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1 Introduction

Let p be a prime, let k be a quadratic extension of Q,, and let O c k be the ring of integers. Denote by k the
completion of the maximal unramified extension of k, let Oy ¢ k be the ring of integers, and let i ¢ O be
the maximal ideal. The nontrivial automorphism of k is denoted by a — @, and we denote by

Q0,0 : 0k — ék
the inclusion and its conjugate p(a) = ¢(a), respectively.

Hypothesis A. Throughout the paper we assume that either k/Q, is unramified, or that k/Q, is ramified but
p>2.

In this paper, we study the intersections of special divisors on a regular n-dimensional Rapoport-Zink formal
scheme

M = M1,0) Xgpt(0,) M(n-1,1)

flat over Spf(@k). We have imposed Hypothesis A because it is assumed in [7, 10], the results of which are
needed to prove the flatness and regularity of M.

The construction of M depends on the choices of supersingular p-divisible groups X, and X of dimen-
sions 1 and n > 2, respectively, defined over the residue field Oy /i and endowed with principal polarizations
and actions of Ok. The induced actions of Ok on the Lie algebras Lie(Xp) and Lie(X) are required to satisfy
signature conditions of type (1, 0) and (n — 1, 1), respectively.

The precise assumptions on X, and X, along with the definition of M, are explained in Section 2. We
note here only that the signature condition on X consists of the extra data of a codimension one subspace
Fx c Lie(X) as in the work of Krdmer [7]. In particular, when k/Q, is ramified, our formal scheme M,-1,1)
does not agree with the one considered in [12].

As in [8], the n-dimensional K-vector space

V = Homo, (Xo, X)[1/p]
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carries a natural hermitian form, and every nonzero vector x € V determines a Kudla—Rapoport divisor
Z(x) ¢ M; see Definition 2.4. Our main result concerns arbitrary intersections of Kudla—Rapoport divisors,
including self-intersections.
For any nonzero x € V, let Iz ¢ Oy be the ideal sheaf defining Z(x), and define a chain complex of
locally free Op-modules
CX)=(¢+—>0—-1Iz00— Om—0)

supported in degrees 1 and 0. We extend the definition to x = 0 by setting
CO) = (=0 w0y —0),

where w is the line bundle of modular forms on M of Definition 3.4. This line bundle controls the deformation
theory of the Kudla—Rapoport divisors, in a sense made (somewhat) more precise in Section 4.
The following is our main result. It is stated in the text as Theorem 5.1.

Theorem B. Fix anr > 0, and suppose x1,...,Xx, € Vand y1,...,y, € V generate the same Ox-submodule.
For every i > O there is an isomorphism of coherent O y-modules

Hi(Cx1)®---® C(x;)) = Hi(C(y1) ® --- ® C(yr)).

We can restate our main result in terms of the Grothendieck group of coherent sheaves on M. Let K{,(M) be the
free abelian group generated by symbols [F] as F runs over all isomorphism classes of coherent Oy-modules,
subject to the relations [F;] + [F3] = [F,] whenever there is a short exact sequence

O—>F1 —>F2—>F3 — 0.
In particular, any bounded chain complex F of coherent Oj-modules defines a class
[F] = ' (-1)- [Hi(F)] € Ko,(M),
i
allowing us to form
[C(x1)®- - ® C(xy)] € K{(M) (1.1)

for any finite list of vectors x4, ..., x, € V.Ifall x4, ..., x, are nonzero, then

[C(x1) ®--® Cxy)] = [Oz0x,) O -+ & Ozx],

and hence one should regard (1.1) as a generalized intersection of divisors. On the right-hand side, by slight
abuse of notation, we are using the pushforward via Z(x;) < M to view Og,) as a coherent sheaf on Oy,
and &' is the derived tensor product of coherent ©y-modules.

The following is an immediate consequence of Theorem B.

Corollary C. Ifx1,...,xr € Vandys,...,yr € V generate the same Ox-submodule, then
[C(xp) @ - ®Clx)] =[Clyr) ®---®C(yn)].

Perhaps the most interesting aspect of Corollary C is that it encodes nontrivial information about self-
intersections of Kudla—Rapoport divisors. To spell this out in the simplest case, note that Corollary C
implies

[CO) ® C(x)] = [C(x) ® C(0)] (1.2)

for any nonzero x € V. The right-hand side is the alternating sum in K¢ (M) of the homology of the complex
b k)
o 0-Iznew —2>IZ(X)@{U BN Oy — 0,
where 0,(a ® b) = (0, ab) and 91(a, b) = a, and so

[C(x)® C(0)] = [Om/Iz0)] - [w/Iznyw].

If we again use pushforward via Z(x) — M to view coherent Oz)-modules as coherent Oj-modules,
then (1.2) can be rewritten as a self-intersection formula

(0200 ® Oz0] = [O200] = [Wlz(n)]- (1.3)
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Because of the close connection between Grothendieck groups of coherent sheaves and Chow groups,
as detailed in [14, Chapter I], the global analogue of Corollary C has applications to conjectures of Kudla-
Rapoport [9] on the intersection multiplicities of cycles on unitary Shimura varieties, and their connection to
derivatives of Eisenstein series. This will be explored in forthcoming work of the author.

The formal Oy-scheme M is locally formally of finite type, but has countably many connected compo-
nents, each of which is a countable union of irreducible components. Let us fix one connected component
M° ¢ M, and set Z°(x) = Z(x)|p-. The following is an immediate consequence of Theorem B.

Corollary D. Suppose x1, ..., x, € Vis aKk-basis. The Serre intersection multiplicity

def i e
X(0z:c) @8 -8 0z2:)) = Y (<1)¥ lengthg, H(M", Hi(0z:(c) &" -+ & 0z:x,)))
i,j=0

depends only on the Ox-lattice spanned by x1, . . ., Xn.

It is conjectured by Kudla—Rapoport that the intersection multiplicity appearing in Corollary D is related to
derivatives of representation densities. When k/Q, is unramified, this is [8, Conjecture 1.3]. When k/Q,, is
ramified, it is perhaps not clear what the precise statement of the conjecture should be.

Relation to previous results. Weaker versions of the results stated above can be proved using a simpler
argument! of Terstiege [15]. We clarify here what one can and cannot prove using that argument.

When k/Q,, is unramified, Corollary D is [15, Proposition 3.2]. Terstiege’s argument can also be used
to prove Theorem B and Corollary C, but only under the additional assumption that the vectors x1, ..., x,
(equivalently, y1, ..., y,) are linearly independent. In particular, his argument does not give self-intersection
formulas like (1.2) and (1.3).

The key thing that makes Terstiege’s argument worKk is that, in the unramified case, the Kudla—Rapoport
divisors Z(x) and Z(x') defined by linearly independent vectors x, x' € V are flat over Ox, from which it follows
that their intersection Z(x) n Z(x') lies in codimension 2.

When k/Q),, is ramified, the situation is very different: the Kudla-Rapoport divisors are usually not flat,
and the intersection Z(x) n Z(x') is often of codimension 1. In fact, it is easy to see using Proposition A.3 that
one can construct a basis x1, ..., x, € V and an effective Cartier divisor D ¢ M, contained in the special fiber
(in the sense that the structure sheaf Op is annihilated by a uniformizer in Oy), such that

DcZxi)n---nZ(xy).

Because of this, the argument used by Terstiege breaks down in a fundamental way when k/Q,, is ramified,
and seems to yield little information in the direction of Theorem B and its corollaries.

The strategy of the proof. To explain the keyidea underlying the proof of Theorem B, suppose we have vectors
X1,X2,Y1,Y2 € Vrelated by
Y1 =X1+axa, Y2=X2

for some a € Oy. In particular, {x1, x} and {y1, y>} generate the same Ox-submodule of V.
One should imagine that there are global sections

S1,82,t1,t € HOM, w™1) (1.4)
satisfying div(s;) = Z(x;) and div(¢;) = Z(y;), and also satisfying
t1 =Ss1+asy, ty=s>. (1.5)
Such sections would determine complexes
DO) = (- = 0 = w =5 Oy — 0),

D(yp) = (= 0 = w =5 Oy = 0),

1 Terstiege only considers the case n = 3, but his argument generalizes to all n.
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along with canonical isomorphisms
C(xi) = D(xi), C(yi) = D(yi).
Indeed, if x; # O, then

Si

0 w Om 0
0 Izx» Oum 0

defines an isomorphism D(x;) = C(x;). If x; = 0, then s; = 0, and C(x;) and D(x;) are equal simply by defi-
nition. The point of replacing the complexes C(-) by the isomorphic complexes D(-) is that relations (1.5)
induce relations amongst the D(-), which allow one to write down (see the proof of Lemma 5.3) an explicit
isomorphism

D(x1) ® D(x2) = D(y1) ® D(y>).

In this way one would obtain from (1.4) an isomorphism of complexes
C(x1) ® C(x2) = C(y1) ® C(y2). (1.6)

Unfortunately, sections (1.4) with the required properties need not exist globally on M, and so neither
does the isomorphism (1.6). Instead, our approach is to use Grothendieck—Messing theory to construct sec-
tions s; and t; defined only on the first-order infinitesimal neighborhoods of Z(x;) and Z(y;) in M. Working on
a sufficiently fine Zariski open cover U of M, we then choose local approximations of these sections, and so
obtain, by the method above, an isomorphism

C(x1)y ® C(x2)y = C(y1)u ® C(y2)u (1.7)

over each U € U. Because there is no canonical way to choose these local approximations, the isomor-
phisms (1.7) need not glue together as U € U varies. However, if one imposes mild restrictions on the local
approximations, the homotopy class of (1.7) is independent of the choices. The resulting isomorphisms

Hi(C(x1) ® C(x2))u = Hi(C(y1) @ C(y2))u

of Oy-modules can therefore be glued together as U € U varies.

2 The Rapoport-Zink space and its divisors

Fix a triple (X, ip, Ag) in which

« X, is a supersingular p-divisible group over O/ of dimension 1;

e g : Ok — End(Xp) is an action of Ok on X such that the induced action on Lie(Xy) is through the inclu-
sion @ : O — @k;

« Ao :Xo — XJ is a principal polarization compatible with the Ox-action, in the sense that the induced
Rosati involution t satisfies ig(a)" = ip(a) for all & € Ok.

From the above data one can construct a Rapoport-Zink formal scheme by specifying its functor of points.
Let Nilp be the category of Ox-schemes on which p is locally nilpotent. For each S € Nilp let M 1,0)(S) be the
set of isomorphism classes of quadruples (X, ig, Ao, Qo) in which
e X is a p-divisible group over S of dimension 1;
e ip: Ok — End(Xp) is an action of Ok on X such that the induced action on Lie(Xy) is through the inclu-
sion @ : Ox — @k;
« Ao : Xo — X{ is a principal polarization compatible with Oy-action in the sense above;
e« and

0o : Xo Xs S - Xo XSpec(Ow /i) S
is an Ok-linear quasi-isogeny, respecting polarizations up to scaling by Q. Here

S = 5 Xgpee(6y) SPEC(Ok/1).



DE GRUYTER B. Howard, Linear invariance of intersections =—— 1269

An isomorphism between two such tuples is an Oy-linear isomorphism of p-divisible groups X = X{, identi-
fying po with g, and identifying Ao with A up to Zy-scaling.

Proposition 2.1. The functor M(,0) is represented by a countable disjoint union of copies of Spf(Ox).

Proof. The formal deformation space of the triple (Xo, ig, Ao) is Spf(@k). This can be proved using Lubin—
Tate theory. Alternatively, it is a special case of [3, Theorem 2.1.3], which applies to more general p-divisible
groups with complex multiplication. With this fact in mind, the proof is the same as the d = 1 case of [13,
Proposition 3.79]. O

Now fix a tuple (X, i, A, Fx) in which

«  Xisa supersingular p-divisible group over Ox/ of dimension n;

e 1i: 0k — End(X) is an action of Ok on X;

o A:X — XVisa principal polarization compatible with the Ok-action in the sense above;

« Fx c Lie(X) is an Oy /m-module direct summand of rank n - 1 satisfying Krdmer’s [7] signature condi-
tion: the action of Ok on Lie(X) induced by i : Ox — End(X) stabilizes Fx, and acts on Fx and Lie(X)/Fx
through @, @ : Ox — O, respectively.

For each S € Nilp let M(,-1,1)(S) be the set of isomorphism classes of tuples (X, i, A, Fx, g) in which

o Xisa p-divisible group over S of dimension n;

e 1:0k — End(X)isan action of O on X;

o A:X — XVisaprincipal polarization compatible with the Ok-action in the sense above;

o Fx c Lie(X) is a local Os-module local direct summand of rank n — 1 satisfying Krdmer’s signature con-
dition as above;

o and

0:XxsS—X XSpec(Oy /i) S

is an Ok-linear quasi-isogeny respecting polarizations up to scaling by Q;.
An isomorphism between two such tuples is an Ok-linear isomorphism of p-divisible groups X = X' identify-
ing Fx with Fy, identifying o with ', and identifying A with A" up to Z;-scaling.

Proposition 2.2. The functor M(-1,1) is represented by a formal Ox-scheme, locally formally of finite type.
Moreover:

(i) Mm-1,1) is flat over O, and regular of dimension n.

(i) Ifk/Qp is unramified, then M is formally smooth over Ok.

Proof. First suppose that p > 2. The representability follows from the general results of Rapoport-Zink [13,
Theorem 3.25]. The remaining claims can be verified using the theory of local models, as in [10] and [13,
Proposition 3.33]. In the unramified case the analysis of the local model is routine, and in the ramified case
it was done by Kramer [7].

The p = 2 case is excluded from much of [13] by the blanket assumption imposed in [13, p. 75], and the
author is unaware of a published or publicly available reference for this case.? However, M. Rapoport has
informed the author that the necessary extensions to p = 2 with k/Q,, unramified will appear in an appendix
to the forthcoming work [11]. O

Following [8], we will define a family of divisors on
M = M1,0) Xgpf(85,) M(n-1,1)-
If S € Nilp, we will write S-points of M simply as (Xo, X) € M(S), rather than the cumbersome

(X09 i09A09 QO; X, iy Ay FX) Q)-

2 When p = 2, there is a thorough study of unitary Rapoport-Zink spaces of signature (1, 1) in the work of Kirch [6], even
when k/Qj, is ramified.
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Lemma 2.3. The k-vector space
V = Homg, (Xo, X)[1/p]

has dimension n. For any S € Nilp and any (X, X) € M(S) there is a canonical inclusion?
V ¢ Homo, (X0, X)[1/p]. (2.1)
Proof. As X is supersingular, there is a quasi-isogeny of p-divisible groups
X — Xo x---xXp.
The Noether—Skolem theorem implies that any two embeddings of k into
End(X)[1/p] = Mx(End(Xo))[1/p]
are conjugate, and hence this quasi-isogeny can be chosen to be Ok-linear. It follows that
V = Endo, (Xo)[1/p] x - -+ x End o, (Xo0)[1/p].

Each factor on the right-hand side has dimension one, proving the first claim of the lemma.
Given x € V, the quasi-isogenies po and g allow us to identify x with

07! ox oo € Homp, (Xo xs S, X xs S)[1/p].

The reduction map
Homg, (Xo, X)[1/p] — Homg, (Xo xs S, X x5 S)[1/p]

is an isomorphism by [5, Lemma 1.1.3], proving the second claim of the lemma. O
The second claim of Lemma 2.3 allows us to make the following definition.

Definition 2.4. For any nonzero x € V we define the Kudla—Rapoport divisor to be the closed formal sub-
scheme
Z(x)cM

whose functor of points assigns to any S € Nilp the set of all (Xo, X) € M(S) for which x ¢ Hom, (X0, X) under
the inclusion (2.1).

When k/Q, is unramified, it is proved in [8] that Z(x) ¢ M is defined locally by a single equation. A proof of
the same claim in the ramified case can be found in [4]. We will reprove these results below in Proposition 4.3,
as the arguments provide additional information that will be essential for the proof of Theorem 5.1.

3 Vector bundles

For the remainder of the paper, (Xo, X) denotes the universal object over
M = Mq,0) XSpf(Br) Mmn-1,1).

Let D(X) be the restriction to the Zariski site of the covariant Grothendieck—Messing crystal of X. Thus D(X)
is a vector bundle on M of rank 2n, sitting in a short exact sequence

0 — Fil(X) —» D(X) — Lie(X) — 0.

3 Here one must interpret the right-hand side as global sections of the Zariski sheaf Hom(Xy, X)[1/p] on S, as in [13, Defini-
tion 2.8]. If S is quasi-compact, this agrees with the naive definition. We will ignore this technical point in all that follows.
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Similarly, the Grothendieck-Messing crystal of X, determines a short exact sequence
0 — Fil(Xo) — D(Xo) — Lie(Xp) — O

of vector bundles on M.

The actions ip : Ox — End(Xp) and i : Ox — End(X) induce actions of Ok on all of these vector bun-
dles, and the above short exact sequences are Ok-linear. The principal polarization on X induces a perfect
alternating pairing

(+5+) : D(X) x D(X) — Op,

which is compatible with the action i : Ox — Endg,,(D(X)), in the sense that

(ila)x, y) = (x, i(@)y) (3.1)
for all a € Ok and all local sections x and y of D(X). The local direct summand Fil(X) ¢ D(X) is maximal
isotropic with respect to this pairing, and hence there is an induced perfect pairing

(-,-) : Fil(X) x Lie(X) — Op. (3.2)

By virtue of the moduli problem defining M(,-1,1), there is a distinguished local direct summand
Fx c Lie(X) of rank n — 1, whose annihilator with respect to the pairing (3.2) is a local direct summand
Fy c Fil(X) of rank one. Both submodules are stable under the action of Oy, which acts
« onFxandFj via ¢ : Ox — Oy,
o« onlLie(X)/Fx and Fil(X)/Fj( viagp : Ox — Ok-

There is a natural morphism of Oj-algebras

a®l-(p(a),p(a))
Ok ®z, Oy ————— O x Opr.

If k/Qp is unramified, this map is an isomorphism, and we obtain a pair of orthogonal idempotents in
Ok ®z, Ou- Without any assumption on ramification, one can still define reasonable substitutes for these
idempotents. To do so, fix a f € Oy satisfying Ox = Z, + Z,f, and define

e=f®1-10¢(B) € Ox®z, Ou,
€=po1-189(B) € Ox®z, Op.

The ideal sheaves in Ok ®z, Om generated by these elements are independent of the choice of 3, and there
are short exact sequences of Oy-modules

a®l—o(a)
0— () » Ok®z, Oy —— Oy — 0O,

_ agl-g(a)
0—- () — Ok ®z, Oy —— Om — 0.
Remark 3.1. In particular, (¢) and (€) are rank one Opy-module local direct summands of Ok ®z, Opy.
Let o c Ok be the different of k/Qp, and set 2= <p(0)©k. It follows from Hypothesis A that
5 O if k/Qp is unramified,
m  ifk/Qp is ramified.
Lemma 3.2. Suppose N is an Oy-module endowed with an action
i: 0k — Endg,, (N).

If we view N as an Ok ®z, Oy-module, then N/eN and N/eN are the maximal quotients of N on which Ok acts
through ¢ and @, respectively. Moreover,

eNc{neN:foralae O, i(a)x = p(a)x},
€N c{neN:forallae O, i(a)x = p(a)x},

and both quotients are annihilated by 0.

Proof. This is an elementary exercise, left to the reader. O
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Proposition 3.3. There are inclusions of Op-module local direct summands Fy ¢ eD(X) ¢ D(X). The morphism
€ : D(X) — eD(X) descends to a surjection

Lie(X) 5 eD(X)/F%, (3.3)

whose kernel Ly ¢ Lie(X) is an Oy-module local direct summand of rank one. It is stable under Oy, which acts
onLie(X)/Lx and Lx via ¢, ¢ : Oy — Ok, respectively.

Proof. The vector bundle D(X) is locally free of rank n over Ok ®z, Oy, and hence eD(X) ¢ D(X) is a local
Opr-module direct summand by Remark 3.1. As Fy is locally free over Oy, the perfect pairing

(Fil(X)/F%) ® Fx — Oy

induced by (3.2) shows that Fil(X)/F )L( is locally free, from which it follows that F j( a local direct summand
of D(X).
Now consider the perfect pairing
Fx ® (Lie(X)/Fx) — Ou

induced by (3.2). As O acts on Lie(X)/Fx via @, relation (3.1) implies that Oy acts on Fy via ¢. Lemma 3.2
thus implies

OFy ¢ eFy ¢ Fy,
and so 5Fj( c eD(X). The stronger inclusion F)*( c eD(X) then follows from the fact that D(X)/eD(X) is

Opm-torsion free.
As Oy acts on Fx through ¢ : Ox — @k, we must have €Fx = 0. Hence

(ex,y) =(x,€ey) =0
for all local sections x and y of Fil(X) and F¥, respectively. Thus
€Fil(X) c Fy,

and the map (3.3) is well-defined.

The kernel Ly of (3.3) is a local direct summand, as (3.3) is a surjection to a locally free Oy-module.
Moreover, Lemma 3.2 implies that Ok acts on the codomain via ¢, and hence acts on Lie(X)/Lx in the same
way.

Suppose the natural map Ly — Lie(X)/Fy is trivial. The inclusion Ly c Fx then shows that Oy acts on
both Ly and Lie(X)/Lx via ¢, and hence both are annihilated by €. This means that € - € annihilates Lie(X).
But € acts on Lie(X)/Fx via the nonzero scalar ¢(f8 - E) ¢ Oy, a contradiction.

The map Ly — Lie(X)/Fy is therefore nonzero, and hence injective as M is locally integral. As Oy acts on
the codomain via ¢, it acts in the same way on Ly. O

The line bundle Ly of Proposition 3.3 is, by construction, the pullback of a line bundle on M(,-1,1) via the
projection M — M,-1,1). We will now twist it by a line bundle pulled back via M — M(1,0).

Definition 3.4. The line bundle of modular forms w is the invertible sheaf of Oj-modules with inverse
w™! = Hom(Fil(Xo), Lx).

Remark 3.5. The line bundle of Definition 3.4 does not agree with the line bundle of modular forms defined
in [1, 2]. In those papers the line bundle of modular forms, which we here denote by wq, is characterized by

;Y = Hom(Fil(Xo), Lie(X)/Fx).

The inclusion Ly ¢ Lie(X) induces a morphism Ly — Lie(X)/Fx, which in turn induces wqg — w. It is not
difficult to check that this latter map identifies

0w CwWweq C w,

but when k/Q,, is ramified, neither inclusion is an equality.
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4 Deformation theory

Suppose Z ¢ M is any closed formal subscheme, and denote by I; ¢ Oy its ideal sheaf. The square I = I% is
the ideal sheaf of a larger closed formal subscheme

ZcZcM

called the first-order infinitesimal neighborhood of Z in M.
Now fix a nonzero x € V and consider the first-order infinitesimal neighborhood

ZX)cZ(xX) c M

of the corresponding Kudla—Rapoport divisor. By the very definition (Definition 2.4) of Z(x), when we restrict
the universal object (X, X) to Z(x), we obtain a distinguished morphism of p-divisible groups

Xolze = Xlze-
This induces an Ok-linear morphism of vector bundles
D(Xo)lz(x) ~» D(X)Iz00) (4.1)

on Z(x), which respects the Hodge filtrations. By Grothendieck—-Messing theory this morphism admits
a canonical extension ~
X
D(XO)|Z(X) - D(X)|Z(X)

to the first-order infinitesimal neighborhood, which no longer respects the Hodge filtrations. Instead, it deter-
mines a nontrivial morphism

Fil(Xo)l ) — Lie(X)l7z)- (4.2)
Proposition 4.1. The morphism (4.2) takes values in the rank one local direct summand
Lxl70 < Lie®)lz»
and so can be viewed as a morphism of line bundles
Fil(Xo)l 7 ~ Lxlz0- 4.3)
The Kudla-Rapoport divisor Z(x) is the largest closed formal subscheme of Z(x) over which (4.3) is trivial.
Proof. The vector bundle D(Xy) is locally free of rank one over Ok ®z, Oy, and its quotient

D(Xp)/Fil(Xo) = Lie(Xo)

is annihilated by €. Hence € - D(X) c Fil(Xo), and equality holds as both are rank one local O;-module direct
summands of D(Xj); see Remark 3.1.
It follows that (4.2) takes values in the subsheaf

€- Lie(X)|Z(X) C Lie(X)|Z(X).
On the other hand, the final claim of Proposition 3.3 implies that € annihilates Lie(X)/Lx, and hence
€- Lie(X)|Z(X) C Lxlz -

This proves the first claim.

For the second claim, it follows from Grothendieck—Messing theory that Z(x) is the largest closed formal
subscheme of Z(x) along which (4.2) vanishes. As Lx c Lie(X) is a local direct summand, this is equivalent
to (4.3) vanishing. O
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Definition 4.2. The section

obst(x) € H(Z(x), w™"|z)
determined by (4.3) is called the obstruction to deforming x. As we have already explained, Z(x) is the largest
closed formal subscheme of Z(x) over which obst(x) = 0.

Proposition 4.3. For any nonzero x € V, the closed formal subscheme Z(x) c M is a Cartier divisor; that is to
say, it is defined locally by a single nonzero equation.

Proof. Let R be the local ring of M at a point z € Z(x), and let I > I? be the ideals of R corresponding to
Z(x) c Z(x). After pulling back via Spf(R) — M, we may trivialize the line bundle w, and the obstruction to
deforming x becomes an R-module generator

obst(x) € I/I%.

It follows from Nakayama’s lemma that I c R is a principal ideal, and it only remains to show that I # 0.
Suppose I = 0. This implies that we may find an open subset U ¢ M such that Z(x)|y = U. As in [13,
Chapter 5], M has an associated rigid analytic space M"¢ over k, and U ¢ M determines an admissible open
subset
Urig c Mrig.
The vector bundles of Section 3 determine filtered vector bundles
Fil(Xo)"™® ¢ D(Xo)",
Fil(X)"® ¢ D(X)"¢
on M"8, By [13, Proposition 5.17] these admit Oy-linear trivializations
D(X0)"8 = Vo & Oppre, (4.4)
D(X)"® = V @ O, (4.5)
where Vy and V are vector spaces over k of dimensions 2 and 2n, respectively, endowed with actions
io : kK — End (Vo) and i : k — Endy (V).
The signature (1, 0) condition on X, implies that k acts on Fil(Xy)"# via p:k— k. From this it follows
easily that (4.4) induces an identification of line bundles

€ - Fil(X0)"® = (€Vo) & O
On the other hand, the signature (n — 1, 1) condition on X implies that (4.5) determines an inclusion
€ - Fil(X)"8 ¢ (€V) ® Opme
as a local direct summand of corank one. This inclusion determines the Grothendieck-Messing (or Gross—

Hopkins) period morphism
m: M'8 — N8 (4.6)

to the rigid analytic flag variety N"8 parameterizing all codimension one subspaces of €. It follows from [13,
Proposition 5.17] that 7 is étale.
After restriction to U8 the morphism (4.1) determines a morphism

D(X0)"8| s — D(X)"®]
that respects the filtrations, and this morphism is induced by a k-linear inclusion V ¢ V. In particular,
(EV()) ®l“( OUrig C E . Fil(X)rig|Urig C (EV) ®f( OUrig N

and so the restriction of (4.6) to U"® c M"8 takes values in the closed rigid analytic subspace of N"8
parameterizing codimension one subspaces of €V that contain the line €Vy. This contradicts (4.6) being
étale. O

If k/Qp is unramified, it is proved in [8] that every Kudla-Rapoport divisor Z(x) is flat over O. In Appendix A
we will explain why this is false when k/Q, is ramified.
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5 Linear invariance of tensor products

Suppose x € V is nonzero. As in the introduction, let Iz c Oy be the ideal sheaf defining the Kudla-
Rapoport divisor Z(x) ¢ M, and define a complex of locally free O3-modules

CxX)=(—>0—Izx — Oy —0)
supported in degrees 1 and 0. We extend the definitions to x = 0 by setting Z(0) = M and

CO) = (=0 - w > Oy - 0),
where w is the line bundle of Definition 3.4.

Theorem 5.1. Fixanr > 0, and suppose x1,...,xr € Vandy, ...,y € V generate the same Ox-submodule.
For every i > O there is an isomorphism of coherent O y-modules

Hi(C(x1) ®---® C(xy)) = Hi(C(y1) ® -+~ @ C(yy)). (5.1)

Proof. It is an exercise in linear algebra to check that the list xq, ..., x, can be transformed to the list
Y1, ..., Yr using a sequence of elementary operations: permute the vectors in the list, scale a vector by an
element of Oy, and add an Ox-multiple of one vector to another. The isomorphism class of the complex
C(x1)®---® C(xy) is obviously invariant under the first two operations, and using this one immediately
reduces to the case in which

Y1 = X1 +axy,

Y2 = X2,

Yr=Xr

for some a € Ok.
Denote by Z ¢ M the closed formal subscheme

Z(x1) NN Z(xy) = Z(y1) N -+ N Z(yr)

(here and below, we use N as a shorthand for xy;) and by Z ¢ Z its first-order infinitesimal neighborhood in M.
Note that both sides of (5.1) are supported on Z in the strong sense: they are annihilated by the ideal sheaf
defining Z.
For every 1 < i < r, define sections
si € H(Z(xi), 0™ z,)»
ti € HO(Z(YI'), w_1|Z(y,-))
by (recall Definition 4.2)

Si =

obst(x;) ifx; #0,
0 ifx; =0,

. obst(y;) ify; # 0,
"o ify; = 0.

Thus the zero loci of s; and ¢; are Z(x;) and Z(y;), respectively. After restriction to
ZcZ(x1) NN Zx) N Z(y1) N0 Z(yy)

these sections satisfy
t1 =S1 +asy,

and t; = s; when i > 1. We will approximate s1, s,, and ¢, in a noncanonical way, by sections defined over
open subsets of M.
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Lemma 5.2. Around every point z € Z one can find an open affine neighborhood U = Spec(R) ¢ M over which wy
is trivial, and sections
01,02 € H(U, wy') and a e HY(U, Oy) (5.2)

such that the following assertions hold:

(i) o4 has zero locus Z(x1)y and agrees with s, on Z(x1)y.
(ii) o has zero locus Z(x,)y and agrees with s, on Z(x,)y.
(iii) a restricts to the constant function a on Z(x»)y.

(iv) The section

def
T1 = 01+ Q03

has zero locus Z(y1)y and agrees with t1 on the closed formal subscheme, lying between Z(y1)y and Z(y1)u,
defined by the ideal sheaf
Izty)0 - Tzyyo + 1z)) € Ou-

Given another collection of sections
01,05 e HO(U, wy') and o' € H(U, Op) (5.3)
satisfying the same properties, there is an element ¢ € Frac(R) such that
Eo1®0)=T100)-T)®01 (5.4)
and
§-1z00) € Lz, - Lz0c)y-

Proof. Start with any connected affine open neighborhood U = Spf(R) of z € U over which wy = Oy, and fix
such an isomorphism. Write

Z(x1)u = Spf(R/I,),
Z(x2)y = Spf(R/Iy,),
Z(y1)u = Spf(R/Iy,)

forideals Iy, , Iy,, Iy, C R, all of which are contained in the maximalideal p ¢ R determined by the pointz € U.
Identify the sections s1, s>, and t; with R-module generators

s1ely /Iy, syely/ly,, tel,/I}.

P

Next choose, for i € {1, 2}, an arbitrary lift 0; € I, of s;. Nakayama’s lemma implies R, 0; = R,I;, and so
there is some f ¢ p such that R[1/f]o; = R[1/f]1;. After inverting f, and hence shrinking U, we may assume
that Ro; = I;. We now have sections 01 and o0, satisfying properties (i) and (ii).

Choose an arbitrarylift 71 € Iy, of ;. Again using Nakayama’s lemma, we may shrink U in order to assume
that R7; = I,. The relation y; = x; + ax, implies the equality

Z(y1) N Z(x3) = Z(x1) N Z(x2) (5.5)
of closed formal subschemes of M, and hence
Iy, + 1y, = Iy, +1y,. (5.6)

Along the first-order infinitesimal neighborhood of (5.5) in M we have t; = s; + as,. This implies that
71 = 01 + ao, modulo the square of (5.6), and so we may write

t1 = 01 +aoy + (At? + Bt102 + Co3)

for some A, B, C € R. Now rewrite this as
T1 =01+ a0,

where 71 = 71 - At - Bt10, and a = a + Co,.
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By construction 71 agrees with 71, hence alsowith t1,in R/I, (Iy, + Ix,). In particular, it generates I, /pIy,
as an R-module, and the above argument using Nakayama’s lemma allows us to shrink U in order to assume
that Rt = Iy, . The sections 01, 0,, and a we have constructed satisfy properties (i), (ii), (iii), and (iv).

Now suppose we have another collection of sections (5.3) satisfying the same properties. As above, we
use wy = Oy to identify o), 0%, a’ € R, so that

Roy =1y, =Ro}, Ro,=I,,=Ro,, Rti=I, =RT1].

In the degenerate case where I, = O (this can only happen when x; = 0) we must have g, =0 = cr’l, and
any choice of ¢ € R will satisfy the stated properties. Thus we may assume I, # 0.
Define ¢ € Frac(R) by

¢ (11 T’l) (aaz a’o’z)
o1 0] or o)/

We need to show that Réo; ¢ RT10,. As R isregular, it is equal to the intersection of its localizations at height
one primes q C R, and every such localization R, is a DVR. Thus it suffices to prove, for all such g,

ord,(é01) = ordy(7107). (5.7)
The conditions imposed on our sections imply the congruences
o1=s1=0; (modI}),
ao; = asy =a'oy, (mod I),
1=t =7) (mod Iy, (Iy, +Iy,)),
the first and third of which imply
o1/0y =1 (mod Ray), (5.8)
71/7) =1 (mod Rty + Roy).
First assume ord,(0,) > ordy(71), and note that 71 = 01 + a0, implies
ordq(o1) > minford,(71), ordg(ao>)} = ordy(11).

It follows from this and (5.8) that 01/0} = 1 (modR471), and hence

01 01
fo1=a0,- — -a'oh = a02<1 - —,) (mod Ry0?).
0y 01

This implies {01 = 0 (modR,7103), proving (5.7).
Now assume ord,(02) < ordy(71). The relation 1, = 01 + a0, implies

ord(o1) > min{ord(r,), ord(ao,)} > ordq(0>),
and also Rq71 + Rq02 = Ry0,. The congruences of (5.8) therefore imply
01/07 =1 (mod Rq0,),
71/T1=1 (mod Ry0,),

and hence ,

01T
éo1 = 11(1 - _11'_1) =0 (mod Ry7107).

1 T1
Once again, this proves (5.7). 1 O
For a fixed z € Z, choose an open neighborhood U ¢ M and sections (5.2) as in Lemma 5.2.
Lemma 5.3. The choice of sections (5.2) determines an isomorphism
f:Cx1)y® C(x2)y = Cy1)u ® C(x2)y, (5.9

and changing the sections changes the isomorphism by a homotopy.
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Proof. The choice of sections determines complexes of locally free Oy-modules
D(t1) = (- = 0 = wy =5 Oy — 0),
D(x2) = (-++ = 0 > wy =5 Oy = 0),
D(y1) = (- = 0 = wy - Oy - 0),
and there are obvious isomorphisms
D(x1) = C(x1)u, D(x2) = C(x2)u, D(y1) = C(y1)u.

Indeed, if x; # O, then

01

0 wy Oy 0

o

"’—>0—>IZ(X1)U—)OU_)O

defines an isomorphism D(x;) = C(x1)y. On the other hand, if x; = 0, then o1 = 0, and D(x;) = C(x1)y by
definition. The other isomorphisms are entirely similar.
To define f, it now suffices to define an isomorphism

g : D(x1) ® D(x3) = D(y1) ® D(x3).

The complexes in question are

) )
D(x1)®D(xz) = (-++ = 0 = wy ® wy — wy & wy — Oy — 0),
33 o7
D(y1)®D(x32)=(---—> 0> wy®wy BEN wy ® Wy BN Oy — 0),
where the boundary maps are defined by

01(11, 12) = 01(11) + 02(12),

01 (M1, M2) = 11(n1) + 02(12),
02(n1 ®n2) = (02(-n2)N1, 01(N1)N2),
05(M1 ®n2) = (02(-n2)n1, T1(M1)N2)

for local sections 177 and 1, of wy. By recalling that 71 = 01 + a0, the desired isomorphism is

62 al
e — 00— Wy Wy ——————— Wy S Wy Oy 0
H J/gl ‘
9% 91
e 00— Wy Wy ———————— Wy S Wy Oy 0,

where g1(11, 12) = (171, N2 — ana).
Having constructed the isomorphism (5.9), we now study its dependence on the sections (5.2). Suppose
we have another collection of sections (5.3), and hence two isomorphisms

fif' : C(x1)u ® Cx2)y = C(y1)u ® C(x2)y.

We must prove that f and f’ are homotopic.

If x, = 0, then y; = x1, and the conditions imposed on the sections (5.2) imply that 0; = 71, 0> = 0, and
a = a. From this it is easy to see that f = f’, and so henceforth we assume that x, # 0.

If x; = 0 and y; = 0, then the conditions imposed on (5.2) imply that g; = 0 and 7; = 0. The relation
T1 = 01 + a0, and our assumption x, # O therefore imply that a« = 0. Tracing through the definitions, we
again find that f = f'.
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If x; # 0and y; # 0, then e = f — f' is given explicitly by

P F)
0 —— Iz(1)y ® Lzixa)y —— Lz )y @ Lza)y —— - Oy 0
Jv hl i ) / Jv ho i ) / J/
e _ - e1 _ -~ 0
7o S
0—— IZ(,Vl)U ® IZ(XZ)U — IZ(Yl)U & IZ(XZ)U Ou 0,

where the boundary maps are

01(N1, N2) = N1 + 172,
01(N1,M2) = N1 + M2,
02(n1 ®N2) = (-N17M2, N11M2),
03(n1 ®n2) = (-N1n2, N112),
and
e1(n1,M2) = (§n1, =§M1),  e2(N1®M2) = {n1 @ n>.
Here ¢ is the rational function on U of Lemma 5.2 (¢ is uniquely determined by relation (5.4), as our assump-
tion x; # 0 implies that o4, and 0’1 are nonzero). The dotted arrows, which exhibit the homotopy between e

and 0, are defined by ho(17) = (0, 0) and h1(11,172) = —én1 - 1 ® 1. Note that the definition of h; only makes
sense because of the inclusion

§Iz0a)u < Lzy)0 1200000
of Lemma 5.2.
If x; = 0and y; # 0, then e = f — f' is given explicitly by

0 i)
0 — wy ®Iz(x,)y —2>er>IZ(X2)U ! /OU 0
Jv - - / Jv - - / J/
e _ - e _ — 0
7 S
0—— IZ(]/l)U ® IZ(XZ)U — IZ(Y1)U & IZ(XZ)U Ou 0,

where the boundary maps are
01(N1,M2) = N2,
01(N1,M2) = N1 + N2,
02(n1®n2) = (-n211, 0),
05 (M1 ®1M2) = (-N211, N2M1),
and, setting { = 71 - 7} € HO(U, wi}),
e1(M1,n2) = ({(n1), =¢(n1)), ea(n1®n2) ={(n1) ®n>.
The dotted arrows, which exhibit the homotopy between e and 0, are defined by
ho(n) =(0,0) and hi(n1,n2)=-{(n1)-1®1.
To make sense of the definition of h1, note that the relation y; = ax, implies Z(x,) ¢ Z(y1), and hence
§n1) € Lziyyy - Uzgyyy +1200)0) = 1201)0 - Iz0)s-

The case x; # 0 and y; = 0 is entirely analogous to the previous case, and we leave the details to the
reader. m

As y; = x;j for j > 2, the isomorphism of Lemma 5.9 determines an isomorphism
Cxu®---e Clx)y = Cy)u®--- @ Cyr)u,

whose homotopy class does not depend on the choices (5.2) used in its construction. Hence the induced
isomorphism
Hi(C(x1)®---® C(xy))u = Hi(C(y1) ®---® C(yr))u
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of Oy-modules also does not depend on these choices. By varying U and gluing, we obtain an isomor-
phism (5.1) defined over an open neighborhood of Z in M. We have already noted that both sides of (5.1)
are supported on Z, and so the isomorphism extends uniquely to all of M. This completes the proof of
Theorem 5.1. O

A The exceptional divisor

Throughout this appendix we assume that k/Q, is ramified. We want to explain why the Kudla—-Rapoport
divisors of Definition 2.4 are generally not flat over Oy.

Denote by IF = O/t the residue field of O. The two embeddings ¢, ¢ : Ok — Ok necessarily reduce to
the unique Z,-algebra morphism O — F.

Definition A.1. The exceptional divisor Exc ¢ M is the set of all points s € M at which the action
i:Ox — End(Lie(Xs))

is through scalars; that is to say, the action factors through the unique morphism Oy — IF. This is a closed
subset of the underlying topological space of M, and we endow it with its induced structure of a reduced
scheme over FF.

Proposition A.2. The exceptional divisor Exc ¢ M is a Cartier divisor, and is isomorphic to a disjoint union of
copies of the projective space P"1 over IF.

Proof. A point s € M(IF) corresponds to a pair (Xos, Xs) over IF, which we recall is really a tuple
(XOSa iOa AO) Qo, XS; ia A) FXs’ Q) € M(]P)'

If s € Exc(IF), then the action of Oy on Lie(X) is through the unique Zp-algebra morphism Oy — IF. This
implies that any codimension one subspace of F c Lie(X;) satisfies Krdamer’s signature condition as in Sec-
tion 2, and we obtain a closed immersion

P(Lie(X;)Y) — Exc

by sending F — (Xos, io, Ao, 00, Xs, i, A, F, @). In other words, vary the codimension one subspace in Lie(Xj)
and leave all other data fixed.

It is clear that Exc is the disjoint union of all such closed subschemes, and that every connected com-
ponent of Exc is reduced, irreducible, and of codimension one in M. The regularity of M then implies that
Exc c M is defined locally by one equation. O

Proposition A.3. Fix a nonzero x € V, and any connected component D c Exc. For all k > 0 we have D c Z(p*x).
In particular, Z(p*x) is not flat over Ox.

Proof. If we fix one point s € D, Lemma 2.3 allows us to view
x € Homo, (Xos, Xs)[1/p].

For all k > 0 we thus have p"x € Homo, (Xos, X;s). It follows from the characterization of D = P™ ! found in
the proof of Proposition A.2 that the p-divisible groups Xop and Xp are constant (that is, are pullbacks via
D — Spec(IF) of p-divisible groups over IF), and hence the restriction map

Homg, (Xop, Xp) — Homp, (Xos, Xs)

is an isomorphism. Hence p*x ¢ Homg, (Xop, Xp)and D c Z(p*x). O
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