve within time range t0 < t < t0 + tm (i.e. the
original light curve spans 0 to tm but we then add a lag of t0), we
model the background as

L0(t) =
N∑

i=1

aiPi(x) , where x = 1 + 2(t − t0 − tm)/tm (15)

and Pi(x) is the ith order Legendre polynomial. We adopt a
maximum order N = 4 and exclude the zeroth order so that 〈L0(t)〉 =
0. We choose the coefficients as

ai = riσbkg

√
2i + 1

N
(16)

where i is the order of the Legendre polynomial, ri is a Gaussian
random variable with zero mean and unit dispersion, and σ bkg is the
desired standard deviation in L0(t). We choose this normalization
so that each order contributes equally to σ bkg. We then linearly
detrend L0(t) using the starting and ending point of the background
light curve to avoid adding a strong systematic trend that can affect
lag measurements even when also present in the continuum. The
resultant standard deviation of L0(t) may differ from σ bkg due to
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Figure 13. Same as Fig. 3, but for the ‘Kepler’ covariance models.

the random variable and the linear detrending, so we rescale L0(t)
so that its standard deviation equals σ bkg. These choices lead to
distortions that resemble those found for NGC 5548 in Horne et al.
(in prep).

We considered two cases. In the first set of models, we generate
two random backgrounds for each source and held the random
seeds fixed. Here, we expect to find a bias in the lag estimate. The
observed scatter σ obs can also increase, but the change would be less
significant than the shift in the median (tfit − t0). In the second set of
models, we randomly vary the backgrounds in each realization while
holding the standard deviation σ bkg fixed. This mimics repeated
measurements of the same AGN, and here we expect the median
of the (tfit − t0) distribution to be close to zero, but the dispersion
σ obs to be considerably larger due to the scatter in the individual
estimates of the lag created by the varying backgrounds.

We first used two random seeds to generate the background light
curve for each source. We set σ bkg to 0.4 or 0.7 times the standard
deviation of the observed light curve for each random seed. These
ratios are typical of the background L0(t) used by Horne et al. (in
prep). Fig. 16 shows an example of the line light curve after adding
a varying background. The lags of these light curves are likely
to deviate significantly from the input due to the deviation of the
resampled line light curves (red points) from the high-cadence light
curve (red solid line) with a constant background. We therefore
consider lags outside of the −2 to 8 d range for the analysis
here.

Table 3 includes the model parameters and the JAVELIN and ICCF
results after adding the varying backgrounds. Fig. 17 shows the
results for NGC 5548. In most cases, the median of (tfit − t0) deviates
significantly from zero. These shifts are also ‘visible’ in the light
curves. When the line light curve is rising, pulling the light curve
down seems to move the light curve further right and leads to a larger
lag. On the other hand, when the line light curve is declining, a drop
in the light curve seems to move the light curve left and makes the
lag smaller. The resultant median of (tfit − t0) is a balance between
these two features. The scatter σ obs and the estimated uncertainty
σ est increase significantly relative to the baseline. The ratio η stays
nearly the same for the NGC 5548 JAVELIN results, but otherwise
does not show a consistent pattern. Both algorithms are likely to
give incorrect lags and uncertainties after adding the background
variation. JAVELIN is generally more sensitive to this for the lag
uncertainties σ obs and σ est, while ICCF, especially CCCD, is more
sensitive to this for the median (tfit − t0).

In the second set of models, we randomly change the backgrounds
in each trial while holding the standard deviation σ bkg fixed. We
show the results in the bottom two rows of Fig. 17. As expected, the
medians of (tfit − t0) are generally closer to zero than in the fixed
random seed cases. The observed scatter σ obs increases significantly,
while most of the estimated uncertainties σ est changes only slightly.
The ratio η drops as a result, and both algorithms underestimate
the lag uncertainties except in a few cases for NGC 4593. As
noted earlier, the linear parameters L q in JAVELIN allows for the
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Figure 14. The top panel shows the Kepler light curve of Zw 229−15 from Edelson et al. (2014). We fill the observational gaps through linear interpolations.
The bottom panel zooms in on the time interval between the red dashed lines in the top panel. The black solid line shows the observed Kepler light curve of Zw
229−15. The black points show the resampled Kepler light curve for the Swift cadence for NGC 4593 including noise. The red solid line shows an example
of the simulated line light curves after convolving the Kepler light curve with a top-hat transfer function. The red points show the resampled line light curve
using the fractional errors of the Swift data.

modelling of systematic trends. The trends can be different for the
continuum and line light curves, allowing JAVELIN to handle the
problem considered in this section as part of its analysis. However,
an expansion of our analysis to fully explore these modifications is
beyond our present scope.

4 DISCUSSION AND SUMMARY

We used observationally constrained simulated light curves to probe
the effects of systematic errors on the JAVELIN and ICCF methods
under a wide range of circumstances. We measured the lags from the
simulated light curves through JAVELIN and ICCF and compared the
input lag t0 and the output lags tfit. We characterized the performance
of the algorithms with the median (tfit − t0), the observed scatter
σ obs, the estimated uncertainty σ est and the ratio η = σ est/σ obs.

In general, we found that both methods are reasonably robust to
the presence of all but one of the systematic problems we explored.
In most circumstances, JAVELIN produces better lag error estimates
in the sense that its error estimates are more consistent with the
scatter of the results from random trials (i.e. the ratio η closer to
unity). The ICCF method tends to overestimate the lag uncertainties.
Because the ICCF method overestimates uncertainties when there
are no severe systematic problems, it can be somewhat more ‘robust’
when there are severe systematic problems.

Incorrect single-epoch error estimates and correlated errors in
the light curves can lead to incorrect lag uncertainties, but generally
not by large factors unless there are very big problems. Because
JAVELIN is explicitly Gaussian, its error estimates are directly

affected by problems in the light-curve uncertainty estimates. If
the true uncertainties are twice or half the uncertainties supplied to
JAVELIN, it will get a lag uncertainty wrong by a factor of two simply
because of its mathematical structure. Since the ICCF method does
not explicitly depend on the single-epoch errors, the effects of the
problems in the light-curve errors tend to be more subtle. Temporally
correlated errors can have a bigger effect than the random errors,
probably because they are effectively a distortion in the light-curve
shape.

As previously found by Rybicki & Kleyna (1994) and Zu et al.
(2013), changes in the shape of the transfer function have little effect
on the lags. The primary exception is that a transfer function with
a narrow peak and long tails will increasingly favour the lag due to
the peak as the tail becomes longer. However, this effect was modest
even for the 10:1 time-scale ratio we considered in our experiments.

As we would expect from the underlying mathematics of JAVELIN,
it does not matter if the true stochastic process of the continuum
light curves differs from the DRW model used by JAVELIN. We
demonstrate this both with model light curves that have suppressed
power on short time-scales and with empirical light curves from
Kepler which show such modified structure functions. The perfor-
mance of the ICCF method also shows no significant consequences
from changes in the process driving the variability.

As noted in the Introduction, there are also many studies exploring
how the algorithms perform as the cadence, temporal baseline and
signal-to-noise ratio of the observations change, and address the
likelihood of lag measurements for lower cadence light curves (e.g.
Horne et al. 2004; King et al. 2015; Shen et al. 2015; Yu et al. 2019;
I-Hsiu Li et al. 2019). The more recent studies generally find that

MNRAS 491, 6045–6064 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/4/6045/5673498 by Serials D
ivision user on 24 June 2020



RM lag uncertainties 6061

Figure 15. Same as Fig. 3, but for the simulated light curves based on the Kepler light curve of Zw 229−15. The first through the fourth rows show the results
from each ‘realization’ of the Kepler light curves.

JAVELIN is more likely to yield an accurate lag measurement and,
consistent with our results, that it generally provides more accurate
lag uncertainty estimates. In general, however, these studies have
generated their simulated light curves using JAVELIN’s baseline
assumptions, which is why we have focused on the consequences
of violating those assumptions.

We do, however, identify one systematic problem which produces
significant biases. The standard assumption of RM is that the line
light curve is a smoothed and shifted version of the continuum
(equation 1). If this assumption is incorrect, then both JAVELIN and
ICCF begin to produce increasingly inaccurate lag estimates. We
observe such effects after adding extra variability to the simulated
light curves that resembles the anomalous variability found in NGC

5548. Such violations of the fundamental assumptions of RM are
probably the dominant cause of problems in lag estimates from
light curves which show variability features that should otherwise
yield accurate lag measurements. We did not test combinations of
multiple systematic errors because of the combinatoric explosion
of cases. Mathematically there should be no surprises and the
varying background effect will remain the most important source of
systematic errors for both algorithms. While we discuss our results
mostly in terms of the emission-line RM, they are equally applicable
to continuum RM. The tests we performed for JAVELIN and ICCF
can also be extended to other algorithms such as ZDCF and CREAM,
or to the measurement of time delays in gravitational lenses (e.g.
Liao et al. 2015) for prospective future studies.
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Figure 16. Simulated continuum and line light curves for NGC 5548 with a background variation. Each panel shows one model configuration with the
parameters in the top left corner. The flux is in arbitrary units. The solid black and red lines represent the high-cadence simulated light curve of the continuum
and the emission lines, respectively, while the black and red points represent the resampled light curves. The blue solid line represents the background level.
The background variation is only included in the resampled line light curve.
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Figure 17. Same as Fig. 3, but for the results from background variations. Each panel shows the results from one model configuration with the parameters at
the top left corner.
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