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Abstract

We present a measurement of the cosmic microwave background lensing potential using 500 deg2 of 150 GHz data
from the SPTpol receiver on the South Pole Telescope. The lensing potential is reconstructed with signal-to-noise
per mode greater than unity at lensing multipoles L250, using a quadratic estimator on a combination of cosmic
microwave background temperature and polarization maps. We report measurements of the lensing potential power
spectrum in the multipole range of 100<L<2000 from sets of temperature-only (T), polarization-only (POL),
and minimum-variance (MV) estimators. We measure the lensing amplitude by taking the ratio of the measured
spectrum to the expected spectrum from the best-fit Λ cold dark mattermodel to the Planck2015 TT + low P +
lensing data set. For the minimum-variance estimator, we find =  A 0.944 0.058 Stat. 0.025 Sys. ;MV ( ) ( )
restricting to only polarization data, we find =  A 0.906 0.090 Stat. 0.040 Sys.POL ( ) ( ). Considering statistical
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uncertainties alone, this is the most precise polarization-only lensing amplitude constraint to date (10.1σ) and is
more precise than our temperature-only constraint. We perform null tests and consistency checks and find no
evidence for significant contamination.

Key words: cosmology: cosmic background radiation – large-scale structure of the universe

1. Introduction

Gravitational potentials associated with large-scale structure
deflect the paths of cosmic microwave background (CMB)
photons as they propagate from the surface of last scattering—a
process called gravitational lensing(Blanchard & Schneider
1987). Gravitational lensing breaks the statistical isotropy of
the CMB and introduces correlations across CMB temperature
and polarization fluctuations on different angular scales. These
correlations are proportional to the projected gravitational
potentials integrated along the line of sight and therefore can be
used to reconstruct the lensing potential(Lewis & Challinor
2006). The lensing potential is a probe of the growth of large-
scale structure and the geometry of the universe between the
epoch of recombination and today. Thus, from CMB observa-
tions alone, we can extract information about the universe at
both the redshift of last scattering (z;1100) and the redshifts
of structure formation (z3) and dark energy domination.
This makes CMB lensing a powerful tool for pursuing some of
the most ambitious goals in cosmology and particle physics
today(e.g., CMB-S4 Collaboration et al. 2016), including
constraining the sum of neutrino masses and the amplitude of
primordial gravitational waves(Lesgourgues & Pastor 2006;
Kamionkowski & Kovetz 2016).

While using the CMB lensing measurements from this work,
we will not detect the sum of neutrino masses or significantly
constrain primordial gravitational waves through delensing
(Manzotti et al. 2017), these measurements will nevertheless
provide relevant constraints to parameters of the standard
cosmological model lambda cold dark matter (ΛCDM). This is
of particular interest currently because some optical probes of
gravitational lensing are in mild tension with Planck’s CMB +
lensing constraints on matter density and fluctuations(Abbott
et al. 2018; Hildebrandt et al. 2018; Hikage et al. 2019). The
optical lensing measurements use the effect of gravitational
lensing on the apparent shapes of background galaxies to
measure the intervening gravitational potentials. Compared
with using galaxies, an attractive characteristic of CMB lensing
is that the source plane has nearly Gaussian statistics with a
well-characterized angular power spectrum and is at a high and
well-known redshift z=1089.8±0.2 (Planck Collaboration
et al. 2016b, 2018a). Owing to the high-redshift source plane,
CMB lensing probes the integrated matter fluctuations to
redshifts beyond optical surveys. Furthermore, CMB lensing
measurements have different instrumental and astrophysical
systematics compared with those from optical surveys. The use
of independent probes will therefore help us investigate the
source of the tension. It is thus an important goal for us to
identify potential sources of instrumental and/or astrophysical
systematics as the field advances the precision of CMB lensing
measurements.

In the last few years, CMB lensing has entered the era of
precision measurements. This lensing effect was first detected
through cross correlations with radio sources(Smith et al.
2007). Since then, the CMB lensing potential power spectrum
has been measured by multiple groups using temperature data
only (T, Das et al. 2011; van Engelen et al. 2012; Planck

Collaboration et al. 2014; Omori et al. 2017), polarization data
only (POL, POLARBEAR Collaboration et al. 2014; BICEP2
Collaboration et al. 2016), and combinations of temperature
and polarization data(Story et al. 2015; Sherwin et al. 2017;
Planck Collaboration et al. 2018b). The most precise lensing
amplitude measurement, at 40σ, comes from Planck’s mini-
mum-variance (MV) estimator that combines both temperature
and polarization estimators; in that measurement, the temper-
ature reconstruction contributes most of the signal-to-noise
ratio (S/N). More generally, in prior lensing measurements that
used both temperature and polarization maps, the T estimator
has always dominated the overall measurement precision. In
this work, for the first time, the polarization-only (POL)
measurement is more constraining than the T measurement.
Furthermore, if we consider only the statistical uncertainty,
we have a 10% constraint (10.1σ) on the lensing amplitude
using polarization data alone—the tightest constraint of its kind
to date.
In this work, we extend the lensing measurement to a

500 deg2 field from the 100 deg2 field of Story et al. (2015,
hereafter S15). We build on the lensing pipeline presented
in S15 with two main modifications. First, instead of including
the Monte Carlo (MC) bias—the difference between the
recovered lensing spectrum from simulation and the input
spectrum—as a systematic uncertainty, we identify its main
contributor and correct for the bias using a multiplicative
correction factor. Second, instead of treating extragalactic
foreground biases as negligible, we subtract an expected
foreground bias from the T and MV lensing spectra.
Because the input CMB maps are of similar depths as those

used in S15, we also measure lensing modes with S/N better
than unity for L250. However, in this analysis, we have ∼5
times more sky area and therefore are able to make a more
precise measurement of the lensing spectrum. With both the T
and POL lensing amplitudes well constrained, we improve the
precision of the MV lensing amplitude measurement from S15ʼs
14% to 6%. This is approaching the ∼3% precision of the
lensing amplitude measurement from Planck(Planck Collabora-
tion et al. 2018b). These two measurements arrive at their
respective precisions from very different regimes: while the
Planckmeasurement covers 67% of the sky, each lensing mode
is measured with low S/N; our measurement covers only 1% of
the sky, but many lensing modes are measured with high S/N.
When our measurements are projected to cosmological para-
meter space, the constraint in the σ8–ΩM plane is only slightly
weaker than those from Planck(Planck Collaboration et al.
2018b). This will be useful in illuminating the aforementioned
mild tension between optical probes and Planck. In a future
paper, we will present cosmological parameter constraints and
comparisons with other lensing probes.
This paper is organized as follows: in Section 2, we describe

the data set used and the simulated skies generated for this
analysis. In Section 3, we summarize the lensing analysis
pipeline and describe new aspects. We present the lensing
measurements in Section 4 and show that our measurements are
robust against systematics in Section 5.1. In Section 5.2, we
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account for systematic uncertainties from sources that can bias
the lensing measurement. We conclude in Section 6.

2. Data and Simulations

In this section, we describe the SPTpol survey, the data
processing steps taken to generate the data maps, and the
simulated skies generated for this analysis.

2.1. SPTpol 500 deg2 Survey

The South Pole Telescope (SPT, Padin et al. 2008; Carlstrom
et al. 2011) is a 10m diameter off-axis Gregorian telescope
located at the Amundsen-Scott South Pole Station in Antarctica.
In this work, we use data from the 150 GHz detectors from the
first polarization-sensitive receiver on SPT, SPTpol. The SPTpol
500 deg2 survey spans 4 hours in right ascension (R.A.), from
22h to 2h, and 15° in declination, from −65° to −50°. We use
observations conducted between 2013 April 30 and 2015
October 27 (after the 100 deg2 survey for S15 was finished),
which include 3491 independent maps of the 500 deg2 survey
footprint. The field was observed using two strategies. Initially,
we used a “lead-trail” scanning strategy, where the field was
divided into two halves in R.A. The telescope first scanned the
lead half and then switched to the trail half such that they were
both observed over the same range in azimuth, and therefore the
same patch of ground. In 2014 May, the scanning strategy was
switched to a “full-field” strategy, in which the full R.A. range of
the field was covered in a single observation.

2.2. Data Processing

The data reduction for this set of maps follows that applied
to the TE/EE power spectrum analysis of the same
field(Henning et al. 2018, hereafter H18). We therefore
highlight here only aspects that are different or are particularly
relevant for this analysis.

An observation is built from a collection of constant-elevation
scans, where the telescope moves from one end of the R.A.
range to the other. For every scan, we filter the time streams,
which corresponds in map space to mode removal along the scan
direction. We subtract from each detector’s time stream a
Legendre polynomial as an effective high-pass filter. We choose
a third-order polynomial for the lead-trail scans and a fifth-order
polynomial for the full-field scans. We combine this with a high-
pass filter with a cutoff frequency corresponding to angular
multipole ℓ=100 in the scan direction. During the polynomial
and high-pass filtering step, regions within 5′ of point sources
brighter than 50mJy at 150 GHz are masked in the time streams
to avoid ringing artifacts. Finally, we low-pass the time streams
at an effective multipole of ℓ=7500 in the scan direction to
avoid high-frequency noise aliasing into the signal due to the
adopted pixel resolution of 1′ in the maps.

Electrical cross talk between detectors can bias our measure-
ment. In S15, we accounted for this bias as a systematic
uncertainty of 5% on the MV lensing amplitude. In this analysis,
we correct the cross talk between detectors at the time stream
level as described in H18. With this correction, cross talk is
suppressed by more than an order of magnitude. With the 5%
uncertainty from S15 being an upper limit before this
suppression, we conclude that the residual cross talk introduces
negligible bias to our lensing amplitude measurement.

Before binning into maps, we calibrate the time streams
relative to each other using observations of the HII region

RCW38 and an internal chopped thermal source. The per-
detector polarization angles are calibrated based on measure-
ments from a polarized thermal source(Crites et al. 2015).
After that, the time stream data are binned into T/Q/U maps
with 1′×1′ pixels using the oblique Lambert azimuthal equal-
area projection.
We apply the following corrections to the coadded map of the

individual observations to obtain the final map: T P
monopole subtraction, global polarization rotation, absolute
calibration, and source and boundary masking. We measure
T P leakage by taking a weighted average over multipole

space of the cross correlation of the temperature map with either
the Q or the U map. We find leakage factors of òQ=0.018 and
òU=0.008. We obtain their uncertainties from the spread of
leakage factors derived from 100 different half-splits of the data
and find the fractional uncertainties to be 0.1% and 0.3%,
respectively. We deproject a monopole leakage term from the
maps by subtracting a copy of the temperature map scaled by
these factors from the Q and U maps.
Assuming ΛCDM cosmology, we expect the cross spectra

TB and EB to be consistent with zero. Therefore, we can
estimate and apply the global polarization angle rotation
needed to minimize the TB and EB correlations(Keating et al.
2013). We find the rotation angle to be 0°.63±0°.04 and rotate
the Q and U maps accordingly.
The final absolute calibration is obtained by comparing the

final coadded SPTpol T map with Planckover the angular
multipole range 600<ℓ<1000. Specifically, we take the
ratio of the cross spectrum of two half-depth SPTpol maps to
the cross spectrum of full-depth SPTpol and Planck maps and
require the ratio to be consistent with 1 to determine the
calibration factor. We estimate the polarization efficiency (or
polarization calibration factor) similarly, by comparing a full-
depth SPTpolE-mode map with the Planck E-mode map. The
temperature and polarization calibration factors (Tcal and Pcal) as
derived are 0.9088 and 1.06, respectively (see H18 for details).
We apply Tcal to the temperature map and Tcal×Pcal to the
polarization maps to obtain calibrated temperature and
polarization maps. In the legacy Planckrelease, their polariza-
tion efficiency estimates are found to be potentially biased at
the 1%–2% level(see Table 9 of Planck Collaboration et al.
2018c). To circumvent potential biases when we tie our
polarization map calibration to Planck’s E-mode map, we
adjust Pcal by a multiplicative factor obtained from H18 without
using Planck’s polarization maps. In H18, Tcal and Pcal were free
parameters in the fits of the PlanckTT+SPTpol EETE data
set to the ΛCDM+ foregrounds + nuisance parameters model,
with priors set by the Tcal and Pcal values and uncertainties
derived from the comparison against Planck described above.
In this work, we multiply Pcal by the best-fit Pcal parameter
(1.01) from H18 (see Table 5 of H18). In Section 5.2, we use
the posterior uncertainties of the Tcal and Pcal parameters to
quantify their contributions to the systematic uncertainties of
the lensing amplitude measurements.
We apply a mask that defines the boundary of the T/Q/U

maps to downweight the noisy field edges. In addition, we
mask bright point sources in the map. We use a 5′ radius to
mask point sources from the SPT-SZ catalog by W. Everett
et al. (in preparation) with flux density above 6 mJy at either 95
or 150 GHz that are in the 500 deg2 footprint. We use a 10′
radius for point sources with flux density greater than 90 mJy at
either 95 or 150 GHz. Clusters detected in Bleem et al. (2015)
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within the 500 deg2 survey footprint are masked using a 10′
radius. The mask has a top hat profile for both the boundary and
the sources, and mode mixing due to the mask is suppressed
by the inverse-variance map-filtering step (Section 3.2). We
compare this lensing measurement with one using a cosine-
tapered apodization on the mask edges in Section 5.2 and find
them to be consistent.

The noise levels in the coadded maps are 11.8 μK–arcmin in
temperature and 8.3 μK–arcmin in polarization over the
multipole range 1000<ℓ<3000.42 The map depth is similar
to that of the 100 deg2 field used in S15.43 Because this map
covers five times the sky area, the sample variance of the
lensing power spectrum is reduced and hence the lensing
spectrum measurement precision is improved.

2.3. Simulations

We use simulated skies to estimate the mean-field (MF) bias
fMF¯ to the lensing potential map (Section 3.1), to correct the
analytical response of the lensing estimator (Section 3.1), to
correct the expected biases (NL

0 ,RD( ) and NL
1( ), see Section 3.3)

in the raw lensing power spectrum, and to estimate the
uncertainties of the lensing measurements (Section 4).

The simulated skies contain the CMB, foregrounds, and
instrumental noise. The input cosmology for generating the
CMB is the best-fit ΛCDM model to the PlanckplikHM_
TT_lowTEB_lensing data set(second column in Table 4
of Planck Collaboration et al. 2016a). Using the best-fit
cosmology, we use CAMB44 to generate theory spectra, which
are then fed into HEALPIX(Górski et al. 2005) to generate the
spherical harmonic coefficients aℓm for T, E, B, and the lensing
potential f. The CMB aℓm are projected to maps and lensed by
f using LENSPIX(Lewis 2005). The lensed maps are then
converted back to aℓm, at which point foreground fluctuations
are added, and the aℓm are multiplied by the ℓ-space instrument
beam window function. The aℓm are subsequently projected on
an equidistant cylindrical projection grid for mock observation,
which produces mock skies that are processed identically as the
real sky.

The foreground components are generated as Gaussian
realizations of model angular power spectra. We include power
from thermal and kinematic Sunyaev–Zel’dovich effects (tSZ
and kSZ), the cosmic infrared background (CIB), radio sources,
and galactic dust. The amplitudes for tSZ, kSZ, and CIB
components are taken from George et al. (2015), which has the
same source masking threshold as this work. We use an
amplitude =

+Dℓ 3000
tSZ kSZ=5.66 μK2 with a model shape from

Shaw et al. (2010) for the sum of tSZ and kSZ components.45

We use ==D 1.06ℓ 3000
radio μK2 with Dℓ∝ℓ2 for the radio source

component. We use ==D 9.16ℓ
P

3000
CIB, μK2 with Dℓ∝ℓ2 for the

unclustered CIB component and ==D 3.46ℓ 3000
CIB,cl μK2 with

Dℓ∝ℓ0.8 for the clustered CIB. By modeling these terms as
Gaussian, we have neglected the potential bias their non-
Gaussianities can introduce to the lensing spectrum. We treat
this potential bias explicitly later in the analysis (see
Section 3.3). We assume a 2% polarization fraction for all
the Poisson-distributed (unclustered) components to model
extragalactic polarized emission(Seiffert et al. 2007). We
model galactic dust power in temperature and polarization as a
power law with Dℓ∝ℓ−0.42, with ==D 1.15ℓ 80

TT,dust μK2,
==D 0.0236ℓ 80

EE,dust μK2, and ==D 0.0118ℓ 80
BB,dust μK2(Keisler

et al. 2015).
The instrumental noise realizations are generated by

subtracting half of all the observations from the other half.
By randomly grouping the observations into one of the halves,
we create 500 different realizations of noise from the data
themselves. The noise realizations are added to the simulated
skies after mock observation.
We generate 500 lensed skies including CMB, foregrounds,

and noise. All 500 skies are used for estimating the lensing
spectrum bias NL

0 ,RD( ) . We use 100 skies to estimate the MF
(fMF¯ , see Section 3.1): 50 for each of the two lensing potential

f estimates that enter the lensing spectrum calculation (fL
UVˆ

and fL
XYˆ in Equation (6)). We use the other 400 to correct the

analytical response of the lensing estimator and to obtain the
statistical uncertainty of the lensing spectrum. In addition, we
generate 500 unlensed skies with all other inputs being
identical. We use this set of simulations for testing the lensing
pipeline and assessing the probability of detecting lensing from
unlensed skies.
The NL

1( ) bias is estimated using a different set of 200 lensed
skies. We start with 200 realizations of unlensed skies and
divide them into two groups. We then lens one sky from each
group by the same f (Section 3.3). We do not add instrumental
noise or foregrounds to this set of simulations, because NL

1( )

comes from correlations between the CMB and the lensing
modes. At the map-filtering step, we filter this set of
simulations assuming the same level of foregrounds and noise
as the other set of lensed skies.

3. Lensing Analysis

In this section, we describe the lensing pipeline that produces
an unbiased estimate of the lensing potential and of the lensing
power spectrum. This analysis follows that of S15 except for
the treatment of the MC bias and foreground subtraction in the
lensing spectrum. We summarize the steps here and refer the
reader to S15 for details.

3.1. Estimating the Lensing Potential

The unlensed CMB sky is well approximated by a
statistically isotropic, Gaussian random field. Gravitational
lensing breaks the statistical isotropy of the fluctuations and
introduces correlations between the otherwise uncorrelated
Fourier modes of the CMB temperature and polarization maps.
We use these correlations to estimate the underlying lensing
potential with pairs of filtered maps using the quadratic
estimator of Hu & Okamoto (2002):

òf = - -ℓd W X Y , 1L ℓ ℓ L ℓ ℓ L
XY XY2

, *¯ ¯ ¯ ( )

42 The temperature map noise is higher than the polarization map noise in this
multipole range because of atmospheric noise contributions.
43 The noise levels provided in S15 were estimated without the Tcaland Pcal
corrections and are thus higher.
44 http://camb.info
45 Given that we mask all clusters in the Bleem et al. (2015) catalog, this tSZ
level is high by ∼2 μK2. As a result, we nonoptimally downweight high-ℓ
modes in the temperature data map and slightly overestimate the NL

(0)

noise (Section 3.3). We compare the analytic NL
0( ) between ==

+Dℓ 3000
tSZ kSZ

5.66 μK2and ==
+D 3.61ℓ 3000

tSZ kSZ μK2 (keeping all other inputs equal) and find
that the latter is ∼2% lower. Because there is both signal and noise variance in
the uncertainty of the lensing amplitude measurement, and the T lensing
amplitude uncertainty is 12% (see Section 4), the T lensing amplitude would at
most be reduced by ∼2% of 12%, which is negligible.
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where X̄ and Ȳ are filtered T, E, or B fields as outlined in
Section 3.2, W is a weight function unique to each input pair
of XY maps, ℓ are modes of the CMB, and L are modes of
the lensing potential. We form lensing potentials from XY ä
[TT, TE, EE, EB, TB] and modify W from Hu & Okamoto
(2002) by replacing the unlensed CMB spectra with lensed
spectra to reduce a higher-order bias(NL

(2), Hanson et al. 2011).
As written, f̄ is a biased estimate of f. To arrive at an unbiased
estimate of f, we remove an additive bias (the MF) and
normalize the estimator by the response (defined below).

The MF can arise from masking and inhomogeneous noise—
sources that introduce mode coupling across angular scales.
These mode couplings persist even when the CMB and f
realizations are different. We can therefore estimate the MF by
averaging f̄ from many realizations of input lensed CMB
maps. For the L range considered in this work, the MF is
subdominant compared with the lensing signal spectrum.
Specifically, it is 30% of the lensing power spectrum in the
first L bin. It grows larger toward larger angular scales,
dominated by the effect of the mask.

We construct the response using an analytical calculation
corrected by simulations. The analytic response of the estimator
R L
XY ,Analytic

∣ ∣ is

ò= ´- - - ℓR d W W , 2L ℓ ℓ L ℓ ℓ L ℓ L
XY XY XY

ℓ
X Y,Analytic 2

, , ( )∣ ∣

where = + - C Nℓ
X

ℓ
XX

ℓ
XX 1( ) describes the diagonal approx-

imation to the filter applied to the input CMB maps (Section 3.2).
Because this filter assumes spatial stationarity of the statistics of
the signal and the noise, it does not account for nonstationary
effects from, for example, the boundary and source mask and
causes the response to be slightly misestimated. To account for
this, we use simulations to estimate the correction to the analytic
response. The total response is thus = ´R RL L

XY XY ,Analytic
∣ ∣ ∣ ∣

RL
XY ,MC, with RL

XY ,MC denoting the correction estimated from
simulations. We extract RL

XY ,MC by first taking the cross spectrum

between the input fin and the intermediate f estimate f¢XYˆ , which
has been MF subtracted and normalized by the analytic response:

f f f¢ = - RL L L L
XY XY XY XY,MF ,Analyticˆ ( ¯ ¯ ) ∣ ∣ . We then take the ratio of

the average of the cross spectra f fá ¢ ñL L

XYin* ˆ averaged within each
L annulus with the input spectrum over 400 simulation
realizations. Similar to S15, we find the RL

XY ,MC to be a �10%
correction.

The normalized and MF-corrected f̂ is

f f f= -
R

1
3L

L
L L

XY

XY

XY XY ,MFˆ ( ¯ ¯ ) ( )
∣ ∣

for the individual estimators where XY ä [TT, TE, EE, EB, TB].
In this work, we use T to denote the lensing potential and

spectrum constructed using only temperature data, that is, fL
TTˆ

and its spectrum. We use POL to denote the potential and
spectrum constructed using only polarization data, and MV to
denote the potential and spectrum constructed using both
temperature and polarization data.

To construct the combined MV and POL estimators, we first
form a weighted average of the input estimators to form the
intermediate f ¢Lˆ . We use the inverse-noise variance of the input

estimators as weights, which are approximated by their
analytical responses. We then extract RMC

L by forming cross

spectra between f ¢L
MVˆ or f ¢L

POLˆ with the input fL
in. Putting it all

together, the unbiased MV and POL lensing potentials are
constructed as

å
å

f
f f

=
-

R R

1
, 4L

L L

LL
MC

XY

XY XY

XY
XY

,MF

,Analytic
ˆ

¯ ¯
( )

∣ ∣

where XY ä [TT, TE, EE, EB, TB] for the MV estimator and
XY ä [EE, EB] for the POL estimator.

3.2. Input CMB Map Filtering

We filter our input maps with an inverse-variance (C−1)
filter, which is derived such that the variance of a lensing field
reconstructed by a quadratic estimator is minimized. The filter
is constructed identically as in S15: we assume the data maps to
be composed of three components: sky signal, “sky noise,” and
pixel domain noise. The sky signal and noise are modeled in
the Fourier domain and they include the CMB, astrophysical
foregrounds, and atmospheric noise. The pixel domain noise is
modeled as white, uncorrelated, and spatially nonvarying inside
the mask. Concretely, we solve for the inverse-variance filtered
Fourier modes X̄ in the following expression using conjugate-
gradient-descent:

+ =- - -S P n P SX P n d. 51 1 1[ ] ¯ ( )† †

Here º +S C Nℓ
XX

ℓ
XX describes the sky signal and noise

components, n−1 is the inverse of the map noise variance and is
zero for masked pixels, P applies the filter transfer function,
and inverse-Fourier transforms the map from pixel space to
Fourier space. P additionlly transforms Q/U to E/B for
polarization maps, and d denotes the input pixel-space T/Q/
U maps.
This filter approaches the simple form = =-X S P d1¯ †

+ -C N Xℓ
XX

ℓ
XX 1( ) in regions far away from the mask boundary.

To see that, one can absorb the pixel-domain noise into the Nℓ
XX

term (which is valid under our model of the data for pixels far
from the mask boundary); in the limit where n 0, the
diagonal form is exact.
The inputs to this filter are as follows. For the sky signal

component of S, we use the same lensed CMB and
astrophysical foreground spectra used to generate simulations
(Section 2.3). For the sky noise component, we take the
averaged power spectra from the temperature and polarization
noise realizations and from them subtract noise floors of 7 μK–
arcmin to form Nℓ

XX . We set 7 μK–arcmin as the white noise
level of the pixel-domain noise of the T, Q, and U maps. The
filter transfer function P includes time stream filtering,
beam, and pixel-window function. We approximate the time
stream filtering transfer function using simplified simulations
that capture the lost modes along the ℓx=0 axis due to
our scan strategy. We measure the SPT beam using the
response of the detectors to Venus, as was done in H18. In
addition, we fit the measured beam with a function of form

= å -=B ℓ A ℓ ℓexp 0.5i i i
p

1,2
i( ) ( ( ) ) to obtain a smooth profile

at ℓ<400. We incorporate the pixel-window function for the
map pixel size of 1′×1′. Our input CMB map ℓ range for this
analysis is >ℓ 100x∣ ∣ set by the time stream ℓ-space high-pass
filter and <ℓ 3000∣ ∣ set by concerns of foreground contamina-
tion (Section 5.2).
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3.3. Estimating the Lensing Potential Power Spectrum

Upon obtaining the unbiased estimate of the lensing
potential f̂, we calculate the raw power spectrum of the

lensing potential f fCL
UV XYˆ ˆ

by forming cross spectra of fL
XYˆ and

fL
UVˆ where UV, XY ä [TT, TE, EE, EB, TB]:

å f fº á ñf f -

=

C f , 6
L

L LL
L

UV XY
mask
1

UV XY
*ˆ ˆ ( )ˆ ˆ

∣ ∣

where fmask is the average value of the fourth power of
the mask.

This power spectrum is biased, and we correct four sources
of bias in this analysis. Two of them, the NL

0( ) and NL
1( ) biases,

arise from spurious correlations of the input fields. The third
source of bias comes from foregrounds, D ffCL

,FG. Finally, we
correct for a multiplicative bias due to higher-order coupling of
the source mask fPS. Therefore, the unbiased lensing spectrum
is estimated as

= - - - D
ff ff ffC f C N N C . 7L L L L LPS

0 ,RD 1 ,FGˆ [ ] ( )ˆ ˆ ( ) ( )

Figure 1 shows NL
0 ,RD( ) , NL

1( ), and ΔCL
ff,FG for the MV

reconstruction. NL
0 ,RD( ) and NL

1( ) are similar to those in S15
because the CMB map noise levels for these two works are
about the same. We describe how each bias term is estimated in
the following paragraphs.

The lensing spectrum is a 4-point function, or trispectrum, of
the observed fields and thus contains, in addition to the
connected term caused by lensing, a disconnected term from
correlations of Gaussian fields (NL

0( )). Secondary contractions
of the trispectrum give rise to connected terms that also bias the
lensing spectrum (NL

1( )). It is called NL
1( ) because it is first order

in ffCL (Kesden et al. 2003; Hanson et al. 2011). We estimate
the power of the NL

0( ) and NL
1( ) terms using simulations and

subtract them from the raw lensing spectrum.
We estimate the disconnected term using a realization-

dependent method (NL
0 ,RD( ) , Namikawa et al. 2013). The

standard NL
0( ) is estimated by computing the lensing spectra

with two input maps that form f̂ from different simulation
realizations. Because input maps from different realizations do
not share the lensing potential, the resultant power in the
lensing spectra comes from spurious correlations of the maps.
With the realization-dependent method, we use a combination
of simulation and data maps. Specifically, on top of the mix of
simulation realizations, we also construct lensing potentials
using data in one of the input maps. Accounting for all the
different combinations, we have

=á+

+

+

+

-

- ñ

ff

ff

ff

ff

ff

ff

¢ ¢

¢ ¢ ¢

N C U V X Y

C U V X Y

C U V X Y

C U V X Y

C U V X Y

C U V X Y

, , ,

, , ,

, , ,

, , ,

, , ,

, , , , 8

L L

L

L

L

L

L

0 ,RD
d MC d MC

MC d d MC

d MC MC d

MC d MC d

MC MC MC MC

MC MC MC MC MC,MC

[ ¯ ¯ ¯ ¯ ]

[ ¯ ¯ ¯ ¯ ]

[ ¯ ¯ ¯ ¯ ]

[ ¯ ¯ ¯ ¯ ]

[ ¯ ¯ ¯ ¯ ]

[ ¯ ¯ ¯ ¯ ] ( )

( ) ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

where f fCL
UV XYˆ ˆ

is expressed as ffC U V X Y, , ,L [ ¯ ¯ ¯ ¯]ˆ ˆ
to more clearly

indicate the sources of the input maps. Here MC and MC′
denote simulation skies from different realizations, and d

denotes the data map. The realization-dependent method
produces a better estimate of the disconnected term because
it reduces the bias from the mismatch between the fiducial
cosmology used for generating the simulations and that in the
data. In addition, this method reduces the covariance between
the lensing potential bandpowers.
The second bias term NL

1( ) comes from spurious correlations
between the CMB and the lensing potential and is proportional
to ffCL . We estimate it using pairs of simulated skies that have
different realizations of unlensed CMB lensed with the same f:

=á+

+

-

- ñ

ff
f f f f

ff
f f f f

ff

ff

¢ ¢

¢ ¢

¢ ¢

¢ ¢ ¢

N C U V X Y

C U V X Y

C U V X Y

C U V X Y

, , ,

, , ,

, , ,

, , , , 9

L L

L

L

L

1
,MC ,MC ,MC ,MC

,MC ,MC ,MC ,MC

MC MC MC MC

MC MC MC MC MC,MC

1 1 1 1

1 1 1 1

[ ¯ ¯ ¯ ¯ ]

[ ¯ ¯ ¯ ¯ ]

[ ¯ ¯ ¯ ¯ ]

[ ¯ ¯ ¯ ¯ ] ( )

( ) ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

where the subscript f1 denotes CMB maps lensed by the same
f realization.
We account for biases to the lensing spectrum due to

foregrounds in the temperature map. As studied in van Engelen
et al. (2014), both tSZ and CIB have a trispectrum, which leads
to a response in the lensing power spectrum. This bias enters
the lensing spectrum through the 4-point function of the
temperature map, thus modifying the T spectrum and the MV

Figure 1. Bias terms subtracted from the raw MV lensing spectrum: NL
0 ,RD( ) ,

NL
1( )(converted to CL

κκ units, Equation (12)), and foreground biasD kkCL
,FG. The

theoretical lensing convergence spectrum for the fiducial cosmology is shown
as a black line. The disconnected term in the CMB 4-point function NL

0 ,RD( ) is
shown as a dashed yellow line (Equation (8)). The spurious correlated power
between the CMB and the lensing potential NL

1( ) is shown as a dashed pink line
(Equation (9)). The sum of these two terms is labeled “total noise bias” in the
figure as a solid green line. The foreground bias from the tSZ trispectrum, CIB
trispectrum, and the tSZ and CIB correlation with κ is shown as a dashed dark
blue line (Section 3.3). The total noise bias is also an estimate of the noise in
the reconstructed f map. Lensing modes with values of L for which the total
bias is less than the signal spectrum are measured at S/N greater than unity. For
this measurement, that includes all modes with L250, or angular scales of
roughly a degree and larger.
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spectrum. Additionally, Because both tSZ and CIB trace the
same large-scale structure as the lensing field, the non-
Gaussianities of both fields can mimic lensing and couple
through the f estimator in a coherent way that correlates with
f, forming a nonzero bispectrum of the matter density field
(denoted by tSZ2-κ and CIB2-κ). This effect biases the MV
lensing spectrum and spectra from pairs of estimators of the
form f fá ñTT UV , where UV ä [TT, TE, EE, EB, TB]. The level of
foreground bias is scale dependent. It is negative and close to
flat at ∼2% for L<1300 for the total bias contributed from
tSZ and CIB through their trispectra and correlations with f.
As L increases, the magnitude of this bias decreases and
reaches a null at about L of 2000. We subtract the relevant
terms from the T and MV spectra by using the bias estimates
from van Engelen et al. (2014). Specifically, we subtract the
total foreground bias coming from the tSZ trispectra, CIB
trispectra, tSZ2-κ, and CIB2-κ from the T lensing spectrum. For
the MV spectrum, we subtract the total foreground bias that
enters through f fá ñTT TT and tSZ2-κ and CIB2-κ biases that
enter through f fá ñTT UV with UV ä [TE, EE, EB, TB]. We
compute the bias fraction by forming a weighted average of the
foreground biases to f fá ñTT TT and f fá ñTT UV . We use as
weights the fractional contribution of the estimators to the MV
estimator. The size of this bias in the MV spectrum is shown in
Figure 1.

MC bias describes the difference between the recovered
amplitude in simulations and the input spectrum. It is typically
found to be small(e.g., Sherwin et al. 2017; Planck
Collaboration et al. 2018b). In S15, we found that the mean
MV amplitude AMV from simulations was 3% below unity and
treated this discrepancy as a source of systematic uncertainty.
In this work, we find that the main source of our MC bias
comes from the inclusion of the point source and cluster mask.
When analyzing the set of simulations with the source mask
removed (while keeping the boundary mask), we are able to
recover AMV=1 to within 1σ of the standard error of 400 sky
realizations ( =0.058 400 0.0029) for the multipole range
we report in this work. Furthermore, comparing the mean
recovered spectrum of the MV, POL, and T estimators with and
without the source mask applied to the input maps, we observe
a relatively constant multiplicative offset in the range of
100<L800. We therefore conclude that the main source of
our MC bias is due to higher-order coupling generated from the
presence of source masks in the map that is not accounted for
by fmask. We construct a multiplicative correction for this MC
bias fPS as an inverse of the mean of the simulation lensing
amplitudes Alens estimated from 100<L<602:

= á ñ-f A . 10XY UV XY UV
PS

,
lens

, 1 ( )

To check the stability of this estimate, we vary the maximum L
range used between 446 and 813 and find the resultant
simulation Alens from all pairs of estimators to be consistent
with unity to within 2σ of their standard errors. The correction
from this step is about 5%. Specifically, fPS for the MV, POL,
and T are fPS

MV=1.05, fPS
POL=1.05, and fPS

T =1.07. For
L<100, the mean of the simulation spectra with the source
mask removed is 5%–10% below the input spectrum. There-
fore, this MC bias correction is not applicable for multipoles
below 100, and we do not report results below L of 100.

In constructing our simulations and applying the quadratic
estimator to recover the lensing potential, we have assumed f

to be Gaussian. However, nonlinear structure growth and post-
Born lensing would introduce non-Gaussianities to f(Böhm
et al. 2016; Pratten & Lewis 2016). These non-Gaussianities
produce the so-called NL

3 2( ) bias, as studied in Böhm et al.
(2016, 2018) and Beck et al. (2018). For the L range
considered, the size of this bias is ∼0.5% for the temperature
reconstruction and is negligible for the EB reconstruction for
input CMB maps similar in noise levels and multipole range to
those in this work(Beck et al. 2018; Böhm et al. 2018). These
are small compared with our other sources of uncertainties, and
we neglect them in our results.
We report our results in binned bandpowers. First, we derive

the per-bin amplitude as the ratio of the unbiased lensing
spectrum to the input theory spectrum:

º
f f

ff
A

C

C
, 11b

UVXY b

b
,theory

UV XY

( )

with the subscript b denoting a binned quantity; Cb is a
weighted average of the CL inputs for L inside the boundaries
of the bin, with the weights w designed to maximize S/N:

= ff f fw C CVarL
UV XY

L L
, ,theory

UV XY

( )ˆ ˆ
. We obtain the variance

from the corresponding set of simulation cross spectra.
We report the bandpowers in lensing convergence (κ)

instead of the lensing potential f. The convergence field is
−1/2 of the divergence of the deflection field, which is the
gradient of the lensing potential f(Lewis & Challinor 2006):

k f= - 
1

2
. 122 ( )

In Fourier space, they are related by κL=(L (L+1)) fL /2.
The reported bandpowers are derived as the product of the data
amplitude Ab and the input theory spectrum at bin center Lb,

º
+kk ffC

L L
A C

1

4
. 13L

b b
b L

2
,theory

b b
ˆ ( ( )) ( )

The overall lensing amplitude for each estimator is calculated
identically as the per-bin amplitude in Equation (11) using the
whole reported L range.
Differences between the fiducial cosmology and the

cosmology of the SPTpol patch would produce different
measured lensing amplitudes. The cosmology dependence
enters through the NL

1( ) bias. In this work, because we choose
a fiducial cosmology that is consistent with the data, we expect
the difference in the NL

1( ) bias to be small. To test this, we
sample the lensing amplitude given the fiducial cosmology
with and without corrections to NL

1( ). We find the difference in
the lensing amplitude for the MV estimator to be 0.007 (0.1σ).
We therefore neglect this correction in this work.

4. Results

In the following, we discuss our main results: the lensing
convergence map, the lensing spectrum, and the lensing
amplitude measurement. We compare our MV map to S15ʼs.
We discuss the relative weights of the T and the POL results,
compare the sizes of the systematic uncertainties to the
statistical uncertainties, and put our measurement in the context
of other lensing measurements.
In Figure 2, we show the MV, T, and POL lensing

convergence. The maps are smoothed by a 1° FWHM Gaussian
to highlight the higher S/N modes at the larger scales. At the
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angular scales shown, the POL reconstruction has higher S/N
(lower NL

0( )) than the T reconstruction. Therefore, while the T
and the POL κ map fluctuations both trace those in the MV
map in broad strokes, we see that the POL modes trace the MV
modes more faithfully. The lensing modes in the MV map are
reconstructed with S/N better than unity for L250. It is the
largest lensing map reconstructed with this S/N level from the
CMB to date.

In Figure 3, we compare the MV κ map from S15 and the
one from this work over the same region of the sky. We
observe that the two convergence maps show nearly identical
degree-scale structure. The S15 data were taken before the
SPTpol 500 deg2 survey data (see Section 2.1) and thus
constitute an independent data set from that used in this work.
In addition, because the two analyses have similar per-mode
reconstruction noise, the visual agreement of the modes
between the two is a useful consistency check.

We present the lensing power spectrum measurement in
logarithmically spaced bins in the range 100<L<2000. We

list the MV lensing bandpowers and their uncertainties in
Table 1. The lower bound of the L range is chosen by the
region of validity of the MC bias correction. The upper bound
is set by computing the uncertainties on the lensing amplitudes
as we include higher multipoles and seeing no gain in S/N of
the amplitude going beyond L of 2000. In Figure 4, we show
the bandpowers from the MV spectrum, the POL spectrum, and
the T spectrum. We see that the error bars of the POL spectrum
are smaller than those of the T spectrum at L600 and
vice versa on smaller angular scales. This is consistent with the
NL

0( ) of the T reconstruction at small angular scales being lower
than that of the POL reconstruction—the small angular scale
modes are better reconstructed by the T estimator.
We measure the overall lensing amplitude for each estimator

and find

=  
=  
=  

A
A
A

0.944 0.058 Stat. 0.025 Sys. ,
0.906 0.090 Stat. 0.040 Sys. ,
0.835 0.103 Stat. 0.012 Sys. .

MV

POL

T

( ) ( )
( ) ( )
( ) ( )

Figure 2. Lensing κ map reconstructed from the SPTpol 500 deg2 field data, smoothed by a 1° FWHM Gaussian to highlight the signal-dominated modes. Top:the κ
map from the MV lensing estimator, which combines all temperature and polarization information. Bottom:κ maps from the temperature estimator (T, left) and from
combining the polarization estimators EE and EB (POL, right). At the angular scales shown, the POL estimator recovers the lensing potential with slightly higher S/N
than the T estimator. Therefore, it has higher weight in the MV combination and traces the fluctuations of the MV κ map with higher fidelity.
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We derive the statistical uncertainties from the standard
deviations of the lensing amplitudes from simulations. We
detail the sources of systematic uncertainties in Section 5.2 and
break them down in Table 3. Considering statistical uncertain-
ties alone, we measure the lensing amplitude with 6%
uncertainty using the MV estimator and with 10% uncertainty
with the POL estimator. For the T estimator, we measure the
lensing amplitude with 12% uncertainty. Having chosen the
same cuts in multipole space for both the input temperature and
polarization maps, this shows that the S/N per mode in the
input polarization maps are now high enough that the POL
estimators give more stringent measurements of the lensing
amplitude than the T estimator. In future analyses, the T lensing
spectrum is sample variance limited and cannot be improved by
lowering the temperature map noise levels. Instead, it can be
improved by including information from higher multipoles
and/or more sky area. However, lowering the noise levels of
the polarization maps can still improve the lensing measure-
ment from polarization estimators. Specifically, unlike the
temperature estimator, the NL

0( ) of the EB estimator is not
limited by unlensed power in the map, because there is little
unlensed B mode power to contribute to NL

0( ) in the multipole

range important for lensing reconstruction. In addition to
surpassing the measurement uncertainty of the T lensing
amplitude, considering statistical uncertainties alone, our POL
lensing amplitude is the most precise amplitude measurement
(10.1σ) using polarization data alone to date.
The systematic uncertainties for the MV and the POL

estimators are ∼40% of their respective statistical uncertainties,
whereas the systematic uncertainty is subdominant for the T
estimator compared with its statistical uncertainty. For both the
MV and the POL estimators, the systematic uncertainty budget
is dominated by the Pcal uncertainty (Section 5.2). Including the
systematic uncertainties in the MV amplitude measurement, we
measure AMV with 7% uncertainty.
We detect lensing at very high significance. From recon-

structing f using 400 unlensed simulations, the standard
deviation of AMV

unl is 0.024. The observed amplitude of
=A 0.944MV would thus correspond to a s39 fluctuation.

Compared with other ground-based measurements, our result
has the tightest constraint on the lensing amplitude. In Figure 5,
we show our lensing power spectrum measurement against
previous measurements. Our measurement is consistent with
the measurement by Omori et al. (2017). In that work, they
reconstruct lensing using a combined temperature map from
SPT-SZ and Planck over the common 2500 deg2 of sky. They
measure the lensing amplitude to be 0.95±0.06 relative to the
best-fit ΛCDM model to the Planck2015 plikHM_TT_low-
TEB_lensing data set (same as the fiducial cosmology used in
this work). The most recent lensing analysis of all-sky Planck
data found the best-fit lensing amplitude to be 1.011±0.028
against the Planck 2018 TTTEEE_lowE_lensing cosmolo-
gy(Planck Collaboration et al. 2018b). To compare our
measurement with this model, we refit our MV bandpowers
and get =  A 0.946 0.058 Stat. 0.025 Sys.MV ( ) ( ), consis-
tent with Planck’s lensing measurement.

5. Null Tests, Consistency Checks, and Systematic
Uncertainties

In this section, we summarize the null and consistency tests
we have performed on the data and account for the systematic
uncertainties in our lensing amplitude measurements. We
report test results from the MV, POL, and T estimators.

Figure 3. Comparison with the S15 κ map: Left:the κ map reconstructed by S15 using the MV estimator with maps from SPTpol 100 deg2 field observations (the
sign is opposite from that shown in S15 because of a sign error in plotting in S15). Right:cutout of the 100 deg2 field from the MV κ map in this analysis, overlaid
with contours from the S15 MV κ at [−0.048, −0.032, −0.016, 0, 0.016, 0.032, 0.048]. Both maps are smoothed by a 1° FWHM Gaussian. Data that enter the S15
reconstruction were taken before the 500 deg2 survey and thus are independent from the data used in this analysis. Because the modes shown are measured to S/N
greater than unity, the fluctuations of the two maps visually tracing each other serve as a consistency check.

Table 1
MV Lensing Bandpowers

[Lmin Lmax] Lb
kk

C10 L
7

b
ˆ

[100 133] 117 1.144±0.230
[134 181] 158 1.041±0.161
[182 244] 213 0.876±0.115
[245 330] 288 0.509±0.080
[331 446] 389 0.423±0.058
[447 602] 525 0.260±0.042
[603 813] 708 0.198±0.032
[814 1097] 956 0.086±0.025
[1098 1481] 1290 0.081±0.023
[1482 1998] 1741 0.053±0.025

Note.The bandpowers for the MV spectrum as defined in Equation (13) and
shown in Figure 4. Bins are evenly spaced in log(L), and bandpowers are
reported at the center of each bin.
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Figure 5. Lensing power spectrum measurements from this work and S15 (MV)(Story et al. 2015), POLARBEAR (POL)(POLARBEAR Collaboration et al. 2014),
BICEP2/Keck (POL)(BICEP2 Collaboration et al. 2016), ACTPol (MV)(Sherwin et al. 2017), SPT-SZ + Planck(T)(Omori et al. 2017), and Planck(MV)(Planck
Collaboration et al. 2018b). The gray solid line is the lensing spectrum from the best-fit ΛCDMmodel to the PlanckplikHM_TT_lowTEB_lensing data set. This
work contains data from about five times more area than S15, and the sizes of the error bars of the signal-dominated multipoles reflect the decrease in sample variance.
In addition, it is the tightest lensing amplitude measurement of all the lensing measurements made using only ground-based telescope data to date.

Figure 4. Lensing convergence bandpowers estimated from SPTpol 500 deg2 field data. We show bandpowers from the MV, POL, and T estimators. The POL and T
bandpowers are shifted in L for clarity. The T and POL bandpowers are consistent with each other given the error bars of the bandpowers. The reconstruction noise of
the POL estimator is lower than that of T for L600 and vice versa on smaller angular scales. This provides a sense of the angular scales at which each estimator
gives better S/N. The black solid line shows the lensing convergence spectrum from the fiducial cosmology.
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5.1. Null Tests and Consistency Checks

We quantify the results of our tests using summary statistics
comparing data bandpower differences with simulation band-
power-difference distributions, where the differences are taken
between bandpowers obtained from the baseline analysis
pipeline and from a pipeline with one analysis change. We
plot these bandpowers in Figure 6 to provide an absolute sense
of how much the bandpowers and their error bars change given
the various analysis variations.

Quantitatively, we calculate the χ2 of the data-difference
spectrum D ffCb,data( ) against the mean of the simulation-

difference spectrum áD ñffCb,sim( ) using the variance of the
simulation-difference spectra (sb,sys

2 ), as the difference band-
powers are largely uncorrelated:

åc
s

=
D - áD ñff ffC C

. 14
b

b b

b
sys
2 ,data ,sim

2

,sys
2

( )
( )

The probability-to-exceed (PTE) is calculated from a χ2

distribution with 10 degrees of freedom, as we have 10
bandpowers. For the curl test, sb,sys comes from the distribution
of the simulation curl spectra. Figure 7 provides a visual
summary of these tests. It shows the data-difference band-
powers for each test for the three estimators. The error bars are
generated from the distributions of simulation-difference
bandpowers. The data points and the error bars from each
estimator in each L bin are scaled by the 1σ lensing spectrum
uncertainties from that estimator in that bin. We list the χ2 and
PTE values for each test and each estimator in Table 2.

We compare the differences in overall lensing amplitude
similarly. We calculate the difference in the lensing amplitudes

between the baseline and the alternate analysis choice setup:
ΔAdata. We form the χ2 by comparing the data-difference
amplitude against the distribution of the difference amplitudes
in simulations.
Varying ℓxmin and ℓmax: We vary the multipole range of the

input CMB maps used for lensing reconstruction to check
the following: (1) consistency of bandpowers as we include
more or fewer CMB modes and (2) impact of foregrounds as we
increase the maximum multipole. As we increase the maximum
multipole used in the input temperature map, the contamination
of the CMB by foregrounds like tSZ and CIB increases. As
discussed in Section 3.3, both of these inputs can bias the lensing
spectrum. On the low ℓ side, we remove <ℓ ℓx xmin∣ ∣ modes
because the combination of our observing strategy and time
stream filtering removes modes approximately along the ℓx=0
axis. We run two cases for the ℓxmin cut: ℓxmin=50 and
ℓxmin=200. From Table 2, we see that the differences of the
ℓxmin cases are consistent with the expected simulation
distribution. We can in principle set the ℓxmin in the baseline
analysis to be 50. However, because the applied time stream
filtering removes ℓ100 modes, and the number of modes
available between ℓxmin of 50 and 100 is small compared with
the number of modes at the high-ℓ end, we do not expect there
to be significant improvement in S/N and therefore choose to
set ℓxmin=100 for the baseline analysis. For the ℓmax tests, we
vary the ℓmax cut between ℓ=2500 and ℓ=3500 in steps of
500. We observe from Table 2 that moving between ℓmax of
3000 and 2500 and between ℓmax of 3000 and 3500, the data
bandpower differences are consistent with bandpower differ-
ences from simulations for all three sets of estimators. We set the
baseline ℓmax to be 3000 to keep the systematic uncertainty
due to the subtraction of foreground biases subdominant to the
statistical uncertainty of the measurements. For future analyses,
estimators designed to reduce foreground biases(Osborne et al.
2014; Madhavacheril & Hill 2018; Schaan & Ferraro 2019)can
be employed, potentially sacrificing some statistical power for
reduced systematic uncertainty.
Source masking threshold:We check the impact of extragalactic

foregrounds on the lensing measurements by varying the masking
thresholds of point sources and galaxy clusters. We raise the
thresholds of the point source and the cluster masks so that about
20% more sources are kept in the input maps. The modified cuts
correspond to a flux threshold of 7.5mJy and a cluster detection
significance threshold of 4.7, whereas the baseline thresholds (see
Section 2.2) are 6mJy and 4.5 (i.e., the threshold for inclusion in
the Bleem et al. 2015 catalog). From the bandpower PTEs and
amplitude PTEs listed in Table 2, we see that the differences in
bandpowers and amplitudes are consistent with expected variations
from simulations. Therefore, we conclude that the masking
thresholds we apply in the baseline analysis reduce foreground
biases to the lensing spectrum sufficiently.
Apodization:We test for the effects of using a top hat

function for the boundary and source mask by redoing the
entire analysis using a cosine taper instead. The radius of the
cosine taper is 10′ for the boundary mask and 5′ for the sources.
The data difference is typical given the simulation-difference
distribution for all three estimators.
Curl test:The deflection field d n( ˆ) that remaps the

primordial CMB anisotropies can be generically decomposed
into a gradient and a curl component:

f=  + Wd n n n , 15( ˆ) ( ˆ) ( ˆ) ( )

Figure 6. Results of the power spectrum consistency tests and curl null test.
The figure shows CL

κκ bandpowers from different analysis choices and the curl
test bandpowers. The MV bandpowers and error bars from the baseline analysis
are plotted as boxes. The bandpowers calculated with different analysis choices
are consistent with the baseline MV bandpowers. The bandpowers from the
curl null test are consistent with zero.
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where å is a 90° rotation operator and W n( ˆ) is a pseudo scalar
field that sources the curl component(see e.g., Hirata &
Seljak 2003; Namikawa et al. 2012). In the Born approx-
imation, the lensing potential only sources the gradient
component of the deflection field. At current noise levels and
barring unknown physics, the curl component is expected to be
consistent with zero. Therefore, estimating the curl of the
deflection field serves as a test of the existence of any
components in the data generated from non-Gaussian second-
ary effects or foregrounds(Cooray et al. 2005). Analogous to
estimating the lensing f field, for the curl component, we
estimate the pseudo scalar field Ω. The curl estimator is
orthogonal to the lensing (gradient) estimator and has the same
form as the lensing estimator Equation (1). The weights of the
curl estimator are designed to have response to the curl instead
of the gradient. We implement the weights as presented in
Namikawa et al. (2012). The curl spectrum is derived

analogous to the lensing spectrum with two differences: (1)
the theory input is set to a flat spectrum CL

ΩΩ=10−7, where it
is used for uniformly weighting the modes when binning and as
a reference spectrum for the amplitude calculation; (2) no
response correction from simulations is applied to the pseudo
scalar field as the expected signal is zero. The bottom panel of
Figure 7 shows the power spectra for the MV, POL, and T curl
estimators and their uncertainties scaled by the respective
uncertainties of their lensing spectra. The bandpower PTEs and
the amplitude PTEs for the three estimators are listed in
Table 2. They are all consistent with zero. The bandpower PTE
and the amplitude PTE are 0.50 and 0.20 for the MV curl
estimator. We thus see no evidence of contamination to our
lensing estimate from non-Gaussian secondaries.
Consistency across estimators:In Figure 8, we show the

reconstructed lensing spectrum from all 15 pairs of the five
estimators TT, TE, EE, EB, and TB and the MV spectrum. We

Figure 7. The difference bandpowers (D kkCL ) and their uncertainties between the baseline analysis and analyses with one change as indicated in the labels, scaled by
the uncertainties of the respective MV, T, and POL bandpowers. The 1σ bands of the MV, T, and POL estimators are shaded in gray. This is a visual summary of the
χ2 values listed in Table 2. We find the analysis-variation bandpowers and best-fit lensing amplitudes to be consistent with the baseline setup for all three estimators.

Table 2
Consistency and Null Tests χ2 and PTE

Test Name cMV
2 (PTE) ΔAMV (PTE) cT

2 (PTE) ΔAT (PTE) cPOL
2 (PTE) ΔAPOL (PTE)

±var(ΔAMV) ±var(ΔAT) ±var(ΔAPOL)

ℓxmin=50 7.2 (0.71) −0.002±0.013 (0.76) 5.8 (0.83) 0.005±0.019 (0.86) 9.7 (0.47) −0.015±0.025 (0.55)
ℓxmin=200 4.3 (0.93) 0.017±0.021 (0.44) 10.4 (0.40) 0.035±0.026 (0.17) 3.3 (0.97) −0.005±0.037 (0.90)
ℓmax=2500 14.2 (0.17) −0.000±0.035 (0.98) 12.0 (0.28) 0.040±0.093 (0.65) 5.9 (0.83) −0.021±0.018 (0.25)
ℓmax=3500 17.2 (0.07) 0.014±0.023 (0.66) 8.2 (0.61) 0.085±0.055 (0.17) 11.0 (0.36) −0.006±0.008 (0.48)
Mask thres. 13.2 (0.21) 0.006±0.008 (0.43) 15.6 (0.11) 0.021±0.014 (0.10) 14.6 (0.15) −0.002±0.013 (0.88)
Apod. mask 4.8 (0.91) 0.004±0.012 (0.90) 13.3 (0.20) 0.035±0.022 (0.13) 3.7 (0.96) −0.002±0.022 (0.85)
Curl 9.3 (0.50) −0.007±0.005 (0.20) 7.5 (0.67) −0.013±0.013 (0.29) 9.4 (0.49) −0.010±0.009 (0.28)

Note.Results of systematics tests. For each test, we show the χ2 and PTE of the difference bandpowers and the difference amplitudes and its associated PTEs for each
of the MV, T, and POL estimators.
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test for consistency of the lensing spectra from the 15 pairs of
estimators with the best fit from the MV estimator by
calculating χ2 and PTE. We calculate the χ2 of the 150
bandpowers against the binned theory spectrum scaled by the
best-fit MV amplitude:

c = - --d m d mCov , 162 1( ) ( ) ( )†

where d is the 150 data bandpowers, m is 15 copies of the
scaled binned theory spectrum, and Cov denotes the covariance
matrix. We construct the covariance matrix of the 150
bandpowers of 15 estimators from 400 simulations. We set
the off-diagonal terms of each subblock off the main diagonal
to zero as we expect there to be and have verified that there is
little to no correlation across different L bins between
estimators. For the main diagonal, the first and second bins
are correlated at the ∼10% level for 12 of the estimators, and
we keep them while setting the rest of the covariance elements
to zero. The PTE compared with the set of 400 sets of

simulated bandpowers is 0.44. Comparing instead the best-fit
amplitudes of the 15 pairs of estimators to the MV best-fit
amplitude, we note that the EB×TB and EB×EB pairs are
low by 2.4σ and 2.1σ, respectively, while the rest of the pairs
are within 2σ of the MV’s amplitude. With the number of tests
we have performed, it is not unusual to see 2σ outliers.

5.2. Systematic Uncertainty

In this section, we summarize the sources of systematic
uncertainty and our accounting of them in the lensing
amplitude measurement. We quantify the uncertainties in the
lensing amplitude measurement due to uncertainties in the
beam measurement, temperature and polarization calibrations,
T P leakage correction, global polarization angle rotation,

and the applied foreground template. We address the potential
impact of non-Gaussian polarized foregrounds. The sources of
systematic uncertainty and their respective impact on the
lensing amplitude measurements are listed in Table 3.

Figure 8. Comparison of cross spectra of individual estimators and the MV combination MV×MV. The lensing spectrum from the fiducial cosmology, the
PlanckplikHM_TT_lowTEB_lensing ΛCDM best fit, is plotted in solid black lines. The best fit from each estimator is plotted in dashed gray lines. The
amplitudes are computed relative to the fiducial lensing spectrum. The data points and error bars are scaled by 0.5 for the TB×TB spectrum to allow all the points to
be shown. We find a PTE=0.44 when comparing the 150 bandpowers against the best fit of the MV spectrum using a covariance matrix constructed from
simulations.
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Beam uncertainty:We take the beam measurement uncer-
tainty ΔBℓ derived from the beam covariance matrix in H18
and convolve (1+ ΔBℓ) with the input X̄ maps while keeping
all the simulation maps the same. We analyze the data maps as
if their beam were the mean measured beam Bℓ as opposed to
the modified Bℓ (1+ΔBℓ). The difference in the lensing
amplitude between this analysis and the baseline analysis
quantifies the effect of an underestimation of the beam profile
by 1σ of the beam measurement uncertainty across the entire
angular multipole range. We find ΔAMV=0.008, D =APOL
0.010, and ΔAT=0.005. The systematic uncertainties induced
by the beam uncertainty are small (∼0.1σ) compared with the
respective statistical uncertainties of the measured lensing
amplitudes in T, POL, and MV.

Temperature and polarization calibrations:We apply the
temperature and polarization calibration factors derived in H18
to our data T/Q/U maps as described in Section 2.2. From the
posterior distributions of H18, we obtain the uncertainties of
the Tcal factor δTcal and the Pcal factor δPcal, which are 0.3% and
0.6%, respectively. The Tcal and Pcal are applied to the raw
temperature and polarization maps through T=Traw×Tcal and
(Q/U)=(Q/U)raw×Tcal×Pcal. Keeping the simulated maps
fixed to the baseline analysis, we scale the data maps by
(1+δTcal) for the temperature map and (1+δTcal)(1+δPcal) for
the polarization maps and we recalculate the data lensing
amplitudes.46 The two pieces in the amplitude calculation that
change because of the modified data maps are ffCL

ˆ ˆ
and NL

0 ,RD( ) .
To illustrate how they contribute to the overall change in the
lensing amplitude, we consider here the temperature-only
estimator. The term ffCL

T,ˆ ˆ
, which contains four copies of the

data map, would shift by (1+δ Tcal)
4. For NL

0 ,RD( ) , the four
terms where two of the four input maps are replaced by data
maps get a multiplicative correction of (1+δ Tcal)

2. The

overall shift in
ff

CL
T,ˆ is therefore

D = D - D
ff ffC C N , 17L L L

0 ,RDˆ ( )ˆ ˆ ( )

where

d dD = + -ff ff ffC T C T C1 1 4 18L L Lcal
4

cal[( ) ] ( )ˆ ˆ ˆ ˆ ˆ ˆ

and

dD á

+

+

+ ñ
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with MC denoting simulation realizations and d denoting data.
The POL case has a similar form as the temperature-only case
with d+ T1 cal( )  d d+ +T P1 1cal cal( )( ). The difference in the
resultant measured amplitudes due to an offset in the

calibration factors depends on the relative amplitudes of ffCL
ˆ ˆ

and NL
0 ,RD( ) at each multipole L. Therefore, we quantify the

difference by running the baseline analysis with the temper-
ature and polarization calibration of the data maps shifted by
1σ. We find that ΔAMV=0.023, ΔAPOL=0.039, and ΔAT=
0.008. The shifts in the lensing amplitudes are dominated
by the polarization calibration uncertainty. Furthermore, the
calibration systematic uncertainty is almost half of the statistical
uncertainty of the POL amplitude. Because the S/N of future
lensing measurements will be driven by the polarization
estimators, we will need more precise polarization calibration
for the measurements to remain dominated by statistical
uncertainties. This can be achieved by cross-calibrating with
deeper CMB maps or over larger areas of sky, assuming an
external CMB map exists with more accurate polarization
calibration than Planck. Relatedly, lensing measures mode
coupling, which in principle can be extracted irrespective of
the input maps calibration. An example of circumventing
the systematic uncertainty contribution caused by calibration
uncertainties in the input maps is to use the measured power
spectra in one of the weight functions in the analytic response in
Equation (2). In this approach, the response moves together with
the calibration of the input maps and therefore eliminates this
systematic uncertainty.
Temperature-to-polarization leakage:We estimate the bias

to the lensing amplitude measurement caused by misestimating
the T P leakage factors. Similar to quantifying the
systematic offsets by the beam uncertainty and the Tcal/Pcal
uncertainties, here we modify the data polarization maps by
over-subtracting a ò(Q/U)-scaled copy of the temperature map
by 1σ in òQ and òU, while keeping the rest of the analysis the
same. We find the change in AMV and APOL to be negligible, at
0.001σ and 0.002σ respectively.
Global polarization angle rotation:There is a 6% uncer-

tainty in the global rotation angle measured through the
minimization of the TB and EB spectra discussed in
Section 2.2. How much would an offset in the polarization
angle rotation bias the lensing amplitude measurement? We run
the baseline analysis with the data polarization maps rotated an
extra 6% on top of the measured angle from the minimization
procedure. We find that AMV and APOL change by less than
0.01σ of their respective statistical uncertainties.
Extragalactic foregrounds:As discussed in Section 3.3, we

subtract templates of expected foreground biases from the T

and MV lensing power spectra
ff

CLˆ given models of CIB and
tSZ from van Engelen et al. (2014). The templates are taken
from the mean of the range of models. We estimate the

Table 3
Systematic Uncertainties

Type ΔAMV ΔAPOL ΔAT

ΔAbeam 0.008 0.010 0.005
ΔAcal 0.023 0.039 0.008
D AT P =0.001 =0.001 N/A
ΔApol.rot. <0.001 <0.001 N/A
ΔAfg 0.004 N/A 0.008

ΔAtot 0.025 0.040 0.012

Note.The contributions to the systematic uncertainty budget. The total
systematic uncertainties are evaluated by taking the quadrature sum of the
individual contributions.

46 In S15, we accounted for the systematic uncertainties from calibration
uncertainty as 4×δ Tcal and 4×δ Pcal. This underestimates the systematic
uncertainty because the object that gets scaled by δ Tcal and δ Pcal is

ffCL
ˆ ˆ

instead
of

ff
CLˆ . This means that the calibration offset applies to the noise bias terms as

well as the signal term and can be a factor of a couple larger than
ff

CLˆ itself.
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systematic uncertainty from the template subtraction step by
measuring the lensing amplitude difference using the maximum
and minimum of template values allowed by the model space.
We find the lensing amplitudes AMV to shift by ±0.004 and AT

to shift by ±0.008, both less than 0.1σ of their statistical
uncertainties. For the temperature estimator, this source of bias
is ∼1% of the lensing amplitude and is of the same magnitude
as the bias from the temperature calibration. For polarization,
we expect the only significant source of extragalactic fore-
grounds to come from the unclustered point-source component,
because SZ and the clustered CIB are negligibly polarized. The
SZ effects are expected to be polarized at the less than 1% level
for the cluster masking threshold of this work(Birkinshaw
1999; Carlstrom et al. 2002). The clustered CIB component is a
modulation of the mean power from all sources(Scott &
White 1999) and is thus effectively unpolarized. For the
unclustered point sources, we measure the mean squared
polarization fraction to be á ñ =  ´ -p 0.95 0.11 102 3( ) (∼3%
polarized) at 150 GHz for sources above 6 mJy in the SPTpol
field(Gupta et al. 2019). Assuming the polarization fraction is
constant with flux density, the extragalactic foregrounds are
thus on average significantly less polarized than the CMB.
Because the level of bias introduced from temperature
foregrounds is at the percent level, we conclude that the bias
from polarized sources is negligible for this work.

Galactic foregrounds:Galactic foregrounds are non-
Gaussian and can contribute to both the lensing estimator,
imparting a bias to the lensing spectrum measurement, and the
curl estimator, causing the curl null test to fail. We mitigate
these potential effects by (1) observing a low-foreground patch
and (2) suppressing power from angular scales that are
foreground dominated. We use the curl null test to check for
potential contamination from galactic foregrounds. The SPTpol
500 deg2 field is one of the lowest galactic foreground
regions(e.g., Planck Collaboration et al. 2018d). Galactic
foreground power is fainter than the CMB in both temperature
and in E-mode polarization for the angular scales considered.
However, polarized thermal dust dominates the B-mode
power on angular scales below multipole ℓ of 200(BICEP2
Collaboration et al. 2018). Challinor et al. (2018) showed that
by including the foreground power spectrum as a noise term
in the C−1

filter of the input CMB fields, the polarization
estimator can recover unbiased lensing amplitude to subpercent
accuracy. In this work, galactic dust power in EE and BB at the
same level as the simulation inputs are included as noise terms
in the map filters. Finally, if galactic foregrounds had been a
significant source of bias, we would fail the curl null tests. The
data pass the curl null test for the T, POL and MV estimators,
suggesting that biases from galactic foregrounds are subdomi-
nant at present.

We summarize the systematic uncertainties contributed from
each source addressed in this section in Table 3. We add the
differences in lensing amplitude from each source in quadrature
and include the result as a systematic uncertainty in our lensing
amplitude measurements. The total systematic uncertainties are
AMV
sys =0.025, =A 0.040POL

sys , and =A 0.012T
sys , respectively.

The T systematic uncertainty is subdominant given the
statistical uncertainties of the T lensing amplitude, while those
for the MV and POL reach ∼0.4σ of their respective statistical
uncertainties.

6. Conclusions

In this work, we present a new measurement of the CMB
lensing potential from the 500 deg2 SPTpol survey. We use a
quadratic estimator to extract the lensing potential f from
combinations of temperature and polarization maps. Our per-
mode measurement has S/N similar to that in S15 because the
noise levels of the input maps are similar—we measure f with
S/N better than unity in the multipole range 100<L250.
We measure the lensing amplitude with our MV combina-

tion of estimators to be =  A 0.944 0.058 Stat.MV ( )
0.025 Sys.( ). Of the published lensing measurements using
data only from ground-based telescopes, this is the tightest
measurement of the lensing amplitude to date. Using unlensed
simulations to estimate the probability of the measurement, we
find that in the absence of true CMB lensing our measurement
would be a 39σ outlier—that is, we detect lensing at very high
significance. We make individual combinations of temperature
and polarization estimators. Considering statistical uncertain-
ties alone, our POL lensing constraint is the most precise
among measurements of its kind to date. We perform null tests
and consistency checks on our results and find no evidence for
significant contamination. We estimate the size of the
systematic uncertainty in our lensing measurement from
uncertainties in calibration, beam measurement, T P leakage
correction, global polarization rotation, and subtraction of
extragalactic foreground bias. We find that our systematic
uncertainty is nearly half as large as our statistical uncertainty
and dominated by the uncertainty in the polarization calibra-
tion. Looking forward, we will have to either improve the
precision of the polarization calibration or find solutions to self-
calibrate the lensing estimator in order to reduce this systematic
uncertainty.
The lensing spectrum measurement in this work is at

sufficiently high precision to provide relevant independent
constraints on cosmological parameters like ΩM, σ8, and the
sum of neutrino masses. We will report cosmological parameter
constraints in a future paper. While this work represents the
first analysis in which the lensing amplitude is better
constrained by polarization, rather than temperature data, this
will become typical for future experiments as map noise levels
continue to decrease. The EB estimator will eventually become
the most constraining CMB lensing estimator, at least for
lensing multipoles below several hundred. For the expected
survey map depths of the currently operating SPT-3G
experiment (3.0, 2.2, and 8.8 μK–arcmin at 95, 150, and
220 GHz, respectively, Bender et al. 2018), the EB estimator is
projected to provide the highest S/N lensing amplitude
measurement of all pairs of input CMB maps.
The advantages of using polarization maps for CMB lensing

measurements are as follows. First, foregrounds in CMB
temperature maps, for example, tSZ, are the main sources of
bias in cross correlations with other dark matter tracers(Abbott
et al. 2019; Namikawa et al. 2019). Polarization maps are less
contaminated by extragalactic foregrounds, and thus more
modes on small angular scales (high ℓ) can be used for lensing
reconstruction and for cross correlation, improving the S/N of
the measurement in addition to reducing foreground biases.
Second, lensing estimators are typically limited by the NL

0( )

noise contributed by the unlensed power in the input maps. The
EB estimator, however, is not as limited because unlensed B
power is subdominant to lensing B power on subdegree scales.
Furthermore, to first order in f, lensing B modes are sourced
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completely by E modes. These factors make methods beyond
the quadratic estimator that approach the optimal solution
(Millea et al. 2019) particularly efficient in improving the S/N
of the EB estimator.

High-S/N lensing measurements are essential for constrain-
ing the sum of neutrino masses and the amplitude of primordial
gravitational waves, parameterized by the tensor-to-scalar ratio
r. In the coming few years, the uncertainty on r from upcoming
CMB experiments will be limited by the variance of the lensing
B modes. To make progress in constraining r, we need lensing
measurements with high S/N per mode for delensing(Man-
zotti et al. 2017). For example, delensing with the lensing map
from SPT-3G will be crucial for the BICEP Array experi-
ment(Hui et al. 2018) to reach its projected uncertainty on r of
σ(r)∼0.003, in which delensing improves σ(r) by a factor of
about 2.5. For the next-generation ground-based CMB
experiment CMB-S4, delensing is even more crucial for
achieving the projected r constraint of σ(r)=5×10−4

(CMB-S4 Collaboration et al. 2016).
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