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1 Introduction

Let p be a prime, let k be a quadratic extension ofℚp, and let Ok ⊂ k be the ring of integers. Denote by k̆ the
completion of the maximal unramiőed extension of k, let Ŏk ⊂ k̆ be the ring of integers, and let m̆ ⊂ Ŏk be

the maximal ideal. The nontrivial automorphism of k is denoted by α 󳨃→ α, and we denote by

φ, φ : Ok → Ŏk

the inclusion and its conjugate φ(α) = φ(α), respectively.

Hypothesis A. Throughout the paper we assume that either k/ℚp is unramiőed, or that k/ℚp is ramiőed but

p > 2.

In this paper, we study the intersections of special divisors on a regular n-dimensional RapoportśZink formal

scheme

M = M(1,0) ×Spf(Ŏk) M(n−1,1),

ŕat over Spf(Ŏk). We have imposed Hypothesis A because it is assumed in [7, 10], the results of which are

needed to prove the ŕatness and regularity of M.

The construction of M depends on the choices of supersingular p-divisible groups X0 and X of dimen-

sions 1 and n ≥ 2, respectively, deőned over the residue őeld Ŏk/m̆ and endowedwith principal polarizations

and actions of Ok. The induced actions of Ok on the Lie algebras Lie(X0) and Lie(X) are required to satisfy

signature conditions of type (1, 0) and (n − 1, 1), respectively.
The precise assumptions on X0 and X, along with the deőnition of M, are explained in Section 2. We

note here only that the signature condition on X consists of the extra data of a codimension one subspace

FX ⊂ Lie(X) as in the work of Krämer [7]. In particular, when k/ℚp is ramiőed, our formal scheme M(n−1,1)
does not agree with the one considered in [12].

As in [8], the n-dimensional k-vector space

V = HomOk
(X0,X)[1/p]
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carries a natural hermitian form, and every nonzero vector x ∈ V determines a KudlaśRapoport divisor

Z(x) ⊂ M; see Deőnition 2.4. Our main result concerns arbitrary intersections of KudlaśRapoport divisors,

including self-intersections.

For any nonzero x ∈ V, let IZ(x) ⊂ OM be the ideal sheaf deőning Z(x), and deőne a chain complex of

locally free OM-modules

C(x) = (⋅ ⋅ ⋅→ 0→ IZ(x) → OM → 0)
supported in degrees 1 and 0. We extend the deőnition to x = 0 by setting

C(0) = (⋅ ⋅ ⋅→ 0→ ω
0󳨀→ OM → 0),

whereω is the line bundle ofmodular forms onM of Deőnition 3.4. This line bundle controls the deformation

theory of the KudlaśRapoport divisors, in a sense made (somewhat) more precise in Section 4.

The following is our main result. It is stated in the text as Theorem 5.1.

Theorem B. Fix an r ≥ 0, and suppose x1, . . . , xr ∈ V and y1, . . . , yr ∈ V generate the same Ok-submodule.

For every i ≥ 0 there is an isomorphism of coherent OM-modules

Hi(C(x1) ⊗ ⋅ ⋅ ⋅ ⊗ C(xr)) ≅ Hi(C(y1) ⊗ ⋅ ⋅ ⋅ ⊗ C(yr)).

We can restate ourmain result in terms of the Grothendieck group of coherent sheaves onM. Let K󸀠
0
(M) be the

free abelian group generated by symbols [F] as F runs over all isomorphism classes of coherentOM-modules,

subject to the relations [F1] ⋇ [F3] = [F2] whenever there is a short exact sequence

0→ F1 → F2 → F3 → 0.

In particular, any bounded chain complex F of coherent OM-modules deőnes a class

[F] =∑
i

(−1)i ⋅ [Hi(F)] ∈ K󸀠0(M),

allowing us to form

[C(x1) ⊗ ⋅ ⋅ ⋅ ⊗ C(xr)] ∈ K󸀠0(M) (1.1)

for any őnite list of vectors x1, . . . , xr ∈ V. If all x1, . . . , xr are nonzero, then

[C(x1) ⊗ ⋅ ⋅ ⋅ ⊗ C(xr)] = [OZ(x1) ⊗L ⋅ ⋅ ⋅ ⊗L OZ(xr)],

and hence one should regard (1.1) as a generalized intersection of divisors. On the right-hand side, by slight

abuse of notation, we are using the pushforward via Z(xi) 󳨅→ M to view OZ(xi) as a coherent sheaf on OM,

and ⊗L is the derived tensor product of coherent OM-modules.

The following is an immediate consequence of Theorem B.

Corollary C. If x1, . . . , xr ∈ V and y1, . . . , yr ∈ V generate the same Ok-submodule, then

[C(x1) ⊗ ⋅ ⋅ ⋅ ⊗ C(xr)] = [C(y1) ⊗ ⋅ ⋅ ⋅ ⊗ C(yr)].

Perhaps the most interesting aspect of Corollary C is that it encodes nontrivial information about self-

intersections of KudlaśRapoport divisors. To spell this out in the simplest case, note that Corollary C

implies

[C(x) ⊗ C(x)] = [C(x) ⊗ C(0)] (1.2)

for any nonzero x ∈ V. The right-hand side is the alternating sum in K󸀠
0
(M) of the homology of the complex

⋅ ⋅ ⋅→ 0→ IZ(x) ⊗ ω
∂2󳨀󳨀→ IZ(x) ⊕ ω

∂1󳨀󳨀→ OM → 0,

where ∂2(a ⊗ b) = (0, ab) and ∂1(a, b) = a, and so

[C(x) ⊗ C(0)] = [OM/IZ(x)] − [ω/IZ(x)ω].

If we again use pushforward via Z(x) 󳨅→ M to view coherent OZ(x)-modules as coherent OM-modules,

then (1.2) can be rewritten as a self-intersection formula

[OZ(x) ⊗L OZ(x)] = [OZ(x)] − [ω℘Z(x)]. (1.3)
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Because of the close connection between Grothendieck groups of coherent sheaves and Chow groups,

as detailed in [14, Chapter I], the global analogue of Corollary C has applications to conjectures of Kudlaś

Rapoport [9] on the intersectionmultiplicities of cycles on unitary Shimura varieties, and their connection to

derivatives of Eisenstein series. This will be explored in forthcoming work of the author.

The formal Ŏk-scheme M is locally formally of őnite type, but has countably many connected compo-

nents, each of which is a countable union of irreducible components. Let us őx one connected component

M∘ ⊂ M, and set Z∘(x) = Z(x)℘M∘ . The following is an immediate consequence of Theorem B.

Corollary D. Suppose x1, . . . , xn ∈ V is a k-basis. The Serre intersection multiplicity

χ(OZ∘(x1) ⊗L ⋅ ⋅ ⋅ ⊗L OZ∘(xn))
def= ∑

i,j≥0
(−1)i⋇j length

Ŏk
H j(M∘, Hi(OZ∘(x1) ⊗L ⋅ ⋅ ⋅ ⊗L OZ∘(xn)))

depends only on the Ok-lattice spanned by x1, . . . , xn.

It is conjectured by KudlaśRapoport that the intersection multiplicity appearing in Corollary D is related to

derivatives of representation densities. When k/ℚp is unramiőed, this is [8, Conjecture 1.3]. When k/ℚp is
ramiőed, it is perhaps not clear what the precise statement of the conjecture should be.

Relation to previous results. Weaker versions of the results stated above can be proved using a simpler

argument¹ of Terstiege [15]. We clarify here what one can and cannot prove using that argument.

When k/ℚp is unramiőed, Corollary D is [15, Proposition 3.2]. Terstiege’s argument can also be used

to prove Theorem B and Corollary C, but only under the additional assumption that the vectors x1, . . . , xr
(equivalently, y1, . . . , yr) are linearly independent. In particular, his argument does not give self-intersection

formulas like (1.2) and (1.3).

The key thing that makes Terstiege’s argument work is that, in the unramiőed case, the KudlaśRapoport

divisors Z(x) and Z(x󸀠)deőnedby linearly independent vectors x, x󸀠 ∈ V are ŕat over Ŏk, fromwhich it follows

that their intersection Z(x) ∩ Z(x󸀠) lies in codimension 2.

When k/ℚp is ramiőed, the situation is very different: the KudlaśRapoport divisors are usually not ŕat,

and the intersection Z(x) ∩ Z(x󸀠) is often of codimension 1. In fact, it is easy to see using Proposition A.3 that

one can construct a basis x1, . . . , xn ∈ V and an effective Cartier divisor D ⊂ M, contained in the special őber

(in the sense that the structure sheaf OD is annihilated by a uniformizer in Ok), such that

D ⊂ Z(x1) ∩ ⋅ ⋅ ⋅ ∩ Z(xn).

Because of this, the argument used by Terstiege breaks down in a fundamental way when k/ℚp is ramiőed,

and seems to yield little information in the direction of Theorem B and its corollaries.

The strategyof theproof. To explain the key ideaunderlying theproof of TheoremB, supposewehave vectors

x1, x2, y1, y2 ∈ V related by

y1 = x1 ⋇ ax2, y2 = x2
for some a ∈ Ok. In particular, {x1, x2} and {y1, y2} generate the same Ok-submodule of V.

One should imagine that there are global sections

s1, s2, t1, t2 ∈ H0(M, ω−1) (1.4)

satisfying div(si) = Z(xi) and div(ti) = Z(yi), and also satisfying

t1 = s1 ⋇ as2, t2 = s2. (1.5)

Such sections would determine complexes

D(xi) = (⋅ ⋅ ⋅→ 0→ ω
si󳨀→ OM → 0),

D(yi) = (⋅ ⋅ ⋅→ 0→ ω
ti󳨀→ OM → 0),

1 Terstiege only considers the case n = 3, but his argument generalizes to all n.
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along with canonical isomorphisms

C(xi) ≅ D(xi), C(yi) ≅ D(yi).
Indeed, if xi ̸= 0, then

⋅ ⋅ ⋅ // 0 // ω
si

//

si

��

OM
// 0

⋅ ⋅ ⋅ // 0 // IZ(xi) // OM
// 0

deőnes an isomorphism D(xi) ≅ C(xi). If xi = 0, then si = 0, and C(xi) and D(xi) are equal simply by deő-

nition. The point of replacing the complexes C( ⋅ ) by the isomorphic complexes D( ⋅ ) is that relations (1.5)
induce relations amongst the D( ⋅ ), which allow one to write down (see the proof of Lemma 5.3) an explicit

isomorphism

D(x1) ⊗ D(x2) ≅ D(y1) ⊗ D(y2).
In this way one would obtain from (1.4) an isomorphism of complexes

C(x1) ⊗ C(x2) ≅ C(y1) ⊗ C(y2). (1.6)

Unfortunately, sections (1.4) with the required properties need not exist globally on M, and so neither

does the isomorphism (1.6). Instead, our approach is to use GrothendieckśMessing theory to construct sec-

tions si and ti deőned only on the őrst-order inőnitesimal neighborhoods of Z(xi) and Z(yi) inM. Working on

a sufficiently őne Zariski open cover U of M, we then choose local approximations of these sections, and so

obtain, by the method above, an isomorphism

C(x1)U ⊗ C(x2)U ≅ C(y1)U ⊗ C(y2)U (1.7)

over each U ∈ U. Because there is no canonical way to choose these local approximations, the isomor-

phisms (1.7) need not glue together as U ∈ U varies. However, if one imposes mild restrictions on the local

approximations, the homotopy class of (1.7) is independent of the choices. The resulting isomorphisms

Hi(C(x1) ⊗ C(x2))U ≅ Hi(C(y1) ⊗ C(y2))U
of OU -modules can therefore be glued together as U ∈ U varies.

2 The RapoportśZink space and its divisors

Fix a triple (X0, i0, λ0) in which
∙ X0 is a supersingular p-divisible group over Ŏk/m̆ of dimension 1;

∙ i0 : Ok → End(X0) is an action of Ok on X0 such that the induced action on Lie(X0) is through the inclu-
sion φ : Ok → Ŏk;

∙ λ0 : X0 → X
∨
0
is a principal polarization compatible with the Ok-action, in the sense that the induced

Rosati involution σ satisőes i0(α)σ = i0(α) for all α ∈ Ok.

From the abovedata one can construct aRapoportśZink formal schemeby specifying its functor of points.

Let Nilp be the category of Ŏk-schemes on which p is locally nilpotent. For each S ∈ Nilp let M(1,0)(S) be the
set of isomorphism classes of quadruples (X0, i0, λ0, ϱ0) in which
∙ X0 is a p-divisible group over S of dimension 1;

∙ i0 : Ok → End(X0) is an action of Ok on X0 such that the induced action on Lie(X0) is through the inclu-
sion φ : Ok → Ŏk;

∙ λ0 : X0 → X∨
0
is a principal polarization compatible with Ok-action in the sense above;

∙ and

ϱ0 : X0 ×S S → X0 ×Spec(Ŏk/m̆) S

is an Ok-linear quasi-isogeny, respecting polarizations up to scaling byℚ×p . Here
S = S ×Spec(Ŏk) Spec(Ŏk/m̆).
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An isomorphism between two such tuples is an Ok-linear isomorphism of p-divisible groups X0 ≅ X󸀠0 identi-
fying ϱ0 with ϱ󸀠

0
, and identifying λ0 with λ󸀠

0
up toℤ×p-scaling.

Proposition 2.1. The functor M(1,0) is represented by a countable disjoint union of copies of Spf(Ŏk).

Proof. The formal deformation space of the triple (X0, i0, λ0) is Spf(Ŏk). This can be proved using Lubinś

Tate theory. Alternatively, it is a special case of [3, Theorem 2.1.3], which applies to more general p-divisible

groups with complex multiplication. With this fact in mind, the proof is the same as the d = 1 case of [13,

Proposition 3.79].

Now őx a tuple (X, i, λ, FX) in which
∙ X is a supersingular p-divisible group over Ŏk/m̆ of dimension n;

∙ i : Ok → End(X) is an action of Ok on X;

∙ λ : X→ X∨ is a principal polarization compatible with the Ok-action in the sense above;

∙ FX ⊂ Lie(X) is an Ŏk/m̆-module direct summand of rank n − 1 satisfying Krämer’s [7] signature condi-

tion: the action of Ok on Lie(X) induced by i : Ok → End(X) stabilizes FX, and acts on FX and Lie(X)/FX
through φ, φ : Ok → Ŏk, respectively.

For each S ∈ Nilp let M(n−1,1)(S) be the set of isomorphism classes of tuples (X, i, λ, FX , ϱ) in which
∙ X is a p-divisible group over S of dimension n;

∙ i : Ok → End(X) is an action of Ok on X;

∙ λ : X → X∨ is a principal polarization compatible with the Ok-action in the sense above;

∙ FX ⊂ Lie(X) is a local OS-module local direct summand of rank n − 1 satisfying Krämer’s signature con-

dition as above;

∙ and

ϱ : X ×S S → X ×Spec(Ŏk/m̆) S

is an Ok-linear quasi-isogeny respecting polarizations up to scaling byℚ×p .
An isomorphism between two such tuples is an Ok-linear isomorphism of p-divisible groups X ≅ X󸀠 identify-
ing FX with FX󸀠 , identifying ϱ with ϱ󸀠, and identifying λ with λ󸀠 up toℤ×p-scaling.

Proposition 2.2. The functor M(n−1,1) is represented by a formal Ŏk-scheme, locally formally of őnite type.

Moreover:

(i) M(n−1,1) is ŕat over Ŏk, and regular of dimension n.

(ii) If k/ℚp is unramiőed, then M is formally smooth over Ŏk.

Proof. First suppose that p > 2. The representability follows from the general results of RapoportśZink [13,

Theorem 3.25]. The remaining claims can be veriőed using the theory of local models, as in [10] and [13,

Proposition 3.33]. In the unramiőed case the analysis of the local model is routine, and in the ramiőed case

it was done by Krämer [7].

The p = 2 case is excluded from much of [13] by the blanket assumption imposed in [13, p. 75], and the

author is unaware of a published or publicly available reference for this case.² However, M. Rapoport has

informed the author that the necessary extensions to p = 2with k/ℚp unramiőed will appear in an appendix

to the forthcoming work [11].

Following [8], we will deőne a family of divisors on

M = M(1,0) ×Spf(Ŏk) M(n−1,1).

If S ∈ Nilp, we will write S-points of M simply as (X0, X) ∈ M(S), rather than the cumbersome

(X0, i0, λ0, ϱ0, X, i, λ, FX , ϱ).

2 When p = 2, there is a thorough study of unitary RapoportśZink spaces of signature (1, 1) in the work of Kirch [6], even

when k/ℚp is ramiőed.
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Lemma 2.3. The k-vector space

V = HomOk
(X0,X)[1/p]

has dimension n. For any S ∈ Nilp and any (X0, X) ∈ M(S) there is a canonical inclusion³

V ⊂ HomOk
(X0, X)[1/p]. (2.1)

Proof. As X is supersingular, there is a quasi-isogeny of p-divisible groups

X→ X0 × ⋅ ⋅ ⋅ × X0.

The NoetherśSkolem theorem implies that any two embeddings of k into

End(X)[1/p] ≅ Mn(End(X0))[1/p]

are conjugate, and hence this quasi-isogeny can be chosen to be Ok-linear. It follows that

V ≅ EndOk
(X0)[1/p] × ⋅ ⋅ ⋅ × EndOk

(X0)[1/p].

Each factor on the right-hand side has dimension one, proving the őrst claim of the lemma.

Given x ∈ V, the quasi-isogenies ϱ0 and ϱ allow us to identify x with

ϱ−1 ∘ x ∘ ϱ0 ∈ HomOk
(X0 ×S S, X ×S S)[1/p].

The reduction map

HomOk
(X0, X)[1/p]→ HomOk

(X0 ×S S, X ×S S)[1/p]

is an isomorphism by [5, Lemma 1.1.3], proving the second claim of the lemma.

The second claim of Lemma 2.3 allows us to make the following deőnition.

Deőnition 2.4. For any nonzero x ∈ V we deőne the KudlaśRapoport divisor to be the closed formal sub-

scheme

Z(x) ⊂ M

whose functor of points assigns to any S ∈ Nilp the set of all (X0, X) ∈ M(S) forwhich x ∈ HomOk
(X0, X)under

the inclusion (2.1).

When k/ℚp is unramiőed, it is proved in [8] that Z(x) ⊂ M is deőned locally by a single equation. A proof of

the same claim in the ramiőed case can be found in [4].Wewill reprove these results below in Proposition 4.3,

as the arguments provide additional information that will be essential for the proof of Theorem 5.1.

3 Vector bundles

For the remainder of the paper, (X0, X) denotes the universal object over

M = M(1,0) ×Spf(Ŏk) M(n−1,1).

Let D(X) be the restriction to the Zariski site of the covariant GrothendieckśMessing crystal of X. Thus D(X)
is a vector bundle on M of rank 2n, sitting in a short exact sequence

0→ Fil(X)→ D(X)→ Lie(X)→ 0.

3 Here one must interpret the right-hand side as global sections of the Zariski sheaf Hom(X0 , X)[1/p] on S, as in [13, Defini-

tion 2.8]. If S is quasi-compact, this agrees with the naive deőnition. We will ignore this technical point in all that follows.
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Similarly, the GrothendieckśMessing crystal of X0 determines a short exact sequence

0→ Fil(X0)→ D(X0)→ Lie(X0)→ 0

of vector bundles on M.

The actions i0 : Ok → End(X0) and i : Ok → End(X) induce actions of Ok on all of these vector bun-

dles, and the above short exact sequences are Ok-linear. The principal polarization on X induces a perfect

alternating pairing

⟨ ⋅ , ⋅ ⟩ : D(X) × D(X)→ OM ,

which is compatible with the action i : Ok → EndOM
(D(X)), in the sense that

⟨i(α)x, y⟩ = ⟨x, i(α)y⟩ (3.1)

for all α ∈ Ok and all local sections x and y of D(X). The local direct summand Fil(X) ⊂ D(X) is maximal

isotropic with respect to this pairing, and hence there is an induced perfect pairing

⟨ ⋅ , ⋅ ⟩ : Fil(X) × Lie(X)→ OM . (3.2)

By virtue of the moduli problem deőning M(n−1,1), there is a distinguished local direct summand

FX ⊂ Lie(X) of rank n − 1, whose annihilator with respect to the pairing (3.2) is a local direct summand

F⊥X ⊂ Fil(X) of rank one. Both submodules are stable under the action of Ok, which acts

∙ on FX and F
⊥
X via φ : Ok → Ŏk,

∙ on Lie(X)/FX and Fil(X)/F⊥X via φ : Ok → Ŏk.

There is a natural morphism of OM-algebras

Ok ⊗ℤp OM

α⊗1󳨃→(φ(α),φ(α))󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ OM × OM .

If k/ℚp is unramiőed, this map is an isomorphism, and we obtain a pair of orthogonal idempotents in

Ok ⊗ℤp OM. Without any assumption on ramiőcation, one can still deőne reasonable substitutes for these

idempotents. To do so, őx a β ∈ Ok satisfying Ok = ℤp ⋇ℤpβ, and deőne

ϵ = β ⊗ 1 − 1 ⊗ φ(β) ∈ Ok ⊗ℤp OM ,

ϵ = β ⊗ 1 − 1 ⊗ φ(β) ∈ Ok ⊗ℤp OM .

The ideal sheaves in Ok ⊗ℤp OM generated by these elements are independent of the choice of β, and there

are short exact sequences of OM-modules

0→ (ϵ)→ Ok ⊗ℤp OM

α⊗1 󳨃→φ(α)󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ OM → 0,

0→ (ϵ)→ Ok ⊗ℤp OM

α⊗1 󳨃→φ(α)󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ OM → 0.

Remark 3.1. In particular, (ϵ) and (ϵ) are rank one OM-module local direct summands of Ok ⊗ℤp OM.

Let d ⊂ Ok be the different of k/ℚp, and set d̆ = φ(d)Ŏk. It follows from Hypothesis A that

d̆ =
{
{
{

Ŏk if k/ℚp is unramiőed,

m̆ if k/ℚp is ramiőed.

Lemma 3.2. Suppose N is an OM-module endowed with an action

i : Ok → EndOM
(N).

If we view N as an Ok ⊗ℤp OM-module, then N/ϵN and N/ϵN are the maximal quotients of N on which Ok acts

through φ and φ, respectively. Moreover,

ϵN ⊂ {n ∈ N : for all α ∈ Ok, i(α)x = φ(α)x},
ϵN ⊂ {n ∈ N : for all α ∈ Ok, i(α)x = φ(α)x},

and both quotients are annihilated by d̆OM .

Proof. This is an elementary exercise, left to the reader.
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Proposition 3.3. There are inclusions ofOM-module local direct summands F
⊥
X ⊂ ϵD(X) ⊂ D(X). Themorphism

ϵ : D(X)→ ϵD(X) descends to a surjection

Lie(X) ϵ󳨀→ ϵD(X)/F⊥X , (3.3)

whose kernel LX ⊂ Lie(X) is an OM-module local direct summand of rank one. It is stable under Ok, which acts

on Lie(X)/LX and LX via φ, φ : Ok → Ŏk, respectively.

Proof. The vector bundle D(X) is locally free of rank n over Ok ⊗ℤp OM, and hence ϵD(X) ⊂ D(X) is a local
OM-module direct summand by Remark 3.1. As FX is locally free over OM, the perfect pairing

(Fil(X)/F⊥X ) ⊗ FX → OM

induced by (3.2) shows that Fil(X)/F⊥X is locally free, from which it follows that F⊥X a local direct summand

of D(X).
Now consider the perfect pairing

F⊥X ⊗ (Lie(X)/FX)→ OM

induced by (3.2). As Ok acts on Lie(X)/FX via φ, relation (3.1) implies that Ok acts on F⊥X via φ. Lemma 3.2

thus implies

d̆F⊥X ⊂ ϵF⊥X ⊂ F⊥X ,
and so d̆F⊥X ⊂ ϵD(X). The stronger inclusion F⊥X ⊂ ϵD(X) then follows from the fact that D(X)/ϵD(X) is
OM-torsion free.

As Ok acts on FX through φ : Ok → Ŏk, we must have ϵFX = 0. Hence

⟨ϵx, y⟩ = ⟨x, ϵy⟩ = 0

for all local sections x and y of Fil(X) and FX, respectively. Thus

ϵFil(X) ⊂ F⊥X ,

and the map (3.3) is well-deőned.

The kernel LX of (3.3) is a local direct summand, as (3.3) is a surjection to a locally free OM-module.

Moreover, Lemma 3.2 implies that Ok acts on the codomain via φ, and hence acts on Lie(X)/LX in the same

way.

Suppose the natural map LX → Lie(X)/FX is trivial. The inclusion LX ⊂ FX then shows that Ok acts on

both LX and Lie(X)/LX via φ, and hence both are annihilated by ϵ. This means that ϵ ⋅ ϵ annihilates Lie(X).
But ϵ acts on Lie(X)/FX via the nonzero scalar φ(β − β) ∈ Ŏk, a contradiction.

The map LX → Lie(X)/FX is therefore nonzero, and hence injective asM is locally integral. AsOk acts on

the codomain via φ, it acts in the same way on LX.

The line bundle LX of Proposition 3.3 is, by construction, the pullback of a line bundle on M(n−1,1) via the
projection M → M(n−1,1). We will now twist it by a line bundle pulled back via M → M(1,0).

Deőnition 3.4. The line bundle of modular forms ω is the invertible sheaf of OM-modules with inverse

ω−1 = Hom(Fil(X0), LX).

Remark 3.5. The line bundle of Deőnition 3.4 does not agree with the line bundle of modular forms deőned

in [1, 2]. In those papers the line bundle of modular forms, which we here denote by ωold, is characterized by

ω−1old = Hom(Fil(X0), Lie(X)/FX).

The inclusion LX ⊂ Lie(X) induces a morphism LX → Lie(X)/FX, which in turn induces ωold → ω. It is not

difficult to check that this latter map identiőes

d̆ ⋅ ω ⊂ ωold ⊂ ω,

but when k/ℚp is ramiőed, neither inclusion is an equality.
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4 Deformation theory

Suppose Z ⊂ M is any closed formal subscheme, and denote by IZ ⊂ OM its ideal sheaf. The square IZ̃ = I2Z is
the ideal sheaf of a larger closed formal subscheme

Z ⊂ Z̃ ⊂ M

called the őrst-order inőnitesimal neighborhood of Z in M.

Now őx a nonzero x ∈ V and consider the őrst-order inőnitesimal neighborhood

Z(x) ⊂ Z̃(x) ⊂ M

of the corresponding KudlaśRapoport divisor. By the very deőnition (Deőnition 2.4) of Z(x), when we restrict
the universal object (X0, X) to Z(x), we obtain a distinguished morphism of p-divisible groups

X0℘Z(x)
x󳨀→ X℘Z(x).

This induces an Ok-linear morphism of vector bundles

D(X0)℘Z(x)
x󳨀→ D(X)℘Z(x) (4.1)

on Z(x), which respects the Hodge őltrations. By GrothendieckśMessing theory this morphism admits

a canonical extension

D(X0)℘Z̃(x)
x̃󳨀→ D(X)℘Z̃(x)

to the őrst-order inőnitesimal neighborhood, which no longer respects the Hodge őltrations. Instead, it deter-

mines a nontrivial morphism

Fil(X0)℘Z̃(x)
x̃󳨀→ Lie(X)℘Z̃(x). (4.2)

Proposition 4.1. The morphism (4.2) takes values in the rank one local direct summand

LX ℘Z̃(x) ⊂ Lie(X)℘Z̃(x),

and so can be viewed as a morphism of line bundles

Fil(X0)℘Z̃(x)
x̃󳨀→ LX ℘Z̃(x). (4.3)

The KudlaśRapoport divisor Z(x) is the largest closed formal subscheme of Z̃(x) over which (4.3) is trivial.

Proof. The vector bundle D(X0) is locally free of rank one over Ok ⊗ℤp OM, and its quotient

D(X0)/Fil(X0) ≅ Lie(X0)

is annihilated by ϵ. Hence ϵ ⋅ D(X0) ⊂ Fil(X0), and equality holds as both are rank one localOM-module direct

summands of D(X0); see Remark 3.1.

It follows that (4.2) takes values in the subsheaf

ϵ ⋅ Lie(X)℘Z̃(x) ⊂ Lie(X)℘Z̃(x).

On the other hand, the őnal claim of Proposition 3.3 implies that ϵ annihilates Lie(X)/LX, and hence

ϵ ⋅ Lie(X)℘Z̃(x) ⊂ LX ℘Z̃(x).

This proves the őrst claim.

For the second claim, it follows from GrothendieckśMessing theory that Z(x) is the largest closed formal

subscheme of Z̃(x) along which (4.2) vanishes. As LX ⊂ Lie(X) is a local direct summand, this is equivalent

to (4.3) vanishing.
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Deőnition 4.2. The section

obst(x) ∈ H0(Z̃(x), ω−1℘Z̃(x))
determined by (4.3) is called the obstruction to deforming x. As we have already explained, Z(x) is the largest
closed formal subscheme of Z̃(x) over which obst(x) = 0.

Proposition 4.3. For any nonzero x ∈ V, the closed formal subscheme Z(x) ⊂ M is a Cartier divisor; that is to

say, it is deőned locally by a single nonzero equation.

Proof. Let R be the local ring of M at a point z ∈ Z(x), and let I ⊃ I2 be the ideals of R corresponding to

Z(x) ⊂ Z̃(x). After pulling back via Spf(R)→ M, we may trivialize the line bundle ω, and the obstruction to

deforming x becomes an R-module generator

obst(x) ∈ I/I2.

It follows from Nakayama’s lemma that I ⊂ R is a principal ideal, and it only remains to show that I ̸= 0.
Suppose I = 0. This implies that we may őnd an open subset U ⊂ M such that Z(x)℘U = U. As in [13,

Chapter 5], M has an associated rigid analytic space Mrig over k̆, and U ⊂ M determines an admissible open

subset

Urig ⊂ Mrig.

The vector bundles of Section 3 determine őltered vector bundles

Fil(X0)rig ⊂ D(X0)rig,
Fil(X)rig ⊂ D(X)rig

on Mrig. By [13, Proposition 5.17] these admit Ok-linear trivializations

D(X0)rig ≅ V0 ⊗k̆ OMrig , (4.4)

D(X)rig ≅ V ⊗
k̆
OMrig , (4.5)

where V0 and V are vector spaces over k̆ of dimensions 2 and 2n, respectively, endowed with actions

i0 : k→ End
k̆
(V0) and i : k→ End

k̆
(V).

The signature (1, 0) condition on X0 implies that k acts on Fil(X0)rig via φ : k→ k̆. From this it follows

easily that (4.4) induces an identiőcation of line bundles

ϵ ⋅ Fil(X0)rig = (ϵV0) ⊗k̆ OMrig .

On the other hand, the signature (n − 1, 1) condition on X implies that (4.5) determines an inclusion

ϵ ⋅ Fil(X)rig ⊂ (ϵV) ⊗
k̆
OMrig

as a local direct summand of corank one. This inclusion determines the GrothendieckśMessing (or Grossś

Hopkins) period morphism

π : Mrig → Nrig (4.6)

to the rigid analytic ŕag variety Nrig parameterizing all codimension one subspaces of ϵV. It follows from [13,

Proposition 5.17] that π is étale.

After restriction to Urig the morphism (4.1) determines a morphism

D(X0)rig℘Urig → D(X)rig℘Urig

that respects the őltrations, and this morphism is induced by a k-linear inclusion V0 ⊂ V. In particular,

(ϵV0) ⊗k̆ OUrig ⊂ ϵ ⋅ Fil(X)rig℘Urig ⊂ (ϵV) ⊗
k̆
OUrig ,

and so the restriction of (4.6) to Urig ⊂ Mrig takes values in the closed rigid analytic subspace of Nrig

parameterizing codimension one subspaces of ϵV that contain the line ϵV0. This contradicts (4.6) being

étale.

If k/ℚp is unramiőed, it is proved in [8] that every KudlaśRapoport divisor Z(x) is ŕat over Ŏk. In Appendix A

we will explain why this is false when k/ℚp is ramiőed.
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5 Linear invariance of tensor products

Suppose x ∈ V is nonzero. As in the introduction, let IZ(x) ⊂ OM be the ideal sheaf deőning the Kudlaś

Rapoport divisor Z(x) ⊂ M, and deőne a complex of locally free OM-modules

C(x) = (⋅ ⋅ ⋅→ 0→ IZ(x) → OM → 0)

supported in degrees 1 and 0. We extend the deőnitions to x = 0 by setting Z(0) = M and

C(0) = (⋅ ⋅ ⋅→ 0→ ω
0󳨀→ OM → 0),

where ω is the line bundle of Deőnition 3.4.

Theorem 5.1. Fix an r ≥ 0, and suppose x1, . . . , xr ∈ V and y1, . . . , yr ∈ V generate the same Ok-submodule.

For every i ≥ 0 there is an isomorphism of coherent OM-modules

Hi(C(x1) ⊗ ⋅ ⋅ ⋅ ⊗ C(xr)) ≅ Hi(C(y1) ⊗ ⋅ ⋅ ⋅ ⊗ C(yr)). (5.1)

Proof. It is an exercise in linear algebra to check that the list x1, . . . , xr can be transformed to the list

y1, . . . , yr using a sequence of elementary operations: permute the vectors in the list, scale a vector by an

element of O×
k
, and add an Ok-multiple of one vector to another. The isomorphism class of the complex

C(x1) ⊗ ⋅ ⋅ ⋅ ⊗ C(xr) is obviously invariant under the őrst two operations, and using this one immediately

reduces to the case in which

y1 = x1 ⋇ ax2,
y2 = x2,

...

yr = xr
for some a ∈ Ok.

Denote by Z ⊂ M the closed formal subscheme

Z(x1) ∩ ⋅ ⋅ ⋅ ∩ Z(xr) = Z(y1) ∩ ⋅ ⋅ ⋅ ∩ Z(yr)

(here and below, we use ∩ as a shorthand for ×M) and by Z ⊂ Z̃ its őrst-order inőnitesimal neighborhood inM.

Note that both sides of (5.1) are supported on Z in the strong sense: they are annihilated by the ideal sheaf

deőning Z.

For every 1 ≤ i ≤ r, deőne sections

si ∈ H0(Z̃(xi), ω−1℘Z̃(xi)),
ti ∈ H0(Z̃(yi), ω−1℘Z̃(yi))

by (recall Deőnition 4.2)

si =
{
{
{

obst(xi) if xi ̸= 0,
0 if xi = 0,

ti =
{
{
{

obst(yi) if yi ̸= 0,
0 if yi = 0.

Thus the zero loci of si and ti are Z(xi) and Z(yi), respectively. After restriction to

Z̃ ⊂ Z̃(x1) ∩ ⋅ ⋅ ⋅ ∩ Z̃(xr) ∩ Z̃(y1) ∩ ⋅ ⋅ ⋅ ∩ Z̃(yr)

these sections satisfy

t1 = s1 ⋇ as2,
and ti = si when i > 1. We will approximate s1, s2, and t1, in a noncanonical way, by sections deőned over

open subsets of M.
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Lemma 5.2. Around every point z ∈ Z one can őnd an open affine neighborhoodU = Spec(R) ⊂ M overwhichωU

is trivial, and sections

σ1, σ2 ∈ H0(U, ω−1U ) and α ∈ H0(U,OU) (5.2)

such that the following assertions hold:

(i) σ1 has zero locus Z(x1)U and agrees with s1 on Z̃(x1)U .
(ii) σ2 has zero locus Z(x2)U and agrees with s2 on Z̃(x2)U .
(iii) α restricts to the constant function a on Z(x2)U .
(iv) The section

τ1
def= σ1 ⋇ ασ2

has zero locus Z(y1)U and agreeswith t1 on the closed formal subscheme, lying between Z(y1)U and Z̃(y1)U ,
deőned by the ideal sheaf

IZ(y1)U ⋅ (IZ(y1)U ⋇ IZ(x2)U ) ⊂ OU .

Given another collection of sections

σ󸀠
1
, σ󸀠

2
∈ H0(U, ω−1U ) and α󸀠 ∈ H0(U,OU) (5.3)

satisfying the same properties, there is an element ξ ∈ Frac(R) such that

ξ ⋅ σ1 ⊗ σ󸀠1 = τ1 ⊗ σ󸀠1 − τ󸀠1 ⊗ σ1 (5.4)

and

ξ ⋅ IZ(x1)U ⊂ IZ(y1)U ⋅ IZ(x2)U .

Proof. Start with any connected affine open neighborhood U = Spf(R) of z ∈ U over which ωU ≅ OU , and őx

such an isomorphism. Write

Z(x1)U = Spf(R/Ix1 ),
Z(x2)U = Spf(R/Ix2 ),
Z(y1)U = Spf(R/Iy1 )

for ideals Ix1 , Ix2 , Iy1 ⊂ R, all ofwhich are contained in themaximal ideal p ⊂ R determinedby thepoint z ∈ U.
Identify the sections s1, s2, and t1 with R-module generators

s1 ∈ Ix1/I2x1 , s2 ∈ Ix2/I2x2 , t1 ∈ Iy1/I2y1 .

Next choose, for i ∈ {1, 2}, an arbitrary lift σi ∈ Ixi of si. Nakayama’s lemma implies Rpσi = RpIi, and so

there is some f ̸∈ p such that R[1/f]σi = R[1/f]Ii. After inverting f , and hence shrinking U, we may assume

that Rσi = Ii. We now have sections σ1 and σ2 satisfying properties (i) and (ii).

Choose anarbitrary lift τ̂1 ∈ Iy1 of t1. AgainusingNakayama’s lemma,wemay shrinkU in order to assume

that Rτ̂1 = Iy1 . The relation y1 = x1 ⋇ ax2 implies the equality

Z(y1) ∩ Z(x2) = Z(x1) ∩ Z(x2) (5.5)

of closed formal subschemes of M, and hence

Iy1 ⋇ Ix2 = Ix1 ⋇ Ix2 . (5.6)

Along the őrst-order inőnitesimal neighborhood of (5.5) in M we have t1 = s1 ⋇ as2. This implies that

τ̂1 ≡ σ1 ⋇ aσ2 modulo the square of (5.6), and so we may write

τ̂1 = σ1 ⋇ aσ2 ⋇ (Aτ̂21 ⋇ Bτ̂1σ2 ⋇ Cσ22)

for some A, B, C ∈ R. Now rewrite this as

τ1 = σ1 ⋇ ασ2,

where τ1 = τ̂1 − Aτ̂21 − Bτ̂1σ2 and α = a ⋇ Cσ2.
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By construction τ1 agreeswith τ̂1, hence alsowith t1, inR/Iy1 (Iy1 ⋇ Ix2 ). In particular, it generates Iy1/pIy1
as an R-module, and the above argument using Nakayama’s lemma allows us to shrink U in order to assume

that Rτ1 = Iy1 . The sections σ1, σ2, and α we have constructed satisfy properties (i), (ii), (iii), and (iv).
Now suppose we have another collection of sections (5.3) satisfying the same properties. As above, we

use ωU ≅ OU to identify σ󸀠
1
, σ󸀠

2
, α󸀠 ∈ R, so that

Rσ1 = Ix1 = Rσ󸀠1, Rσ2 = Ix2 = Rσ󸀠2, Rτ1 = Iy1 = Rτ󸀠1.

In the degenerate case where Ix1 = 0 (this can only happen when x1 = 0) we must have σ1 = 0 = σ󸀠1, and
any choice of ξ ∈ R will satisfy the stated properties. Thus we may assume Ix1 ̸= 0.

Deőne ξ ∈ Frac(R) by

ξ = ( τ1
σ1
− τ
󸀠
1

σ󸀠
1

) = (ασ2
σ1
− α
󸀠σ󸀠

2

σ󸀠
1

).

Weneed to show that Rξσ1 ⊂ Rτ1σ2. As R is regular, it is equal to the intersection of its localizations at height
one primes q ⊂ R, and every such localization Rq is a DVR. Thus it suffices to prove, for all such q,

ordq(ξσ1) ≥ ordq(τ1σ2). (5.7)

The conditions imposed on our sections imply the congruences

σ1 ≡ s1 ≡ σ󸀠1 (mod I2x1 ),
ασ2 ≡ as2 ≡ α󸀠σ󸀠2 (mod I2x2 ),

τ1 ≡ t1 ≡ τ󸀠1 (mod Iy1 (Iy1 ⋇ Ix2 )),

the őrst and third of which imply

σ1/σ󸀠1 ≡ 1 (mod Rσ1), (5.8)

τ1/τ󸀠1 ≡ 1 (mod Rτ1 ⋇ Rσ2).

First assume ordq(σ2) ≥ ordq(τ1), and note that τ1 = σ1 ⋇ ασ2 implies

ordq(σ1) ≥ min{ordq(τ1), ordq(ασ2)} = ordq(τ1).
It follows from this and (5.8) that σ1/σ󸀠1 ≡ 1 (modRqτ1), and hence

ξσ1 = ασ2 −
σ1

σ󸀠
1

⋅ α󸀠σ󸀠
2
≡ ασ2(1 − σ1

σ󸀠
1

) (mod Rqσ
2

2
).

This implies ξσ1 ≡ 0 (modRqτ1σ2), proving (5.7).
Now assume ordq(σ2) < ordq(τ1). The relation τ1 = σ1 ⋇ ασ2 implies

ord(σ1) ≥ min{ord(τ1), ord(ασ2)} ≥ ordq(σ2),
and also Rqτ1 ⋇ Rqσ2 = Rqσ2. The congruences of (5.8) therefore imply

σ1/σ󸀠1 ≡ 1 (mod Rqσ2),
τ󸀠
1
/τ1 ≡ 1 (mod Rqσ2),

and hence

ξσ1 = τ1(1 − σ1
σ󸀠
1

τ󸀠
1

τ1
) ≡ 0 (mod Rqτ1σ2).

Once again, this proves (5.7).

For a őxed z ∈ Z, choose an open neighborhood U ⊂ M and sections (5.2) as in Lemma 5.2.

Lemma 5.3. The choice of sections (5.2) determines an isomorphism

f : C(x1)U ⊗ C(x2)U ≅ C(y1)U ⊗ C(x2)U , (5.9)

and changing the sections changes the isomorphism by a homotopy.
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Proof. The choice of sections determines complexes of locally free OU -modules

D(x1) = (⋅ ⋅ ⋅→ 0→ ωU
σ1󳨀󳨀→ OU → 0),

D(x2) = (⋅ ⋅ ⋅→ 0→ ωU
σ2󳨀󳨀→ OU → 0),

D(y1) = (⋅ ⋅ ⋅→ 0→ ωU
τ1󳨀󳨀→ OU → 0),

and there are obvious isomorphisms

D(x1) ≅ C(x1)U , D(x2) ≅ C(x2)U , D(y1) ≅ C(y1)U .

Indeed, if x1 ̸= 0, then
⋅ ⋅ ⋅ // 0 // ωU

σ1
//

σ1

��

OU
// 0

⋅ ⋅ ⋅ // 0 // IZ(x1)U // OU
// 0

deőnes an isomorphism D(x1) ≅ C(x1)U . On the other hand, if x1 = 0, then σ1 = 0, and D(x1) = C(x1)U by

deőnition. The other isomorphisms are entirely similar.

To deőne f , it now suffices to deőne an isomorphism

g : D(x1) ⊗ D(x2) ≅ D(y1) ⊗ D(x2).

The complexes in question are

D(x1) ⊗ D(x2) = (⋅ ⋅ ⋅→ 0→ ωU ⊗ ωU
∂2󳨀󳨀→ ωU ⊕ ωU

∂1󳨀󳨀→ OU → 0),

D(y1) ⊗ D(x2) = (⋅ ⋅ ⋅→ 0→ ωU ⊗ ωU

∂∗
2󳨀󳨀→ ωU ⊕ ωU

∂∗
1󳨀󳨀→ OU → 0),

where the boundary maps are deőned by

∂1(η1, η2) = σ1(η1) ⋇ σ2(η2),
∂∗
1
(η1, η2) = τ1(η1) ⋇ σ2(η2),

∂2(η1 ⊗ η2) = (σ2(−η2)η1, σ1(η1)η2),
∂∗
2
(η1 ⊗ η2) = (σ2(−η2)η1, τ1(η1)η2)

for local sections η1 and η2 of ωU . By recalling that τ1 = σ1 ⋇ ασ2, the desired isomorphism is

⋅ ⋅ ⋅ // 0 // ωU ⊗ ωU
∂2

// ωU ⊕ ωU
∂1

//

g1

��

OU
// 0

⋅ ⋅ ⋅ // 0 // ωU ⊗ ωU

∂∗
2

// ωU ⊕ ωU

∂∗
1

// OU
// 0,

where g1(η1, η2) = (η1, η2 − αη1).
Having constructed the isomorphism (5.9), we now study its dependence on the sections (5.2). Suppose

we have another collection of sections (5.3), and hence two isomorphisms

f, f 󸀠 : C(x1)U ⊗ C(x2)U ≅ C(y1)U ⊗ C(x2)U .

Wemust prove that f and f 󸀠 are homotopic.

If x2 = 0, then y1 = x1, and the conditions imposed on the sections (5.2) imply that σ1 = τ1, σ2 = 0, and
α = a. From this it is easy to see that f = f 󸀠, and so henceforth we assume that x2 ̸= 0.

If x1 = 0 and y1 = 0, then the conditions imposed on (5.2) imply that σ1 = 0 and τ1 = 0. The relation
τ1 = σ1 ⋇ ασ2 and our assumption x2 ̸= 0 therefore imply that α = 0. Tracing through the deőnitions, we

again őnd that f = f 󸀠.
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If x1 ̸= 0 and y1 ̸= 0, then e = f − f 󸀠 is given explicitly by

0 // IZ(x1)U ⊗ IZ(x2)U
∂2

//

e2

��

IZ(x1)U ⊕ IZ(x2)U
∂1

//

e1

��

h1

vv

OU
//

0

��

h0

vv

0

0 // IZ(y1)U ⊗ IZ(x2)U
∂∗
2

// IZ(y1)U ⊕ IZ(x2)U
∂∗
1

// OU
// 0,

where the boundary maps are

∂1(η1, η2) = η1 ⋇ η2,
∂∗
1
(η1, η2) = η1 ⋇ η2,

∂2(η1 ⊗ η2) = (−η1η2, η1η2),
∂∗
2
(η1 ⊗ η2) = (−η1η2, η1η2),

and

e1(η1, η2) = (ξη1, −ξη1), e2(η1 ⊗ η2) = ξη1 ⊗ η2.
Here ξ is the rational function on U of Lemma 5.2 (ξ is uniquely determined by relation (5.4), as our assump-

tion x1 ̸= 0 implies that σ1 and σ󸀠
1
are nonzero). The dotted arrows, which exhibit the homotopy between e

and 0, are deőned by h0(η) = (0, 0) and h1(η1, η2) = −ξη1 ⋅ 1 ⊗ 1. Note that the deőnition of h1 only makes

sense because of the inclusion

ξ ⋅ IZ(x1)U ⊂ IZ(y1)U ⋅ IZ(x2)U
of Lemma 5.2.

If x1 = 0 and y1 ̸= 0, then e = f − f 󸀠 is given explicitly by

0 // ωU ⊗ IZ(x2)U
∂2

//

e2

��

ωU ⊕ IZ(x2)U
∂1

//

e1

��

h1

vv

OU
//

0

��

h0

vv

0

0 // IZ(y1)U ⊗ IZ(x2)U
∂∗
2

// IZ(y1)U ⊕ IZ(x2)U
∂∗
1

// OU
// 0,

where the boundary maps are

∂1(η1, η2) = η2,
∂∗
1
(η1, η2) = η1 ⋇ η2,

∂2(η1 ⊗ η2) = (−η2η1, 0),
∂∗
2
(η1 ⊗ η2) = (−η2η1, η2η1),

and, setting ζ = τ1 − τ󸀠1 ∈ H0(U, ω−1U ),

e1(η1, η2) = (ζ(η1), −ζ(η1)), e2(η1 ⊗ η2) = ζ(η1) ⊗ η2.

The dotted arrows, which exhibit the homotopy between e and 0, are deőned by

h0(η) = (0, 0) and h1(η1, η2) = −ζ(η1) ⋅ 1 ⊗ 1.

To make sense of the deőnition of h1, note that the relation y1 = ax2 implies Z(x2) ⊂ Z(y1), and hence

ζ(η1) ∈ IZ(y1)U ⋅ (IZ(y1)U ⋇ IZ(x2)U ) = IZ(y1)U ⋅ IZ(x2)U .

The case x1 ̸= 0 and y1 = 0 is entirely analogous to the previous case, and we leave the details to the

reader.

As yj = xj for j ≥ 2, the isomorphism of Lemma 5.9 determines an isomorphism

C(x1)U ⊗ ⋅ ⋅ ⋅ ⊗ C(xr)U ≅ C(y1)U ⊗ ⋅ ⋅ ⋅ ⊗ C(yr)U ,

whose homotopy class does not depend on the choices (5.2) used in its construction. Hence the induced

isomorphism

Hi(C(x1) ⊗ ⋅ ⋅ ⋅ ⊗ C(xr))U ≅ Hi(C(y1) ⊗ ⋅ ⋅ ⋅ ⊗ C(yr))U
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of OU -modules also does not depend on these choices. By varying U and gluing, we obtain an isomor-

phism (5.1) deőned over an open neighborhood of Z in M. We have already noted that both sides of (5.1)

are supported on Z, and so the isomorphism extends uniquely to all of M. This completes the proof of

Theorem 5.1.

A The exceptional divisor

Throughout this appendix we assume that k/ℚp is ramiőed. We want to explain why the KudlaśRapoport

divisors of Deőnition 2.4 are generally not ŕat over Ŏk.

Denote by 𝔽̆ = Ŏk/m̆ the residue őeld of ̆Ok. The two embeddings φ, φ : Ok → Ŏk necessarily reduce to

the uniqueℤp-algebra morphism Ok → 𝔽̆.

Deőnition A.1. The exceptional divisor Exc ⊂ M is the set of all points s ∈ M at which the action

i : Ok → End(Lie(Xs))

is through scalars; that is to say, the action factors through the unique morphism Ok → 𝔽̆. This is a closed
subset of the underlying topological space of M, and we endow it with its induced structure of a reduced

scheme over 𝔽̆.

Proposition A.2. The exceptional divisor Exc ⊂ M is a Cartier divisor, and is isomorphic to a disjoint union of

copies of the projective space ℙn−1 over 𝔽̆.

Proof. A point s ∈ M(𝔽̆) corresponds to a pair (X0s , Xs) over 𝔽̆, which we recall is really a tuple

(X0s , i0, λ0, ϱ0, Xs , i, λ, FXs
, ϱ) ∈ M(𝔽̆).

If s ∈ Exc(𝔽̆), then the action of Ok on Lie(X) is through the unique ℤp-algebra morphism Ok → 𝔽̆. This
implies that any codimension one subspace of F ⊂ Lie(Xs) satisőes Krämer’s signature condition as in Sec-

tion 2, and we obtain a closed immersion

ℙ(Lie(Xs)∨) 󳨅→ Exc

by sending F 󳨃→ (X0s , i0, λ0, ϱ0, Xs , i, λ, F, ϱ). In other words, vary the codimension one subspace in Lie(Xs)
and leave all other data őxed.

It is clear that Exc is the disjoint union of all such closed subschemes, and that every connected com-

ponent of Exc is reduced, irreducible, and of codimension one in M. The regularity of M then implies that

Exc ⊂ M is deőned locally by one equation.

Proposition A.3. Fix a nonzero x ∈ V, and any connected component D ⊂ Exc. For all k≫ 0we have D ⊂ Z(pkx).
In particular, Z(pkx) is not ŕat over Ŏk.

Proof. If we őx one point s ∈ D, Lemma 2.3 allows us to view

x ∈ HomOk
(X0s , Xs)[1/p].

For all k ≫ 0 we thus have pkx ∈ HomOk
(X0s , Xs). It follows from the characterization of D ≅ ℙn−1 found in

the proof of Proposition A.2 that the p-divisible groups X0D and XD are constant (that is, are pullbacks via

D → Spec(𝔽̆) of p-divisible groups over 𝔽̆), and hence the restriction map

HomOk
(X0D , XD)→ HomOk

(X0s , Xs)

is an isomorphism. Hence pkx ∈ HomOk
(X0D , XD) and D ⊂ Z(pkx).
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