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We analytically model the magnetization switching time of a biaxial ferromagnet driven by an
antidamping-like spin torque. The macrospin magnetization dynamics is mapped to an energy-
flow equation, wherein a rational-function approximation of the elliptic integrals for moderate spin
current and small damping results in a closed-form expression of the switching time. Randomness in
the initial angle of magnetization gives the distribution function of the switching time. The analytic
model conforms to the results obtained from Monte Carlo simulation for a broad range of material
parameters. Our results can ameliorate design and benchmarking of in-plane spin torque magnetic
memory by obviating expensive numerical computation.

I. INTRODUCTION

Current-induced spin phenomena, such as spin-transfer
torque (STT) and spin-orbit torque (SOT), allow elec-
trical manipulation of magnetic order, and form the
basis of emerging spintronic technologies such as non-
volatile memory [1], magnonic interconnects [2], and
radio-frequency oscillators [3]. A spin current can trans-
fer angular momentum to a magnetic layer and reorient
its magnetization, similarly to how an electric current can
transfer charge to a capacitor and modulate its voltage.
As shown in Fig. 1(a), an electric current flowing orthog-
onal to the plane of a spin valve becomes spin polarized
in a direction parallel to the magnetization of the fixed
layer. This spin-polarized current affects the magnetiza-
tion of the free layer due to STT [4, 5]. On the other
hand, an in-plane electric current flowing through a non-
magnetic (NM) material with spin-orbit coupling is spin
polarized in the plane of the nonmagnetic material but
spin polarized transverse to the electric current, due to
the spin Hall effect [6]. This in-plane-polarized spin cur-
rent can exert a SOT [7] on the free-layer magnetization
of the spin valve, as shown in Fig. 1(b).
Thin-film magnets—the path toward miniaturized

spintronics— are subject to epitaxial strain from sub-
strate and finite-size effects, which can elicit an in-plane
or a perpendicular spin orientation [8]. The symmetries
in the energy landscape of thin films up to quadratic
(lowest-order) terms in the magnetization components
are characterized by a biaxial anisotropy, consisting of an
axis of minimum energy that is “easy” for spins to orient
along and an orthogonal axis of maximum energy that
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is “hard.” Uniaxial anisotropy is a special case of biaxial
anisotropy, where the hard axis is absent. For perpendic-
ularly magnetized films, a perpendicular easy axis can be
used to approximate the anisotropy, assuming symmetry
in the plane. For in-plane-magnetized films, an in-plane
easy axis and a perpendicular hard axis offer the correct
description.

In STT memory, the perpendicular free-layer configu-
ration is superior to the in-plane configuration due to its
lower switching current, faster speeds, and higher den-
sity [1]. A key problem in writing to STT memory is its
vulnerability to dielectric breakdown of the tunnel bar-
rier. This is addressed in SOT memory, where the writ-
ing occurs with an in-plane current that need not tra-
verse the tunnel barrier. Three-terminal SOT memory
separates the read and write paths, improving memory
endurance at the cost of cell size. However, deterministic
switching of the perpendicular free layer in SOT memory
requires either a biasing magnetic field [9] or additional
layers in the device stack adding to its fabrication com-
plexity [10]. The in-plane free-layer configuration of SOT
memory is preferred due to its simplicity of fabrication,
magnetic-field-free switching, and lower switching cur-
rents [11], although its writing speed is inferior to that
of the perpendicular SOT memory.

When the spin polarization of the injected spin cur-
rent is antiparallel to the stable orientation of the free-
layer magnetization, the spin torque is antidampinglike—
it competes with the intrinsic damping so as to raise the
macrospin energy—until halfway in the magnetization-
reversal process, when it becomes dampinglike—it con-
tributes to damping so as to cause dissipation of
macrospin energy. The switching process is character-
ized by the time required to reverse the orientation of
the free layer as a function of the input spin current. A
closed-form expression for the switching time is useful for
designing and optimizing the performance of spin-torque
memory. Previous studies [7, 12–14] have derived expres-
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sions of the switching time for the uniaxial anisotropy,
but not for the more general biaxial anisotropy presented
in this work.
Here, we treat the magnetization of the free-layer fer-

romagnet as a single-domain or a macrospin [15], which
switches coherently due to spin torque. The macrospin
approximation is valid if the dimensions of the ferro-
magnet are smaller than the characteristic domain-wall
width, typically ∼ 50 nm for Co, Fe, Ni [16, 17]. The
macrospin model has been applied successfully to explain
measured probability distribution of switching dynamics
in ferromagnetic thin films with dimensions on the or-
der of 50 nm [18]. Inhomogeneous switching dynamics,
such as due to domain wall nucleation and propagation,
have been experimentally measured in large ferromag-
netic samples [19, 20]. However, consideration of multi-
domain switching of the ferromagnet is out of scope of
this work.
Within the macrospin approximation there are three

equivalent approaches to analyze the magnetization
dynamics: perturbative approach [12], constructing
a Fokker-Planck representation [21, 22], or using a
constant-energy stochastic equation [23–26]. In this
work, we adopt the constant-energy orbit averaging
(CEOA) to study magnetization reversal in a biaxial
magnetic system because this approach simplifies a cou-
pled three-dimensional (3D) (two-dimensional if the mag-
netization has a constant magnitude) stochastic problem
into a tractable one-dimensional (1D) problem at low
temperature and for low-to-moderate applied spin cur-
rent [24–26].

The switching dynamics is modeled as a slow pertur-
bation of the rapid constant-energy gyration around the
easy axis (Sec. II). In the deterministic limit, a closed-
form expression of the switching time as a function of
input spin current, initial magnetization energy, and ma-
terial parameters is obtained. Average switching time
and the probability distribution of the switching time
follow for an initial Boltzmann distributed ensemble of
spins (Sec. III). Analytic results are shown to conform
to those obtained from numerical Monte Carlo simula-
tions. A brief discussion of the stochastic dynamics and
its applications is included in Sec. IV.

II. THEORY

The dynamics of magnetization subject to an effective
magnetic field, intrinsic damping, and spin torque is de-
scribed by the Landau-Lifshitz-Gilbert (LLG) equation.
Using dimensionless form of physical parameters listed in
Table I, the LLG equation is [24, 27]

∂m

∂τ
= − (m× heff)− αm× (m× heff)

− Ism× (m× n̂p) + αIs (m× n̂p) ,
(1)

where m is the normalized free-layer magnetization, α is
the Gilbert damping constant, Is is the input spin cur-
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coincide with x̂ and ẑ axes, respectively. Using Eq. (3)
in Eq. (2), we obtain h = mxx̂−Rmz ẑ+Ha/Hk where
R = Dh = Ms/Hk.
The thermal field is a Langevin field [28] that is spa-

tially isotropic and uncorrelated in space and time, there-
fore,

〈hT (t)〉 = 0, (4a)

〈hT,p(t1)hT,r(t2)〉 = Dδp,rδ(t1 − t2), (4b)

where p, r represent Cartesian coordinates, δp,r is the
Kronecker delta, and δ(t) is the Dirac delta. Assum-
ing the macrospin to be in thermal equilibrium with the
thermal bath and neglecting Joule heating, the diffusion
coefficient

D =
αkBT

(1 + α2)KuV
=

α

(1 + α2)∆0
, (5)

where kB is the Boltzmann constant, T is the tempera-
ture of the bath, and ∆0 is the barrier height of a uniaxial
anisotropy magnet and measures the thermal stability of
the macrospin [28]. Here, ∆0 is normalized to thermal
energy kBT .

A. Constant-Energy Orbit Averaging (CEOA)

The energy of a macrospin is conserved when damping,
thermal field (noise), external magnetic field, and spin
torque are absent. In this case, m precesses around the
easy axis on the unit magnetization sphere with a fixed
macrospin energy gL (< 0). Trajectories of conserved
motion, illustrated in Fig. 2(a), are obtained by solving
Eqs. (1) and (3) with α, Ha, and Is set equal to zero,
and ‖m‖ = 1. However, with finite damping, m loses
energy, eventually relaxing to a stable equilibrium state
(mx = ±1). A non-zero spin torque can pump energy
to the macrospin and act against its inherent damping,
causing the magnetization to deviate from its equilibrium
position.
In the case of a small to moderate input spin torque,

small damping, and low temperature, two distinct time-
scales of magnetization dynamics emerge: (i) a fast time-
scale associated with constant-energy gyration around
the easy axis and (ii) a slow time-scale corresponding
to perpendicular diffusion of magnetization from one
constant-energy orbit to another as a result of damp-
ing, spin torque, and themal field. Figure 2(b) shows one
such trajectory where the magnetization switches from
an anti-parallel well to a parallel well under the simulta-
neous effects of damping, input spin current, and thermal
field
The rate of change of macrospin energy due to the

non-conservative torques is given as

∂gL
∂τ

= ∇mgL · ∂m
∂τ

= 2

(

Rmz
∂mz

∂τ
−mx

∂mx

∂τ

)

. (6)

Averaging the above equation over one time period of the
undamped motion reduces the coupled stochastic dynam-
ics of Eq. (1) to a 1D stochastic dynamics as [24, 26] (see

(a) (b)

FIG. 2. (a) Constant-energy curves for gL < 0 in both anti-
parallel and parallel wells for R = 15. (b) Switching trajec-
tory of a magnetization initially in the anti-parallel well for
R = 15 and a large input spin current. External field is as-
sumed to be absent. The arrows shown in the figure mark the
initial (magenta), intermediate (yellow) and final (green) po-
sitions of the magnetization, in the counter-clockwise sense.
The dashed red curves in both figures correspond to a zero
energy separatrix.

Appendix A)

〈

∂gL
∂τ

〉

=
πα

K (R, gL)

√

R− gL
1 +R

[

Is
α

(1 + gL)

− 2

π

√

(1 +R) (R− gL) {E (R, gL) + gLK (R, gL)}
]

+ 2

√

α

∆0

√

(R− gL)

K (R, gL)

√

E (R, gL) + gLK (R, gL) ◦ ẆgL .

(7)

Here, ◦ denotes multiplication of thermal noise in the
Stratonovich sense [24, 28], whileK (R, gL) and E (R, gL)
are the complete elliptic integrals of the first and second
kind, respectively. Time averaging ∂gL

∂τ over a period of
precessional motion enables us to study the dynamics due
to slow diffusion of energy with respect to fast periodic
oscillations [24, 26].
Assuming deterministic dynamics and using Eq. (7) to

evaluate for zero energy flow at gL = 0 and gL = −1
leads to two different threshold currents: [12, 22, 24]
the minimum current required to push the magnetiza-
tion over the energy barrier into the adjoining basin,

Ith0s = α
[

2
π

√

R (1 +R)
]

and the minimum current re-

quired to move the magnetization away from stable equi-
librium, Ith1s = α[R/2 + 1]. Rc denotes the critical value
of R for which Ith0s equals Ith1s . The threshold currents
demarcate regions of deterministic switching from those
that require thermal assistance as shown in Fig. 3(a).
Figures 3(b) and 3(c) show the rate of change of en-
ergy for deterministic dynamics. It is positive for the
complete range of macrospin energy only for Ithms =
max

(

Ith0s , Ith1s

)

< Is which is consistent with Fig. 3(a).
For other values of current, thermal assistance is required
for switching. The CEOA is valid when the variation in
macrospin energy over one precessional cycle is small,
i.e. |T 〈∂gL∂τ 〉| ≪ max[|gL|] = 1. To satisfy this constraint
on the variation of macrospin energy, the maximum spin

current is given as IthMs = Ith0s

[

1 + 1/
(

8α
√
R
)]

.
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(a) (b) (c)

FIG. 3. (a) Threshold spin current versus R. The arrow marks R = Rc = 5.094 where Ith0s = Ith1s . For Ithms < Is, deterministic
switching (DS) occurs. Thermal switching region is denoted as TS, while the regime of limit cycles is marked as LC. (b) For
R = 3.0 and Ith1s < Is, the rate of change of macrospin energy is positive for gL ∈ (−1, 0). For Ith0s < Is < Ith1s , thermal
assistance is necessary to cause magnetization reversal. For Is < Ith0s , switching occurs due to thermal noise. (c) For R = 15.0
and Ith0s < Is, reversal is deterministic as the rate of energy change is always positive. For Is < Ith1s , thermal switching
dominates, while in the intermediate region, thermal assistance is required to cause switching. These results correspond to
α = 0.03.

III. ANALYTIC SWITCHING TIME MODEL
AND SWITCHING TIME DISTRIBUTIONS

The switching time due to spin torque is defined as the
time required for the macrospin energy to change from an
initial value gLi

to its final value gLf
. Analytic solutions

of the switching time presented in this section rely on one
or more of the following rational approximations [29] for
elliptic integrals of Eq. (7)—

2

π
[E (R, gL) + gLK (R, gL)] = A(R)g2L +B(R)gL + C(R),

(8a)

K(x) =
π

2

[

x− 4

2x− 4

]

, (8b)

E(x) =
π

2

[

1− x

4

x2 − 28x+ 64

4x2 − 40x+ 64

]

, (8c)

where x = R (1+gL)
(R−gL) . Defining Ĩs = Is/α and using

Eqs. (8a) and (8b) together in Eq. (7), we obtain the mag-
netization switching time (see Appendix B for deriva-
tion)

τs =
1

4α

∫ gLf

gLi

[

3R− gL(R+ 4)

R− gL(R+ 2)

]

√

1 +R

R− gL
×

∂gL
[

Ĩs (1 + gL)−
√
1 +R

√
R− gL (Ag2L +BgL + C)

] .

(9)

In the above equation, the parameters A, B, and C are
functions of R given as k1 + k2R

k3 , where the values of
k1, k2 and k3 are chosen for different intervals of R to
reduce the error in approximating the elliptic integrals.
See Table II for details. Note that the values of A, B, and
C are independent of the device geometry and depend
only on R = Ms/Hk. Equation (9) is simplified and
integrated using partial fractions to arrive at the closed-

form expression of switching time:

τs =
1

2α (R+ 2)













5
∑

i=1

N

D
log

[

(R− gLf
)− λi

(R− gLi
)− λi

]

+

√

R(1 +R)

R+ 2















log

[√
(R−gLf

)(R+2)−
√

R(1+R)√
(R−gLi

)(R+2)−
√

R(1+R)

]

A
5
∏

n=1

(

R(1+R)
R+2 − λi

)

+

log

[√
(R−gLf

)(R+2)+
√

R(1+R)√
(R−gLi

)(R+2)+
√

R(1+R)

]

A
5
∏

n=1

(

R(1+R)
R+2 + λi

)



























,

(10)

where λi’s are the roots of a fifth-degree polynomial- x5−
(BA +2R)x3+ Ĩs

A
√
1+R

x2+(R2+ B
AR+ C

A )x− Ĩs
√
1+R
A with

N = (R + 4) + 2R(1+R)
(R+2)λ2

i
−R(1+R)

, and D = 5Aλ4
i − 3(B +

2AR)λ2
i + 2 Ĩs√

1+R
λi + (AR2 +BR+ C).

A major advantage of this analytic result is that the ap-
proximations of elliptic integrals are independent of the
input spin current and Gilbert damping. Additionally,
the results obtained in this work are valid for a broad
range of R as opposed to prior works [12, 30] that are
valid only for R < Rc (= 5.09).

For the case of R → ∞, the elliptic integrals in Eq. (7)
are approximated using Eqs. (8b) and (8c) This simplifies
the energy flow equation, and the switching time is given
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TABLE II. Parameters A, B, and C in Eq. (9) are approxi-
mated as k1 + k2R

k3 , where k1, k2, and k3 depend on R.

R k1 k2 k3

[1, 3]
A 0.35661 -0.51244 -0.38689
B 1.05148 -0.55504 -0.28598
C 0.61670 0.03018 -1.00153

[3, 50]
A 0.20223 -0.38439 -0.68424
B 0.81746 -0.34729 -0.63939
C 0.61765 0.02994 -1.08243

[50, 100]
A 0.17370 -0.51992 -0.97986
B 0.78501 -0.48295 -0.97726
C 0.61755 0.02625 -1.01442

as (see Appendix C for details)

τs =
1

2α
[

Ĩs − 0.5R
]

[

log

[

1 + gLf

1 + gLi

]

+
b(a− 4)(a− 8)

32(a− b)
log

[

1 + gLf
− a

1 + gLi
− a

]

− a(b− 4)(b− 8)

32(a− b)
log

[

1 + gLf
− b

1 + gLi
− b

]]

,

(11)

where a and b are the roots of the quadratic equation

x2 −
(

160Ĩs−60R
16Ĩs−7R

)

x+
(

256Ĩs−128R
16Ĩs−7R

)

= 0.

In the limit of R → 0, the free energy density in Eq. (3)

simplifies to gL = − (m · n̂e)
2
, which represents a uniax-

ial anisotropy ferromagnet. In this case, the switching
time is given as [12–14, 24, 31] (see Appendix D for de-
tails)

τs =
1

2α
(

Ĩ2s − 1
)

[

Ĩs

{

log

[

1 +
√−gLi

1 +
√−gLf

]

− log

[

1−√−gLi

1−√−gLf

]}

− log

[

1 + gLi

1 + gLf

]

+ 2 log

[

Ĩs −
√−gLi

Ĩs −
√−gLf

]]

.

(12)

A. Equilibrium Distribution and Average
Switching Time

In the absence of input spin current, the magnetization
is considered to be in thermal equilibrium in its stable en-
ergy well. An average switching time, 〈τs〉, is obtained
by averaging τs over the equilibrium energy distribution,
which in the case of a large energy barrier is the Boltz-
mann distribution given as

weq (m) =
1

Z(∆0, R)
exp (−∆0gL(m, 0)) , (13)

(a) (b)

(c) (d)

FIG. 4. Histogram distribution of gL using α = 0.03 and
∆0 = 75. The top panel results correspond to R = 3.0, while
the bottom panel results are for R = 30.0. (a) and (c) denote
the PDF, while (b) and (d) denote the CDF.

where Z(∆0, R) is the partition function. We evaluate
the Boltzmann distribution function in terms of the free
energy random variable (see Appendix E for details of
the transformation). Accordingly, the probability density
function (PDF) is

ρ (gL) =
1

Z(∆0, R)

exp (−∆0gL)√−gL
, (14)

where the partition function

Z(∆0, R) =

∫ 0

−1

ρ(x)dx =
2 exp (∆0)F (

√
∆0)√

∆0

. (15)

The cumulative distribution function (CDF) is

P (gL) =

∫ gL

−1

ρ(x)dx

= 1− exp (−∆0 (1 + gL))
F
(√−∆0gL

)

F
(√

∆0

) ,

(16)

where F (x) = exp
(

−x2
) ∫ x

0
exp

(

y2
)

dy is the Dawson’s
integral.

The magnetization is considered to have switched suc-
cessfully when it crosses the separatrix

(

gLf
= 0

)

and
consequently moves into the adjoining energy well. Once
the magnetization moves into the target energy well, the
spin current could be switched off. The magnetization
would eventually settle into its stable well due to its in-
trinsic damping. Therefore, 〈τs〉 is given as

〈τs〉 =
∫ 0

−1

ρ (gLi
) τs

(

gLi
, gLf

= 0
)

dgLi
. (17)
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Average switching time 〈ts〉 =
(1+α2)

γµ0

〈τs〉
Hk

as a function of injected spin current density, Js, for different values of R.

The horizontal dashed black line in each figure is the threshold current demarcating region of deterministic switching from that
of thermal activation. The numerical data is obtained for an ensemble of 104 macrospins.

B. Distribution Functions and Write Error Rate

Defining a random variable switching time Ts, the frac-
tion of macrospins in an ensemble that have switched
from an anti-parallel to a parallel state at time τs is

PTs
[τs] = 1−

∫ gLi
(τs)

−1

1

Z(∆0, R)

exp (−∆0x)√
−x

dx

= exp (−∆0 (1 + gLi
(τs)))

F
(

√

−∆0gLi
(τs)

)

F
(√

∆0

) ,

(18)

where gLi
(τs) corresponds to the initial energy for switch-

ing time τs. An exact analytic expression for gLi
(τs) is

not feasible; however, the monotonically decreasing na-
ture of Eqs. (10)-(12) makes it possible to numerically
invert [32] them. PTs

[τs] includes all macrospins in an
ensemble with gL ≥ gLi

(τs) as we consider only deter-
ministic switching in this work. PTs

[τs] also refers to the
probability of switching of a macrospin with τs ≥ Ts;
therefore, PTs

[τs] = Pr [Ts ≤ τs]. Finally, the probabil-
ity density function of the switching time is

ρTs
(τs) =

dPTs
[τs]

dτs

=

√
∆0

2F (
√
∆0)

exp (−∆0(1 + gLi
(τs)))

√

−gLi
(τs)

∣

∣

∣

∣

dgLi
(τs)

dτs

∣

∣

∣

∣

.

(19)

The write-error rate (WER) quantifies the probabil-
ity of unsuccessful spin torque switching of the magnet.
Using Eq. (18), the WER is

WER = 1− PTs
[τ ]

= 1− exp (−∆0 (1 + gLi
(τs)))

F
(

√

−∆0gLi
(τs)

)

F
(√

∆0

) .

(20)

C. Model Validation

To benchmark our analytic results, we solve Eq. (1)
numerically using the Heun integration scheme imple-
mented in CUDA and run in parallel on GPUs. Numeri-
cal simulations were calibrated against published results
to ensure their accuracy [13, 24, 33]. For all numerical
simulations presented in this work, the time step of inte-
gration was set as 0.3 ps. The Gilbert damping constant
of the free-layer is taken as α = 0.03, while its cross-
sectional area is assumed to be Ar = π/4× 30× 15 nm2.
Different values of R, each signifying a different ferromag-
netic material with its respective Ms and Ku values, are
considered. The thickness of the free layer is adjusted
to achieve an energy barrier ∆0 = 75 [34]. Simulation
results corresponding to values of α other than 0.03 are
not reported for brevity, as the key features and trends
of switching dynamics remain the same. Finally, a wide
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(a) (b)

(c) (d)

FIG. 6. All results reported for R = 0.001 (uniaxial
anisotropy) and Jth1

s = 1.6×107 A/cm2. The top panel shows
the PDF, while the bottom panel shows the WER. The accu-
racy of analytical results improves as the input spin current
density increases with respect to Jth1

s .

(a) (b)

(c) (d)

FIG. 7. All results are reported for R = 15 and Jth0
s =

1.58 × 108 A/cm2. The top panel shows the PDF, while the
bottom panel shows the WER. The accuracy of analytical
solutions improves for spin current densities larger than the
threshold current density. Though CEOA is strictly valid for
Js < JthM

s = 2.1Jth0
s , the analytic model agrees well with the

numerical solution for current larger than JthM
s .

range of R values is selected to show the applicability
and robustness of the model.

Figure 4 shows that Eqs. (14) and (16) describe the
equilibrium numerical distribution very well.

(a) (b)

(c) (d)

FIG. 8. All results are reported for R = 50 and Jth0
s =

5.14 × 108 A/cm2. The top panel shows the PDF, while the
bottom panel shows the WER. The accuracy of analytic re-
sults improves for spin current density larger than the thresh-
old current density. The analytic model is fairly accurate even
for Js > JthM

s = 1.6Jth0
s showing the robustness of our model.

IV. RESULTS AND DISCUSSION

Figure 5 shows the average switching time of an en-

semble of 104 independent macrospins, 〈ts〉 = (1+α2)
γµ0

〈τs〉
Hk

as a function of the input spin current density, Js =
∆0(4ekBT/~)(Is/Ar), where e is the electron charge, and
~ is the reduced Planck’s constant. For R = 0.001 (uni-
axial anisotropy), there is an excellent agreement be-
tween numerical data and closed-form solutions given
in Eqs. (10) and (12) for moderate to large current lev-
els. However, for current levels approaching the thresh-
old switching currents, numerical results predict a lower
average switching time as the presence of thermal noise
aids the switching process.
For R ≫ 1 (biaxial anisotropy), 〈ts〉 obtained using

Eq. (11) predicts a larger average switching time com-
pared to the numerical results for current levels com-
parable to the threshold value. This is expected since
the analytic solutions neglect the effect of thermal noise
during the switching process. As the input spin current
density (Js) increases beyond the threshold value, J th0

s

(= ∆0(4ekBT/~)(I
th0
s /Ar)), the agreement between ana-

lytic and numerical results improves. Near the threshold
current level, the average switching time obtained from
Eq. (10) is slightly lower than that obtained from numer-
ical results. This slight deviation is due to the quadratic
approximation of elliptic integrals in Eq. (7). Note that
for Js > J thM

s (= ∆0(4ekBT/~)(I
thM
s /Ar)), the validity

of CEOA is not fully justified as the average rate of en-
ergy change becomes large [24]. However, the general
trend of switching time stays the same as the error due
to CEOA does not increase abruptly but rather increases
slowly. We observe that the error between the switching
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TABLE III. List of common ferromagnetic materials, their
saturation magnetization Ms, uniaxial anisotropy energy den-
sity Ku and damping constant α.

Materials Ms (T) Ku (MJ/m3) R α Ref.
Terfenol-D 1.0 0.39 1.04 0.1 [28]
Co 1.81 0.41 3.2 0.02 [35]
Co0.6Fe0.2B0.2 1.2 0.095 6.0 0.015 [36, 37]
NiMnSb 0.84 0.013 21.6 0.002 [35, 38]
Fe 2.15 0.048 38.3 0.001 [35, 39]
EuO 2.36 0.044 50.4 0.015 [35]
FeGaB 1.63 0.0198 53.4 0.1 [28]

time from solution of Eqs. (1) and (10) is between 5−12%
for different values of R for current as large as 2J thM

s .
The PDF and WER obtained using analytic results of

Eqs. (19) and (20) are compared against numerical solu-
tion in Figs. 6-9 for an ensemble of 106 macrospins. It
is observed that for the uniaxial case, the accuracy of
the PDF and WER improves as the applied spin cur-
rent increases [33]. For R ≥ 15, the accuracy of analytic
solutions also increases as current increases from J th0

s to-
ward J thM

s . Though for spin currents larger than J thM
s ,

the accuracy of analytic results reduces as the validity of
CEOA becomes questionable, the model is fairly robust
and predicts numerical results well. To arrive at ana-
lytic results reported in Figs. 7-9, we numerically invert
Eq. (11) due to its simplicity.

(a) (b)

(c) (d)

FIG. 9. All results are reported for R = 100 and Jth0
s =

1.02 × 109 A/cm2. The top panel shows the PDF, while
the bottom panel shows the WER. The accuracy of an-
alytical results improves as Js increases above Jth0

s . For
Js > JthM

s = 1.42Jth0
s , the accuracy of the analytic model

reduces but continues to predict the numerical results with
good accuracy.

Figure 10 shows the average switching time for a few
ferromagnetic thin films. Both numerical and analytic
average switching times (Eqs. (1) and (10)) are for the

material parameters listed in Table III. The larger value
of spin current is chosen to demonstrate applicability of
the model beyond the strict validity of CEOA. As ex-
pected, the average switching time decreases for larger
value of spin current. Also, for two materials with similar
values of R, the switching time is lower for the material
with a higher damping constant.

0.0 15.0 30.0 45.0 60.0
R

10-1

100

101

〈 t s
〉  (n

s)

Is =1.4I thms

Eq. (10)
Data

Is =1.5I thMs

Eq. (10)
Data

FIG. 10. Average switching time for materials listed in Ta-
ble (III) for two different currents, viz. Is = 1.4Ithms and
Is = 1.5IthMs .

A. Applications of spin torque memory in the
deterministic and thermally activated regime

Conventional artificial intelligence (AI) hardware ac-
celerators based on von Neumann architectures suffer
from significant power dissipation and communication
overheads [40–42]. The introduction of non-volatile mag-
netic memory in a hybrid magnetic-silicon hardware
could lead to lower power dissipation even for computa-
tionally expensive machine learning tasks that routinely
process large-scale datasets [43]. Neuromorphic architec-
tures that co-locate memory and compute elements are
well suited to leverage the non-volatile spin-torque mem-
ory discussed in this work. Such memory can be used
as a cache memory in general-purpose processors and for
storing the weights pertinent to machine learning tasks
in a neuromorphic architecture [44].
Beyond serving as non-volatile memory elements, the

device architectures illustrated in Fig. 1 can also function
as stochastic oscillators when operated in the thermally
activated regime for which Is < Ithms . In this regime,
the input spin current controls the rate at which the fer-
romagnetic thin film fluctuates between its two stable
states [45]. Several concepts of neuromorphic computing
have been proposed in the literature based on fluctuat-
ing magnets [44, 46–48]. Moreover, by relaxing the con-
straint on the energy barrier, the thresholding behavior
of mono-domain ferromagnets can mimic neural dynam-
ics in an energy efficient manner. In the case of multi-
domain effects, it has been shown that the structures
of Fig. 1 can implement synaptic functionality [46, 49],
which is necessary for weight storage and update in neu-
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romorphic hardware. Energy efficient probabilistic com-
puting for image processing and machine learning [50],
and spin logic [51, 52] are few other possible applications
in the thermally activated regime.
The thermally activated regime is also important from

the point of view of studying the fundamental scaling
laws of spin torque driven dynamics of ferromagnetic
materials. The scaling of the energy barrier height of
ferromagnets with spin current is typically modeled as

∆ = ∆0

(

1− Is/I
th1
s

)ξ
. The value of ξ in the limit of

Is ≪ Ith1s has been a subject of debate for over two
decades [21, 53–56]. Recently, it was theoretically postu-
lated [54, 55] that ξ = 2 for the case of uniaxial anisotropy
(R → 0). For the biaxial case (R ≫ 1), however, the
value of ξ was estimated to be 2.2 by Taniguchi and
coworkers based on the Fokker-Plank (FP) equation [56].
Pinna and coworkers note the current dependence of ξ
via the the principle of action [24, 55] on Eq. (7). In
our opinion, it might be possible to construct a FP rep-
resentation from Eq. (7) and solve it with the rational
approximations Eqs. (8b)-(8c) to arrive at an analytical
expression for ξ. However, full analysis in the thermally
activated regime is out of scope of this work.

V. CONCLUSION

Analytic models of average switching time, probability
distribution function of switching times, and the write-
error rate developed in this paper for thin-film magnets
with biaxial anisotropy show good agreement against nu-
merical results for moderate to large spin current densi-
ties. In the vicinity of the threshold spin current density,
the error between analytic and numerical data is signif-
icant due to thermal noise. For very large spin current
densities, the constant energy orbit averaging approach
adopted in this work becomes inadequate, even though
the error between numerical and analytic results is well
under a tolerance limit. The models of this paper should
complement experimental results and aid the analysis,
design and development of non-volatile memory driven
by both spin-transfer and spin-orbit torques.
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Appendix A: Simplifying Eq. (6)

Without any loss of generality, we consider the easy
and hard axes to coincide with the x̂ and ẑ axes, respec-
tively. Next, we consider spin polarization of the fixed
layer to be in the plane of the magnet at an angle φ with
the easy axis, therefore, n̂p = cosφ x̂+sinφ ŷ. Therefore,
for zero external magnetic field (Ha = 0), the effective
magnetic field heff = mxx̂−Rmz ẑ+hT , where hT is the

thermal field. Therefore, the three components of Eq. (1)
are

∂mx

∂τ
= Rmymz + αmx

(

1−m2
x +Rm2

z

)

+ Is (cosφ−mx (cosφ mx + sinφ my))

− αIs mz sinφ

+ nS,x,

(A1a)

∂my

∂τ
= − (R+ 1)mxmz − αmy

(

m2
x −Rm2

z

)

+ Is (sinφ−my (cosφ mx + sinφ my))

+ αIs mz cosφ

+ nS,y,

(A1b)

and

∂mz

∂τ
= mxmy − αmz

(

R+m2
x − Rm2

z

)

− Ismz (cosφ mx + sinφ my)

+ αIs (sinφ mx − cosφ my)

+ nS,z,

(A1c)

where each of nS,p denotes thermal noise component in
the Stratonovich sense. From Eqs. (4) and (5) we have





nS,x

nS,y

nS,z



 = D ◦





hT,x

hT,y

hT,z



 =
√
D D ◦





Ẇx

Ẇy

Ẇz



 , (A2)

where Ẇ represents a 3D stochastic Wiener process
whose each component is a Gaussian random variable
with zero mean and unit standard deviation. D is re-
ferred to as the diffusion matrix and is given as





α
(

1−m2
x

)

mz − αmxmy −my − αmxmz

−mz − αmxmy α
(

1−m2
y

)

mx − αmymz

my − αmxmz −mx − αmymz α
(

1−m2
z

)



 .

Substituting Eqs. (A1a) and (A1c) into Eq. (6) leads to

∂gL
∂τ

= 2Rmz [mxmy − αmz (R− gL)

− Ismz (cosφ mx + sinφ my)

+ αIs (sinφ mx − cosφ my)]

− 2mx [Rmymz + αmx (1 + gL)

+ Is (cosφ−mx (cosφ mx + sinφ my))

− αIs sinφ my]

+ 2
√
D

(

dx dy dz
)

◦





Ẇx

Ẇy

Ẇz



 ;

(A3a)

and





dx
dy
dz



 =





RmzD31 −mxD11

RmzD32 −mxD12

RmzD33 −mxD13



 . (A3b)
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It can be observed from Eq. (A3a) that each of damping,
spin current and thermal noise contribute to the rate of
energy change. In addition, the last term in Eq. (A3a)

is simplified to
√

d2x + d2y + d2z

√

Ẇ 2
x + Ẇ 2

y + Ẇ 2
Z which

leads to

∂gL
∂τ

= −2α
[

(1 +R)m2
x + gL (R− gL)

+
Is
α

((1 + gL) cosφ mx + gL sinφ my)

+Is (sinφ mxmy −R (sinφ mxmz − cosφ mymz))]

+ 2

√

α

∆0

√

(1 +R)m2
x + gL (R− gL) ◦ ẆgL ,

(A4)

where ẆgL is 1D white Gaussian noise and it acts away
from the constant-energy orbit along a normal. [26]

Now average ∂gL
∂τ over a constant-energy orbit as the

non-conservative effects act over long time-scales whereas
we are more interested in studying their effects on rapid
periodic motion. In the limit of zero damping, zero spin
current at absolute zero temperature, the constant en-
ergy solutions to Eqs. (A1a)-(A1c) in the anti-parallel
well are given as [23, 24, 26]

mc
x(t) = −

√

R− gL
R+ 1

dn
[

√

R− gL t, k2
]

, (A5a)

mc
y(t) =

√

1 + gL sn
[

√

R− gL t, k2
]

, (A5b)

mc
z(t) =

√

1 + gL
R+ 1

cn
[

√

R− gL t, k2
]

, (A5c)

where k2 ≡ R 1+gL
R−gL

, 0 < k2 < 1 and sn[·], cn[·], dn[·] are
Jacobi elliptic functions. Magnetization oscillates around
the easy axis with a time period, T (gL) =

4√
R−gL

K
(

k2
)

,

whereK
(

k2
)

is the complete elliptic integral of first kind.

In Eq. (A4) only the time averages ofmx andm2
x are non-

zero while those ofmy, mxmy, mxmz, andmymz are zero
due to their periodic nature. To evaluate these averages
we geometrically parametrize [24, 26] the constant-energy
orbit in the anti-parallel well as a function of parameter
ω as

cosh2 (ω)− sinh2 (ω) = 1, (A6a)

1

−gL
m2

x − R

−gL
m2

z = 1, (A6b)

which leads to the form

mc
x = −√−gL cosh (ω), (A7a)

mc
z = ±

√

−gL
R

sinh (ω), (A7b)

mc
y = ±

√

R− gL
R

√

1− ζ2 cosh2 (ω), (A7c)

ζ2 = −gL (R+ 1)

R− gL
= 1− k2, (A7d)

where |ω| < cosh−1 (1/ζ). Defining time average of some
function p (t) as

〈p (t)〉 = 4

T (gL)

∫ t=my :
√
1+gL→0

0

p (t) dt, (A8)

the time averages of 〈mx〉 and 〈m2
x〉 is evaluated as

〈mx〉 =
4

T (gL)

cosh−1 (1/ζ)
∫

0

mx (ω)

∣

∣

∣

∣

∣

√
Rmz

Rmymz

∣

∣

∣

∣

∣

dω

= − 4

T (gL)

√−gL√
R− gL

cosh−1 (1/ζ)
∫

0

cosh (ω) dω
√

1− ζ2 cosh2 (ω)

= − 4

T (gL)

√−gL
ζ
√
R− gL

cosh−1 (1/ζ)
∫

0

cosh (ω) dω
√

1−ζ2

ζ2 − sinh2 (ω)

= −π

2

√
R+−gL√
1 +R

1

K (ζ)
= −π

2

√

R− gL
R+ 1

1

K (R, gL)
,

(A9)

and

〈m2
x〉 =

4

T (gL)

cosh−1 (1/ζ)
∫

0

m2
x (ω)

∣

∣

∣

∣

∣

mx

√
Rmz

mxRmymz

∣

∣

∣

∣

∣

dω

=
−4

T (gL)

gL√
R− gL

cosh−1 (1/ζ)
∫

0

cosh2 (ω) dw
√

1− ζ2 cosh2 (ω)

=
−1

K (ζ)

gL
√

1− ζ2

cosh−1 (1/ζ)
∫

0

cosh2 (ω) dω
√

1− ζ2

1−ζ2 sinh
2 (ω)

=
−1

K (ζ)

gL
ζ

1
∫

0

√

1−
(

1− 1
ζ2

)

u2 du

√
1− u2

=
−1

K (ζ)

gL
ζ2

E
(

1− ζ2
)

=
R− gL
R+ 1

E (R, gL)

K (R, gL)
,

(A10)

where we have used dt = dp(ω)/dω
dp(t)/dt dω. Substituting 〈mx〉

and 〈m2
x〉 in Eq. (A4) results in the average rate of energy

flow as

〈

∂gL
∂τ

〉

= − πα

K (R, gL)

√

R− gL
1 +R

[

−Is
α

cosφ (1 + gL)

+
2

π

√
1 +R

√

R− gL (E (R, gL) + gLK (R, gL))

]

− 2

√

α

∆0

√

(R− gL)

K (R, gL)

√

E (R, gL) + gLK (R, gL) ◦ ẆgL .

(A11)
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In this paper, we have considered the spin polarization
n̂p to be collinear to the easy axis n̂e so φ = 0 which
leads to Eq. (7).

Appendix B: Solving the integral in Eq. (9)

In Eq. (9), substitute R− gL = u2, so that we have

τs =
1

2Aα

R+ 4

R+ 2

√
R−gLf
∫

√
R−gLi

u2 − R(1+R)
R+4

u2 − R(1+R)
R+2

[

du

P (u)

]

, (B1)

where P (u) = u5 − (B/A + 2R)u3 + Ĩs
A
√
1+R

u2 + (R2 +

(B/A)R + C/A)u − Ĩs
√
1 +R/A and λi are the roots

of the polynomial P (u) which are evaluated numerically.
Using partial fractions to resolve the denominator of the
integral we finally have

τs =
1

2α (R+ 2)













5
∑

i=1

N

D
log

[

(R− gLf
)− λi

(R− gLi
)− λi

]

+

√

R(1 +R)

R+ 2















log

[√
(R−gLf

)(R+2)−
√

R(1+R)√
(R−gLi

)(R+2)−
√

R(1+R)

]

A
5
∏

n=1

(

R(1+R)
R+2 − λi

)

+

log

[√
(R−gLf

)(R+2)+
√

R(1+R)√
(R−gLi

)(R+2)+
√

R(1+R)

]

A
5
∏

n=1

(

R(1+R)
R+2 + λi

)



























.

(B2)

Appendix C: R → ∞

For large values of R, Eq. (7) in the deterministic
regime along with rational approximations for the elliptic
integrals, Eqs. (8b) and (8c) can be simplified to

∂gL
∂τ

= 4α

[

1− gL
3− gL

] [

Ĩs (1 + gL)−R

{

gL
3− gL
2− 2gL

+1− (1 + gL)

4

(1 + gL)
2 − 28(1 + gL) + 64

4(1 + gL)2 − 40(1 + gL) + 64

}]

.

(C1)

Now substituting 1 + gL = x in the previous equation
leads us to

dx

dτ
= 4α

[

x− 2

x− 4

] [

Ĩsx−R

{

(x− 1)
x− 4

2x− 4

+1− x

4

x2 − 28x+ 64

4x2 − 40x+ 64

}]

,

(C2)

which can then be simplified and rearranged to an inte-
gral of the form

1+gLf
∫

1+gLi

(x− 4)(x− 8)dx

x [x2 − Ex+ F ]
=

α

4

(

16Ĩs − 7R
)

τs, (C3)

where E = 160Ĩs−60R
16Ĩs−7R

and F = 256Ĩs−128R
16Ĩs−7R

. If the roots

of the quadratic equation x2 − Ex + F = 0 are a and b
then the switching time τs can be evaluated as

τs =
1

2α
[

Ĩs − 0.5R
]

[

log

[

1 + gLf

1 + gLi

]

+
b(a− 4)(a− 8)

32(a− b)
log

[

1 + gLf
− a

1 + gLi
− a

]

− a(b− 4)(b− 8)

32(a− b)
log

[

1 + gLf
− b

1 + gLi
− b

]]

.

(C4)

Appendix D: Uniaxial Limit

For the case of uniaxial limit Eq. (7) in the determin-
istic regime reduces to

〈

∂gL
∂τ

〉

= 2α
√−gL (1 + gL)

(

Ĩs −
√−gL

)

, (D1)

which can then be integrated as

gLf
∫

gLi

dgL
√−gL (1 + gL)

(

Ĩs −
√−gL

) = 2ατs. (D2)

Substituting gL = −u2, and using partial fractions to
separate the terms in the denominator and integrating
with proper limits leads us to

τs =
1

2α
(

Ĩ2s − 1
)

[

Ĩs

{

log

[

1 +
√−gLi

1 +
√−gLf

]

− log

[

1−√−gLi

1−√−gLf

]}

− log

[

1 + gLi

1 + gLf

]

+ 2 log

[

Ĩs
α −√−gLi

Ĩs
α −√−gLf

]]

.

(D3)

Appendix E: Eqs. (14) and (16)

If a random variable X has certain probability PX [x]
then the probability for a random variable Y = −X2

could be obtained as

PY [y] = P [Y ≤ y] = P
[

−X2 ≤ y
]

= 1− P
[

|X| ≤ √−y
]

= 1− P
[

−√−y ≤ X ≤ √−y
]

(E1)



12

Now, if we consider that X represents the distribution
of magnetization mx while Y represents that of energy
gL then for R → 0 using Eq. (13) one can obtain the
probability,

P [gL] = 1− 2

Z(∆0, 0)

√−gL
∫

0

dx exp
(

∆0m
2
x

)

= 1− 2

Z(∆0, 0)
√
∆0

√−gL
∫

0

dmx

√

∆0 exp
(

∆0m
2
x

)

= 1− 2 exp(∆0gL)

Z(∆0, 0)
√
∆0 exp(∆0gL)

√
−∆0gL
∫

0

du exp
(

u2
)

= 1− 2 exp(−∆0gL)

Z(∆0, 0)
√
∆0

F
(

√

−∆0gL

)

.

(E2)

Here we have substituted
√
∆0mx = u, and used F (x) =

exp
(

−x2
) ∫ x

0
dy exp

(

y2
)

, the Dawson’s integral. Since
P [−1] = 0, therefore,

Z(∆0, 0) =
2 exp(∆0)√

∆0

F
(

√

∆0

)

. (E3)

Eqs. (E2) and (E3) together lead to Eq. (16).

In order to arrive at the probability distribution func-
tion (PDF) we now differentiate Eq. (E2) with respect to
gL to get

ρY [gL] =
1

Z(∆0, 0)

exp (−∆0gL)√−gL

=

√
∆0

2F
(√

∆0

)

exp (−∆0 (1 + gL))√−gL
,

(E4)

where we have used Z(∆0, R) = Z(∆0, 0).
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