JJ
ol
J
Al | J-J
|
J 3 | al
| _I_IjJ
_J_l JJ
|
' e
]
ﬂ-’ J-l |

Algebra &
Number
Theory

Volume 14

2020

No. 4

On the Ekedahl-Oort stratification of Shimura curves

Benjamin Howard

g .l_l-I JJJJ J JJ JJv
al e, J“JJJg gJJJJJJJ
JJfJ "% L U Yl
i | .J .IJ = . o .I |
{1k i S HE BCHE
g 2 _I al J
J !
10 w JﬂPfJJJJ“ L
- J%JJ” 1,0t H i

-

d U

14
2l

20

ol o






ALGEBRA AND NUMBER THEORY 14:4 (2020)
dx.doi.org/10.2140/ant.2020.14.961

On the Ekedahl—Qort stratification of Shimura curves
Benjamin Howard

We study the Hodge-Tate period domain associated to a quaternionic Shimura curve at a prime of bad
reduction, and give an explicit description of its Ekedahl-Oort stratification.

1. Introduction

Fix a prime p, and let C be the completion of an algebraic closure of Q,. Denote by O C C its ring of
integers, and by k = O/m its residue field.

1.1. Stratifications of p-adic periods domains. Let G be a p-divisible group over O. It has a p-adic
Tate module
T,(G) =Hom(Q,/Z,, G)

and a module of invariant differential forms €2(G). These are free of finite rank over Z,, and O, respectively.
Using the canonical trivialization Q (p~) = O, we define the Hodge—Tate morphism

T,(G) = Hom(G", jtp) S5 Hom(Q (), R(GY)) Z Q(GY), (1.1.1)
where GV is the p-divisible group dual to G.

Theorem A [Scholze and Weinstein 2013]. There is an equivalence between the category of p-divisible
groups over O and the category of pairs (T, W) in which

o T is a free Z,-module of finite rank,
* WCT®z,C isaC-subspace.
The equivalence sends G to its p-adic Tate module T = T,(G), endowed with its Hodge—Tate filtration
W =ker(T,(G) ®z, C T5 Q(GY) ®0 C).
Fix a free Z,-module T of finite rank, and consider the @ ,-scheme
X = Gry(T ®2, 0,)

parametrizing subspaces of T ®z, Q, of some fixed dimension d < rank(T). By the theorem of Scholze—
Weinstein, every point W € X (C) determines a p-divisible group G over O, whose reduction to the
residue field we denote by Gi. Let G¢[p] be the group scheme of p-torsion points in Gy.
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If we declare two points W, W' € X(C) to be equivalent when the corresponding reductions Gy
and G} are isogenous, the resulting partition is the Newton stratification of X(C). Alternatively, if
we declare W, W' € X (C) to be equivalent when the p-torsion group schemes G¢[p] and G,[p] are
isomorphic, the resulting partition is the Ekedahl-Oort stratification of X (C).

There are similar partitions when X is replaced by a more sophisticated flag variety, called the
Hodge-Tate period domain, associated to a Shimura datum of Hodge type and a prime p. This period
domain and its Newton stratification were studied by Caraiani and Scholze [2017], who proved that each
Newton stratum in X (C) can be realized as the C-points of a locally closed subset of the associated adic
space. For the Ekedahl-Oort stratification of X (C) there is nothing in the existing literature, and it is not
known if it has any structure other than set-theoretic partition.

In the case of modular curves, the Hodge—Tate period domain is the projective line P! over Q p- In
this case the Newton stratification and the Ekedahl-Oort stratification agree, and there are two strata: the
ordinary locus P'(Q »), and the supersingular locus Pl(C) ~PH(Q p)-

For the compact Shimura curve determined by an indefinite quaternion algebra over (, and a prime p
at which the quaternion algebra is ramified, the Hodge—Tate period domain X is a twisted form of P!,
All points of X (C) give rise to supersingular p-divisible groups over k, and the Newton stratification
consists of a single stratum, X (C) itself. In contrast, the Ekedahl-Oort stratification is nontrivial, and the
goal of this paper is to make it explicit.

Although the methods used here are fairly direct, it is not clear how far they can be extended. The case
of Hilbert modular surfaces may already require new ideas.

For background on the classical Ekedahl-Oort stratification of reductions of Shimura varieties (as
opposed to their Hodge—Tate period domains), we refer the reader to [Oort 2001; Moonen 2004; Viehmann
and Wedhorn 2013; Zhang 2018].

1.2. The Shimura curve period domain. Let Q> C C be the unique unramified quadratic extension
of @, and let Z,» C O be its ring of integers. Denote by x +> X the nontrivial automorphism of Q..
Define a noncommutative Z,-algebra of rank 4 by

A =Z,[1],

where IT is subject to the relations I1> = p and IT-x = x - IT for all x € Z 2. In other words, A is the
unique maximal order in the unique quaternion division algebra over Q,,.

Let T be a free A-module of rank one, and let X be the smooth projective variety over Q, with functor
of points

XS = {(’)S-module local direct summands W C T ®z, Os of rank 2 that are stable under A} (1.2.1)

for any Q,-scheme S. This is the Hodge—Tate period domain associated to a quaternionic Shimura curve.
As we explain in Section 4.1, our period domain becomes isomorphic to the projective line after base
change to @, and any choice of A-module generator A € T determines a bijection

X(C)=CU{oo}. (1.2.2)
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After fixing such a choice, we normalize the valuation ord : C — R U {oco} by ord(p) = 1, extend it to
C U {oo} by ord(co) = —oo, and use (1.2.2) to view ord as a function

ord: X(C) —» RU {—o0, 00}.

The theorem of Scholze—Weinstein provides a canonical bijection

X(C)é{

isomorphism classes of p-divisible groups G over O of height 4 and dimension 2,
endowed with an action of A and a A-linear isomorphism 7,(G) =T

By forgetting the level structure 7,(G) = T, reducing to the residue field, and then taking p-torsion
subgroups, we obtain a function

X(C)— {isomorphism classes of finite group schemes over k, endowed with an action of A/ pA}

sending G — Gy[p], whose fibers are the Ekedahl-Oort strata of X (C).

Hypothesis. For the rest of this introduction, we assume p > 2. Theorems B and C below are presumably
true without this hypothesis, but we are unable to provide a proof. See the remarks following Theorem 2.2.2.

It is convenient to organize the strata into two types: those on which the p-torsion group scheme G[ p]
is superspecial (in the sense of Section 3.2), and those on which it is not. The two theorems that follow
show that there are three superspecial strata, and two infinite families of nonsuperspecial strata. These
results are proved in Section 4.2, where the reader will also find an explicit recipe for computing the
Dieudonné module of the p-torsion group scheme Gy[p] attached to a point of X (C).

Theorem B. The conditions
1 P
PS| <ord(r) < P

on t € X(C) define an Ekedahl-Oort stratum, as do each one of

1 p
p+1’ p+1

ord(t) < < ord(7).

The union of these three strata is the locus of points with superspecial reduction. In particular, the
isomorphism class of the finite group scheme G| p] is the same all on three strata, but the isomorphism

class of G| p] with its A-action is not.

Now consider the locus of points

. __ : __P
{r e C:ord(t) = p—H}U{t e C:ord(t) = PEN } C X(O) (1.2.3)

at which the corresponding p-divisible group does not have superspecial reduction. The isomorphism
class of the p-torsion group scheme G[ p] is constant on (1.2.3), but the isomorphism class of G¢[ p] with
its A-action varies. In fact, the A-action varies so much that (1.2.3) decomposes as an infinite disjoint
union of Ekedahl-Oort strata.
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Theorem C. The fibers of the composition

1
{reC:mdu)z ! }’H””+ 0% — kX
p+1

are Ekedahl-Oort strata, as are the fibers of the composition

YMMWCVem

e C:ord(r) = L
{r ord(7) Py

Both unlabeled arrows are reduction to the residue field.

Remark 1.2.1. The infinitude of Ekedahl-Oort strata is a pathology arising from the nonsmooth reduction
of compact Shimura curves. Similar pathologies for the reductions of Hilbert modular varieties at ramified
primes are described in the appendix to [Andreatta and Goren 2003].

1.3. Notation and conventions. Throughout the paper p is a fixed prime. We allow p = 2 unless
otherwise stated. Let k = O/m as above, and denote by o : k — k the absolute Frobenius o (x) = x?.
The rings Z,» C O and A = Z »[I1] have the same meaning as above. We label the embeddings

Joo1:Zyp = O (1.3.1)

in such a way that jj is the inclusion and j; (x) = jo(X) is its conjugate.

2. Integral p-adic Hodge theory

In this section we recall the integral p-adic Hodge theory of an arbitrary p-divisible group G over O.
The quaternion order A plays no role whatsoever.

Following [Fargues 2015; Lau 2018; Scholze and Weinstein 2020], we will attach to G a Breuil-Kisin—
Fargues module, and explain how to extract from it invariants of G such as its Hodge—Tate morphism
T,(G) — 2(G"), and the Dieudonné module of its reduction to k.

2.1. A ring of periods. Let C’ be the tilt of C, with ring of integers ©°. Thus
0= lim O/(p)

xXH>xP
is a local domain of characteristic p, fraction field C’, and residue field k = ©”/m". An element x € O°
is given by a sequence (xg, x1, X2, ...) of elements x, € O/(p) satisfying xé’H = xy. After choosing

arbitrary lifts x; € O, set

4
x* = lim x} .
{— 00

The construction x — x* defines a multiplicative function ©” — O, and we define ord : ©” — RU {00}
by ord(x) = ord(x?).
Denote by o : ©” — ©° the absolute Frobenius x — x?, and in the same way the induced automorphism
of the local domain
Aint = W(O").
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There is a canonical homomorphism of Z ,-algebras
O: Ay — O
satisfying @ ([x]) = x¥ where [-]: O” — Ajys is the Teichmiiller lift.
The kernel of © is a principal ideal. To construct a generator, first fix a Z,-module generator
§=(8p, Ep2: Ep3y o) € Tp(pp)
and define € = (1, ¢,, $p2see .) € O". The element
E=[1]+[e/P1+[e¥P1+- - +[eP V"] € At
generates ker(®). If we denote by
w=14e/P 1P ... 4P D/p b
its image under the reduction map Aipr — Ains/(p) = ", then ord(z) = 1, and there are canonical
isomorphisms
O/(p) = At/ (. p) 2O/ (@).
The following lemma will be needed in the proof of Proposition 3.4.4.
Lemma 2.1.1. The reduction map O* — k* sends w®/p > —1.
Proof. By definition, w? =1limy_ oo xé’ Z, where
g =1

$pert — 1

Xe:1+§pk+l+§;z+1+"’+§5z:11: €0.

The binomial theorem implies that
$pe = (pen — 1+ P = (& per1 — P +spCpen — D +1
for some s € O. From this we deduce first that

x¢ = (Lpen — P (mod pO),
and then that

= (e — PV (mod pt10), @.1.1)
Forl1 <i<p-—1set
1-¢! .
_ P __ -1
up = —¢, =14+ +¢, €07,
and note that Wilson’s theorem implies u; - - - u,_; = —1 (mod m). Taking X =1 in the factorization

Xp—l ++X+1:(X_é‘p)(x_§-£—l)
shows that p = (1 —g,,)l’—lul ---up_1, and hence

(1=¢,)P!
p

= —1 (mod m).
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Combining this with (2.1.1) shows that

2 (@ — DY ((gpm — '
p p 1=¢,
As Q) (¢pen) is totally ramified over @), the reduction of

p—1
) (mod m).

lies in the subgroup F C k*. It follows that xfl/p = —1 (mod m), and hence w?/p = —1 (mod m). [J

2.2. Breuil-Kisin—Fargues modules. There is an equivalence of categories between p-divisible groups
over O and Breuil-Kisin—Fargues modules, whose definition we now recall.

Definition 2.2.1. A Breuil-Kisin—Fargues module is a triple (M, ¢, 1), in which M is a free module of
finite rank over Aj,f, and

o, v M—>M
are homomorphisms of additive groups satisfying
¢(am) =o(a)p(m), Y(o(@)ym)=ay(m),
for all a € Ajpr and m € M, as well as p oy =§.
Suppose (M, ¢, ) is a Breuil-Kisin—Fargues module. Denote by
0*M = Aint @, A M
the Frobenius twist of M, and by N the image of the Ajn¢-linear map

M ISV ey

It is easy to see that £6*M C N C o* M. We construct various realizations of M as follows:

e The de Rham realization
MdR = O'*M/SO'*M,

sits in the short exact sequence
0—> N/so™M — Mgr — 6c*M/N — 0.

of free @-modules. Indeed, the freeness of Mgg is clear, the freeness of c*M /N follows from the
proof of [Lau 2018, Lemma 9.5], and the freeness of N/£0*M is a consequence of this.

o The étale realization is the torsion-free Z,-module

My = MV=",
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Its Hodge—Tate filtration
Fur(M) C M ®z, C

is the kernel of the C-linear extension of

My =12V, N je6* M.

o The crystalline realization

Merys = W(k) ®q, ae M

is a free W (k)-module, endowed with operators
Fa@my=o@®pm), V@em)=o"'@eym).

These give My the structure of a Dieudonné module.

The following theorem is no doubt known to the experts, but for lack of a reference we will explain in
the next subsection how to deduce it from the results of [Lau 2018].

Theorem 2.2.2 (Fargues, Scholze and Weinstein, Lau). Assume that p > 2. The category of p-divisible
groups over O is equivalent to the category of Breuil-Kisin—Fargues modules. Moreover, the Breuil—

Kisin—Fargues module (M, ¢, ) associated to a p-divisible group G enjoys the following properties:
(1) There are isomorphisms of O-modules
QG)EN/Ec*M, Lie(G)=o0*M/N. (2.2.1)
(2) If Gy denotes the reduction of G to the residue field k = O /m, the covariant Dieudonné module of
Gy is isomorphic to Mys.

(3) There is an isomorphism T,(G) = Me making the diagram

T)(G) —=——— Mgy
HTl l 2.2.2)
Q(GY) ———=N/éc*M

commute, where the vertical arrow on the right is the restriction to Me C M of the O-linear map
Y Rindl-l iGN JEGM.
All of these isomorphisms are functorial.

Some comments on this theorem are warranted, particularly regarding the restriction to p > 2. A
functor!' from Breuil-Kisin—Fargues modules to p-divisible groups over O, but not a proof that it is an
equivalence of categories, first appeared in the work Fargues [2015, §4.8.1]. His construction of the

1Fargues only considers formal p-divisible groups, and imposes a corresponding restriction on Breuil-Kisin—Fargues modules.
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functor makes essential use of the theory of windows introduced by Zink [2001] and extended by Lau
[2010; 2018], and assumes that p > 2.

A proof of the equivalence of categories is found in [Scholze and Weinstein 2020, Theorem 14.1.1],2
where the result is attributed to Fargues. The construction of the functor in [Scholze and Weinstein 2020]
is very different from the construction of [Fargues 2015], and does not use of the theory of windows.
Instead, what is proved in [Scholze and Weinstein 2020] is that the category of Breuil-Kisin—Fargues
modules is equivalent to the category of pairs (7', W) appearing in Theorem A, and hence is equivalent to
the category of p-divisible groups. This proof comes with no restriction on p.

The identification of M.y with the Dieudonné module of Gy is [Scholze and Weinstein 2020,
Corollary 14.4.4], and the isomorphism 7,(G) = M, can be deduced by carefully tracing through
the construction of the equivalence. Unfortunately, the isomorphisms of O-modules (2.2.1) seem difficult
to deduce from the description of the equivalence found in [Scholze and Weinstein 2020].

Because of this, our equivalence of categories will be the one appearing in [Lau 2018], which follows
Fargues. What Lau proves is that, when p > 2, the categories of Breuil-Kisin—Fargues modules and
p-divisible groups over O are both equivalent to the category of windows. The various properties of the
equivalence listed in Theorem 2.2.2 can be read off from the constructions of the two functors into the cate-
gory of windows, which are quite simple and direct (of course, the proof that they are equivalences is not).

The invocation of Theorem 2.2.2 in the calculations of Section 3 is the only reason why the assumption
p > 2 is imposed in the introduction. Our approach in the sequel will be to allow arbitrary p, but to take
the conclusions of Theorem 2.2.2 as hypotheses.

2.3. Proof of Theorem 2.2.2. As we have already indicated, Theorem 2.2.2 is proved by relating the
categories of Breuil-Kisin—Fargues modules and p-divisible groups to the category of windows introduced
by Zink [2001] and extended by Lau [2010; 2018].
Our windows will be modules over the ring Acys, which is defined as the p-adic completion of the
subring
AQys = Aintl€"/n!:n=1,2,3,...1C Aintl1/p].
It is an integral domain endowed with a ring homomorphism

®crys : Acrys -0 2.3.1)

extending © : Ajy;r — O, and divided powers on the kernel I = ker(Oys).

The subring Agrys C Ajne[1/p] is stable under o, and there is a unique continuous extension to an

injective ring homomorphism o : A¢rys — Acrys reducing to the usual p-power Frobenius on Acrys/ pAcrys.
Moreover, [Scholze and Weinstein 2013, Lemma 4.1.8] and the comments following [Lau 2018, (9.1)]

show that

o(§)
o(I) C pAcrys and 7 IS Aéys.

2Qur conventions for Breuil-Kisin—Fargues modules and the equivalence of categories differ from those of [Scholze and
Weinstein 2020]. The discrepancy amounts to a Tate twist.
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The following definition of a window is taken from [Lau 2018, §2], where it would be called a window
over the frame
écrys = (Acrys, 1,0 = Acrys/ly 0,01),
with o1 : I — Acys defined by o1(x) =0 (x)/p.

Definition 2.3.1. A window is a quadruple (P, Q, ®, ®;) consisting of a projective Acrys-module P of
finite rank, a submodule Q C P, and o -semilinear maps

®:P— P, P :Q0— P
satisfying the following properties:
o there exist A¢ys-submodules L, T C P such that
O=LIT, P=L&T,
e a®@x > ad(x) defines a surjection 0*Q — P of Acys-modules,
e ®(ax)=pPi(ax) forallael and x € P.

Remark 2.3.2. Taking a = £ in the final condition yields

O(x) = L @ (£x)

o (§)

for all x € P. This implies ®(x) = p®P;(x) for all x € Q, and shows that each one of ® and ®; determines
the other.

Remark 2.3.3. Note that /P C Q, and that Q/IP and P/Q are projective (hence free) over A¢ys/1 = O.

Suppose G is a p-divisible group over O. Let P be its crystalline Dieudonné module, evaluated at
the divided power thickening (2.3.1). This is a projective Acrys-module of rank equal to the height of G,
equipped with a o-semilinear operator @ : P — P and a short exact sequence

0— Q(GY)— P/IP — Lie(G) = 0

of free O-modules. Define Q C P as the kernel of P — Lie(G). One can show that ®(Q) C p P, allowing
us to define @, : Q — P by

1
Di(x)=—-D(x).
p
The following is a special case of [Lau 2018, Proposition 9.7].

Theorem 2.3.4 (Lau). The construction G+ (P, Q, ®, ®1) just given defines a functor from the category

of p-divisible groups over O to the category of windows. It is an equivalence of categories if p > 2.

Now suppose we start with a Breuil-Kisin—Fargues module (M, ¢, ¥). Set

P = Acrys ®J,Ainf M, (232)
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and define ® : P — P by ®(a®m) =0 (a) ® ¢(m) for all a € Arys and m € M. The submodule Q C P,
defined as the kernel of the composition

Acrys ®O’,Aim‘ M — Acrys/IAcrys ®U,Amf M

F

Ainf/s Ajnf ®G,Ainf M
oc*M/s6c*M ——  o*M /N

is alternately characterized the Ays-submodule generated by all elements of the form 1 ®1/(m) and a @ m
with m € M and a € I. There is a unique o -semilinear map ®; : Q — P whose effect on these generators is

¢1(1®1//(m))=?®m, cI>1(a®m)=¥®¢(M)-

The following is a special case of [Lau 2018, Theorem 1.5].
Theorem 2.3.5 (Lau). The construction (M, ¢, ) — (P, Q, ®, @) just given defines a functor from the

category of Breuil-Kisin—Fargues modules to the category of windows. It is an equivalence of categories
if p>2.
Given a window (P, Q, @, &), define its étale realization
Po={xeQ:Pi(x)=x}
as in [Lau 2019, §3]. This is a torsion-free Z,-module equipped with a Hodge—Tate filtration
Fur(Pe) C Pa®2z, C,

defined as the kernel of the C-linear extension of Pt — Q/IP.

Denote by HTpair the category of pairs (7', W) in which 7 is a torsion-free Z ,-module, and W C T®z,C
is a subspace. Using the obvious notation for the categories of Breuil-Kisin—Fargues modules, p-divisible
groups over O, and windows, we now have functors

BKF-Mod —~— Win +—"— p-DivGrp (2.3.3)
S
HTpair

Here a is given by Theorem 2.3.5, b is given by Theorem 2.3.4, ¢ sends a window to its étale realization, d
does the same for Breuil-Kisin—Fargues modules, and e sends a p-divisible group over O to its p-adic
Tate module endowed with its Hodge filtration.

Remark 2.3.6. It is not obvious from the definitions that (2.3.3) commutes. When p > 2 the commutativity
is a byproduct of the following proof.
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Proof of Theorem 2.2.2. Assume that p > 2. In particular the functors of Theorems 2.3.4 and 2.3.5 are
equivalences of categories, and their composition gives the desired equivalence of categories between
p-divisible groups over O and Breuil-Kisin—Fargues modules.

Suppose G is a p-divisible group over O, and let (P, Q, ®, ®1) and (M, ¢, ) be its corresponding
window and Breuil-Kisin—Fargues module. The isomorphisms

Q(GY)= Q/IP=N/téo*M and Lie(G)=P/Q=0*M/N

are clear from the constructions of the functors of Theorems 2.3.4 and 2.3.5.
The quotient map O — k induces a ring homomorphism Aj,y — W (k) sending & +— p. It follows that
there is a unique continuous extension to Acys — W (k) and, by (2.3.2), canonical isomorphisms

W(k) ®ayy P=W(k) Qo Ay M = Meyys. (2.3.4)

crys

The functor of Theorem 2.3.4 is constructed in such a way that the leftmost W (k)-module in (2.3.4) is
identified with the value of the Dieudonné crystal of Gy at the divided power thickening W (k) — &,
which is just the usual covariant Dieudonné module of Gy.

The window of the constant p-divisible group @Q,/Z, over O consists of

P'= Ay and Q= Agys
endowed with the operators ® : P — P9 and ®; : Q° — P? defined by
d(x)=po(x) and Di(x)=0(x).
In particular there is a canonical isomorphism Q°/1P° = ©.
The Breuil-Kisin—Fargues module of Q,/Z, consists of

M° = Ais
endowed with the operators

p(x)=¢&c(x) and Yx)=0"'(x).

The distinguished submodule N 0 c 6*M" defined in Section 2.2 is all of 6*M® = 6* Ajyy, so is free of
rank one generated by 1 ® 1. Hence there is a canonical isomorphism N°/&o*M% = O.
From the equivalence of categories of Theorem 2.3.4 we obtain the commutative diagram

T,(G) al Q(GY)

Homy_pivarp (Qp/Zp, G) —— Homo (R (i px), Q(GY))
(2.3.5)

Homwin(P?, P) ———— Homo(Q°/IP°, Q/IP)

P Q/IP
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Similarly, from the equivalence of categories of Theorem 2.3.5 we obtain the commutative diagram

Met N/SO’*M

Hompgp(M°, M) —— Homp(N°/E6*M°, N/Ec* M)
(2.3.6)
Homwin(P?, P) ——— Hom(Q°/IP°, Q/IP)

Pet Q/1pP

Combining these gives (2.2.2), completing the proof of Theorem 2.2.2.

As a final comment, we note that the diagrams (2.3.5) and (2.3.6) show that P, and M, are finitely gen-
erated Z ,-modules, and that (2.3.3) commutes. If we denote by FinHTpair C HTpair the full subcategory
of pairs (7', W) with T of finite rank over Z,, we obtain a commutative diagram

BKF-Mod —* Win «+—2— p-DivGrp
\ Cl /
d e
FinHTpair
in which the arrows a, b, and e are equivalences of categories (the last one by Theorem A). Hence all
arrows are equivalences of categories. U
3. Bounding the Hodge-Tate periods

Let G be a p-divisible group of height four and dimension two over O, endowed with an action
A — End(G).

Throughout Section 3 we do not require p > 2. Instead we allow p to be arbitrary, but assume the
conclusion of Theorem 2.2.2.

3.1. Hodge-Tate periods. The embeddings (1.3.1) determine a decomposition
Q(GY) =Q(G") ®Q(GY), (3.1.1)

in which each summand is free of rank one over O, and Z,» C A acts on them through jo and ji,
respectively. The operator IT maps each summand injectively into the other. Applying ®pk to (3.1.1)
yields a decomposition

Q(GY) = Q0(G) & 21(GY)

into one-dimensional k-vector spaces.
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Composing the Hodge—Tate morphism (1.1.1) with the two projections yields two partial Hodge—Tate

morphisms
T)(G) > Q(GY),  Tp(G) > 1(GY).
By fixing isomorphisms
Qo(G") =0, Q(GY) =0, (3.1.2)

we view these as O-valued Z ,-linear functionals on T),(G).
Lemma 3.1.1. The A-module T),(G) is free of rank 1.

Proof. As A ® Q, is a division ring, its module 7,(G) ® Q,, is necessarily free. Comparing Q-
dimensions shows that it is free of rank one, and hence 7, (G) is isomorphic to some (left) A-submodule
of A® Q,. As A admits a discrete valuation [Vignéras 1980, Lemme II.1.4] with uniformizer IT, every
such submodule is principal and generated by a power of II. g

Fix a A-module generator A € T,(G), and define

HTo(ITX) _ HT(ITh)

T0 = y T = .
HTo(2) HT; (%)

These are the Hodge—Tate periods of G. In each fraction the numerator or denominator may vanish, but
not simultaneously. Thus the Hodge—Tate periods lie in P1(C) = C U{oo}. They do not depend on the
choice of (3.1.2), but do depend on the choice of generator A.

Proposition 3.1.2. The Hodge—Tate periods satisfy 7y - T1 = p.
Proof. The action of IT on Qy(G") @ 21(G") is given by
(wo, ®1) = (sow1, s1wo)
for some s, 51 € O satisfying sos1 = p. From the A-linearity of the Hodge—Tate morphism we deduce first
HTo(ITA) = s - HT1 (M), HT;(ITh) =51 - HTo (M),
and then

HTo(ITA) HT;(IIx)
Tp-T1 = .
HTo(A)  HTi(A)

=50-5] = p. O
3.2. Reduction to the residue field. Let G be the reduction of G to the residue field kK = O/m, and
let (D, F, V) be its covariant Dieudonné module.

Definition 3.2.1. Let H be the p-divisible group of a supersingular elliptic curve over k. In other words, H
is the unique connected p-divisible group of height two and dimension one. The reduction Gy is said to be

(1) supersingular if it is isogenous to H x H,

(2) superspecial if it is isomorphic to H x H.



974 Benjamin Howard

Remark 3.2.2. Our notions of supersingular and superspecial depend only on the p-divisible group Gy,
and not on its A-action. This differs from the meaning of superspecial in some literature on Shimura
curves, e.g., [Kudla and Rapoport 2000].

The following proposition, which implies that the notion of superspecial depends only on the p-torsion
subgroup scheme G[p] C Gy, is well-known. For lack of a reference we provide the proof.

Proposition 3.2.3. The reduction Gy, is supersingular, and the following are equivalent:
(1) Gy, is superspecial.
(2) There is an isomorphism of group schemes Gi[p]l = H|[p] x H[p].
(3) V2D c pD.
(4) FD = VD.
Proof. The supersingularity of Gy follows from the Dieudonné—Manin classification of isocrystals: one can
list all isogeny classes of p-divisible groups over k of height four and dimension two, and the supersingular
isogeny class is the only one whose endomorphism algebra contains a quaternion division algebra.
The implication (1) => (2) is trivial. For the implication (2) = (3) it suffices to check that V2 kills
the Dieudonné module of H[p], which we leave to the reader.
Next we prove (3) = (4). If D’ C D is any W (k)-lattice stable under both F and V, then its
corresponding p-divisible group G, is isogenous to Gy. In particular it has dimension 2, and hence
D'/VD' = Lie(G})
is a 2-dimensional k vector space. Applying this with D’ = D and D’ = VD shows that D/V?D has
length 4 as a W (k)-module. On the other hand, D/p D also has length 4, proving the first implication in
VD cC pD = V?’D=pD=VD=FD.

Finally, we prove (4) = (1). Let «, be the finite flat group scheme whose Dieudonné module is the
W (k)-module k, endowed with the operators F'=0and V = 0. If FD = VD then, using the self-duality
of a), we see that

Hom(c ), GZ) = Hom(G[pl, ap) = Homy(D/(FD + VD), k)
= Homy(D/VD, k) = Homy (Lie(G), k)

is a 2-dimensional k-vector space. It follows from [Oort 1975, Theorem 2] that G|/ is superspecial, and
hence so is Gy. U

Let (M, ¢, ) be the Breuil-Kisin—Fargues module of G. The quotient
M’ =M/pM

is a free module over O° = A;¢/(p), endowed with operators ¢, ¥ : M” — M satisfying ¢ oy = w..
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Denote by N” = N/pN the image of
M 18y im) o* M.

Each of our embeddings jo, ji1 : Z,> — O determines a map
Z,— 0/pO=0"[w,

and these two maps lift uniquely to jo, ji : Z,2 — ©". The action of A on G determines an action on M,
which induces a decomposition
M =M &M,
analogous to (3.1.1). It follows from the next proposition that each factor is free of rank two over O”.
Proposition 3.2.4.
(1) D is free of rank one over A ®z, W (k).
(2) M is free of rank one over A ®z, Aint.

Proof. Reduce (1.3.1) to ring homomorphisms jo, ji1 : Z,> — k, and denote again by jo, ji : Z,2 — W (k)
the unique lifts. There is a decomposition of W (k)-modules

D =Dy® D,

in such a way that Z,» C A acts on the two summands via jo and j;, respectively. As in [Kudla and
Rapoport 2000, §1], these summands are free of rank 2 over W (k), and satisfy

pD() g VD] g D(), pD1 g_ VD() g Dl.

Moreover, either ITDg = VD or I1D; = VD, (or both).
Without loss of generality, we may assume that [1Dy = V Dy, and hence

pDy S TIDy & D;.
Applying IT to these inclusions shows that
pDO g HD] g_ D().

If we choose any fy € Dg and f; € D with nonzero images in Do/I1D; and D /I1Dy, respectively, then
fo, f1, ILfo, [1f1 € D reduce to a k-basis of D/pD. Using Nakayama’s lemma it is easy to see that D is
generated by fo+ fi as a A ® W (k)-module, and the first claim of the proposition follows.

Theorem 2.2.2 gives us an isomorphism

D/pD = o*(M/mM)

of AQy ) k-modules, and from what was said above we deduce that M /mM is free of rank one over A ®z k.
The second claim of the proposition follows easily from this and Nakayama’s lemma. O
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3.3. The case IR (G)/) = 0. We assume throughout Section 3.3 that
QG =0.

We will analyze the structure of M”, with its operators ¢ and v, and use this to bound the Hodge—Tate
periods of G. The first step is to choose a convenient basis.

Lemma 3.3.1. There are O"-bases e, fo € Mg andey, fi € M;) such that the operator I1 € A satisfies
[Teg =0, [Me; =0, TIlfy=-e;, IIfi =ey, (3.3.1)
and such that \ satisfies
V(eo) =toer, Yle) =tieo, Y (fo)=er+tifi, Y (f1)=eo+10fo
for scalars ty, t; € O satisfying ord(ty) > 0, ord(t;) > 0, and
ord(#p) +ord(t;) = 1/p.

Proof. As M" is free of rank one over A ®z, O, we may choose a basis such that (3.3.1) holds, and the
relation ¢ o [T = I'T o ¢ then implies

V(eo) =toer, Y(er) =tieo, Y(fo) =urer+tf1, Y(f1)=uoeo+1fo
for some ug, uy, ty, t; € O". The submodule N* C o*M” is generated by
1@ Y (e) =1 Qen, 1@y (e1) =1 ®eo,
1Qy(fo)=uj Qe +1{ ® fi, 1@V (f) =uy Qeo+1j ® fo.

Recall that m” C ©” is the maximal ideal. The first isomorphism in (2.2.1) identifies (G,f) with the
image of N in (6*M”)/m"(c*M"), and by hypothesis this k-vector space is annihilated by I1. It is easy
to see from this that ord(fg) and ord(#|) are positive.

Using Theorem 2.2.2, we see that

o*M"/N° = (*M/N) ®0 O/(p) = Lie(G) ®0 O/ (p)
is free of rank two over O/(p) = O /(). On the other hand, o* M /N’ is isomorphic to the cokernel of

the matrix

p
» € My(O"),

whose reduction to M4(k) must therefore have rank 2. This implies that ug and u; are units, and using
elementary row and column operations one sees that

o*M’/N° = O° [ (to11)P ® O/ (to11)" .
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Hence (#t1)? = (=). Finally, having already seen that ¢ and u; are units, an easy calculation shows
that our basis elements may be rescaled in order to make ug =1 and u; = 1. g
Fix a basis as in Lemma 3.3.1. Theorem 2.2.2 identifies
T,(G)/pT(G) = MY~/ pM"=" ¢ (M")"=,
and the image of our fixed generator A € T),(G) has the form
apeg +aijer +byfo+ b1 f1 € M’
for some coefficients ag, ay, by, by € O° satisfying
al =ait] +b1, af =aotf +bo, by =bity, b} =bot]. (33.2)
The first isomorphism of (2.2.1) identifies
Q(G")/pRUGY)=N/(pN +§0*M) = N"/wo*M’
with the direct summand of 0*M" /mro* M" generated by the reductions of
1@V (fo)=1®e+1!/® fica*M’, 10y (fi)=1®e+1J® foco*M".
If we use this basis to identify
Q(G")/pRUGY) =N’ [we™M = O /(@) & O /()
then, again using Theorem 2.2.2, the partial Hodge—Tate morphisms
Tp(G)/pTH(G) = Q0(G)/pQ0(GY) = 0"/ (@)
Tp(G)/pTp(G) > Q1(GY)/pQ(G*) = O’ /(@)
are given by
HTo(%) =al, HTo(ITx) = bf, (3.3.3)
HTi(A) =dal,  HT{(TIA) =Y.

Lemma 3.3.2. Fori € {0, 1}, we have

1 -ord(¢;
Iy ( ).

ord(b;) =

Proof. As TIA € T, (G) has nonzero image in
T,(G)/pTy(G) C M”,

we must have bpe| + b1eg # 0. Therefore one of by and b; is nonzero. The relations (3.3.2) then imply
first that both by and b are nonzero, and then that

2
p—=1_ p p(p—1)
b: = (tot)? - 1, .

1

The claim follows by applying ord to both sides of this equality. U
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Lemma 3.3.3. If we assume that

—— <ord(ty),
p*(p—1
then
1 ord(f;) 1 ord(#y)
, ord(a;) = — .
p(p>-1  p+1 pP—1 p+l1

Of course there is a similar result if t1 is replaced by ty.

ord(ag) =

Proof. Recall the equality aé’ = altlp + by from (3.3.2). The only way this can hold is if (at least) one of
the three relations

« p-ord(ap) = ord(by) < ord(1{'a)
e p-ord(ap) = ord(t{ ay) < ord(by)
e ord(by) = ord(tfal) < p-ord(agp)

is satisfied. The second and third relations cannot be satisfied, as each implies

p*-ord(r1)
— <

5 0.
p>—1 p+1

0 <ord(a;) <ord(by) — p-ord(t;) =

Hence the first relation holds, and Lemma 3.3.2 shows that

1 n p-ord(t))

-ord(ap) = ord(by) =
p -ord(ag) = ord(b1) o1 P

This proves the first equality.
For the second equality, the relations (3.3.2) imply

2

al" =al - @] +11)? — (to11)"ao,
2

al” =af - () +10)? — (tor)Pay.

Using the second of these, along with

2 2
p p~-ord(t;)
d(al - (tf +19)?) = ord(b -ord(f) = — 1 <ord((tot1)"ay),
ord(ag - (1§ +10)?) = ord(by) + p - ord(1o) 21 bt <1 < ord((tot1)"ay)
we find that
ord(al - (t! +1p)? 1 d(t
ord(a;) = (0 (g 0)): 5 —Or(l). O
p ps—1 p+1

Now we can prove the main result of this subsection.
Proposition 3.3.4. If we assume, as above, that TI2(G)') = 0 then

1 < ord(ty) < P ana 1 <ord(t)) < P

p+1 p+1 p+1 p+1
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Proof. First assume that

m < Ord(t]). (334)

The discussion leading to (3.3.3) provides us with an O-module isomorphism
Q0(G")/p(G") Z O/ (@) Z O/ (p),

and we fix any lift to an isomorphism Qy(G") = O.

It is easy to see from Lemmas 3.3.2 and 3.3.3 that ord(a;) and ord(b) lie in the open interval (0, 1/p),
and so af and b(’)’ have nonzero images in ©” /(). By (3.3.3) these images agree with the images of
HTy(A) and HT((ITA) under

O — 0/(p) =0 /().

Thus
p_ p-ord#)
pr—1 p+1

ord(HTo(1)) = ord(a]) =

and

p +p2-0rd(to)
p?—1 p+1

ord(HTo(ITA)) = ord (b)) =

It follows that

p (=D
p+1 p+1

ord(tg) = ord(HTo(ITA)) — ord(HTy (X)) = -ord(tlp),

and so

1 p
— <ord(g) < ——.
p+1 p+1

The analogous inequalities for ord(z;) follow from the relation tgt; = p of Proposition 3.1.2.
This proves Proposition 3.3.4 under the assumption (3.3.4). The proof when

2o=D < ord(1g) (3.3.5)

is entirely similar.
Thus we are left to prove the claim under the assumption that both (3.3.4) and (3.3.5) fail. This
assumption implies that

1 2
— =ord(ty) +ord(t;) < ————,
p 0 ) pr(p—1)

which implies that p =2 and
ord(ty) = 41'1 = ord(zy).

In particular, Lemma 3.3.2 simplifies to

ord(bg) = % = ord(by).
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Consider the equality a(% =a 1t]2 + b1 of (3.3.2). As in the proof of Lemma 3.3.3, the only way this can
hold is if (at least) one of the relations

e ord(ag) = zlt
e ord(a;) =0 and ord(ag) > le
holds. Similarly, the equality a% = aotg + bg implies that (at least) one of the relations
e ord(ay) = zlt
e ord(ap) = 0 and ord(a;) > le

holds. Combining these shows that ord(ag) = le and ord(a;) = }‘.
In particular, af has nonzero image in ©°/(z), and
ord(HTo (1)) = ord(al) = 1.
On the other hand, b} has trivial image in O°/(w), and so

ord(HTy(ITA)) > 1.

Therefore
ord(tg) = ord(HTy(ITA)) — ord(HTy(1)) > %

The same reasoning shows that ord(t;) > % As 19t] = p by Proposition 3.1.2, we must therefore have
ord(ty) = % = ord(1}),
completing the proof of Proposition 3.3.4. U
3.4. The case IR (G)) # 0. We assume throughout Section 3.4 that
M (GY) #0.

Once again, we will analyze the structure of M” = M/pM, and use this to bound the Hodge—Tate periods
of G. As in Section 3.3, the first step is to choose a convenient basis for M".

Lemma 3.4.1. There are O"-bases e, fo € Mg andey, freM lb such that the operator I1 € A satisfies
ITeg =0, [le; =0, Tlfy=e;, IIf] =ep, (3.4.1)
and such that  satisfies
V() =e1, VYle)=teo, Y(fo)=tfi, V(fi)=se+ fo (3.4.2)
for some scalars s, t € O° with ord(t) = 1/p. Moreover:
(1) For any such basis, Gy, is superspecial if and only if ord(s) > 0.

(2) If Gy is not superspecial such a basis can be found with s = 1.
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Proof. Exactly as in the proof of Lemma 3.3.1, we may choose a basis such that (3.4.1) holds, and such that

VY(eo) =toer, V(e =tieo, Y(fo) =uier+1t1f1, Y(f1)=uoeo+1fo

for some uo, u1, to, t; € O with ord(ty) +ord(t;) = 1/ p.
The A-module Q(GY) is identified with the image of

N’ — (c*M")/m’(c*M"),
and this identifies ©(G)’) with the (one-dimensional) k-span of the vectors
1QY(e) =t ®eo, 1QY(f1) =uf Qeo+1) Q fo

in (U*Mg) /m°(c*M"). The assumption that IT does not annihilate 2 1(GZ) implies that ord(#p) = O,
which allows us to rescale our basis vectors to make #y = 1, and then add a multiple of ¢ to fy to make
uy = 0. Setting t = t; and s = uy, the relations (3.4.2) now hold.

It follows from Proposition 3.2.3 and Theorem 2.2.2 that

G is superspecial <= V3(D/pD) =0 <= y*(M" /m°M") = 0 < ord(s) > 0.

Finally, if ord(s) = 0 it is an easy exercise in linear algebra to see that the given basis elements can be
rescaled to make s = 1. U

As in Section 3.3, our fixed generator A € T),(G) determines an element
ageo +aier +bo fo+ b1 fi € M,
where the coefficients ag, a;, by, b; € O° satisfy
a{; =at? +bys?, af =ay, bg = b, bf = byt?. (3.4.3)
As in Section 3.3, we may identify
Q(G")/pQUGY)=N/(pN +&0*M) = N’ Jjwo*M"
with the direct summand of o*M" /@ o*M" generated by the reductions of
1®@Y(e)=1Qe; €c*M’, 10V (fi)=s"Qey+1® foco*M".
If we use this basis to identify
QG /pRGY)=N"Joo* M’ = O /() ® O /()
then, using Theorem 2.2.2, the partial Hodge—Tate morphisms
Tp(G)/pTH(G) = Q0(G)/pQ0(GY) = O/ (@),

T,(G)/pTp(G) =1 Q1(GY)/pu(GY) = O/ (w)
satisfy
HTy(X) = ao, HTo(I1X) = by, (3.4.4)

HT;(}) = by, HT; (ITx) =0.
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Lemma 3.4.2. We have

ord(b) = —~

d(bo) = , .
ord(bo) P P

Moreover,

ord(ag) > ord(ar) >

p2—=1 p(p*—1)°

and Gy, is superspecial if and only if one (equivalently, both) of these inequalities is strict.

Proof. Exactly as in the proof of Lemma 3.3.2, both by and b, are nonzero. The relations (3.4.3) therefore
imply that
by g
from which the stated formulas for ord(by) and ord(b;) = ord(bg ) are clear.
The relations (3.4.3) imply that ag is a root of xP = xtP' — bf sP*, and by examination of the Newton
polygon we see that

d >
ord(ag) = 21

with strict inequality if and only if ord(s) > 0. Combining this with a! = ag completes the proof. [
Lemma 3.4.3. If Gy is not superspecial then

@ (ap/b)PT € (O and wsPt/tP € (O”)%,
and these units have the same reduction to k™.

Proof. We have already noted that (3.4.3) implies ¥ = bg 2_1, from which one easily deduces the equality

»?
(ﬂ) _a 8"
b) by pp@D
in the fraction field of ©°. It follows from this and Lemma 3.4.2 that
2

p 1/(p+1) o\ P
wp/(p“)(ﬂ) and (_w ’ s)
p—1
bo b

are units in O” with the same reduction to k*, hence the same is true after raising both to the power

(p+1)/p. The lemma follows easily from this and the relations (3.4.3). (|
Proposition 3.4.4. If we assume, as above, that T1Q(G)/) # 0 then
p

——— <ord(t 3.4.5

PR (T1) (3.4.5)
with strict inequality if and only if Gy, is superspecial. Moreover, if equality holds then

p+l
L cor amd T )
174 * P

have the same reduction to k*.
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Proof. Using (3.4.4) and Lemma 3.4.2, we find that

p
p*—1

ord(HTy(TTX)) =

and that
ord(HTo (1)) >

p*—1

with strict inequality if and only if G is superspecial. This implies that

ord(zp) = ord(HT(ITA)) — ord(HTy(A)) < ﬁ
with strict inequality if and only if Gy is superspecial. The inequality (3.4.5) follows from this and the
relation 7ot; = p of Proposition 3.1.2, with strict inequality if and only if Gy is superspecial.

Suppose that equality holds in (3.4.5), so that Gy is not superspecial. Choose an a € O satisfying
a”’~! = &r. The construction of Section 2.1 determines an element o € O whose image in O/(p) =
O /(w) agrees with «.

Combining the relations (3.4.4) with Lemma 3.4.2 shows that

HT,(TIA b
HToIY) _ ox  and L e

(ah)p aP
have the same reduction to k%, as do

HTo(2)

ol

X ao by x
eO and — e (O0")".
o

It follows that

T b
Y% <co* and !
(aﬁ)ﬂ—l aoaP—l

c (Ob)x

have the same reduction to k*. Raising both to the power p + 1 and applying Lemma 3.4.3 proves that

it p+1
P _c0* and € (0~
p+1
To
have the same reduction to k*. Now apply Lemma 2.1.1. (|

4. The main results

We now formulate and prove our main results on the Ekedahl-Oort stratification of the Hodge—Tate period
domain X defined by (1.2.1). Throughout Section 4 we assume that the conclusions of Theorem 2.2.2
hold. For example, it is enough to assume that p > 2.
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4.1. The setup. Let T be a free A-module of rank one, and fix a generator A € 7. Use the embeddings
(1.3.1) to decompose

T®z,C=Tco®Tc,
as a direct sum of 2-dimensional C-subspaces, in such a way that the action of Z,,> C A on the summands
is through jo and jj, respectively. Using the projection maps to the two factors, we obtain injective
Z p-linear maps

QO3T_>TC,O, qliT—>TC,1.
To each T € C U {oo} we associate the A-stable plane

Wr C T®Z,, C

spanned by the two vectors
Tq0(A) — qo(IT2) € Tc o, pq1(A) —tqi(IT1) € Tc, 1.
The construction v — W, establishes a bijection
CU{0} =EX(C).

Remark 4.1.1. It is not hard to see that the above bijection P!(C) = X (C) arises from an isomorphism
of schemes over Q2. The isomorphism cannot descend to Q,, for the simple reason that X (Q,) = &.

For the rest of Section 4.1 and Section 4.2 we hold t € C U {oo} fixed, and let G be the p-divisible
group over O determined by the pair (T, W;). Thus G comes equipped with an action of A, and A-linear

identifications

T,(G) — 5 Q(GY)®0 C

T ——— (T ®;,C)/ W,
In the notation of Section 3.1, the Hodge—Tate periods of G are
=t and 7t =p/t. “4.1.1)

4.2. Computing the reduction. Let G; be the reduction of G to the residue field k = O/m, and
let (D, F, V) be its covariant Dieudonné module. We will show how to compute the isomorphism
class of G[p] from the Hodge—Tate periods (4.1.1).

Let D = A ®z, k with its natural action of A by left multiplication. The embeddings (1.3.1) induce
a decomposition

D=Do® D

in which Z > C A acts on D; through the composition of j; : Z,» — O with the reduction map O — k.
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Choose k-bases
eo, fo € Do, er, f1 €Dy

in such a way that I1 € A acts as

Heo = O, I"Iel = 0, Hfo =eq, Hf] = €. (4.2.1)
Theorem 4.2.1. The inequalities
# < ord(t) < % (422)

hold if and only if TIQ(G/) =0. When these conditions hold, there is a A-linear isomorphism D /pD =D

under which

Feyg=0, Ff0=€1, Fei =0, Ff1=€0,

VE():O, Vf()=el, VEIZO, Vflzeo
Proof. If TIQ(G)/) # 0 then either I1Q(G}/) # 0 or [1Q0(G}) # 0. In the first case Proposition 3.4.4
implies

P _
Pl s ord(ty).

In the second case the same proof, with indices 0 and 1 interchanged throughout, shows that

+1 < ord(7o).

In either case, these bounds imply that (4.2.2) fails.

Now assume that I12(G}") = 0. We have already proved in Proposition 3.3.4 that (4.2.2) holds, and so
it only remains to prove that D/p D admits an isomorphism to [D with the prescribed properties.

Let eq, fo € M(b) and ey, f] € Mlb be the bases of Lemma 3.3.1. Using the formula for  : MP — MP
prescribed in that lemma, and the relation ¢ o ¥ = @, one can write down an explicit formula for ¢, and
then see that the induced operators on the reduction M”/m’M" are given by

¢(e0) =0, @(fo) =uer, ¢e1)=0, &(f1)=uep,
V(eo) =0, v(fo)=e1, Yle)=0, ¥(f1)=eo,

where u~! € k* is the reduction of —tO tl Jw € (O
The images of eg, fo, e1, fi under the bijection

1 ~ ~r
M jo® M° 22185 6% (MP /" M) = Merys/ pMerys = D/ p D

provided by Theorem 2.2.2 form a k-basis of D/pD, denoted the same way, satisfying the relations
(4.2.1) and

Fey=0, Ffy=u’e;, Fe1=0, Ffi=u"ey,

Veg=0, Vfy=e, Ver =0, Vfi=eop.
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It remains to prove that u = 1. The two embeddings (1.3.1) reduce to morphisms jo, ji : Z,2 — k,
which then admit unique lifts to
jo, j1 Zsz —> W(k)

This allows us to decompose D = Dy @ D; as W-modules, where Z p2 C A acts on the two summands
via jo and ji, respectively. Choose arbitrary lifts

fo € Dy, freD
of fy and f1, and then define
éo=T1f1 € Dy, ¢ =TlfyeD,.
Using the fact that IT and V commute, we see that
Véo=pbiér+ parfi. Vfo=aé + pbifi,
Vé, = pboéo+ paofo. Vi = aoéo + pbo fo,

for scalars
ap, a1 € 1+ pW(k), bg, by € W(k).

Denote again by o : W(k) — W (k) the lift of the Frobenius on k. Applying F to the expressions for
Ve, and V f results in

pé1 = a (pbo) Féy+ o (pag) F fo, pfi =0 (ap)Féy+ o (pbo)F fo,

from which one deduces

(0(ap)* — po(bo)?) - F fo = o (a)é) — po (bo) fi.

Reducing this modulo p proves that F fy = e;, and hence u = 1. (|
Theorem 4.2.2. The inequality
1
ord(t) < —— 4.2.3
Ot (42.3)

holds if and only if TIQ1(G)) # 0. Moreover:
(1) If strict inequality holds in (4.2.3), there is a A-linear isomorphism D/pD = D under which
Fey=e), Ffy=0, Fe =0, Ffi=fo,
Vep=e1, Vfo=0, Ve =0, Vfi=jo.
(2) If equality holds in (4.2.3), there is a A-linear isomorphism D/pD = D under which
Feg=uley, Ffo=—uPe;, Fe =0, Ffi=u’jfy, 42.4)
Veg= ey, Vfo=0, Ver =0, Vfi=eo+ fo.

where u is the image of—p/réwrl = —p /TP under O — k*.
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Proof. If (4.2.3) holds then Theorem 4.2.1 implies that [T2(G}) # 0, and so either
Q(GY) #0 or TQ(GY) #0.

The first possibility cannot occur, as then the proof of Proposition 3.4.4, with the indices 0 and 1 reversed
everywhere, would give the bound

L < ord(x

1S (70),
contradicting (4.2.3). Conversely, if T1€2; (G,g) # 0 then (4.2.3) holds by Proposition 3.4.4.

Assume now that (4.2.3) holds, and that HSZl(G,f) #0. Let eg, fo € Mg and ey, f1 € M]b be the bases

of Lemma 3.4.1. As in the proof of Theorem 4.2.1, the operator ¢ on M” can be computed from the
formula for v given in the lemma. The induced operators on the reduction M”/m’M" are found to be

$(eo) =uer, ¢(fo)= —uvle;, @) =0, ¢(f1)=ufo,
V(eo) =er,  ¥(fo) =0, Y(e) =0, ¥(f1)=vey+ fo,

where u € k* is the reduction of @ /t? € (O")*, and v € k is the reduction of s € ©". By the final claim
of Lemma 3.4.1, we may further assume that

__J0 if Gy is superspecial,
|1 otherwise.

Suppose that strict inequality holds in (4.2.3). Proposition 3.4.4 tells us that Gy is superspecial, and
so v = 0. The images of ey, fo, e1, f1 under the bijection

M jw® M 2285 5 (M Jm® M) = Mirys/ pMerys = D/ pD

provided by Theorem 2.2.2 form a k-basis of D/pD, denoted the same way, satisfying the relations
(4.2.1) and

Feoy=u"e;, Ffy=0, Fe =0, Ffi=u’fo,
Veo=e, V=0, Vei=0, Vfi=fo

One can prove that u = 1 by lifting the basis elements to D and arguing exactly as in Theorem 4.2.1.
Suppose now that equality holds in (4.2.3). Proposition 3.4.4 implies that G is not superspecial, so

v =1, and that the reduction map O™ — k> sends —p/ r(f' s Arguing as in the previous paragraph,

we obtain a k-basis eg, fo, €1, f1 of D/pD satistying (4.2.1) and (4.2.4), completing the proof. (|

Theorem 4.2.3. The inequality

_pil < ord(7) (4.2.5)

holds if and only if TIQo(G)) # 0. Moreover:
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(1) If strict inequality holds in (4.2.5), there is a A-linear isomorphism D/pD = D under which

Feo=0, Ffo=/fi, Fei=ey, Ffi=0,
Veo=0, Vfo=/fi, Veir=ey, Vfi=
(2) If equality holds in (4.2.5), there is a A-linear isomorphism D/pD = D under which
Fey=0, Ffy=u?fi, Fei=u’ey, Ffi=—uley,
Veo=0, Vfo=ei+ f1, Ve =ep, Vfi=

(4.2.6)

where u is the image of—p/tfﬂrl = —1P*/ pP under O* — k*.

Proof. Recalling (4.1.1), the inequality (4.2.5) is equivalent to

1
ord(t)) < ?

Using this observation, the proof is identical to that of Theorem 4.2.2, but with the indices 0 and 1

reversed everywhere. U

Corollary 4.2.4. The p-divisible group Gy, is superspecial if and only if

ord(t) ¢ {p—i—l pil}

Moreover, the superspecial locus of X (C) is a union of three Ekedahl-Oort strata, characterized as

follows:

(1) The subset of X (C) defined by

L <ord(7) < P
p

+1 p+1
is an Ekedahl-Oort stratum. On this stratum T1$2 (G,Z) =0.

(2) The subset of X (C) defined by
1

ord(t) < ——,
®) p+1
is an Ekedahl-Oort stratum. On this stratum T12 (GZ) #£0.

(3) The subset of X (C) defined by

ord(t) > ?

is an Ekedahl-Oort stratum. On this stratum T1Qo(G}) # 0.

Proof. Recall from Proposition 3.2.3 that Gy is superspecial if and only if V? annihilates D/pD. Given
this, all parts of the claim are clear from Theorems 4.2.1, 4.2.2, and 4.2.3. O
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Now consider the locus of points

. __ : _ P
{reC.ord(r)_p_H}U{teC.ord(r)_p_H}CX(C)

at which the corresponding p-divisible group does not have superspecial reduction. This set is a union of
infinitely many Ekedahl-Oort strata.

Corollary 4.2.5. The fibers of the composition

{reC:ord(r): I },,_)p/,,m O* = k*
p+1

are Ekedahl-Oort strata, as are the fibers of the composition

{reC:ord(r): p }r'_"pﬂ/pp O0* > kX,
p+1

Proof. For each u € k> let F,, and V, be the operators on D defined by (4.2.4). Note that V, is actually
independent of u. We claim that the existence of a A-linear isomorphism

(D, Fu, Vi) & @, Fu, Vo)
implies u = u’. To see this one checks that the first relation in
poV,=Vyop, ¢oF,=F, 00 4.2.7)
implies that ¢ has the form

¢(e0) =aey, ¢P(e)) =aer, ¢(fo)=afo, ¢(f1)=af1+be

for some a € [, and b € k. Using this, one checks that ¢ commutes with both F,, and F, . The second
relation in (4.2.7) then implies that F, = F,/, and hence u = u’.

The same is true if we replace the operators of (4.2.4) with those of (4.2.6), and so the corollary follows
from Theorems 4.2.2 and 4.2.3. O
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