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On the Ekedahl–Oort stratification of Shimura curves

Benjamin Howard

We study the Hodge–Tate period domain associated to a quaternionic Shimura curve at a prime of bad

reduction, and give an explicit description of its Ekedahl–Oort stratification.

1. Introduction

Fix a prime p, and let C be the completion of an algebraic closure of Qp. Denote by O ⊂ C its ring of

integers, and by k =O/m its residue field.

1.1. Stratifications of p-adic periods domains. Let G be a p-divisible group over O. It has a p-adic

Tate module

Tp(G)= Hom(Qp/Zp,G)

and a module of invariant differential forms�(G). These are free of finite rank over Zp and O, respectively.

Using the canonical trivialization �(µp∞)∼=O, we define the Hodge–Tate morphism

Tp(G)∼= Hom(G∨, µp∞)
HT
−→ Hom(�(µp∞),�(G

∨))∼=�(G
∨), (1.1.1)

where G∨ is the p-divisible group dual to G.

Theorem A [Scholze and Weinstein 2013]. There is an equivalence between the category of p-divisible

groups over O and the category of pairs (T,W ) in which

• T is a free Zp-module of finite rank,

• W ⊂ T ⊗Zp
C is a C-subspace.

The equivalence sends G to its p-adic Tate module T = Tp(G), endowed with its Hodge–Tate filtration

W = ker
(

Tp(G)⊗Zp
C

HT
−→�(G∨)⊗O C

)

.

Fix a free Zp-module T of finite rank, and consider the Qp-scheme

X = Grd(T ⊗Zp
Qp)

parametrizing subspaces of T ⊗Zp
Qp of some fixed dimension d ≤ rank(T ). By the theorem of Scholze–

Weinstein, every point W ∈ X (C) determines a p-divisible group G over O, whose reduction to the

residue field we denote by Gk . Let Gk[p] be the group scheme of p-torsion points in Gk .
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If we declare two points W,W ′ ∈ X (C) to be equivalent when the corresponding reductions Gk

and G ′k are isogenous, the resulting partition is the Newton stratification of X (C). Alternatively, if

we declare W,W ′ ∈ X (C) to be equivalent when the p-torsion group schemes Gk[p] and G ′k[p] are

isomorphic, the resulting partition is the Ekedahl–Oort stratification of X (C).

There are similar partitions when X is replaced by a more sophisticated flag variety, called the

Hodge–Tate period domain, associated to a Shimura datum of Hodge type and a prime p. This period

domain and its Newton stratification were studied by Caraiani and Scholze [2017], who proved that each

Newton stratum in X (C) can be realized as the C-points of a locally closed subset of the associated adic

space. For the Ekedahl–Oort stratification of X (C) there is nothing in the existing literature, and it is not

known if it has any structure other than set-theoretic partition.

In the case of modular curves, the Hodge–Tate period domain is the projective line P1 over Qp. In

this case the Newton stratification and the Ekedahl–Oort stratification agree, and there are two strata: the

ordinary locus P1(Qp), and the supersingular locus P1(C)rP1(Qp).

For the compact Shimura curve determined by an indefinite quaternion algebra over Q, and a prime p

at which the quaternion algebra is ramified, the Hodge–Tate period domain X is a twisted form of P1.

All points of X (C) give rise to supersingular p-divisible groups over k, and the Newton stratification

consists of a single stratum, X (C) itself. In contrast, the Ekedahl–Oort stratification is nontrivial, and the

goal of this paper is to make it explicit.

Although the methods used here are fairly direct, it is not clear how far they can be extended. The case

of Hilbert modular surfaces may already require new ideas.

For background on the classical Ekedahl–Oort stratification of reductions of Shimura varieties (as

opposed to their Hodge–Tate period domains), we refer the reader to [Oort 2001; Moonen 2004; Viehmann

and Wedhorn 2013; Zhang 2018].

1.2. The Shimura curve period domain. Let Qp2 ⊂ C be the unique unramified quadratic extension

of Qp, and let Zp2 ⊂ O be its ring of integers. Denote by x 7→ x̄ the nontrivial automorphism of Qp2 .

Define a noncommutative Zp-algebra of rank 4 by

1= Zp2[5],

where 5 is subject to the relations 52 = p and 5 · x = x̄ ·5 for all x ∈ Zp2 . In other words, 1 is the

unique maximal order in the unique quaternion division algebra over Qp.

Let T be a free 1-module of rank one, and let X be the smooth projective variety over Qp with functor

of points

X (S)=
{

OS-module local direct summands W ⊂ T ⊗Zp
OS of rank 2 that are stable under 1

}

(1.2.1)

for any Qp-scheme S. This is the Hodge–Tate period domain associated to a quaternionic Shimura curve.

As we explain in Section 4.1, our period domain becomes isomorphic to the projective line after base

change to Qp2 , and any choice of 1-module generator λ ∈ T determines a bijection

X (C)∼= C ∪ {∞}. (1.2.2)
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After fixing such a choice, we normalize the valuation ord : C→ R∪ {∞} by ord(p)= 1, extend it to

C ∪ {∞} by ord(∞)=−∞, and use (1.2.2) to view ord as a function

ord : X (C)→ R∪ {−∞,∞}.

The theorem of Scholze–Weinstein provides a canonical bijection

X (C)∼=

{

isomorphism classes of p-divisible groups G over O of height 4 and dimension 2,

endowed with an action of 1 and a 1-linear isomorphism Tp(G)∼= T

}

.

By forgetting the level structure Tp(G) ∼= T, reducing to the residue field, and then taking p-torsion

subgroups, we obtain a function

X (C)→
{

isomorphism classes of finite group schemes over k, endowed with an action of 1/p1
}

sending G 7→ Gk[p], whose fibers are the Ekedahl–Oort strata of X (C).

Hypothesis. For the rest of this introduction, we assume p> 2. Theorems B and C below are presumably

true without this hypothesis, but we are unable to provide a proof. See the remarks following Theorem 2.2.2.

It is convenient to organize the strata into two types: those on which the p-torsion group scheme Gk[p]

is superspecial (in the sense of Section 3.2), and those on which it is not. The two theorems that follow

show that there are three superspecial strata, and two infinite families of nonsuperspecial strata. These

results are proved in Section 4.2, where the reader will also find an explicit recipe for computing the

Dieudonné module of the p-torsion group scheme Gk[p] attached to a point of X (C).

Theorem B. The conditions
1

p+1
< ord(τ ) <

p

p+1

on τ ∈ X (C) define an Ekedahl–Oort stratum, as do each one of

ord(τ ) <
1

p+1
,

p

p+1
< ord(τ ).

The union of these three strata is the locus of points with superspecial reduction. In particular, the

isomorphism class of the finite group scheme Gk[p] is the same all on three strata, but the isomorphism

class of Gk[p] with its 1-action is not.

Now consider the locus of points

{

τ ∈ C : ord(τ )=
1

p+1

}

∪

{

τ ∈ C : ord(τ )=
p

p+1

}

⊂ X (C) (1.2.3)

at which the corresponding p-divisible group does not have superspecial reduction. The isomorphism

class of the p-torsion group scheme Gk[p] is constant on (1.2.3), but the isomorphism class of Gk[p] with

its 1-action varies. In fact, the 1-action varies so much that (1.2.3) decomposes as an infinite disjoint

union of Ekedahl–Oort strata.
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Theorem C. The fibers of the composition
{

τ ∈ C : ord(τ )=
1

p+1

}

τ 7→p/τ p+1

−−−−−→O
×→ k×

are Ekedahl–Oort strata, as are the fibers of the composition
{

τ ∈ C : ord(τ )=
p

p+1

}

τ 7→τ p+1/p p

−−−−−−→O
×→ k×.

Both unlabeled arrows are reduction to the residue field.

Remark 1.2.1. The infinitude of Ekedahl–Oort strata is a pathology arising from the nonsmooth reduction

of compact Shimura curves. Similar pathologies for the reductions of Hilbert modular varieties at ramified

primes are described in the appendix to [Andreatta and Goren 2003].

1.3. Notation and conventions. Throughout the paper p is a fixed prime. We allow p = 2 unless

otherwise stated. Let k =O/m as above, and denote by σ : k→ k the absolute Frobenius σ(x)= x p.

The rings Zp2 ⊂O and 1= Zp2[5] have the same meaning as above. We label the embeddings

j0, j1 : Zp2 →O (1.3.1)

in such a way that j0 is the inclusion and j1(x)= j0(x̄) is its conjugate.

2. Integral p-adic Hodge theory

In this section we recall the integral p-adic Hodge theory of an arbitrary p-divisible group G over O.

The quaternion order 1 plays no role whatsoever.

Following [Fargues 2015; Lau 2018; Scholze and Weinstein 2020], we will attach to G a Breuil–Kisin–

Fargues module, and explain how to extract from it invariants of G such as its Hodge–Tate morphism

Tp(G)→�(G∨), and the Dieudonné module of its reduction to k.

2.1. A ring of periods. Let C[ be the tilt of C , with ring of integers O
[. Thus

O
[ = lim

←−−
x 7→x p

O/(p)

is a local domain of characteristic p, fraction field C[, and residue field k =O
[/m[. An element x ∈O[

is given by a sequence (x0, x1, x2, . . .) of elements x` ∈ O/(p) satisfying x
p

`+1 = x`. After choosing

arbitrary lifts x` ∈O, set

x] = lim
`→∞

x
p`

` .

The construction x 7→ x] defines a multiplicative function O
[→O, and we define ord :O[→ R∪ {∞}

by ord(x)= ord(x]).

Denote by σ :O[→O
[ the absolute Frobenius x 7→ x p, and in the same way the induced automorphism

of the local domain

Ainf =W (O[).
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There is a canonical homomorphism of Zp-algebras

2 : Ainf→O

satisfying 2([x])= x], where [ · ] :O[→ Ainf is the Teichmüller lift.

The kernel of 2 is a principal ideal. To construct a generator, first fix a Zp-module generator

ζ = (ζp, ζp2, ζp3, . . .) ∈ Tp(µp∞)

and define ε = (1, ζp, ζp2, . . .) ∈O[. The element

ξ = [1] + [ε1/p] + [ε2/p] + · · · + [ε(p−1)/p] ∈ Ainf

generates ker(2). If we denote by

$ = 1+ ε1/p + ε2/p + · · ·+ ε(p−1)/p ∈O[

its image under the reduction map Ainf → Ainf/(p) = O
[, then ord($) = 1, and there are canonical

isomorphisms

O/(p)∼= Ainf/(ξ, p)∼=O
[/($).

The following lemma will be needed in the proof of Proposition 3.4.4.

Lemma 2.1.1. The reduction map O
×→ k× sends $ ]/p 7→ −1.

Proof. By definition, $ ] = lim`→∞ x
p`

` , where

x` = 1+ ζp`+1 + ζ 2
p`+1 + · · ·+ ζ

p−1

p`+1 =
ζp` − 1

ζp`+1 − 1
∈O.

The binomial theorem implies that

ζp` = (ζp`+1 − 1+ 1)p = (ζp`+1 − 1)p + sp(ζp`+1 − 1)+ 1

for some s ∈O. From this we deduce first that

x` ≡ (ζp`+1 − 1)p−1 (mod pO),

and then that

x
p`

` ≡ (ζp`+1 − 1)(p−1)p` (mod p`−1
O). (2.1.1)

For 1≤ i ≤ p− 1 set

ui =
1− ζ i

p

1− ζp

= 1+ ζp + · · ·+ ζ
i−1
p ∈O×,

and note that Wilson’s theorem implies u1 · · · u p−1 ≡−1 (mod m). Taking X = 1 in the factorization

X p−1+ · · ·+ X + 1= (X − ζp) · · · (X − ζ
p−1
p )

shows that p = (1− ζp)
p−1u1 · · · u p−1, and hence

(1− ζp)
p−1

p
≡−1 (mod m).
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Combining this with (2.1.1) shows that

x
p`

`

p
≡
(ζp`+1 − 1)(p−1)p`

p
≡−

(

(ζp`+1 − 1)p`

1− ζp

)p−1

(mod m).

As Qp(ζp`+1) is totally ramified over Qp, the reduction of

(ζp`+1 − 1)p`

1− ζp

∈O×

lies in the subgroup F×p ⊂ k×. It follows that x
p`

` /p ≡−1 (mod m), and hence $ ]/p ≡−1 (mod m). �

2.2. Breuil–Kisin–Fargues modules. There is an equivalence of categories between p-divisible groups

over O and Breuil–Kisin–Fargues modules, whose definition we now recall.

Definition 2.2.1. A Breuil–Kisin–Fargues module is a triple (M, φ, ψ), in which M is a free module of

finite rank over Ainf, and

φ,ψ : M→ M

are homomorphisms of additive groups satisfying

φ(am)= σ(a)φ(m), ψ(σ (a)m)= aψ(m),

for all a ∈ Ainf and m ∈ M, as well as φ ◦ψ = ξ .

Suppose (M, φ, ψ) is a Breuil–Kisin–Fargues module. Denote by

σ ∗M = Ainf⊗σ,Ainf
M

the Frobenius twist of M, and by N the image of the Ainf-linear map

M
x 7→1⊗ψ(x)
−−−−−→ σ ∗M.

It is easy to see that ξσ ∗M ⊂ N ⊂ σ ∗M. We construct various realizations of M as follows:

• The de Rham realization

MdR = σ
∗M/ξσ ∗M,

sits in the short exact sequence

0→ N/ξσ ∗M→ MdR→ σ ∗M/N → 0.

of free O-modules. Indeed, the freeness of MdR is clear, the freeness of σ ∗M/N follows from the

proof of [Lau 2018, Lemma 9.5], and the freeness of N/ξσ ∗M is a consequence of this.

• The étale realization is the torsion-free Zp-module

Met = Mψ=1.
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Its Hodge–Tate filtration

FHT(M)⊂ Met⊗Zp
C

is the kernel of the C-linear extension of

Met
x 7→1⊗ψ(x)
−−−−−→ N/ξσ ∗M.

• The crystalline realization

Mcrys =W (k)⊗σ,Ainf
M

is a free W (k)-module, endowed with operators

F(a⊗m)= σ(a)⊗φ(m), V (a⊗m)= σ−1(a)⊗ψ(m).

These give Mcrys the structure of a Dieudonné module.

The following theorem is no doubt known to the experts, but for lack of a reference we will explain in

the next subsection how to deduce it from the results of [Lau 2018].

Theorem 2.2.2 (Fargues, Scholze and Weinstein, Lau). Assume that p > 2. The category of p-divisible

groups over O is equivalent to the category of Breuil–Kisin–Fargues modules. Moreover, the Breuil–

Kisin–Fargues module (M, φ, ψ) associated to a p-divisible group G enjoys the following properties:

(1) There are isomorphisms of O-modules

�(G∨)∼= N/ξσ ∗M, Lie(G)∼= σ
∗M/N . (2.2.1)

(2) If Gk denotes the reduction of G to the residue field k =O/m, the covariant Dieudonné module of

Gk is isomorphic to Mcrys.

(3) There is an isomorphism Tp(G)∼= Met making the diagram

Tp(G)

HT

��

Met

��

�(G∨) N/ξσ ∗M

(2.2.2)

commute, where the vertical arrow on the right is the restriction to Met ⊂ M of the O-linear map

M
x 7→1⊗ψ(x)
−−−−−→ N/ξσ ∗M.

All of these isomorphisms are functorial.

Some comments on this theorem are warranted, particularly regarding the restriction to p > 2. A

functor1 from Breuil–Kisin–Fargues modules to p-divisible groups over O, but not a proof that it is an

equivalence of categories, first appeared in the work Fargues [2015, §4.8.1]. His construction of the

1Fargues only considers formal p-divisible groups, and imposes a corresponding restriction on Breuil–Kisin–Fargues modules.
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functor makes essential use of the theory of windows introduced by Zink [2001] and extended by Lau

[2010; 2018], and assumes that p > 2.

A proof of the equivalence of categories is found in [Scholze and Weinstein 2020, Theorem 14.1.1],2

where the result is attributed to Fargues. The construction of the functor in [Scholze and Weinstein 2020]

is very different from the construction of [Fargues 2015], and does not use of the theory of windows.

Instead, what is proved in [Scholze and Weinstein 2020] is that the category of Breuil–Kisin–Fargues

modules is equivalent to the category of pairs (T,W ) appearing in Theorem A, and hence is equivalent to

the category of p-divisible groups. This proof comes with no restriction on p.

The identification of Mcrys with the Dieudonné module of Gk is [Scholze and Weinstein 2020,

Corollary 14.4.4], and the isomorphism Tp(G) ∼= Met can be deduced by carefully tracing through

the construction of the equivalence. Unfortunately, the isomorphisms of O-modules (2.2.1) seem difficult

to deduce from the description of the equivalence found in [Scholze and Weinstein 2020].

Because of this, our equivalence of categories will be the one appearing in [Lau 2018], which follows

Fargues. What Lau proves is that, when p > 2, the categories of Breuil–Kisin–Fargues modules and

p-divisible groups over O are both equivalent to the category of windows. The various properties of the

equivalence listed in Theorem 2.2.2 can be read off from the constructions of the two functors into the cate-

gory of windows, which are quite simple and direct (of course, the proof that they are equivalences is not).

The invocation of Theorem 2.2.2 in the calculations of Section 3 is the only reason why the assumption

p > 2 is imposed in the introduction. Our approach in the sequel will be to allow arbitrary p, but to take

the conclusions of Theorem 2.2.2 as hypotheses.

2.3. Proof of Theorem 2.2.2. As we have already indicated, Theorem 2.2.2 is proved by relating the

categories of Breuil–Kisin–Fargues modules and p-divisible groups to the category of windows introduced

by Zink [2001] and extended by Lau [2010; 2018].

Our windows will be modules over the ring Acrys, which is defined as the p-adic completion of the

subring

A0
crys = Ainf[ξ

n/n! : n = 1, 2, 3, . . .] ⊂ Ainf[1/p].

It is an integral domain endowed with a ring homomorphism

2crys : Acrys→O (2.3.1)

extending 2 : Ainf→O, and divided powers on the kernel I = ker(2crys).

The subring A0
crys ⊂ Ainf[1/p] is stable under σ , and there is a unique continuous extension to an

injective ring homomorphism σ : Acrys→ Acrys reducing to the usual p-power Frobenius on Acrys/p Acrys.

Moreover, [Scholze and Weinstein 2013, Lemma 4.1.8] and the comments following [Lau 2018, (9.1)]

show that

σ(I )⊂ p Acrys and
σ(ξ)

p
∈ A×crys.

2Our conventions for Breuil–Kisin–Fargues modules and the equivalence of categories differ from those of [Scholze and

Weinstein 2020]. The discrepancy amounts to a Tate twist.
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The following definition of a window is taken from [Lau 2018, §2], where it would be called a window

over the frame

Acrys = (Acrys, I,O = Acrys/I, σ, σ1),

with σ1 : I → Acrys defined by σ1(x)= σ(x)/p.

Definition 2.3.1. A window is a quadruple (P, Q,8,81) consisting of a projective Acrys-module P of

finite rank, a submodule Q ⊂ P, and σ -semilinear maps

8 : P→ P, 81 : Q→ P

satisfying the following properties:

• there exist Acrys-submodules L , T ⊂ P such that

Q = L ⊕ IT, P = L ⊕ T,

• a⊗ x 7→ a81(x) defines a surjection σ ∗Q→ P of Acrys-modules,

• 8(ax)= p81(ax) for all a ∈ I and x ∈ P.

Remark 2.3.2. Taking a = ξ in the final condition yields

8(x)=
p

σ(ξ)
·81(ξ x)

for all x ∈ P. This implies8(x)= p81(x) for all x ∈ Q, and shows that each one of8 and81 determines

the other.

Remark 2.3.3. Note that IP ⊂ Q, and that Q/IP and P/Q are projective (hence free) over Acrys/I ∼=O.

Suppose G is a p-divisible group over O. Let P be its crystalline Dieudonné module, evaluated at

the divided power thickening (2.3.1). This is a projective Acrys-module of rank equal to the height of G,

equipped with a σ -semilinear operator 8 : P→ P and a short exact sequence

0→�(G∨)→ P/IP→ Lie(G)→ 0

of free O-modules. Define Q⊂ P as the kernel of P→Lie(G). One can show that8(Q)⊂ pP, allowing

us to define 81 : Q→ P by

81(x)=
1

p
·8(x).

The following is a special case of [Lau 2018, Proposition 9.7].

Theorem 2.3.4 (Lau). The construction G 7→ (P, Q,8,81) just given defines a functor from the category

of p-divisible groups over O to the category of windows. It is an equivalence of categories if p > 2.

Now suppose we start with a Breuil–Kisin–Fargues module (M, φ, ψ). Set

P = Acrys⊗σ,Ainf
M, (2.3.2)
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and define 8 : P→ P by 8(a⊗m)= σ(a)⊗φ(m) for all a ∈ Acrys and m ∈ M. The submodule Q ⊂ P,

defined as the kernel of the composition

Acrys⊗σ,Ainf
M // Acrys/I Acrys⊗σ,Ainf

M

∼=

��

Ainf/ξ Ainf⊗σ,Ainf
M

∼=

��

σ ∗M/ξσ ∗M // σ ∗M/N

is alternately characterized the Acrys-submodule generated by all elements of the form 1⊗ψ(m) and a⊗m

with m ∈M and a ∈ I. There is a unique σ -semilinear map81 : Q→ P whose effect on these generators is

81(1⊗ψ(m))=
σ(ξ)

p
⊗m, 81(a⊗m)=

σ(a)

p
⊗φ(m).

The following is a special case of [Lau 2018, Theorem 1.5].

Theorem 2.3.5 (Lau). The construction (M, φ, ψ) 7→ (P, Q,8,81) just given defines a functor from the

category of Breuil–Kisin–Fargues modules to the category of windows. It is an equivalence of categories

if p > 2.

Given a window (P, Q,8,81), define its étale realization

Pet = {x ∈ Q :81(x)= x}

as in [Lau 2019, §3]. This is a torsion-free Zp-module equipped with a Hodge–Tate filtration

FHT(Pet)⊂ Pet⊗Zp
C,

defined as the kernel of the C-linear extension of Pet→ Q/IP.

Denote by HTpair the category of pairs (T,W ) in which T is a torsion-free Zp-module, and W ⊂T⊗Zp
C

is a subspace. Using the obvious notation for the categories of Breuil–Kisin–Fargues modules, p-divisible

groups over O, and windows, we now have functors

BKF-Mod
a

//

d
&&

Win

c

��

p-DivGrp
b

oo

e
yy

HTpair

(2.3.3)

Here a is given by Theorem 2.3.5, b is given by Theorem 2.3.4, c sends a window to its étale realization, d

does the same for Breuil–Kisin–Fargues modules, and e sends a p-divisible group over O to its p-adic

Tate module endowed with its Hodge filtration.

Remark 2.3.6. It is not obvious from the definitions that (2.3.3) commutes. When p>2 the commutativity

is a byproduct of the following proof.
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Proof of Theorem 2.2.2. Assume that p > 2. In particular the functors of Theorems 2.3.4 and 2.3.5 are

equivalences of categories, and their composition gives the desired equivalence of categories between

p-divisible groups over O and Breuil–Kisin–Fargues modules.

Suppose G is a p-divisible group over O, and let (P, Q,8,81) and (M, φ, ψ) be its corresponding

window and Breuil–Kisin–Fargues module. The isomorphisms

�(G∨)∼= Q/IP ∼= N/ξσ ∗M and Lie(G)∼= P/Q ∼= σ
∗M/N

are clear from the constructions of the functors of Theorems 2.3.4 and 2.3.5.

The quotient map O→ k induces a ring homomorphism Ainf→W (k) sending ξ 7→ p. It follows that

there is a unique continuous extension to Acrys→W (k) and, by (2.3.2), canonical isomorphisms

W (k)⊗Acrys
P ∼=W (k)⊗σ,Ainf

M ∼= Mcrys. (2.3.4)

The functor of Theorem 2.3.4 is constructed in such a way that the leftmost W (k)-module in (2.3.4) is

identified with the value of the Dieudonné crystal of Gk at the divided power thickening W (k)→ k,

which is just the usual covariant Dieudonné module of Gk .

The window of the constant p-divisible group Qp/Zp over O consists of

P0 = Acrys and Q0 = Acrys

endowed with the operators 8 : P0→ P0 and 81 : Q
0→ P0 defined by

8(x)= pσ(x) and 81(x)= σ(x).

In particular there is a canonical isomorphism Q0/IP0 ∼=O.

The Breuil–Kisin–Fargues module of Qp/Zp consists of

M0 = Ainf

endowed with the operators

φ(x)= ξσ (x) and ψ(x)= σ−1(x).

The distinguished submodule N 0 ⊂ σ ∗M0 defined in Section 2.2 is all of σ ∗M0 = σ ∗Ainf, so is free of

rank one generated by 1⊗ 1. Hence there is a canonical isomorphism N 0/ξσ ∗M0 ∼=O.

From the equivalence of categories of Theorem 2.3.4 we obtain the commutative diagram

Tp(G)
HT

// �(G∨)

Homp−DivGrp(Qp/Zp,G) // HomO(�(µp∞),�(G
∨))

HomWin(P
0, P) // HomO(Q

0/IP0, Q/IP)

Pet
// Q/IP

(2.3.5)
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Similarly, from the equivalence of categories of Theorem 2.3.5 we obtain the commutative diagram

Met
// N/ξσ ∗M

HomBKF(M
0,M) // HomO(N

0/ξσ ∗M0, N/ξσ ∗M)

HomWin(P
0, P) // HomO(Q

0/IP0, Q/IP)

Pet
// Q/IP

(2.3.6)

Combining these gives (2.2.2), completing the proof of Theorem 2.2.2.

As a final comment, we note that the diagrams (2.3.5) and (2.3.6) show that Pet and Met are finitely gen-

erated Zp-modules, and that (2.3.3) commutes. If we denote by FinHTpair⊂HTpair the full subcategory

of pairs (T,W ) with T of finite rank over Zp, we obtain a commutative diagram

BKF-Mod
a

//

d
''

Win

c

��

p-DivGrp
b

oo

e
xx

FinHTpair

in which the arrows a, b, and e are equivalences of categories (the last one by Theorem A). Hence all

arrows are equivalences of categories. �

3. Bounding the Hodge–Tate periods

Let G be a p-divisible group of height four and dimension two over O, endowed with an action

1→ End(G).

Throughout Section 3 we do not require p > 2. Instead we allow p to be arbitrary, but assume the

conclusion of Theorem 2.2.2.

3.1. Hodge–Tate periods. The embeddings (1.3.1) determine a decomposition

�(G∨)=�0(G
∨)⊕�1(G

∨), (3.1.1)

in which each summand is free of rank one over O, and Zp2 ⊂ 1 acts on them through j0 and j1,

respectively. The operator 5 maps each summand injectively into the other. Applying ⊗Ok to (3.1.1)

yields a decomposition

�(G∨k )=�0(G
∨
k )⊕�1(G

∨
k )

into one-dimensional k-vector spaces.
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Composing the Hodge–Tate morphism (1.1.1) with the two projections yields two partial Hodge–Tate

morphisms

Tp(G)
HT0−−→�0(G

∨), Tp(G)
HT1−−→�1(G

∨).

By fixing isomorphisms

�0(G
∨)∼=O, �1(G

∨)∼=O, (3.1.2)

we view these as O-valued Zp-linear functionals on Tp(G).

Lemma 3.1.1. The 1-module Tp(G) is free of rank 1.

Proof. As 1 ⊗ Qp is a division ring, its module Tp(G) ⊗ Qp is necessarily free. Comparing Qp-

dimensions shows that it is free of rank one, and hence Tp(G) is isomorphic to some (left) 1-submodule

of 1⊗Qp. As 1 admits a discrete valuation [Vignéras 1980, Lemme II.1.4] with uniformizer 5, every

such submodule is principal and generated by a power of 5. �

Fix a 1-module generator λ ∈ Tp(G), and define

τ0 =
HT0(5λ)

HT0(λ)
, τ1 =

HT1(5λ)

HT1(λ)
.

These are the Hodge–Tate periods of G. In each fraction the numerator or denominator may vanish, but

not simultaneously. Thus the Hodge–Tate periods lie in P1(C)= C ∪ {∞}. They do not depend on the

choice of (3.1.2), but do depend on the choice of generator λ.

Proposition 3.1.2. The Hodge–Tate periods satisfy τ0 · τ1 = p.

Proof. The action of 5 on �0(G
∨)⊕�1(G

∨) is given by

(ω0, ω1) 7→ (s0ω1, s1ω0)

for some s0, s1 ∈O satisfying s0s1= p. From the1-linearity of the Hodge–Tate morphism we deduce first

HT0(5λ)= s0 ·HT1(λ), HT1(5λ)= s1 ·HT0(λ),

and then

τ0 · τ1 =
HT0(5λ)

HT0(λ)
·

HT1(5λ)

HT1(λ)
= s0 · s1 = p. �

3.2. Reduction to the residue field. Let Gk be the reduction of G to the residue field k = O/m, and

let (D, F, V ) be its covariant Dieudonné module.

Definition 3.2.1. Let H be the p-divisible group of a supersingular elliptic curve over k. In other words, H

is the unique connected p-divisible group of height two and dimension one. The reduction Gk is said to be

(1) supersingular if it is isogenous to H × H,

(2) superspecial if it is isomorphic to H × H.
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Remark 3.2.2. Our notions of supersingular and superspecial depend only on the p-divisible group Gk ,

and not on its 1-action. This differs from the meaning of superspecial in some literature on Shimura

curves, e.g., [Kudla and Rapoport 2000].

The following proposition, which implies that the notion of superspecial depends only on the p-torsion

subgroup scheme Gk[p] ⊂ Gk , is well-known. For lack of a reference we provide the proof.

Proposition 3.2.3. The reduction Gk is supersingular, and the following are equivalent:

(1) Gk is superspecial.

(2) There is an isomorphism of group schemes Gk[p] ∼= H [p]× H [p].

(3) V 2 D ⊂ pD.

(4) FD = VD.

Proof. The supersingularity of Gk follows from the Dieudonné–Manin classification of isocrystals: one can

list all isogeny classes of p-divisible groups over k of height four and dimension two, and the supersingular

isogeny class is the only one whose endomorphism algebra contains a quaternion division algebra.

The implication (1) =⇒ (2) is trivial. For the implication (2) =⇒ (3) it suffices to check that V 2 kills

the Dieudonné module of H [p], which we leave to the reader.

Next we prove (3) =⇒ (4). If D′ ⊂ D is any W (k)-lattice stable under both F and V, then its

corresponding p-divisible group G ′k is isogenous to Gk . In particular it has dimension 2, and hence

D′/VD′ ∼= Lie(G ′k)

is a 2-dimensional k vector space. Applying this with D′ = D and D′ = VD shows that D/V 2 D has

length 4 as a W (k)-module. On the other hand, D/pD also has length 4, proving the first implication in

V 2 D ⊂ pD =⇒ V 2 D = pD =⇒ V D = F D.

Finally, we prove (4) =⇒ (1). Let αp be the finite flat group scheme whose Dieudonné module is the

W (k)-module k, endowed with the operators F = 0 and V = 0. If FD = VD then, using the self-duality

of αp, we see that

Hom(αp,G∨k )
∼= Hom(Gk[p], αp) ∼= Homk(D/(FD+ VD), k)

∼= Homk(D/VD, k)∼= Homk(Lie(G), k)

is a 2-dimensional k-vector space. It follows from [Oort 1975, Theorem 2] that G∨k is superspecial, and

hence so is Gk . �

Let (M, φ, ψ) be the Breuil–Kisin–Fargues module of G. The quotient

M[ = M/pM

is a free module over O[ ∼= Ainf/(p), endowed with operators φ,ψ : M[→ M[ satisfying φ ◦ψ =$ .
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Denote by N [ = N/pN the image of

M[ m 7→1⊗ψ(m)
−−−−−−→ σ ∗M[.

Each of our embeddings j0, j1 : Zp2 →O determines a map

Zp2 →O/pO ∼=O
[/$O

[,

and these two maps lift uniquely to j0, j1 : Zp2→O
[. The action of 1 on G determines an action on M[,

which induces a decomposition

M[ = M
[

0⊕M
[

1

analogous to (3.1.1). It follows from the next proposition that each factor is free of rank two over O[.

Proposition 3.2.4.

(1) D is free of rank one over 1⊗Zp
W (k).

(2) M is free of rank one over 1⊗Zp
Ainf.

Proof. Reduce (1.3.1) to ring homomorphisms j0, j1 : Zp2→ k, and denote again by j0, j1 : Zp2→W (k)

the unique lifts. There is a decomposition of W (k)-modules

D = D0⊕ D1

in such a way that Zp2 ⊂ 1 acts on the two summands via j0 and j1, respectively. As in [Kudla and

Rapoport 2000, §1], these summands are free of rank 2 over W (k), and satisfy

pD0 ( VD1 ( D0, pD1 ( VD0 ( D1.

Moreover, either 5D0 = VD0 or 5D1 = VD1 (or both).

Without loss of generality, we may assume that 5D0 = VD0, and hence

pD1 (5D0 ( D1.

Applying 5 to these inclusions shows that

pD0 (5D1 ( D0.

If we choose any f0 ∈ D0 and f1 ∈ D1 with nonzero images in D0/5D1 and D1/5D0, respectively, then

f0, f1,5 f0,5 f1 ∈ D reduce to a k-basis of D/pD. Using Nakayama’s lemma it is easy to see that D is

generated by f0+ f1 as a 1⊗W (k)-module, and the first claim of the proposition follows.

Theorem 2.2.2 gives us an isomorphism

D/pD ∼= σ
∗(M/mM)

of1⊗Zp
k-modules, and from what was said above we deduce that M/mM is free of rank one over1⊗Zp

k.

The second claim of the proposition follows easily from this and Nakayama’s lemma. �
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3.3. The case 5�(G∨
k
) = 0. We assume throughout Section 3.3 that

5�(G∨k )= 0.

We will analyze the structure of M[, with its operators φ and ψ , and use this to bound the Hodge–Tate

periods of G. The first step is to choose a convenient basis.

Lemma 3.3.1. There are O
[-bases e0, f0 ∈ M

[

0 and e1, f1 ∈ M
[

1 such that the operator 5 ∈1 satisfies

5e0 = 0, 5e1 = 0, 5 f0 = e1, 5 f1 = e0, (3.3.1)

and such that ψ satisfies

ψ(e0)= t0e1, ψ(e1)= t1e0, ψ( f0)= e1+ t1 f1, ψ( f1)= e0+ t0 f0

for scalars t0, t1 ∈O
[ satisfying ord(t0) > 0, ord(t1) > 0, and

ord(t0)+ ord(t1)= 1/p.

Proof. As M[ is free of rank one over 1⊗Zp
O
[, we may choose a basis such that (3.3.1) holds, and the

relation ψ ◦5=5 ◦ψ then implies

ψ(e0)= t0e1, ψ(e1)= t1e0, ψ( f0)= u1e1+ t1 f1, ψ( f1)= u0e0+ t0 f0

for some u0, u1, t0, t1 ∈O
[. The submodule N [ ⊂ σ ∗M[ is generated by

1⊗ψ(e0) = t
p

0 ⊗ e1, 1⊗ψ(e1)= t
p

1 ⊗ e0,

1⊗ψ( f0)= u
p

1 ⊗ e1+ t
p

1 ⊗ f1, 1⊗ψ( f1)= u
p

0 ⊗ e0+ t
p

0 ⊗ f0.

Recall that m[ ⊂O
[ is the maximal ideal. The first isomorphism in (2.2.1) identifies �(G∨k ) with the

image of N [ in (σ ∗M[)/m[(σ ∗M[), and by hypothesis this k-vector space is annihilated by 5. It is easy

to see from this that ord(t0) and ord(t1) are positive.

Using Theorem 2.2.2, we see that

σ ∗M[/N [ ∼= (σ
∗M/N )⊗O O/(p)∼= Lie(G)⊗O O/(p)

is free of rank two over O/(p)∼=O
[/($). On the other hand, σ ∗M[/N [ is isomorphic to the cokernel of

the matrix








t
p

1 u
p

0

t
p

0 u
p

1

t
p

0

t
p

1









∈ M4(O
[),

whose reduction to M4(k) must therefore have rank 2. This implies that u0 and u1 are units, and using

elementary row and column operations one sees that

σ ∗M[/N [ ∼=O
[/(t0t1)

p⊕O
[/(t0t1)

p.
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Hence (t0t1)
p = ($). Finally, having already seen that u0 and u1 are units, an easy calculation shows

that our basis elements may be rescaled in order to make u0 = 1 and u1 = 1. �

Fix a basis as in Lemma 3.3.1. Theorem 2.2.2 identifies

Tp(G)/pT (G)= Mψ=1/pMψ=1 ⊂ (M[)ψ=1,

and the image of our fixed generator λ ∈ Tp(G) has the form

a0e0+ a1e1+ b0 f0+ b1 f1 ∈ M[

for some coefficients a0, a1, b0, b1 ∈O
[ satisfying

a
p

0 = a1t
p

1 + b1, a
p

1 = a0t
p

0 + b0, b
p

0 = b1t
p

0 , b
p

1 = b0t
p

1 . (3.3.2)

The first isomorphism of (2.2.1) identifies

�(G∨)/p�(G∨)= N/(pN + ξσ ∗M)= N [/$σ ∗M[

with the direct summand of σ ∗M[/$σ ∗M[ generated by the reductions of

1⊗ψ( f0)= 1⊗ e1+ t
p

1 ⊗ f1 ∈ σ
∗M[, 1⊗ψ( f1)= 1⊗ e0+ t

p

0 ⊗ f0 ∈ σ
∗M[.

If we use this basis to identify

�(G∨)/p�(G∨)= N [/$σ ∗M[ ∼=O
[/($)⊕O

[/($)

then, again using Theorem 2.2.2, the partial Hodge–Tate morphisms

Tp(G)/pTp(G)
HT0−−→�0(G

∨)/p�0(G
∨)∼=O

[/($)

Tp(G)/pTp(G)
HT1−−→�1(G

∨)/p�1(G
∨)∼=O

[/($)

are given by

HT0(λ)= a
p

1 , HT0(5λ)= b
p

0 , (3.3.3)

HT1(λ)= a
p

0 , HT1(5λ)= b
p

1 .

Lemma 3.3.2. For i ∈ {0, 1}, we have

ord(bi )=
1

p2− 1
+

p · ord(ti )

p+ 1
.

Proof. As 5λ ∈ Tp(G) has nonzero image in

Tp(G)/pTp(G)⊂ M[,

we must have b0e1+ b1e0 6= 0. Therefore one of b0 and b1 is nonzero. The relations (3.3.2) then imply

first that both b0 and b1 are nonzero, and then that

b
p2−1
i = (t0t1)

p · t
p(p−1)
i .

The claim follows by applying ord to both sides of this equality. �
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Lemma 3.3.3. If we assume that

1

p2(p− 1)
< ord(t1),

then

ord(a0)=
1

p(p2− 1)
+

ord(t1)

p+ 1
, ord(a1)=

1

p2− 1
−

ord(t1)

p+ 1
.

Of course there is a similar result if t1 is replaced by t0.

Proof. Recall the equality a
p

0 = a1t
p

1 + b1 from (3.3.2). The only way this can hold is if (at least) one of

the three relations

• p · ord(a0)= ord(b1)≤ ord(t
p

1 a1)

• p · ord(a0)= ord(t
p

1 a1)≤ ord(b1)

• ord(b1)= ord(t
p

1 a1)≤ p · ord(a0)

is satisfied. The second and third relations cannot be satisfied, as each implies

0≤ ord(a1)≤ ord(b1)− p · ord(t1)=
1

p2− 1
−

p2 · ord(t1)

p+ 1
< 0.

Hence the first relation holds, and Lemma 3.3.2 shows that

p · ord(a0)= ord(b1)=
1

p2− 1
+

p · ord(t1)

p+ 1
.

This proves the first equality.

For the second equality, the relations (3.3.2) imply

a
p2

0 = a
p

1 · (t
p

1 + t1)
p − (t0t1)

pa0,

a
p2

1 = a
p

0 · (t
p

0 + t0)
p − (t0t1)

pa1.

Using the second of these, along with

ord
(

a
p

0 · (t
p

0 + t0)
p
)

= ord(b1)+ p · ord(t0)=
p2

p2− 1
−

p2 · ord(t1)

p+ 1
< 1≤ ord

(

(t0t1)
pa1

)

,

we find that

ord(a1)=
ord

(

a
p

0 · (t
p

0 + t0)
p
)

p2
=

1

p2− 1
−

ord(t1)

p+ 1
. �

Now we can prove the main result of this subsection.

Proposition 3.3.4. If we assume, as above, that 5�(G∨k )= 0 then

1

p+1
< ord(τ0) <

p

p+1
and

1

p+1
< ord(τ1) <

p

p+1
.
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Proof. First assume that
1

p2(p− 1)
< ord(t1). (3.3.4)

The discussion leading to (3.3.3) provides us with an O-module isomorphism

�0(G
∨)/p�0(G

∨)∼=O
[/($)∼=O/(p),

and we fix any lift to an isomorphism �0(G
∨)∼=O.

It is easy to see from Lemmas 3.3.2 and 3.3.3 that ord(a1) and ord(b0) lie in the open interval (0, 1/p),

and so a
p

1 and b
p

0 have nonzero images in O
[/($). By (3.3.3) these images agree with the images of

HT0(λ) and HT0(5λ) under

O→O/(p)∼=O
[/($).

Thus

ord(HT0(λ))= ord(a
p

1 )=
p

p2− 1
−

p · ord(t1)

p+ 1

and

ord(HT0(5λ))= ord(b
p

0 )=
p

p2− 1
+

p2 · ord(t0)

p+ 1
.

It follows that

ord(τ0)= ord(HT0(5λ))− ord(HT0(λ))=
p

p+ 1
−
(p− 1)

p+ 1
· ord(t

p

1 ),

and so
1

p+ 1
< ord(τ0) <

p

p+ 1
.

The analogous inequalities for ord(τ1) follow from the relation τ0τ1 = p of Proposition 3.1.2.

This proves Proposition 3.3.4 under the assumption (3.3.4). The proof when

1

p2(p− 1)
< ord(t0) (3.3.5)

is entirely similar.

Thus we are left to prove the claim under the assumption that both (3.3.4) and (3.3.5) fail. This

assumption implies that
1

p
= ord(t0)+ ord(t1)≤

2

p2(p−1)
,

which implies that p = 2 and

ord(t0)=
1
4
= ord(t1).

In particular, Lemma 3.3.2 simplifies to

ord(b0)=
1
2
= ord(b1).
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Consider the equality a2
0 = a1t2

1 + b1 of (3.3.2). As in the proof of Lemma 3.3.3, the only way this can

hold is if (at least) one of the relations

• ord(a0)=
1
4

• ord(a1)= 0 and ord(a0)≥
1
4

holds. Similarly, the equality a2
1 = a0t2

0 + b0 implies that (at least) one of the relations

• ord(a1)=
1
4

• ord(a0)= 0 and ord(a1)≥
1
4

holds. Combining these shows that ord(a0)=
1
4

and ord(a1)=
1
4
.

In particular, a
p

1 has nonzero image in O
[/($), and

ord(HT0(λ))= ord(a
p

1 )=
1
2
.

On the other hand, b
p

0 has trivial image in O
[/($), and so

ord(HT0(5λ))≥ 1.

Therefore

ord(τ0)= ord(HT0(5λ))− ord(HT0(λ))≥
1
2
.

The same reasoning shows that ord(τ1)≥
1
2
. As τ0τ1 = p by Proposition 3.1.2, we must therefore have

ord(τ0)=
1
2
= ord(τ1),

completing the proof of Proposition 3.3.4. �

3.4. The case 5�1(G∨
k
) 6= 0. We assume throughout Section 3.4 that

5�1(G
∨
k ) 6= 0.

Once again, we will analyze the structure of M[ = M/pM, and use this to bound the Hodge–Tate periods

of G. As in Section 3.3, the first step is to choose a convenient basis for M[.

Lemma 3.4.1. There are O
[-bases e0, f0 ∈ M

[

0 and e1, f1 ∈ M
[

1 such that the operator 5 ∈1 satisfies

5e0 = 0, 5e1 = 0, 5 f0 = e1, 5 f1 = e0, (3.4.1)

and such that ψ satisfies

ψ(e0)= e1, ψ(e1)= te0, ψ( f0)= t f1, ψ( f1)= se0+ f0 (3.4.2)

for some scalars s, t ∈O[ with ord(t)= 1/p. Moreover:

(1) For any such basis, Gk is superspecial if and only if ord(s) > 0 .

(2) If Gk is not superspecial such a basis can be found with s = 1 .
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Proof. Exactly as in the proof of Lemma 3.3.1, we may choose a basis such that (3.4.1) holds, and such that

ψ(e0)= t0e1, ψ(e1)= t1e0, ψ( f0)= u1e1+ t1 f1, ψ( f1)= u0e0+ t0 f0

for some u0, u1, t0, t1 ∈O
[ with ord(t0)+ ord(t1)= 1/p.

The 1-module �(G∨k ) is identified with the image of

N [→ (σ ∗M[)/m[(σ ∗M[),

and this identifies �1(G
∨
k ) with the (one-dimensional) k-span of the vectors

1⊗ψ(e1)= t
p

1 ⊗ e0, 1⊗ψ( f1)= u
p

0 ⊗ e0+ t
p

0 ⊗ f0

in (σ ∗M
[

0)/m
[(σ ∗M[). The assumption that 5 does not annihilate �1(G

∨
k ) implies that ord(t0) = 0,

which allows us to rescale our basis vectors to make t0 = 1, and then add a multiple of e0 to f0 to make

u1 = 0. Setting t = t1 and s = u0, the relations (3.4.2) now hold.

It follows from Proposition 3.2.3 and Theorem 2.2.2 that

Gk is superspecial⇐⇒ V 2(D/pD)= 0⇐⇒ ψ2(M[/m[M[)= 0⇐⇒ ord(s) > 0.

Finally, if ord(s)= 0 it is an easy exercise in linear algebra to see that the given basis elements can be

rescaled to make s = 1. �

As in Section 3.3, our fixed generator λ ∈ Tp(G) determines an element

a0e0+ a1e1+ b0 f0+ b1 f1 ∈ M[,

where the coefficients a0, a1, b0, b1 ∈O
[ satisfy

a
p

0 = a1t p + b1s p, a
p

1 = a0, b
p

0 = b1, b
p

1 = b0t p. (3.4.3)

As in Section 3.3, we may identify

�(G∨)/p�(G∨)= N/(pN + ξσ ∗M)= N [/$σ ∗M[

with the direct summand of σ ∗M[/$σ ∗M[ generated by the reductions of

1⊗ψ(e0)= 1⊗ e1 ∈ σ
∗M[, 1⊗ψ( f1)= s p⊗ e0+ 1⊗ f0 ∈ σ

∗M[.

If we use this basis to identify

�(G∨)/p�(G∨)= N [/$σ ∗M[ ∼=O
[/($)⊕O

[/($)

then, using Theorem 2.2.2, the partial Hodge–Tate morphisms

Tp(G)/pTp(G)
HT0−−→�0(G

∨)/p�0(G
∨)∼=O

[/($),

Tp(G)/pTp(G)
HT1−−→�1(G

∨)/p�1(G
∨)∼=O

[/($)

satisfy

HT0(λ)= a0, HT0(5λ)= b1, (3.4.4)

HT1(λ)= b1, HT1(5λ)= 0.



982 Benjamin Howard

Lemma 3.4.2. We have

ord(b0)=
1

p2− 1
, ord(b1)=

p

p2− 1
.

Moreover,

ord(a0)≥
1

p2− 1
, ord(a1)≥

1

p(p2− 1)
,

and Gk is superspecial if and only if one (equivalently, both) of these inequalities is strict.

Proof. Exactly as in the proof of Lemma 3.3.2, both b0 and b1 are nonzero. The relations (3.4.3) therefore

imply that

b
p2−1

0 = t p,

from which the stated formulas for ord(b0) and ord(b1)= ord(b
p

0 ) are clear.

The relations (3.4.3) imply that a0 is a root of x p2

− xt p2

− b
p

1 s p2

, and by examination of the Newton

polygon we see that

ord(a0)≥
1

p2− 1

with strict inequality if and only if ord(s) > 0. Combining this with a
p

1 = a0 completes the proof. �

Lemma 3.4.3. If Gk is not superspecial then

$(a0/b1)
p+1 ∈ (O[)× and $ s p+1/t p ∈ (O[)×,

and these units have the same reduction to k×.

Proof. We have already noted that (3.4.3) implies t p = b
p2−1

0 , from which one easily deduces the equality

(

a1

b0

)p2

=
a1

b0

+
s p

b
p(p−1)

0

in the fraction field of O[. It follows from this and Lemma 3.4.2 that

$ p/(p+1)

(

a1

b0

)p2

and

(

$ 1/(p+1)s

b
p−1

0

)p

are units in O
[ with the same reduction to k×, hence the same is true after raising both to the power

(p+ 1)/p. The lemma follows easily from this and the relations (3.4.3). �

Proposition 3.4.4. If we assume, as above, that 5�1(G
∨
k ) 6= 0 then

p

p+ 1
≤ ord(τ1) (3.4.5)

with strict inequality if and only if Gk is superspecial. Moreover, if equality holds then

−
p

τ
p+1

0

∈O× and
$ s p+1

t p
∈ (O[)×

have the same reduction to k×.
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Proof. Using (3.4.4) and Lemma 3.4.2, we find that

ord(HT0(5λ))=
p

p2− 1
,

and that

ord(HT0(λ))≥
1

p2− 1

with strict inequality if and only if Gk is superspecial. This implies that

ord(τ0)= ord(HT0(5λ))− ord(HT0(λ))≤
1

p+ 1

with strict inequality if and only if Gk is superspecial. The inequality (3.4.5) follows from this and the

relation τ0τ1 = p of Proposition 3.1.2, with strict inequality if and only if Gk is superspecial.

Suppose that equality holds in (3.4.5), so that Gk is not superspecial. Choose an α ∈ O
[ satisfying

α p2−1 =$ . The construction of Section 2.1 determines an element α] ∈ O whose image in O/(p) ∼=

O
[/($) agrees with α.

Combining the relations (3.4.4) with Lemma 3.4.2 shows that

HT0(5λ)

(α])p
∈O× and

b1

α p
∈ (O[)×

have the same reduction to k×, as do

HT0(λ)

α]
∈O× and

a0

α
∈ (O[)×.

It follows that

τ0

(α])p−1
∈O× and

b1

a0α p−1
∈ (O[)×

have the same reduction to k×. Raising both to the power p+ 1 and applying Lemma 3.4.3 proves that

$ ]

τ
p+1

0

∈O× and
$ s p+1

t p
∈ (O[)×

have the same reduction to k×. Now apply Lemma 2.1.1. �

4. The main results

We now formulate and prove our main results on the Ekedahl–Oort stratification of the Hodge–Tate period

domain X defined by (1.2.1). Throughout Section 4 we assume that the conclusions of Theorem 2.2.2

hold. For example, it is enough to assume that p > 2.
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4.1. The setup. Let T be a free 1-module of rank one, and fix a generator λ ∈ T. Use the embeddings

(1.3.1) to decompose

T ⊗Zp
C = TC,0⊕ TC,1

as a direct sum of 2-dimensional C-subspaces, in such a way that the action of Zp2 ⊂1 on the summands

is through j0 and j1, respectively. Using the projection maps to the two factors, we obtain injective

Zp-linear maps

q0 : T → TC,0, q1 : T → TC,1.

To each τ ∈ C ∪ {∞} we associate the 1-stable plane

Wτ ⊂ T ⊗Zp
C

spanned by the two vectors

τq0(λ)− q0(5λ) ∈ TC,0, pq1(λ)− τq1(5λ) ∈ TC,1.

The construction τ 7→Wτ establishes a bijection

C ∪ {∞} ∼= X (C).

Remark 4.1.1. It is not hard to see that the above bijection P1(C)∼= X (C) arises from an isomorphism

of schemes over Qp2 . The isomorphism cannot descend to Qp, for the simple reason that X (Qp)=∅.

For the rest of Section 4.1 and Section 4.2 we hold τ ∈ C ∪ {∞} fixed, and let G be the p-divisible

group over O determined by the pair (T,Wτ ). Thus G comes equipped with an action of 1, and 1-linear

identifications

Tp(G)
HT

// �(G∨)⊗O C

T // (T ⊗Zp
C)/Wτ

In the notation of Section 3.1, the Hodge–Tate periods of G are

τ0 = τ and τ1 = p/τ. (4.1.1)

4.2. Computing the reduction. Let Gk be the reduction of G to the residue field k = O/m, and

let (D, F, V ) be its covariant Dieudonné module. We will show how to compute the isomorphism

class of Gk[p] from the Hodge–Tate periods (4.1.1).

Let D=1⊗Zp
k with its natural action of 1 by left multiplication. The embeddings (1.3.1) induce

a decomposition

D= D0⊕D1

in which Zp2 ⊂1 acts on Di through the composition of ji : Zp2 →O with the reduction map O→ k.
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Choose k-bases

e0, f0 ∈ D0, e1, f1 ∈ D1

in such a way that 5 ∈1 acts as

5e0 = 0, 5e1 = 0, 5 f0 = e1, 5 f1 = e0. (4.2.1)

Theorem 4.2.1. The inequalities
1

p+1
< ord(τ ) <

p

p+1
(4.2.2)

hold if and only if 5�(G∨k )= 0. When these conditions hold, there is a1-linear isomorphism D/pD∼=D

under which

Fe0 = 0, F f0 = e1, Fe1 = 0, F f1 = e0,

V e0 = 0, V f0 = e1, V e1 = 0, V f1 = e0.

Proof. If 5�(G∨k ) 6= 0 then either 5�1(G
∨
k ) 6= 0 or 5�0(G

∨
k ) 6= 0. In the first case Proposition 3.4.4

implies
p

p+1
≤ ord(τ1).

In the second case the same proof, with indices 0 and 1 interchanged throughout, shows that

p

p+1
≤ ord(τ0).

In either case, these bounds imply that (4.2.2) fails.

Now assume that 5�(G∨k )= 0. We have already proved in Proposition 3.3.4 that (4.2.2) holds, and so

it only remains to prove that D/pD admits an isomorphism to D with the prescribed properties.

Let e0, f0 ∈ M
[

0 and e1, f1 ∈ M
[

1 be the bases of Lemma 3.3.1. Using the formula for ψ : M[→ M[

prescribed in that lemma, and the relation φ ◦ψ =$ , one can write down an explicit formula for φ, and

then see that the induced operators on the reduction M[/m[M[ are given by

φ(e0) = 0, φ( f0)= ue1, φ(e1)= 0, φ( f1)= ue0,

ψ(e0)= 0, ψ( f0)= e1, ψ(e1)= 0, ψ( f1)= e0,

where u−1 ∈ k× is the reduction of −t
p

0 t
p

1 /$ ∈ (O
[)×.

The images of e0, f0, e1, f1 under the bijection

M[/m[M[ x 7→1⊗x
−−−−→ σ ∗(M[/m[M[)∼= Mcrys/pMcrys

∼= D/pD

provided by Theorem 2.2.2 form a k-basis of D/pD, denoted the same way, satisfying the relations

(4.2.1) and

Fe0 = 0, F f0 = u pe1, Fe1 = 0, F f1 = u pe0,

V e0 = 0, V f0 = e1, V e1 = 0, V f1 = e0.
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It remains to prove that u = 1. The two embeddings (1.3.1) reduce to morphisms j0, j1 : Zp2 → k,

which then admit unique lifts to

j0, j1 : Zp2 →W (k).

This allows us to decompose D = D0⊕ D1 as W -modules, where Zp2 ⊂1 acts on the two summands

via j0 and j1, respectively. Choose arbitrary lifts

f̃0 ∈ D0, f̃1 ∈ D1

of f0 and f1, and then define

ẽ0 =5 f̃1 ∈ D0, ẽ1 =5 f̃0 ∈ D1.

Using the fact that 5 and V commute, we see that

V ẽ0 = pb1ẽ1+ pa1 f̃1, V f̃0 = a1ẽ1+ pb1 f̃1,

V ẽ1 = pb0ẽ0+ pa0 f̃0, V f̃1 = a0ẽ0+ pb0 f̃0,

for scalars

a0, a1 ∈ 1+ pW (k), b0, b1 ∈W (k).

Denote again by σ :W (k)→W (k) the lift of the Frobenius on k. Applying F to the expressions for

V ẽ1 and V f̃1 results in

pẽ1 = σ(pb0)Fẽ0+ σ(pa0)F f̃0, p f̃1 = σ(a0)Fẽ0+ σ(pb0)F f̃0,

from which one deduces

(

σ(a0)
2− pσ(b0)

2
)

· F f̃0 = σ(a0)ẽ1− pσ(b0) f̃1.

Reducing this modulo p proves that F f0 = e1, and hence u = 1. �

Theorem 4.2.2. The inequality

ord(τ )≤
1

p+1
(4.2.3)

holds if and only if 5�1(G
∨
k ) 6= 0. Moreover:

(1) If strict inequality holds in (4.2.3), there is a 1-linear isomorphism D/pD ∼= D under which

Fe0 = e1, F f0 = 0, Fe1 = 0, F f1 = f0,

V e0 = e1, V f0 = 0, V e1 = 0, V f1 = f0.

(2) If equality holds in (4.2.3), there is a 1-linear isomorphism D/pD ∼= D under which

Fe0 = u pe1, F f0 =−u pe1, Fe1 = 0, F f1 = u p f0,

V e0 = e1, V f0 = 0, V e1 = 0, V f1 = e0+ f0,
(4.2.4)

where u is the image of −p/τ
p+1

0 =−p/τ p+1 under O×→ k×.
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Proof. If (4.2.3) holds then Theorem 4.2.1 implies that 5�(G∨k ) 6= 0, and so either

5�0(G
∨
k ) 6= 0 or 5�1(G

∨
k ) 6= 0.

The first possibility cannot occur, as then the proof of Proposition 3.4.4, with the indices 0 and 1 reversed

everywhere, would give the bound

p

p+1
≤ ord(τ0),

contradicting (4.2.3). Conversely, if 5�1(G
∨
k ) 6= 0 then (4.2.3) holds by Proposition 3.4.4.

Assume now that (4.2.3) holds, and that 5�1(G
∨
k ) 6= 0. Let e0, f0 ∈ M

[

0 and e1, f1 ∈ M
[

1 be the bases

of Lemma 3.4.1. As in the proof of Theorem 4.2.1, the operator φ on M[ can be computed from the

formula for ψ given in the lemma. The induced operators on the reduction M[/m[M[ are found to be

φ(e0)= ue1, φ( f0)= − uv pe1, φ(e1)= 0, φ( f1)= u f0,

ψ(e0)= e1, ψ( f0)= 0, ψ(e1)= 0, ψ( f1)= ve0+ f0,

where u ∈ k× is the reduction of $/t p ∈ (O[)×, and v ∈ k is the reduction of s ∈O[. By the final claim

of Lemma 3.4.1, we may further assume that

v =

{

0 if Gk is superspecial,

1 otherwise.

Suppose that strict inequality holds in (4.2.3). Proposition 3.4.4 tells us that Gk is superspecial, and

so v = 0. The images of e0, f0, e1, f1 under the bijection

M[/m[M[ x 7→1⊗x
−−−−→ σ ∗(M[/m[M[)∼= Mcrys/pMcrys

∼= D/pD

provided by Theorem 2.2.2 form a k-basis of D/pD, denoted the same way, satisfying the relations

(4.2.1) and

Fe0 = u pe1, F f0 = 0, Fe1 = 0, F f1 = u p f0,

V e0 = e1, V f0 = 0, V e1 = 0, V f1 = f0.

One can prove that u = 1 by lifting the basis elements to D and arguing exactly as in Theorem 4.2.1.

Suppose now that equality holds in (4.2.3). Proposition 3.4.4 implies that Gk is not superspecial, so

v = 1, and that the reduction map O
×→ k× sends −p/τ

p+1

0 7→ u. Arguing as in the previous paragraph,

we obtain a k-basis e0, f0, e1, f1 of D/pD satisfying (4.2.1) and (4.2.4), completing the proof. �

Theorem 4.2.3. The inequality

p

p+1
≤ ord(τ ) (4.2.5)

holds if and only if 5�0(G
∨
k ) 6= 0. Moreover:
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(1) If strict inequality holds in (4.2.5), there is a 1-linear isomorphism D/pD ∼= D under which

Fe0 = 0, F f0 = f1, Fe1 = e0, F f1 = 0,

V e0 = 0, V f0 = f1, V e1 = e0, V f1 = 0.

(2) If equality holds in (4.2.5), there is a 1-linear isomorphism D/pD ∼= D under which

Fe0 = 0, F f0 = u p f1, Fe1 = u pe0, F f1 =−u pe0,

V e0 = 0, V f0 = e1+ f1, V e1 = e0, V f1 = 0.
(4.2.6)

where u is the image of −p/τ
p+1

1 =−τ p+1/p p under O×→ k×.

Proof. Recalling (4.1.1), the inequality (4.2.5) is equivalent to

ord(τ1)≤
1

p+1
.

Using this observation, the proof is identical to that of Theorem 4.2.2, but with the indices 0 and 1

reversed everywhere. �

Corollary 4.2.4. The p-divisible group Gk is superspecial if and only if

ord(τ ) 6∈

{

1

p+1
,

p

p+1

}

.

Moreover, the superspecial locus of X (C) is a union of three Ekedahl–Oort strata, characterized as

follows:

(1) The subset of X (C) defined by

1

p+1
< ord(τ ) <

p

p+1

is an Ekedahl–Oort stratum. On this stratum 5�(G∨k )= 0.

(2) The subset of X (C) defined by

ord(τ ) <
1

p+1
,

is an Ekedahl–Oort stratum. On this stratum 5�1(G
∨
k ) 6= 0.

(3) The subset of X (C) defined by

ord(τ ) >
p

p+1
.

is an Ekedahl–Oort stratum. On this stratum 5�0(G
∨
k ) 6= 0.

Proof. Recall from Proposition 3.2.3 that Gk is superspecial if and only if V 2 annihilates D/pD. Given

this, all parts of the claim are clear from Theorems 4.2.1, 4.2.2, and 4.2.3. �
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Now consider the locus of points
{

τ ∈ C : ord(τ )=
1

p+1

}

∪

{

τ ∈ C : ord(τ )=
p

p+1

}

⊂ X (C)

at which the corresponding p-divisible group does not have superspecial reduction. This set is a union of

infinitely many Ekedahl–Oort strata.

Corollary 4.2.5. The fibers of the composition
{

τ ∈ C : ord(τ )=
1

p+1

}

τ 7→p/τ p+1

−−−−−→O
×→ k×

are Ekedahl–Oort strata, as are the fibers of the composition
{

τ ∈ C : ord(τ )=
p

p+1

}

τ 7→τ p+1/p p

−−−−−→O
×→ k×.

Proof. For each u ∈ k× let Fu and Vu be the operators on D defined by (4.2.4). Note that Vu is actually

independent of u. We claim that the existence of a 1-linear isomorphism

(D, Fu, Vu)
φ
→ (D, Fu′, Vu′)

implies u = u′. To see this one checks that the first relation in

φ ◦ Vu = Vu′ ◦φ, φ ◦ Fu = Fu′ ◦φ (4.2.7)

implies that φ has the form

φ(e0)= ae0, φ(e1)= ae1, φ( f0)= a f0, φ( f1)= a f1+ be1

for some a ∈ Fp and b ∈ k. Using this, one checks that φ commutes with both Fu and Fu′ . The second

relation in (4.2.7) then implies that Fu = Fu′ , and hence u = u′.

The same is true if we replace the operators of (4.2.4) with those of (4.2.6), and so the corollary follows

from Theorems 4.2.2 and 4.2.3. �
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