
1

Detecting Replay Attacks Using Multi-Channel
Audio: A Neural Network-Based Method

Yuan Gong, Student Member, IEEE, Jian Yang, Christian Poellabauer, Senior Member, IEEE

Abstract—With the rapidly growing number of security-
sensitive systems that use voice as the primary input, it becomes
increasingly important to address these systems’ potential vulner-
ability to replay attacks. Previous efforts to address this concern
have focused primarily on single-channel audio. In this paper, we
introduce a novel neural network-based replay attack detection
model that further leverages spatial information of multi-channel
audio and is able to significantly improve the replay attack
detection performance.

Index Terms—Microphone array signal processing, voice anti-
spoofing, replay attack, beamforming

I. INTRODUCTION

In recent years, an increasing number of security-sensitive
voice-controlled systems such as virtual assistants have been
introduced. While these systems are typically equipped with
a speaker verification model, their vulnerabilities to multiple
types of replay attacks have become a new security concern,
e.g., an attacker can play a pre-recorded or synthesized speech
sample to spoof the speaker verification system [1], [2], [3],
[4], [5]. Therefore, developing an effective countermeasure to
distinguish between genuine and replayed samples has become
a recent research focus [6], [7], [8], [9]. While there have been
many prior efforts in this area [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23]), they only
focus on detecting replay attacks based on single-channel input
and therefore only leverage the temporal and spectral features.
However, we identified three reasons why a countermeasure
designed using multi-channel audio input could provide im-
proved performance. First, multi-channel audio captured by
a microphone array contains spatial information, which can
contain useful cues to help distinguish genuine and replayed
samples [24], [25]. Second, it is relatively easy for an attacker
to manipulate the temporal and spectral features to fool an
anti-spoofing module [26] by simply modifying the replayed
signal, while spatial features (e.g., time difference of arrival
(TDoA)) are harder to manipulate and hence are more reliable.
Third, multi-channel speech recognition techniques have been
extensively studied and adopted [27], [28] and most modern
far-field speech recognition systems are already equipped with
microphone arrays, which makes it easy to obtain multi-
channel audio.

Only few prior studies focused on multi-channel voice
anti-spoofing. In [25], the authors propose VoiceLive, which
captures TDoA changes in a sequence of phoneme sounds to
the two microphones and uses such unique TDoA dynamics

The authors are with the Department of Computer Science and Engineering,
University of Notre Dame, IN, 46637 USA (e-mail:ygong1@nd.edu).

to distinguish between replayed and genuine samples. The
limitation is that this method requires the microphones to be
placed very close (1-6cm) to the mouth. In [29], the authors
use the “pop noise” caused by breathing to identify a live
speaker based on two-channel input, where one channel is
used to filter the pop noise and another is used as a reference.
The limitation is that the pop noise effect disappears over
larger distances and thus the method is only applicable to
close-field situations. In [30], [31], the authors use generalized
cross-correlation (GCC) of the non-speech sections of a stereo
signal to detect the replay attack. The idea is that loudspeakers
tend to generate electromagnetic noise during the non-speech
section, and therefore the cross-correlation between the two-
channel signals will be higher for replayed samples than
genuine samples in the non-speech section. The limitation is
that in order to make the electromagnetic noise detectable, a
suitable background noise level and high-fidelity microphone
is required, which is not always met in realistic settings.

In summary, previous multi-channel replay attack detection
methods: 1) have only been designed for two-channel audio
input while modern microphone arrays usually have more
microphones and contain richer spatial information; 2) rely on
hand-crafted features and calibrating the features for a different
microphone array system or a different environment can be
difficult; and 3) have relatively few applicable scenarios due
to the close-field or low SNR requirement.

In order to overcome the above-mentioned limitations, in
this paper, we propose a novel neural network-based replay
attack detection model that has the following advantages. First,
the proposed model is completely data-driven, i.e., no manual
spectral or spatial feature engineering is needed, and the model
can be used for inputs of any number of channels without
knowing microphone array specifics (such as the array geom-
etry) whenever training data is available. For the same reason,
the proposed model can adapt to different environments using
the training data and, therefore, there are no explicit constraints
on usage scenarios. Second, all components (i.e., beamformer,
feature extraction, and classification) are part of a neural
network framework, which makes it easy to train them using
existing massive optimizing methods and combine them with
other neural-based countermeasure models. This work is the
first neural-based multi-channel replay attack detector. We per-
form experiments using the recently collected ReMASC cor-
pus [24] that contains genuine and replayed samples recorded
in a variety of environments using different microphone array
systems. We find that by leveraging the multi-channel audio
input, a significant performance improvement (up to 34.9%)
can be achieved compared to a single-channel input model.

ar
X

iv
:2

00
3.

08
22

5v
2

 [
cs

.S
D

]
 1

4
M

ay
 2

02
0

2

II. THE MULTI-CHANNEL END-TO-END REPLAY ATTACK
DETECTION NETWORK

One classic microphone array signal processing technique
is the filter-and-sum beamformer [27]. For a multi-channel
audio with C channels x = (x1, x2, ..., xC), the filter-and-
sum beamformer filters each audio channel xc using an N -
point FIR filter hc with a delay (or advance) of a steering time
difference of arrival (TDOA) τc to conduct the time alignment,
and then sum the output of each channel together to obtain the
output y:

y[t] =

C∑
c=1

N∑
n=1

hc[n]xc[t− n− τc] (1)

The filter-and-sum beamformer can be decomposed into two
sub-processes: 1) estimating the τc and 2) finding the optimal
filter h. The first sub-process can be done by using a separate
time-delay estimation module. But in order to implement the
entire model in a neural network framework, we follow the
method described in [28] to implicitly absorb the steering
delay into the filter parameters and use a bank of P filters
for each channel to capture different τc:

y[t] = (y1[t], y2[t], ..., yP [t]) (2)

where:

yp[t] =

C∑
c=1

N∑
n=1

hpc [n]xc[t− n] =
C∑

c=1

xc[t] ∗ hpc (3)

and where ∗ denotes the convolution operation. In the
remainder of this paper, we refer to h as a front-end filter
to distinguish it from other filters in the neural network.

Usually, an optimal filter h is designed using a separate
optimization objective (e.g., minimum variance distortion-
less response (MVDR) [32] or multichannel Wiener filtering
(MWF) [33]), which is usually different from the objective of
the actual learning task (e.g., word error rate for the speech
recognition task). While this is acceptable for tasks such as
speech recognition since low speech distortion and noise level
are likely to improve the recognition accuracy, it might lead
to the opposite effect for the replay attack detection task,
because the filters might remove the useful cues in noisy
or high-frequency components that the replay attack detector
relies on. Therefore, a better strategy is to jointly optimize the
beamformer with the replay attack detector.

We design the network based on the architecture presented
in [28], [34], which was previously used for the speech
recognition task. As shown in Fig. 1, first, we perform a non-
overlapped framing of 20ms to the input waveform (frame
length M=882 at a sample rate of 44.1kHz) and feed each
frame x to the next layer. Then, we conduct the filter-and-sum
beamforming as described in Equations 2 and 3 to obtain a
2-D representation y for each frame. Note that since the front-
end filters also conduct frequency decomposition in addition
to spatial filtering, y can be viewed as a time-frequency
representation [28], [35]. We use filter length N=630 and test
different values for the filter number P in our experiments.
The ratio of N to M is the same as that in [28]. Note
that the filter-and-sum beamformer differs from the simpler

ℎ! ∈ ℜ"×$ ℎ% ∈ ℜ"×$ ℎ& ∈ ℜ"×$

𝑦',! ∈ ℜ)*+,!×$ 𝑦',% ∈ ℜ)*+,!×$ 𝑦',- ∈ ℜ)*+,!×$

+
𝑦' ∈ ℜ)*+,!×$

Pooling + ReLU

𝑧' ∈ ℜ!×$

Convolution + Pooling + Linear

LSTM

…

𝑥',% ∈ ℜ) 𝑥',- ∈ ℜ)𝑥',! ∈ ℜ)

𝑜' ∈ ℜ%./

𝑜'*! ∈ ℜ%./ … LSTM

DNN

𝑙𝑎𝑏𝑒𝑙 ∈ [𝐺𝑒𝑛𝑢𝑖𝑛𝑒, 𝑅𝑒𝑝𝑙𝑎𝑦𝑒𝑑]

Framing

Filtering

Summing

Spectral Feature
Extraction

Classification

Time (Milliseconds)Time (Milliseconds)Time (Milliseconds)

𝐹𝑟𝑎𝑚𝑒 𝑖

Channel 𝟏 Channel 𝟐 Channel 𝑪

𝐹𝑟𝑎𝑚𝑒 𝑖 𝐹𝑟𝑎𝑚𝑒 𝑖

…

Fig. 1. Design of the multi-channel replay attack detection network.

delay-and-sum beamformer in that an independent weight
is applied to each of the channels before summing them.
Therefore, the filters h for each channel do not share the
weight. Similar convolution layer designs have been widely
adopted in image processing tasks to process the three-channel
RGB input, but not for the purpose of beamforming. To lower
the computational overhead, we do not apply padding for this
convolution layer. After that, we conduct a global max-pooling
in time and apply a ReLU [36] nonlinear activation function
to the beamformer output and get z ∈ R1×P and feed it to
a frequency convolution layer that consists of 256 1×8 filters
with a max-pooling of size 3. The pooled output is then fed to
a 256-dimensional fully-connected layer. The output o ∈ R256

is the representation of this frame. We conduct the same above
operations to all frames and feed the sequence of o to three
stacked LSTM [37] layers, each with 832 hidden units and
feed the output of the last frame to a single fully-connected
layer to obtain the prediction. The entire model is end-to-end
from audio waveform to prediction and is trained jointly using
a unified objective of minimizing the weighted cross-entropy
loss. We re-weight the cross-entropy loss for each class using
the normalized reciprocal of the sample number of the class
in the training set to avoid the class-imbalance problem.

Since the replay attack detection is a sample-level clas-
sification task, i.e., there is only one label for each audio
sample (either genuine or replayed), using part of the input
can be sufficient and will significantly lower the computational
overhead and avoid potential overfitting. In this work, we use
the beginning 1s of each audio sample as the input to the
network. Compared to using a segment from the middle of
a sample, the beginning part of a sample usually contains
a mixture of non-speech and speech samples, which can be

3

TABLE I
MICROPHONE ARRAY SETTINGS

Device Model Sample Rate Bit Depth #Channels

D1 Google AIY 44100 16 2
D2 Respeaker 4 Linear 44100 16 4
D3 Respeaker V2 44100 32 6
D4 Amlogic 113X1 16000 16 7

1 2 1 2 3 4

1

6 5

4

32

1

6 5

4

32

7

93mm 75mm

50mm 50mm 50mm60mm

Device 1 Device 2

Device 3 Device 4

Fig. 2. Microphone array geometries used in ReMASC (microphones are
shown using the rectangles, where the number indicates the index).

beneficial for the replay attack detection task, which we verify
in our experiments shown in III-D3.

To summarize, the proposed model has the following ad-
vantages: 1) It is completely data-driven, hence no manual
feature engineering is needed, and the model can be used
for inputs of any number of channels without knowing the
microphone array information such as array geometry when-
ever training data is available. 2) All components (beamformer,
feature extraction, and classification) are in the neural network
framework, which makes it easy to train using existing massive
optimizing methods. The intermediate tensor y is a standard
time-frequency representation, so it is easy to further improve
the model by combining with other advanced neural network-
based replay attack detectors. 3) By taking advantage of the
fact that replay attack detection does not necessarily need to
use the entire sequence, a few strategies such as using part
of the input, non-overlap framing, and convolution without
padding are used to speed up computation.

III. EXPERIMENTATION

A. Dataset
We previously collected the ReMASC (Realistic Replay

Attack Microphone Array Speech) corpus [24] to facilitate
experiments on microphone arrays. The ReMASC corpus dif-
fers from other publicly available voice anti-spoofing datasets
(e.g., the RedDots replayed dataset [38]) as follows: First,
the ReMASC corpus contains recordings by a variety of
microphone array systems instead of a single microphone. The
microphone array geometry and the corresponding recording
settings are shown in Fig. 2 and Table I, respectively. Second,
instead of using audio simulation tools [28], we recorded the
ReMASC corpus in a variety of realistic usage scenarios and
settings. Therefore, the ReMASC dataset is particularly well-
suited for multi-channel voice anti-spoofing research. More
details about the ReMASC corpus can be found in [24].

B. Data Splitting and Training Scheme

The ReMASC corpus is split into the core set (6331 genuine
and 17175 replayed samples) and the evaluation set (2118
genuine and 14162 replayed samples). Both sets are speaker-
independent and therefore strictly non-overlapping. In this
study, we use the core set for training and development, and
the evaluation set for testing. Specifically, we use 90% of the
core set to train the model and use the development set to
choose the batch size and initial learning rate as well as to
implement the early stopping strategy (i.e., stop training when
the evaluation metric on the development set stops improving).
We use a learning rate decay with warm-up period strategy,
i.e., the learning rate starts at the initial learning rate and
linearly increases to 10 times larger in the first 20 epochs (the
warm-up period), and then drops by half every 20 epochs until
the equal error rate (EER) stops improving on the development
set or the max epoch of 100 is reached. We select the batch size
of 64 and the initial learning rate of 1e-5 through a grid search.
We use ADAM optimizer with a l2-norm regularizer [39], [40]
with the weight decay coefficient of 1e-3. All experiments
are repeated three times with different random seeds and the
mean value is reported. We use EER as our evaluation metric.
Since the four microphone arrays were mounted on a stand
and recorded simultaneously during the data collection, the
data volume recorded by each of the 4 microphone arrays
is roughly 1/4 of the total data volume (D1 has fewer data
due to hardware crashes in the data collection). Since the
microphone arrays use different hardware and geometry, we
train and evaluate the machine learning model separately for
each microphone array by only using data collected by it.

C. Models

We compare the following models in our experiments:
1) NN-Single: This model is exactly the same as the

proposed model described in Section II except that only the
first channel is fed to the neural network.

2) NN-Dummy Multichannel: This model is exactly the
same as the proposed model in Section II, but here we feed
multi-channel input into the neural network. The difference is
that we feed replications of the first channel data as “dummy”
multi-channel input to the neural network. The reason why we
include this model in our experiment is that only comparing
NN-Single with the proposed multi-channel model is not
absolutely fair: when the number of input channels increases,
the neural network architecture also changes. Specifically,
the number of the total front-end filters (i.e., h) linearly
increases with the input channel numbers. Therefore, it is
possible that the performance difference between NN-Single
and the proposed multi-channel model is actually due to the
increasing number of front-end filters instead of the spatial
information in the multi-channel input. In contrast, this NN-
Dummy Multichannel model has exactly the same neural
network architecture and the number of parameters as the
proposed multi-channel model, and therefore the performance
difference can only be attributed to input difference.

3) NN-Multichannel: This is the proposed model described
in Section II. For each microphone array, all channels are used.

4

D. Results

TABLE II
COMPARISON OF EER (%) OF THE TESTED MODELS AND THE RELATIVE

IMPROVEMENT OF NN-MULTICHANNEL OVER NN-SINGLE

Model D1 D2 D3 D4

NN-Single 16.6 23.7 23.7 27.5
NN-Dummy Multichannel 16.0 23.2 24.5 25.2
NN-Multichannel 14.9 15.4 16.5 19.8

Multichannel Improvement -10.0% -34.9% -30.3% -27.9%

1) Model Comparison: In this section and in Section
III-D2, we use a fixed P of 64 and the first 1s of each
audio sample as the input. As shown in Table II, the NN-
Multichannel model clearly outperforms the NN-Single model,
with an average EER improvement of 25.8%. In contrast, the
NN-Dummy Multichannel performs similarly as NN-Single.
Since NN-Multichannel and NN-Dummy Multichannel have
exactly the same neural network architecture and the only
difference is the input, this demonstrates that the performance
improvement of NN-Multichannel is not due to its larger
number of front-end filters, but due to effectively leveraging
the information in the multichannel input. Further, we test the
NN-Single model using channels other than the first channel.
We observe that the performance of the model changes with
the used channel (which could be due to some microphones
being closer to the speaker for more samples). But the per-
formance variance of the NN-Single models using different
channels is small compared to the performance difference
between NN-Multichannel and NN-Single. Specifically, the
standard deviation of the NN-Single performance using dif-
ferent channels is 1.32, 2.01, 1.49, 0.96 (% EER) for D1, D2,
D3, and D4, respectively. Also, we find that the performance
of NN-Multichannel always outperforms NN-Single using any
channel by a clear margin, e.g., for D1, NN-Single using
channel #1 and channel #2 achieves EER of 16.6% and
18.4%, respectively, but the EER of NN-Multichannel is only
14.9%. Therefore, we believe that the main contributor of
the performance improvement of NN-Multichannel is that the
spatial information is effectively leveraged rather than that
there exists a most effective single channel in the multichannel
input.

TABLE III
IMPACT OF THE NUMBER OF INPUT CHANNELS

Device # Used Channels

1 2 3 4 5 6 7

D1 16.6 14.9 - - - - -
D2 (1-4-2-3) 23.7 22.9 18.0 15.4 - - -
D2 (1-2-3-4) 23.7 19.5 16.7 15.4 - - -
D3 23.7 19.1 17.6 17.0 17.1 16.5 -
D4 27.5 21.5 20.6 21.3 20.7 19.9 19.8

2) Impact of the Number of Input Channels: In this section,
we further investigate the impact of the number of input chan-
nels. We gradually add the input channels from one channel
to the total available channels of each microphone array and
measure the EER. The order with which we add the micro-
phones is (microphone indexed as shown in Fig. 2): D1: 1-2;

D2: 1-4-2-3; D3: 1-4-2-5-3-6; D4: 1-4-2-5-3-6-7. The rule is
that we add the microphone furthest from the previously added
microphone. For device 2, we further test a different order of
1-2-3-4. As shown in Table III, we have the following findings.
First, the EER generally drops with an increasing number
of used microphones and the best performance of all four
devices is achieved when all microphones are used, indicating
that more microphones help improve the defense performance.
Second, we observe that the performance improves most
significantly when the second microphone (the microphone
that has the longest distance from the first microphone) is
added for D1, D3, and D4, and that the performance gradually
saturates with more microphones. Nevertheless, D2 gets the
most significant performance improvement when the third
microphone is added, and if we switch the order to 1-2-3-4,
we find that the most significant performance improvement is
achieved when the second microphone is added. This indicates
that it is not always optimal to use a microphone array with
a larger dimension. We intend to explore the impact of array
geometry in our future research.

TABLE IV
IMPACT OF THE NUMBER OF FRONT-END FILTERS PER CHANNEL

Front-end Filters Per Channel

4 8 16 32 64 128

Mean EER (%) 22.6 19.7 18.1 17.8 16.7 17.3

3) Impact of Other Factors: First, we explore the impact
of the number of front-end filters, as shown in Table IV; the
model performance improves with the increasing number of
front-end filters until P = 64. The result is as expected since
more filters can help extract spatial and spectral features, but
too many parameters make training less effective. Second, we
explore the impact of the input audio length. We find that using
the first 0.5s, 1s, and 1.5s of the audio leads to a mean EER of
26.9%, 22.9%, and 23.4% for NN-Single and 19.6%, 16.7%,
and 18.9% for NN-Multichannel, respectively. In addition, we
find that using a segment from the beginning of the audio
slightly outperforms segments from the middle for both NN-
Single (22.9% vs 23.8%) and NN-Multichannel (16.7% vs
17.4%) when an input audio length of 1s is used. This verifies
our discussion from Section II and indicates that using the first
1s of each sample is the most appropriate setting in terms of
both performance (for both NN-Single and NN-Multichannel)
and computational overhead.

IV. CONCLUSIONS

In this paper, we introduce a novel neural network-based re-
play attack detection model that leverages both the spectral and
spatial information in the multi-channel audio and is able to
significantly improve the replay attack detection performance.
Compared to previous efforts, the proposed model supports
arbitrary number of input channels and is completely data-
driven in a neural network framework, which will make it
easy to combine the proposed method with other neural-based
anti-spoofing countermeasures.

5

REFERENCES

[1] W. Diao, X. Liu, Z. Zhou et al., “Your voice assistant is mine: How to
abuse speakers to steal information and control your phone,” in Proc.
of the 4th ACM Workshop on Security and Privacy in Smartphones &
Mobile Devices. ACM, 2014, pp. 63–74.

[2] X. Lei, G.-H. Tu, A. X. Liu, K. Ali, C.-Y. Li, and T. Xie, “The insecurity
of home digital voice assistants–amazon alexa as a case study,” arXiv
preprint arXiv:1712.03327, 2017.

[3] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden voice commands.” in USENIX
Security Symposium, 2016, pp. 513–530.

[4] Y. Gong and C. Poellabauer, “Crafting adversarial examples for speech
paralinguistics applications,” arXiv preprint arXiv:1711.03280, 2017.

[5] Y. Gong, B. Li, C. Poellabauer, and Y. Shi, “Real-time adversarial
attacks,” in Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19. International Joint
Conferences on Artificial Intelligence Organization, 7 2019, pp.
4672–4680. [Online]. Available: https://doi.org/10.24963/ijcai.2019/649

[6] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. Evans, J. Ya-
magishi, and K. A. Lee, “The asvspoof 2017 challenge: Assessing the
limits of replay spoofing attack detection,” 2017.

[7] M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H. Delgado,
A. Nautsch, J. Yamagishi, N. Evans, T. Kinnunen, and K. A. Lee,
“Asvspoof 2019: Future horizons in spoofed and fake audio detection,”
arXiv preprint arXiv:1904.05441, 2019.

[8] M. R. Kamble, H. B. Sailor, H. A. Patil, and H. Li, “Advances in
anti-spoofing: from the perspective of asvspoof challenges,” APSIPA
Transactions on Signal and Information Processing, vol. 9, 2020.

[9] Y. Gong and C. Poellabauer, “An overview of vulnerabilities of voice
controlled systems,” arXiv preprint arXiv:1803.09156, 2018.

[10] S. Jelil, R. K. Das, S. M. Prasanna, and R. Sinha, “Spoof detection
using source, instantaneous frequency and cepstral features,” in Proc.
INTERSPEECH, 2017, pp. 22–26.

[11] M. Witkowski, S. Kacprzak, P. Zelasko, K. Kowalczyk et al., “Audio
replay attack detection using high-frequency features,” in 18th Annual
Conf. Int. Speech Communication Association (INTERSPEECH), Stock-
holm, Sweden, 2017, pp. 27–31.

[12] M. Todisco, H. Delgado, and N. Evans, “Constant q cepstral coeffi-
cients: A spoofing countermeasure for automatic speaker verification,”
Computer Speech & Language, vol. 45, pp. 516–535, 2017.

[13] B. Bakar and C. Hanilçi, “Replay spoofing attack detection using deep
neural networks,” in 2018 26th Signal Processing and Communications
Applications Conference (SIU). IEEE, 2018, pp. 1–4.

[14] G. Lavrentyeva, S. Novoselov, E. Malykh, A. Kozlov, O. Kudashev,
and V. Shchemelinin, “Audio replay attack detection with deep learning
frameworks.” in Interspeech, 2017, pp. 82–86.

[15] L. Li, Y. Chen, D. Wang, and T. F. Zheng, “A study on replay attack
and anti-spoofing for automatic speaker verification,” arXiv preprint
arXiv:1706.02101, 2017.

[16] W. Cai, D. Cai, W. Liu, G. Li, and M. Li, “Countermeasures for auto-
matic speaker verification replay spoofing attack: On data augmentation,
feature representation, classification and fusion.” in INTERSPEECH,
2017, pp. 17–21.

[17] X. Wang, Y. Xiao, and X. Zhu, “Feature selection based on cqccs for
automatic speaker verification spoofing.” in INTERSPEECH, 2017, pp.
32–36.

[18] Z. Chen, Z. Xie, W. Zhang, and X. Xu, “Resnet and model fusion for
automatic spoofing detection.” in INTERSPEECH, 2017, pp. 102–106.

[19] S. Jelil, S. Kalita, S. R. M. Prasanna, and R. Sinha, “Exploration
of compressed ilpr features for replay attack detection,” in Proc.
Interspeech 2018, 2018, pp. 631–635. [Online]. Available: http:
//dx.doi.org/10.21437/Interspeech.2018-1297

[20] M. Kamble, H. Tak, and H. Patil, “Effectiveness of speech demodulation-
based features for replay detection,” Proc. Interspeech 2018, pp. 641–
645, 2018.

[21] J. Yang, C. You, and Q. He, “Feature with complementarity
of statistics and principal information for spoofing detection,” in
Proc. Interspeech 2018, 2018, pp. 651–655. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2018-1693

[22] Y. Gong and C. Poellabauer, “Protecting voice controlled systems using
sound source identification based on acoustic cues,” in 2018 27th
International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2018, pp. 1–9.

[23] A. T. Patil, R. Acharya, P. A. Sai, and H. A. Patil, “Energy
Separation-Based Instantaneous Frequency Estimation for Cochlear
Cepstral Feature for Replay Spoof Detection,” in Proc. Interspeech

2019, 2019, pp. 2898–2902. [Online]. Available: http://dx.doi.org/10.
21437/Interspeech.2019-2742

[24] Y. Gong, J. Yang, J. Huber, M. MacKnight, and C. Poellabauer,
“Remasc: Realistic replay attack corpus for voice controlled systems,”
Proc. Interspeech 2019, pp. 2355–2359, 2019.

[25] L. Zhang, S. Tan, J. Yang, and Y. Chen, “Voicelive: A phoneme localiza-
tion based liveness detection for voice authentication on smartphones,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1080–1091.

[26] S. Liu, H. Wu, H.-y. Lee, and H. Meng, “Adversarial attacks on spoof-
ing countermeasures of automatic speaker verification,” arXiv preprint
arXiv:1910.08716, 2019.

[27] J. Benesty, J. Chen, and Y. Huang, Microphone array signal processing.
Springer Science & Business Media, 2008, vol. 1.

[28] T. N. Sainath, R. J. Weiss, K. W. Wilson, B. Li, A. Narayanan, E. Variani,
M. Bacchiani, I. Shafran, A. Senior, K. Chin et al., “Multichannel signal
processing with deep neural networks for automatic speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 25, no. 5, pp. 965–979, 2017.

[29] S. Shiota, F. Villavicencio, J. Yamagishi, N. Ono, I. Echizen, and T. Mat-
sui, “Voice liveness detection algorithms based on pop noise caused by
human breath for automatic speaker verification,” in Sixteenth annual
conference of the international speech communication association, 2015.

[30] Y. Ryoya, S. Shiota, N. Ono, and H. Kiya, “Improving replay attack
detection by combination of spatial and spectral features.”

[31] R. Yaguchi, S. Shiota, N. Ono, and H. Kiya, “Replay attack detection
using generalized cross-correlation of stereo signal,” in 2019 27th
European Signal Processing Conference (EUSIPCO). IEEE, 2019, pp.
1–5.

[32] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE assp magazine, vol. 5, no. 2, pp. 4–24, 1988.

[33] M. Brandstein and D. Ward, Microphone arrays: signal processing
techniques and applications. Springer Science & Business Media, 2013.

[34] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional,
long short-term memory, fully connected deep neural networks,” in
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2015, pp. 4580–4584.

[35] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals,
“Learning the speech front-end with raw waveform cldnns,” in Sixteenth
Annual Conference of the International Speech Communication Associ-
ation, 2015.

[36] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[38] T. Kinnunen, M. Sahidullah, M. Falcone, L. Costantini, R. G. Hau-
tamäki, D. Thomsen, A. Sarkar, Z.-H. Tan, H. Delgado, M. Todisco
et al., “Reddots replayed: A new replay spoofing attack corpus for
text-dependent speaker verification research,” in Acoustics, Speech and
Signal Processing (ICASSP), 2017 IEEE International Conference on.
IEEE, 2017, pp. 5395–5399.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[40] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

https://doi.org/10.24963/ijcai.2019/649
http://dx.doi.org/10.21437/Interspeech.2018-1297
http://dx.doi.org/10.21437/Interspeech.2018-1297
http://dx.doi.org/10.21437/Interspeech.2018-1693
http://dx.doi.org/10.21437/Interspeech.2019-2742
http://dx.doi.org/10.21437/Interspeech.2019-2742

	I Introduction
	II The Multi-channel End-to-end Replay Attack Detection Network
	III Experimentation
	III-A Dataset
	III-B Data Splitting and Training Scheme
	III-C Models
	III-C1 NN-Single
	III-C2 NN-Dummy Multichannel
	III-C3 NN-Multichannel

	III-D Results
	III-D1 Model Comparison
	III-D2 Impact of the Number of Input Channels
	III-D3 Impact of Other Factors

	IV Conclusions
	References

