Research 4: Uncertain, Probabilistic, and Approximate Data

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Mining Approximate Acyclic Schemes from Relations

Batya Kenig! Pranay Mundra?
I Computer Science and Engineering
University of Washington

Guna Prasaad!

batyak, guna, bsalimi, suciu@cs.washington.edu

ABSTRACT

Acyclic schemes have numerous applications in databases
and in machine learning, such as improved design, more effi-
cient storage, and increased performance for queries and ma-
chine learning algorithms. Multivalued dependencies (MVDs)
are the building blocks of acyclic schemes. The discovery
from data of both MVDs and acyclic schemes is more chal-
lenging than other forms of data dependencies, such as Func-
tional Dependencies, because these dependencies do not hold
on subsets of data, and because they are very sensitive to
noise in the data; for example a single wrong or missing tuple
may invalidate the schema. In this paper we present Mai-
mon, a system for discovering approximate acyclic schemes
and MVDs from data. We give a principled definition of ap-
proximation, by using notions from information theory, then
describe the two components of Maimon: mining for ap-
proximate MVDs, then reconstructing acyclic schemes from
approximate MVDs. We conduct an experimental evaluation
of Maimon on 20 real-world datasets, and show that it can
scale up to 1M rows, and up to 30 columns.

ACM Reference Format:

Batya Kenig! Pranay Mundra® Guna Prasaad! Babak
Salimi! Dan Suciu!. 2020. Mining Approximate Acyclic Schemes
from Relations. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’20), June 14—
19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3318464.3380573

1 INTRODUCTION

Acyclic schemes have numerous applications in databases
and in machine learning. Originally introduced by Beeri [5],
they have lead to Yannakakis celebrated linear time query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06....$15.00
https://doi.org/10.1145/3318464.3380573

297

Babak Salimi' Dan Suciu?

2 Department of Mathematics
University of Washington
pranay99@uw.edu

evaluation algorithms [43], and are used widely today in
database design [13, 31], to speed up query evaluation with
multiple aggregates [25], and to speed up machine learning
applications such as ridge linear regression, classification
trees, and regression trees [24, 39, 40]. When considering
which types of schemes to fit the data, acyclic schemes are
the natural choice due to their many desirable properties [6].
In this paper we study the following discovery problem:
given a database consisting of a single relation, generate a
set of acyclic schemes that fit the data to a large extent. For a
simple illustration, consider the database shown on the left
of Figure 1. It can be decomposed into an acyclic schema
with four relations, shown on the right.

The building blocks of acyclic schemes are Multivalued
Dependencies, MVDs. Every acyclic schema is fully specified
by the set of MVDs that it implies, which we call its support.
Therefore, when mining acyclic schemes, the first step is
to mine the MVDs satisfied by the data. MVDs were first
introduced by Fagin [13], which used them to introduce
the 4th normal form, a generalization of the Boyce-Codd
normal form (BCNF) [10]. They were studied extensively in
the database literature [2, 4, 14, 28], and the literature on
graphical models [17, 41], and have recently been used as
part of a data repairing solution to enforce fairness of ML
systems [36, 37]. The methods used to synthesize an acyclic
schema from a set of MVDs are well known [3, 7, 13, 32].
However, despite their importance, there is little research on
the discovery of MVDs from data [1].

Work most closely related to the discovery of MVDs has
been on discovering Functional Dependencies (FDs) and
Unique Column Combinations (UCCs) (8, 21, 26, 27, 33, 35,
42]. These are special cases of MVDs, but MVDs are more gen-
eral. Discovering all FDs and all UCCs is insufficient for dis-
covering acyclic schemes. The only work that addressed the
discovery problem for MVDs is by Savnik and Flach [38] and
a master thesis by Draeger [12], and none of them address
the more challenging task of discovering acyclic schemes.

There are two major challenges that make the discovery
of MVDs and acyclic schemes, much harder than that of FDs
and UCC:s. First, they don’t hold on subsets of the data. If a
relation satisfies an FD, or a UCC, then every subset also sat-
isfies the FD, or UCC, and this is exploited by many discovery
algorithms, e.g FastFD [42] mines FDs in all subsets of size 2,

Research 4: Uncertain, Probabilistic, and Approximate Data

while HyFD [35] mines FDs in a small subset extracted from
the data. This property fails for MVDs, preventing us from
considering subsets of the data. Second, MVDs and acyclic
schemes are much more sensitive to data errors than FDs and
UCCs. Even a single missing tuple may invalidate an MVD or
schema. Real-world data often has important dependencies
that do not hold exactly, but, if discovered, are very useful
for a variety of applications. For that reason, in this paper
we study the problem of discovering approximate MVDs and
consequently, approximate acyclic schemes.

We present Maimon!, the first system for discovering
approximate MVDs and acyclic schemes in the data. We
introduce a principled notion of approximation, based on
information theory, and develop the necessary theory for
reasoning about approximate MVDs and schemes. We then
describe algorithms for mining MVDs and schemes, and eval-
uate their scalability on real-world datasets of up to 1M rows,
and 30 attributes. By allowing approximations, Maimon finds
more interesting schemes without incurring too high a loss
(i.e., spurious tuples). We make several contributions.

Our first contribution is to introduce a principled defini-
tion of approximation, and study its properties. Kivinen and
Mannila [26] give three definitions of approximate functional
dependencies, and Kruese and Naumann use one of them in
their approximate FDs and UCCs discovery algorithm [27].
We propose a metric of approximation based on information
theory. Building on earlier work by Lee [30], each MVD or
acyclic schema is associated with an information theoretic
expression, which represents the degree of approximation.

Second, we propose novel algorithms for mining approxi-
mate MVDs and approximate acyclic schemes. For mining
MVDs, our theoretical results prove that we do not need
to discover all approximate MVDs, but only the so-called
full MVDs with minimal separators. Our algorithm builds
on previous results by Gunopulos et al. [20] for discovering
the most specific sentences in the data that meet a certain
criterion (e.g., maximal sets of items whose frequency in the
data is above a given threshold). Following the discovery
of the MVDs that hold in the data, we turn to the task of

! Maimon : Multivalued Approximate Inference Mining and NOrmalization.

298

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

1/4 by | dy | e1 | 14 A | F
va | by | di | ex | va x| a; | fi| e
1/4 by | dy | e3 | 12 a | fo |12

R:
A|B|C|D|E|F A| B | D A|C | D B | D|E
ai b1 C1 d1 €1 f1 1/4 ai b1 d1 1/4 75} C1 d1
ag | by |c1|di e | fa|lvse =|az|by|di|vsa |ag|c1|di
ay | by |ca | dy|es| fol az | by | dy | 14 az | c2 | dy
ai bz C1 dz e3 f1 1/4 ai bz dz 1/4 ai C1 dz 1/4 bz dz (]
ai | by |ci |d2| e | fi
Fig. 1 A relation R and it’s decomposition into an acylic schema

Fig.2 Join Tree
enumerating the acyclic schemes that can be synthesized
from the set of discovered MVDs. Our algorithm is based on
an approach for efficiently enumerating the maximal inde-
pendent sets of a graph [11, 22], which has also been applied
to the problem of enumerating tree decompositions [9].

Third, we evaluate Maimon on 20 real-world datasets that
are part of the Metanome project that provides a repository of
benchmarks for a variety of data profiling tasks that include
the discovery of data dependencies. The datasets chosen for
evaluation have been used in a large body of work on mining
exact and approximate FDs [8, 12, 27, 33-35]. We show that
Maimon scales up to 1M rows, and up to 30 columns. We em-
pirically show that the loss entailed by the generated acyclic
schemes (i.e., number of spurious tuples), strongly correlates
with the information theoretic measure of approximation we
develop herein. We also show that a larger degree of approxi-
mation enables the discovery of schemes that exhibit a larger
degree of decomposition, that leads to significant savings
in storage. These schemes generally have more relations,
and the width of the schema (i.e., relation with the largest
number of attributes), is smaller.

The most expensive operation of Maimon is the computa-
tion of the entropy H(X) of a set of attributes X. Each such
computation requires a full scan over the data, and this is
prohibitively expensive due to the exponential number of
subsets of attributes. We describe a novel, efficient approach
to computing entropy, which reduces the problem to a set
of main-memory SQL queries. Our method is inspired by
the PLI cache (Position List Indices) data structure used for
mining both exact and approximate FDs [21, 27].

To sum up, the contributions of this work are as follows:

(1) We define a principled notion of approximate data
dependencies based on information theory, and study
its properties; Sec. 4 and 5.

(2) We describe a novel MVD enumeration algorithms and
acyclic schema enumeration algorithm; Sec. 6 and 7.

(3) We conduct an extensive experimental evaluation on
20 real datasets; Sec. 8.

Research 4: Uncertain, Probabilistic, and Approximate Data

2 RUNNING EXAMPLE

We will use the following running example in this paper. Con-
sider the relation R over the signature Q = {A, B,C, D, E, F}
in Figure 1. Ignore the probabilities, we will use them in Sec. 3.
Also, ignore for now the last row (in red). The table with
four rows can be decomposed into four tables, shown in the
figure. More precisely, the following join dependency holds:
R = R[ABD] » R[ACD] > R[BDE] v« R[AF]. The schema
of these four tables is acyclic, because it admits a join tree,
shown in Fig. 2 (reviewed in Sec. 3). Our goal is to discover
this acyclic schema from the data R. For that, we note that
the acyclic schema can be entirely described by three Mul-
tivalued Dependencies: BD — E|ACF, AD — CF|BE, and
A — F|BCDE. Each corresponds to one edge of the join tree:
the left hand size of the MVD (that we call the key) is the
label of that edge, while the two sets of attributes correspond
to the subtrees connected by the edge. For example, the edge
ACD *® ABD in the join tree defines the MVD AD — CF|BE.
The key AD “separates” the attributes CF in one subtree
from BE in the other subtree, and we will also call such a set
a separator. Since MVDs are the building blocks of acyclic
schemas, their discovery is a prerequisite for discovering
acyclic schemas, and our first task is to discover MVDs from
data, then use them to discover acyclic schemas.

Consider the 5’th row in R, shown in red. By adding it,
we need to add a 4’th row to R[BDE], also shown in red.
However, now the join dependency no longer holds exactly,
because R[ABD] »< R[ACD] v« R[BDE] v« R[AF] contains a
spurious tuple, namely (az, by, c2, da, €3, f2), which is not in R
(it is not shown in the Figure); the first two MVDs no longer
hold, only A — F|BCDE still holds, and the acyclic schema
is no longer a correct decomposition of R. Yet the schema
can still be useful for many applications, even it if leads to
a spurious tuple. Insisting on exact acyclic schemas would
severely restrict their applications, and also make them very
brittle since the addition of one single tuple would invalidate
the schema. In this paper we compute approximate acyclic
schemas, and approximate MVDs. By allowing approxima-
tions, the schema shown in the figure is still considered valid
for the data, despite the spurious tuple.

3 BACKGROUND

Table 1 summarizes the notations in this paper. We denote
by [n] = {1,...,n}. Let Q be a set of variables, also called
attributes. If X, Y C Q, then XY denotes X U Y.

3.1 Data Dependencies

Fix a relation instance R of size N = |R|, and schema Q.
For Y € Q we let R[Y] denote the projection of R onto the
attributes Y.

299

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Q set of variables (attributes)
n=|Q| number of variables (attributes)
X,Y,AB,... sets of variables C Q
S a schema = {Q1,...,Qm}
X—=Y|Z a standard MVD
X = Yi|Yo|---|Yyn | an MVD [4]
(T, x) a join tree
H(X) entropy of a set of variables X
H(Y|X),I(Y; Z|X) entropic measures
NIVADY) the entropic measure in Eq.(6)
J(S) J of any join tree for S
JX — Y1| -+ |Ym) | J of the schema {XY1,...,XY,,}
JX —~»Y|Z) =I(Y; Z|X)
R a relation
N = |R| number of tuples
R |= AJD(S) R satisfies an acyclic

join dependency
R = AJD(S) R e-satisfies an acyclic

join dependency

Table 1: Notations
Let X,Y,Z C Q. A schemaisasetS = {Q,...,Q} such

that Ule Q; = Qand Q; € Qj fori # j. We say that the
relation instance R satisfies the join dependency JD(S), and
write R |= JD(S), if R =><1f:1 R[Q;]. We say that R satisfies
the multivalued dependency (MVD) ¢ = X — Y1|Ya|... |V
where m > 2, the Y;s are pairwise disjoint, and XY; - -- Y, =
Q,if R = R[XY;] > - -+ > R[XY},]. We call X the key of the
MVD and {Yj, ..., Yy} it’s dependents, denoted key(¢) = X
and dep(¢p) = {Y1, ..., Vi, }. Most of the literature considers
only MVDs with m = 2, which we call here standard MVDs.
Beeri et al. [4] noted that a generalized MVD can concisely
encode multiple MVDs; for example X — A|B|C holds iff
X —» AB|C, X — A|BC and X — AC|B hold. We review a
join tree from [6]:

Definition 3.1. A join tree is a pair (7, y) where 7 is an
undirected tree, and y is a function that maps each u €
nodes(7") to a set of variables y(u), called a bag, such that
the following running intersection property holds: for every
variable X, the set {u € nodes(7") | X € y(u)} is a connected

component of 7~. We denote by y(7) = U, x(u), the set of
variables of the join tree.

We often denote the join tree as 7, dropping y when
it is clear from the context. The schema defined by 7 is
S={Q1,...,Qn}, where Q,...,Q,, are the bags of 7. We
call a schema S acyclic if there exists a join tree whose schema
is S. Since we required Q; SZ Q; for i # j, one can prove
that any acyclic schema with n attributes and m relations
satisfies m < n. We say that a relation R satisfies the acyclic
join dependency S, and denote R |= AJD(S), if S is acyclic and

Research 4: Uncertain, Probabilistic, and Approximate Data

R = JD(S). An MVD X —» Yi|:--|Y,, represents a simple
acyclic schema, namely S = {XY;, XYy, ..., XY, }.

Let S = {Qy,...,Q,;} be an acyclic schema with join tree
(7, x)- We associate to every (u,v) € edges(7") an MVD

¢u.0 as follows. Let 7;; and 7, be the two subtrees obtained

by removing the edge (u,v). Then, we denote by ¢, . &f

x(w) N x(v) = x(T)| x(75). We call the support of T the set
of m—1 MVDs associated to its edges, in notation MVD(7") =
{Pu.v | (u,v) € edges(7)}. If T defines the acyclic schema
S, then it satisfies R |= AJD(S) iff it satisfies all MVDs in its
support: R |= ¢y, , for all ¢, ., € MVD(T) [6, Thm. 8.8].

Example 3.2. We will illustrate with the running example
from Sec. 2. The tree in Fig. 2 is a join tree. Its bags are the
ovals labeled AF, ACD, ABD, and BDE, and it is custom to
show the intersection of two bags on the connecting edge.
MVD(T") = {BD — E|ACF, AD — CF|BE, A — F|BCDE}.

3.2 Information Theory

Lee [29, 30] gave an equivalent formulation of data depen-
dencies in terms of information measures; we review this
briefly here, after a short background on information theory.
Let X be a random variable with a finite domain 9 and
probability mass p (thus, >, cp p(x) = 1). Its entropy is:

1
D, plog

xeD
If N = |D| then H(X) < logN, and equality holds iff p is
uniform. For a set of jointly distributed random variables
Q = {Xi,...,X,} we define the function H : 2® — R as
the entropy of the joint random variables in the set. For

example, H(X1X3) = Yy ep, x,en, P(x1,x2) log m Let
A, B,C C Q. The mutual information I(B; C|A) is defined as:
I(B;C|A) £ H(AB) + H(AC) — H(ABC) — H(A) (2)

It is known that the conditional independencep =B L C | A
(i.e., B is independent of C given A) holds iff I(B; C|A) = 0.
In this paper we use only the following two properties of
the mutual information:
I(B;C|A) =0
I(B; CD|A) =I(B; C|A) + I(B; D|AC)

def

H(X) = (1)

®)
4)
The first inequality follows from monotonicity and submod-
ularity (it is in fact equivalent to them); the second equal-
ity is called the chain rule. All consequences of these two
(in)equalities are called Shannon inequalities; for example,
monotonicity H(AB) > H(A) is a Shannon inequality be-
cause it follows from (3) by setting B = C.

Let R be relation with attributes Q = {X1,...,X,,} and N
tuples. The empirical distribution is the uniform distribution
over its tuples: Vt€R, p(t)=1/N. It’s entropy satisfies H(Q) =
log N. For a C [n], we denote by X, the set of variables

300

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Xi,i € a, and denote by R(X,=x,) the subset of tuples t €
R where t[X,]=x,, for fixed values x,. By uniformity, the

marginal probability is p(Xq=x4)= EEa=*al

N , and therefore:

def

HOG) ZlogN == 3 IRXa=xa)] log IRXa=x0)| (5

Xq €Dy

The sum above can be computed using a simple SQL query:
Select Xy, count (*) xlog(count(*)) From R Group By Xj,.

Lee [29, 30] formalized the following connection between
database constraints, and entropic measures. Let (77, y) be a
join tree (def. 3.1). We define the following expression:

def

JT 0% D Hirw)- Y, Hlx(e)Nx()~H(x(T)
nodzg(ﬂ e(gée?z]%

(6)
We abbreviate it with J(7"), or J, when 77, y are clear
from the context; we will prove later (Th. 5.1) that > 0isa
Shannon inequality. Lee proved that J depends only on the
schema S defined by the join tree, and not on the tree itself.
To see this on a simple example, consider the MVD X —
U|V|W and its associated acyclic schema {XU, XV, XW}.
If we consider the join tree XU — XV — XW, then J =
H(XU) + H(XV) + HXW) — 2H(X) — H(XXUVW). Another
join tree is XU — XW — XV, and J is the same. There-

fore, if S is acyclic, then we write J(S) to denote J(7)

for any join tree of S. We denote by (X — Yi|---|Yy) def

H(XY))+: - -+H(XY,,)-(m-1)H(X)-H(XY; - - - Y},) for any
sets of variables X, Y3, ..., Y;, where Y3, ..., Y}, are pairwise
disjoint, even when XY; - - - Y}, is not necessarily Q. When
m = 2, then J(X — Y|Z) = I(Y; Z|X).

THEOREM 3.3. ([30]) Let H be the entropy of the empirical
distribution on R, and let S be any acyclic schema. Then R |=

AJD(S) iff T(S) = 0.

In the particular case of a standard MVD, Lee’s result
implies that R |= X — Y|Z if and only if I(Y; Z|X) = 0.

Example 3.4. Continuing Example 3.2, the empirical distri-
bution of the relation R in Fig 1 (without the red tuple) assigns
probability 1/4 to each tuple. Thus, H(LABCDEF) = log4 = 2.
The marginal probabilities need not be uniform, e.g. the
marginals for BDE are 1/4,1/4,1/2, and thus H(BDE) =
1/4log4 + 1/4log4 + 1/2log2 = 3/2. The value of J is:
J(T) = H(AF) + H(ACD) + H(ABD) + H(BDE) — H(A) -
H(AD)—-H(BD)—H(ABCDEF). For the empirical distribution
in the figure, this quantity is 0.

4 PROBLEM STATEMENT

Our main goal is to discover an acyclic schema for a given
relation instance R. Since exact schemas are very sensitive
to data errors, Maimon discovers approximate schemas.

Research 4: Uncertain, Probabilistic, and Approximate Data

Definition 4.1 (Approximate Acyclic Schema). Fix a rela-
tion instance R, and £>0. We say that an acyclic schema
S is an e-schema for R, or simply approximate schema, if
J (S) < ¢. In notation, R |=, AJD(S).

Maimon takes as input ¢ > 0 and discovers approximate
acyclic schemas for R. By Lee’s theorem, if we set ¢ = 0,
then Maimon returns exact schemas. In practice, a relation
R may not have any exact schemas, or may have very lim-
ited schemas; by allowing ¢ > 0 we may find approximate
schemas that are quite useful for many applications.

PROBLEM 4.1 (SCHEMA ENUMERATION PROBLEM). Given
a relational instance R, enumerate the approximate acyclic
schemas of R.

In practice, we are not interested in enumerating all ap-
proximate acyclic schemas of R. This would take a pro-
hibitively long time, and some acyclic schemas are supe-
rior to others. For example, consider a relation over four
attributes that satisfies the acyclic join dependency S
{XA, XB, XC}. The following acyclic join dependencies also
hold in R: {XAB, XC}, {XAC, XB}, and {XA, XBC}. The lat-
ter schemas are less useful than S = {XA, XB, XC} that leads
to a larger degree of decomposition. Therefore, in this paper
we address the problem of enumerating acyclic schemas that
cannot be extended (i.e., with additional relational instances)
while continuing to satisfy the accuracy threshold J(S) < e.

We derive the approximate schemas from the MVDs in
their support. Since an MVD is, in particular, an acyclic
schema, Def. 4.1 applies to them as well: a e-MVD is one
for which J(X — Yi|---|Ym) < &. Our second problem is:

PROBLEM 4.2 (MVD ENUMERATION PROBLEM). Given a re-
lational instance R, enumerate the approximate MVDs of R.

Maimon works as follows. The user provides a parameter
¢ 2 0. In the first phase, Maimon enumerates e-MVDs, using
the algorithm in Sec. 6. When it finishes, or after a timeout,
it starts the second phase, where it enumerates approximate
schemas with support from the set returned by the first phase,
using the algorithm in Sec. 7. The support of an approximate
schema S with m relations consists of m—1 e-MVDs. In the
following section we show that J(S) < (m — 1)¢ < ne. This
allows the user to configure ¢ according to the worst-case
information theoretic error entailed by the schema.

5 THREE MAIN TECHNIQUES

We describe here three main techniques that allow us to de-
sign efficient schema- and MVD-discovery algorithms. The
first reduces the approximate schema discovery to approxi-
mate MVD discovery, the next two prune the space of MVDs
that need to be discovered.

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

5.1 From MVDs to Acyclic Schemas

Beeri at al. [6] showed that, for exact constraints, an acyclic
schema over m relations is equivalent to the set of m—1 MVDs
in its support. We give here a non-trivial generalization to
approximate schemas and MVDs. We start with two simple
inequalities which we need throughout the paper:

ProrosITION 5.1. Let 1,7y, ..., Ym, Zm be pairwise dis-
joint sets of variables, and let X be any set of variables. Then
the following are Shannon inequalities:

TJX =Yl Ym) <TX > Z1] - [YmZm)

IXZy-Zm > Y|+ Ym) ST X = V1Z1] - [YmZm)

()
®)

Proor. The first inequality follows from this chain of in-
equalities: (X — Yi|--+|Ym) < T(X = Y1Z1|Ys| - -+ |Vi) <
I X - Y121|Y2Z5| - -+ |Y) < - - -; to prove it, we show only
the first step (the others are similar), which follows by observ-
ing (X — Y|+ |Ym) + [(Z1; Y2 - Yl XY1) = T (X —
Y1Z;|-- - |Y;,) then using inequality (3). The second inequal-
ity follows from a similar chain, where the first step follows
from J(XZy — Yi| - |Ym) + 25, 1Y Z11X) = T(X —
Y1Z1|Y,| - - - |Y,,) and the inequality follows from (3). O

Let (7, x) be a join tree, defining an acyclic schema S
over the variables (7)) = Q. Choose an arbitrary root,
orient the tree accordingly, and let uy, ..., u, be a depth-
first enumeration of nodes(7"). Thus, u; is the root, and

for every i > 1, parent(y;) is some node u; with j < i.

def
:e U€=i,j Q[, and

A; def x(parent(u;)) N y(u;) (by the running intersection
property this is equal to Q,;_1) N Q;). We prove:

For every i, we define Q; def x(wi), Qiyj

THEOREM 5.1. The following hold:

m

J(T) =) HQu-1) QulAs)

i=2

©)

m
ir:nza%I(QL(i_l); Qim|Ai) < J(T) < ZI(le(i—1)§ Qiml|Ai) (10)

301

i=2

The first is an identity, and the second is a Shannon inequality.

The identity (9) captures precisely the intuition that the
information measure associated with a join tree 7~ is equiva-
lent to m — 1 mutual information. This identity implies that
J(T) = 0, because I(- -) > 0. But the expressions I(: - -) in
(9) do not correspond to MVDs, because they do not include
all variables Q. The Shannon inequality (10) rectifies this,
by showing that J(7") lies between the max and the sum
of m — 1 MVDs. Notice that the MVDs A; — Qq.;-1)|Qi.m,
i = 2, m are precisely the support of 7, MVD(7"), thus (10)
generalizes Beeri’s observation to approximate schemas. An
immediate consequence of (10) is the following relationship
between an acyclic schema S and its support.

Research 4: Uncertain, Probabilistic, and Approximate Data

COROLLARY 5.2. Let S be an acyclic schema with join tree
(T, x). Then: (1) if R £, AJD(S) then R =, MVD(T). (2)
IfR |z, MVD(T) then R |=(m—-1)e AJD(S). In particular, (1)
and (2) are equivalent if ¢ = 0. Here R |=, MVD(7") means
R |=¢ ¢, forall p € MVD(T).

PrOOF. (of Theorem 5.1) Let 7; denote the subtree con-
sisting of the nodes uy, ..., u;. We prove (9) by induction
on m. Assume the identity holds for m — 1. Compared to
Tm-1, the tree 7, has one extra node u,, and one extra edge
(parent(un,), um), hence by the definition of J in (6):

T Tm) =T (Tm-1) + H(x(um)) — H(x(um) N x(parent(um))
+ H(x(Tm-1)) — H(x(Tm))
=J (Tm-1) + H(Qm) = H(Am) + H(Q1,(m-1)) — H(Q1:m)
=T (Tm-1) + I(Q1:(m-1); Qm|Am)

The claim follows from the induction hypothesis on J (7p,-1).

We prove (10). The right inequality follows from the fact
that I(Qq.;—1); Qi|A;) < I(Qy:(i-1); Qi:m|A;) (Which holds by
Eq. (7)). For the left inequality, we make the following obser-
vation. If 7~ is any join tree and 7’ is obtained by mergining
two adjacent nodes (u, v) € edges(7"), then J(7) > J (7).
This is because J(7) = J(T') + H(x(u)) + H(x(v)) —
H(x)Ny (0)~H(x(@)Ux(0) = T(T)+1(r(w); x(0)] x@)n
x(v)). To prove (10), we fix one edge (parent(u;), u;) and re-
peatedly merge all other edges, until we end with a tree 7
with two bags, Q.(;—1) and Q;., respectively. Then J(7") >
J(T') = I(Qui-1); Qizm|A;). The claim follows from the fact
that this holds for any i = 2, m. m]

Example 5.3. We illustrate the first part of the theorem on
the example in Fig. 2 and Example 3.4. Enumerating the nodes
depth-first (ABD, ACD, AF, BDE), Eq. (9) and (10) become:

J(T) =I(C; B|AD) + I(F; BCD|A) + I(ACF; E|BD)
max(- -+) < J(7) <I(CF; BE|AD) + I(F; BCDE|A) + I(ACF; E|BD)

5.2 Full MVDs

The number of candidate MVDs is very large: there are
(3" +1)/2 - 2" = O(3") standard MVD’s X — Y|Z, which
is too large to consider for practical datasets. Here, and in
the next section, we describe two techniques that allow us
to restrict the search space. Consider a fixed key X. In the
exact case, if any MVD X — ... holds in the data, then there
exists a “best” one [4]. For example if both X — AB|C and
X —» A|BC hold exactly, then so does X — A|B|C, and it
suffices to discover only the latter. Unfortunately, this fails
for approximate MVDs, as we explain here.

We say that ¢ = X — Aq|...|An, refinesy = X —
By|...|Bk, denoted by ¢ > ¢ if they both have the same

2

2There are 3" ways to partition Q into three sets X, Y, Z. We rule out the
2™ partitions that have Y = 0 and the 2" partitions that have Z = 0, and
add back the 1 partition that has Y = Z = 0, for a total of 3™ — 27*1 4+ 1.
Finally, we divide by 2 since X — Y|Z and X — Z|Y are the same MVD.

302

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

key (i.e., key(¢) = key(y) = X) and for every A; € dep(¢)
there exists B; € dep(y) such that A; C B;. For example,
X —» A|B|C refines X — AB|C.

ProprosITION 5.2. If ¢ = ¢ then J (¢) = T (¥).

Proor. It suffices to consider the case when two depen-
dents in ¢ are replaced by their union in ¢, e.g. ¢ = X —
AlB|--- and ¥y = X — AB|---, since any refinement is a
sequence of such steps. In that case, by inspecting Eq.(6) we
observe J(¢) = J () +H(XA)+H(XB)-H(XAB)-H(X) =
J W)+ I(A; BIX) = J (¥) proving the claim. m|

We say that an MVD ¢ is e-full, or simply full, if R |5, ¢
and, for all strict refinements ¢ > ¥, R |5, ¢. We denote
by FULLMVD, (R, X) the set of all full e-MVDs with key X.
Thus, we only need to discover the sets FULLMVD, (R, X),
for all X C Q, because all other MVDs can be derived using
Shannon inequalities.

Beeri proved that, in the exact case, FULLMVDy(R, X) has
at most one element. We next present Lemma 5.4 that shows
what happens in the approximate case, and allows us to
derive Beeri’s result as a special case. Given two MVDs ¢ =
X — Aql...|An and ¢y = X — By|...|Bg, define their
joinas ¢ Vi = X — C11|Ci2| -+ |Cpuk, Where Ci; = A; N
Bj. Clearly, ¢ V ¢ refines both ¢ and ¢, ie. J(¢ V) >
max(J(4), I (¥)). We prove a weak form of converse:

LEMMA 5.4. The following are Shannon inequalities: J (¢ V
P) <T@ +mT W) and I (9 V §) < kT ($) + T W)

By this result, J(¢) = J(¢) = 0 implies (¢ V ¢) = 0,
which proves Beeri’s theorem that FULLMVD,(R, X) has at
most one element, because if ¢1, @, - - - are all MVD’s with
key X that hold exactly on R, then ¢; V ¢, V --- refines
all of them and holds too. This property was also used by
Draeger [12] in his MVD discovery algorithm. When ¢ > 0

however, then this fails. For a very simple example, consider
X A B C

a relation with two tuples,[0 0 0 0
0 1 1 1

Then R |z, X — AB|C,X — AC|B, X —» BC|A, but £, X —»
A|B|C; indeed, H(0) = H(X) = 0 and H(W) = 1 for all other
sets W, and the reader can check J(X — AB|C) = J (X —
AC|B) = J (X — BC|A) =1 but J(X — A|B|C) = 2.

In summary, our algorithm discovers FULLMVD,(R, X),
for every X. Unlike the exact case, FULLMVD,(R, X) may
contain more than one MVD.

and fix ¢ = 1.

5.3 Minimal Separators

We now show that it is not necessary to discover the sets
FULLMVD, (R, X) for all subset of attributes X C Q, but only
those where X is a minimal separator.

Definition 5.5. Fix a relation R and ¢ > 0. We say that
a set X separates two variables A, B ¢ X if there exists an

Research 4: Uncertain, Probabilistic, and Approximate Data

e&MVD X — Yq|- - - |Y,, that separates A, B, i.e. A, B occur in
different sets Y;, Y;. We say X is a minimal A, B-separator if
there is no Xy C X that separates A, B.

For a pair A, B € Q, we denote by MINSEP,(R, A, B) the
set of minimal A, B separators in R, and for a minimal AB
separator X we denote by FULLMVD,(R, X, A, B) the set of
full MVDs with key X that separate A, B. Notice that:

FULLMVD,(R, X) = U FuLLMVD,(R, X, A, B).
A,BEQ\X
Example 5.6. Let R be arelation over Q = {A, ..., E}. Sup-
pose R |=. CD — A|BE. By (8) we also have R |=, CDE —
A|B, which means that CDE cannot be a minimal separator
for A, B. To check that CD is a minimal A, B-separator, we
need to check that neither C nor D separates A, B

The main result in this section is that we only need to
compute the full MVDs with minimal separators, denoted:

M, & g (11)

Xe
MiINSEP, (R, A, B)

FUuLLMVD, (R, X, A, B)
A,BeQ

because, as we show, every e-MVD can be derived from the
set M, by a Shannon inequality.

THEOREM 5.7. Let X — Y|Z be an e-MVD for R. Then
there exist ¢, ..., ¢m € M., where m = |Y| - |Z|, such that
the following is a Shannon inequality: I(Y; Z|X) < >,; T ($;).

In summary, our algorithm will iterate over pairs of at-
tributes A, B, will compute MINSEP, (R, A, B), then, for each
X in this set will compute FULLMVD, (R, X, A, B), and return
their union, M, ; we describe it in the next section. We end
this section with the proof of Theorem 5.7.

Proor. Let Y = A;...An, and Z = Bj...Bg. By the
chain rule (4) it holds that:

m k
I(Y,Z|X) = Z Z I(AI,BJ|XA1 .. ~Ai—1B1 e Bj—l)
i=1 j=1
It suffices to prove that, for each i, j, there exists an MVD
¢ € M, such that the following is a Shannon inequality:

I(Ai; BjIXA; -+ Aj1By - - Bj_1) <J ()

Since X — Y|Z is a e-MVD for the relation R, then X is an
Aj, Bj separator. Let S € X be any minimal A;, B; separator,
thus S € MINSEP.(R, A;, Bj), and let ¢ = S — Uy|---|U,

be a full MVD in FULLMVD,(R, S, A;, Bj) € M, that sepa-

rates A;, B;. Assume w.lo.g. A; € Uy, Bj € Uy, and let ¢/ def

S — WI|V, where W = U, V = UUs - - - Up,. Thus, ¢ > ¢,
and therefore by Prop. 5.2 the following Shannon inequality
holds: T (¢) = J (). Write ¢ asy = S — WyW; |V, V1, where
Wo =WN(XA;---A;By---Bj), Wy = W — W, and similarly
Vo=V N(XA;---A;iBy - Bj), Vi =V = V. By Prop. 5.1 (7)

303

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Algorithm MVDMiner(R, Q, ¢)

: Mg — (Z)
: for all pairs A, B € Q do
MINSEP, (R, A, B) < MineMinSeps(R, Q, ¢, (A, B))
for all X € MINSEP,(R, A, B) do
M, — M, U getFullMVDs(X, ¢, (A, B), c0)
return M,

S A R e

Fig. 3 Discover the set M, = Usentinserg FULLMVD,(S).

we have the following Shannon inequality [(¢) = J(S —
WoWi|VoV1) = J(S — Wy|V). Finally, we notice that the
set SWyVj is the same as XA;---A;B;---B; and that A; €
Wo, Bj € Vp, therefore by Prop. 5.1, (8), J(S — Wy|Vp) =
J(XA;---Ai_1B;y---Bj_; — A;|B;), proving the claim. O

6 DISCOVERING ¢e-MVDS

In this section we present the first phase of Maimon: the
algorithm for the discovery of e-MVDs in a relation R, called
MVDMiner, and shown in Figure 3. As explained, the algo-
rithm returns the set M, defined in Eq.(11); this set is used
in the second phase of Maimon to compute e-schemes.

MVDMiner iterates over all pairs of attributes A, B € Q.
It first computes the set MINSEP.(R, A, B) of minimal A, B-
separators (line 3): we describe this step in Sec. 6.1. Then, for
each X € MINSEP,(R, A, B), it computes FULLMVD, (R, X, A, B)
(line 5): we describe this step in Sec. 6.2. Finally, the algo-
rithm returns their union, M,. Both steps require access to
an oracle getEntropyr(X) for computing the entropy H(X),
according to Eq. (5), where H is the entropy associated with
the empirical distribution over R. We describe the implemen-
tation and optimization of getEntropyr(X) in Section 6.3.

6.1 Discovering the Minimal Separators

We describe here how we compute all minimal A, B-separators,
MINSEP, (R, A, B) (line 3 of MVDMiner). One possible way
to do this could be to iterate over sets X top down, because it
enables pruning: if X is not an A, B-separator, then neither is
any subset of X, by (8) in Prop. 5.1. This suggests a top-down
algorithm, which starts from the largest set X = Q\{A, B},
and checks if it is an A, B-separator. If not, then none exists.
Otherwise, it exhaustively searches over subsets of X, from
largest to smallest, returning the minimal (with regard to
inclusion) sets that separate A, B. Such an exhaustive search
will explore all separators, while we only want to find the
minimal ones. Our approach takes advantage of the fact that

Research 4: Uncertain, Probabilistic, and Approximate Data

we need to find only the minimal separators, and builds on
a result by Gunopulos et al. [20].

Let C = {Cy,...,Cp,} be a set of distinct subsets of Q. A
set D C Qisa transversal of Cif DNC; # 0 for every C; € C.
For a set D C Q, we denote by D the complement set Q\D.

THEOREM 6.1. Let C = {Cy,...,Cy,} denote a set of min-
imal A, B separators in R. Then there exists a minimal A, B-
separator X ¢ C iff there exists a minimal (w.r.t inclusion)
transversal D of C such that D is an A, B-separator.

Proor. only if. Since D is a transversal of C then it holds
that A, (C;n D # 0) iff \I_,(D 2 C;). Since D is an A, B
separator, there exists some minimal separator X C D. As-
sume, by contradiction, that X 2 C; for some C; € C. Then
D 2 X 2 C;, which is a contradiction.

if. Since X is a minimal A, B separator that is not in C,
then A7_;(X 2 C;), meaning that X is a transveral of C.
Then any minimal transversal D C X satisfies the claim. 0O

Algorithm MineMinSeps (Fig. 5) for discovering all mini-
mal A, B separators, MINSEP, (R, A, B) is based on Theorem 6.1,
and proceeds as follows:

(1) Initialize C with a minimal A, B-separator (Line 3-5).

(2) Iterate over all minimal transversals D of C (Line 8):

(3) If D separates A, B (Line 11), then:

(a) Find any minimal A, B separator X C D (Line 12).
(b) C «— CU {X}.

The function ReduceMinSep called in lines 4 and 12 takes
a separator (Q\{4, B} or D respectively) and finds any sub-
set that is a minimal separator; this is done greedily in
ReduceMinSep (Fig. 4). The function getFullMVDs called
in line 10 of MineMinSeps, and in line 4 of ReduceMinSep,
takes as input an attribute set X, a pair of attributes A, B, and
a threshold ¢, and computes full e-MVDs with key X that
separate A, B; a parameter K > 0 is used to limit the num-
ber of full MVDs returned, and here we set K = 1 because
we only check if one exists; in line 5 of the main algorithm
(Fig. 3) we set K = oo.

The only sets of attributes returned in MineMinSeps are
minimal AB-separators returned by ReduceMinSep in lines 4
and 12. The proof of completeness (i.e., the algorithm returns
all minimal AB-separators) follows techniques similar to
those by Gunopulos et al. [20], and is given in the full version
of the paper:

THEOREM 6.2. Algorithm MineMinSeps in Figure 5 enu-
merates all minimal A, B-separators in R.

We now analyze the runtime between consecutive dis-
coveries of minimal A, B-separators in MineMinSeps. We
let Q be a finite set of cardinality n, and let C C 22 be a
finite set of sets. The problem of discovering all minimal

304

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Algorithm ReduceMinSep(e, X, (A,B))

: Letp =Xi,..
S X
: foralli=1tomdo
M; — getFullMVDs(S\{X;}, ¢, (A, B), 1)
if M; # 0 then
S < S\{X;}
return S

., Xm be a predefined ordering of X.

NSy

Fig. 4 Given a set X C Q, and a pair (A, B) € Q\X, find a
subset S C X s.t. S is a minimal A, B-separator in R.

Algorithm MineMinSeps(R, Q, ¢, (A, B))

: C«<0

2: X « nil

3. if I(A; B|Q\{A, B}) < ¢ {by getEntropyr} then
4 X < ReduceMinSep(e, Q\{A, B}, (A, B))

5: C«—CuU {X}
6
7
8
9

: else
: Return 0
: while (D < nextMinTransversal(C)) # nil do
. DeQ\D
10: ¢ « getFullMVDs(D, ¢, (A, B), 1)
11: if ¢ # 0 then
12: X « ReduceMinSep(e, D, (4, B))
13: C «— CuU{X}
14: return C

Fig. 5 Given a relation R with schema Q, two attributes
A B € Q, and a threshold ¢ enumerate all minimal A, B-
separators in R.

transversals of C is called the hypergraph transversal prob-
lem [23]. The theoretically best known algorithm for solv-
ing the hypergraph transversal problem is due to Fredman
and Khachiyan [16] and has a quasi incremental-polynomial
delay of poly(n) + mOWog" m) where m = |C| + n. Note the
dependence on the size of the discovered minimal separators
|C|. We denote by TyinTrans(n, C) the delay of the minimal
transversal algorithm. However, not every minimal transver-
sal D leads to the discovery of a minimal separator if D does
not separate A and B (i.e., ¢ = 0 in line 11 of MineMinSeps).
In the full version of this paper we show that the number of
minimal transversals processed in lines 9-13 before a new

Research 4: Uncertain, Probabilistic, and Approximate Data

minimal separator is discovered (e.g., in line 12), or before the
loop exists, is bounded by n - |C|. This allows us to formalize
the delay between the discovery of minimal A, B-separators.
We denote by T(getFullMVDs) the runtime of getFullMVDs,
which we analyze in the next section.

COROLLARY 6.3. Algorithm MineAllMinseps enumerates
the minimal A, B-separators in R with a delay of O(n - |C| -
TminTrans(n, C) - T(getFullMVDs)), where n = |Q)|.

6.2 Discovering the Full MVDs

Returning to our main algorithm, MVDMiner, we have shown
how to compute MINSEP, (R, A, B), the set of minimal A, B
separators in R. Next, for each minimal A, B separator X €
MINSEP, (R, A, B), we compute all full MVDs with key X that
separate A and B, i.e. the set FULLMVD,(R, X, A, B); this is
line 5 of MVDMiner. Recall that full means that the MVD
cannot be further refined.

The algorithm getFullMVDs starts by checking the most
refined MVD with key X, namely ¢ = X — Yi|...|Y,
where Y7, ..., Y, are all attributes not in X (including A, B).
If J(¢p) < ¢ then we are done. Otherwise, the algorithm
considers all possible ways to merge two dependents, while
keeping A and B in different dependents; i.e. it tries X —
Y1Ys|.. .|V, X — Y1Y3|Ys| ... |Y,, etc. We denote the MVD
that results from merging dependents Y; and Y; in dep(¢)
by merge;;(¢). Since ¢ refines merge;;(¢) then, by Proposi-
tion 5.2, it holds that J (merge;;(¢)) < J (¢). This procedure
for searching for a full e-MVD can be viewed as a graph tra-
versal algorithm where every node ¢ is an e-MVD candidate
with key X, dependents Z1, . . ., Z, and its neighbors Nbr(¢)
are the e-MVD candidates:

Nbr(¢) = {merge,;(¢) : Zi, Z; € dep($). A, B ¢ Z:Z;} (12)

Clearly, if A, B were separated in ¢, then they remain sepa-
rated in every MVD in Nbr(¢). We present the algorithm as
a depth-first traversal, which is how we implemented it. The
pseudocode is presented in Figure 6.

6.2.1 An Optimization to getFullMVDs. In the worst case,
Algorithm getFullMVDs will traverse the search space of pos-
sible ways to partition n attributes into k € {2,...,n— 1}
sets, and there can be O(%) such such partitions 3. While,
in general, this is unavoidable, we implemented an optimiza-
tion, described in the complete version of this paper, that
leads to a significant reduction in the search space.

3These are Stirling numbers of the second kind:

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind

305

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Algorithm getFullMVDs(S, ¢, (A, B), K)

: P « 0 {Output set}
: Q «— 0{Q is a stack}
: o =S — Xip|...|X, where X; are singletons.
: Q.push(¢o)
while Q # 0
¢ < Q.pop()
Compute J (¢) {using getEntropyg}
if J(¢) < ¢ then
P —PU{p}
else
for all ¢ € Nbr(p) do
Q.push(¢) {See (12)}

return P

1P| < K do

R AN L >

10:

Fig. 6 Returns a set of at most K full MVDs with key S that
approximately hold in R (w.r.t €) in which A and B are in dis-
tinct components.

6.3 Computing Entropies Efficiently

We describe the procedure getEntropyr for calculating the
joint entropy of a set of attributes. The efficiency of this pro-
cedure is crucial to the performance of MVDMiner, which
needs to repeatedly compute mutual information values
I(Y; Z|X), and each such computation requires four entropic
values H(XY), H(XZ), H(XYZ), and H(X). Repeatedly com-
puting values of the form H(X,), for « C [n] requires multi-
ple scans over the data that resides in external memory.

We build on ideas introduced in the PLI cache data struc-
ture [21, 27], and reduce the problem of computing H(X) to
a main memory join-group-by query. For convenience, we
repeat the formula for entropy (5):

def

H(Xa):logN—% > IR(Xe=xa)log|RXa=xa)l (13)

Xq €Dy

The algorithm uses two ideas: (1) if x, is a singleton (i..e.,
its frequency |R(X,=x,)|=1) then it can be ignored because
its contribution to the total entropy in (13) is 0 (due to the
logarithm), and (2) given two relations mapping the distinct
values of attribute sets X, and X 5> respectively, to the tuple
ids in the relation R that contain them, then we can derive
this mapping for X, UX by simply joining the two mappings
on the tuple IDs. Ignoring singleton valuations makes these
mappings highly compressed, enabling us to store them in
main memory and perform the join using a main memory
database system. We used the in-memory database H2 [45].
We describe the details next. We let h denote a hash func-
tion. In our implementation we use the hash function pro-
vided by the database system. Alg. getEntropygr maintains

Research 4: Uncertain, Probabilistic, and Approximate Data

two sets of relations indexed by aC[n]: CNT,(val, cnt) and
TID,(val, tid) defined as:

CNT,={(h(xq), cnt) | cnt = |R(Xy = x4)|, cnt > 1}
TIDg={(h(xq), t[tid]) | t€R, t[Xa]=Xq, h(xa)€llya1 (CNTy)}
We compute H(X,,) by scanning table CNT,. The algorithm
starts by computing two sets of relations: (1) {CNT;,} and
(2) {TID{;,} for every i € [n]. Assume that we have com-
puted the relations CNT,, CNTg and TID,,, TIDg for some
subsets a, fC[n] such that aNf=0. We compute CNT, 4 as:

Select h(A.val, B.val) as val, count(x) as cnt
From TID, A,TIDﬁ B
Where A.tid = B.tid
Group By h(A.val, B.val) Having count(x) > 1
Next, we compute TID,yp as:
Select h(A.val, B.val) as val, A.tid as tid
From TID, A, TIDﬁ B, CNTaUﬁ A
Where A.tid = B.tid and h(A.val, B.val) = Z.val

Pruning the singleton values makes this technique very
effective, because as we move up the lattice from smaller a’s
to larger o’s, many more tuples x, are unique in the data,
and the tables CNT, and TID, become smaller.

Example 6.4. Fig. 7 shows the tables generated for a 3-
attribute relation R. Both types of relations only contain
values corresponding to non-singleton valuations in R.

However, even with our compression, generating and stor-
ing all 2" — 1 tables CNT,, and TID,, is intractable. Instead,
we perform the following optimization. Fix a parameter L (in
our implementation we chose L = 10), and partition the set
Q into [%] disjoint subsets Qj, Q,, . .. each of size at most
L. For each i, compute the tables TID, and CNT,, for all
subsets @ C Q;; thus the total number of tables precom-
puted is 2[2] - 2. In order to compute H(X,), we express
a=(anNQ)U(anQy)U..., where each union is treated

as explained above for a U .

7 ENUMERATING ACYCLIC SCHEMAS

In this section we present the second phase of Maimon:
given the set M, of full e-MVDs (Eq. (11)), generate acyclic
e-schemes. The algorithm ASMiner is shown in Fig. 8. It
searches for subsets of MVDs Q C M., and reconstructs a
schema from that set. The key to the algorithm’s efficiency
is our new definition of compatibility:

Definition 7.1. Let p1 = X — Aq|... |Apand ¢ = Y —
By|...|Bi be two e-MVDs. We say that ¢; and ¢, are com-
patible if there existan i € {1,...,m},and j € {1,...,k}
such that:

(1) Y € XA;, and X C YB;. In this case we say that the

two MVDs are split-free [6, 15, 19, 28].

306

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

R
tid A B C
t1 a; by c3 CNT4 CNTpg CNTc
to ax b1 val CNT val CNT wval CNT
13 az by c az 2 by 2 c3 2
t4 as by c3 as 2 bs 2
ts as by 4 TID 4 TIDg TIDc
CNTypB val tid wval tid wval tid
val CNT as to bz t Cc3 7]
h(as, b3) 2 az I3 by t3 c3 ta
TIDap as t4 bs s
val tid as s by s
h(as, b3) ta
h(as,b3) ts
Fig. 7 getEntropygr example.
Algorithm ASMiner(M,)
1: schemes =0
2: Construct the graph G = {(¢,) | ¢, € M., ptiy/}
3. for all Q € MaxIndependentSet(G) do
4. schemes « schemes U {BuildAcyclicSchema(Q)}
5. return schemes
Fig. 8 Generate Acyclic Schemas from M.
Algorithm BuildAcyclicSchema(Q)
1S« {Q}

2: Sort Q by ascending order of key cardinality {e.g., X —
A|B before XY — C|D}

3: forall ¢ € Q do

4 Letg=X—>Cq|...|Cn

5: Let Qi €Sst. X C Qi

6 Dy —{C;XNQ;|jel[i,m]}\{X}

7. if [Dg| > 2 then

8: Replace Q; € S with Dy {¢ is non-redundant}
9: return S

Fig. 9 Gets a set Q of pairwise compatible MVDs, and re-
turns an acyclic schema.

(2) There exist two distinct indexes ji, j» € {1,...k} such
that XA; N Bj, # 0, and XA; N Bj, # 0. Likewise, there
exist two distinct indexes iy, iy € {1,...m} such that
YBj ﬂAi1 # 0, and YBj ﬂAiz 0.

Research 4: Uncertain, Probabilistic, and Approximate Data

We write ¢ i, to denote the fact that ¢y, ¢, are incompatible.

We say that a set Q of e-MVDs is pairwise compatible if
every pair of e-MVDs in Q is compatible. Recall that every
join tree 7 with m nodes defines a set of m — 1 MVDs called
its support and denoted by MVD(7").

THEOREM 7.2. Let S be an acyclic schema with join tree
(T, x)- Then the set MVD(T") is pairwise compatible.

Thus, it suffices to iterate over sets of pairwise compatible
e-MVDs. Specifically, our algorithm enumerates the maximal
sets of pairwise compatible e-MVDs, and for this task we
use a graph algorithm from the literature. Define the graph
G(M,, E) as follows:

E={($1,¢2) : 41,92 € M. and ¢1 ¢}
By this definition every maximal independent set in G cor-
responds to a maximal set of pairwise compatible e-MVDs.
We apply the following result.

(14)

THEOREM 7.3. ([11, 22]) Let G(V, E) be a graph. The max-
imal independent sets of G can be enumerated such that the
delay between consecutive outputs is in O(|V|®).

In summary, algorithm ASMiner in Fig. 8 enumerates all
maximal independent sets @, then for each of them con-
structs one acyclic schema S, by calling BuildAcyclicSchema
shown in Fig. 9, and described next.

Algorithm BuildAcyclicSchema starts with a schema that
contains a single relation with all attributes (i.e., S = {Q}). It
then builds the acyclic schema for R by repeatedly using an
e-MVD from Q to decompose one of the relations in S. The
MVDs are processed in ascending order of the cardinality of
their keys. Therefore, when an MVD S — Cy| ... |Cy, is pro-
cessed, then we know that S is contained in exactly one of the
relations in S (e.g., otherwise, S must be contained in a key of
a previously processed e-MVD). The algorithm then applies
this e-MVD to the single relation that contains it, and contin-
ues until all e-MVDs in Q have been processed. An MVD is
said to be redundant [18] if it does not split the single relation
that contains it (i.e., condition of line 7 does not hold). Re-
dundant MVDs are simply ignored in BuildAcyclicSchema.

THEOREM 7.4. Algorithm BuildAcyclicSchema generates
an acyclic schemaS with join tree (T, x) such thatMVD(7") C
Q.IfQ is a non-redundant set of e-MVDs then MVD(T") = Q.
The algorithm runs in time O(n®).

The novel insight of our algorithm is the characterization
of (in)compatibility in Definition 7.1, which depends only on
the pairwise relationship between the MVDs, and therefore
enables the reduction to enumerating maximal independent
sets. Previous characterizations [6, 15, 19, 28] are for entire
sets of MVDs, and are not pairwise. Algorithms for construct-
ing a (single) acyclic schema from data dependencies have

307

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Dataset Full MVDs
threshold=0.0
Dataset Cols. Rows Ru;‘gg]ne Full MVDs
Ditag Feature 13 3960124 TL NA
Four Square (Spots) 15 973516 17017 105
Image 12 777676 3747 151
FD_Reduced_30 30 250000 8024 21
FD_Reduced_15 15 250000 1006 21
Census 42 199524 TL NA
SG_Bioentry 7 184292 101 3
Atom Sites 26 160000 TL 242
Classification 12 70859 1327 27
Adult 15 32561 1083 58
Entity Source 33 26139 14155 153
Reflns 27 24769 TL 543
Letter 17 20000 605 44
School Results 27 14384 7202 2394
Voter State 45 10000 TL 262
Abalone 9 4177 602 36
Breast-Cancer 11 699 5 30
Hepatitis 20 155 479 2953
Echocardiogram 13 132 6 104
Bridges 13 108 3.8 60

Table 2: Datasets. We show runtimes (in seconds) for min-
ing full MVDs with threshold 0.0, and time limit of 5 hours.

been developed by Bernstein [7] where the input is a set of
functional dependencies, and by Beeri et al. and Lien whose
algorithms work by combining conflict-free MVDs [6, 32].

8 EVALUATION

In this section we conduct an experimental evaluation of Mai-
mon. We start with an end-to-end evaluation of its usefulness
in Section 8.1, then evaluate the accuracy of the approximate
schemas in terms of the relationship between the J-measure
and number of spurious tuples in Section 8.2. Next, we eval-
uate the efficiency and scalability of Maimon, measuring the
time to find the minimal separators in Section 8.3. Finally,
we report the rate of enumeration, and some quality metrics
of the generated acyclic schemes in Section 8.4.

We used 20 real-world datsets [44] that are part of the
Metanome data profiling project [34], shown in Table 2 (we
discuss the runtimes in Sec. 8.3). Maimon was implemented
in Java 1.8 and all experiments are single threaded and con-
ducted on a 64bit Linux machine with 120 CPUs and 1 TB of
memory, running Ubuntu 5.4.0.

8.1 A Use Case: Nursery

To evaluate the usefulness of Maimon we applied it to the
Nursery dataset?, a training data for classifying and rank-
ing applications for nursery schools. The dataset contains

4https://archive.ics.uci.edu/ml/datasets/nursery

Research 4: Uncertain, Probabilistic, and Approximate Data

SIGMOD 20, June 14-19, 2020, Portland, OR, USA

(@ (b) (© @ O ®
hocoeraH > | ppcoeHi > | < ABCDEGHI CABEGHI > ABEFGH > ABEFGHI
Caocoen > Cpeoern > | Cpacern > CADEA D | apgra> CAsDAI
ABDFHI
J=0,5=0, J=0.009,5=28%, J=0.021,5=46%, J=0.044,5=65%, J=0.062,5=78%, J=0.097,5=89%,
E=0%,m=1 E£=1.08%,m=2 E=3.42%,m=2 E£=7.62%,m=3 E£=8.61%,m=3 E£=16.48%,m=3
® (b) @ ()
OR==0 D> | @D D G D
J=0.17,5=94%, J=0.277,5=95.7%, J=0.33,5=92.6%, J=0.345,5=97.4%,
E=26.6%,m=3 E=26.8%,m=4 E=51.4%,m=3 E=45.2%,m=4

Fig. 10 The Nursery use case, showing the 10 pareto optimal schemes (out of 415). We encode the 9 attributes as A, B, - - - , I (top). The data
does not admit a exact decomposition (a), but we obtain increasingly better schemes (b)-(j) as we increase the J-measure, with increased space
savings S, at the cost of increased rate of spurious tuples E; for example, for | = 0.277 the data decomposes into 4 relations, S = 95.7% (see text

for the explanation of why it is so high) and E = 26.8%.

Savings In Storage (%)

] 10 20 30 40 50 60
Spurious Tuples (%)

Fig. 11 All 415 schemes discovered for Nursery. The plot shows the
savings S v.s. the spurious tuples E. The line connects the ten pareto-
optimal schemes further detailed in Fig. 10. .

eight attributes describing occupational, financial, social and
health conditions of the family, and a classification attribute
that indicates the priority of the application; we renamed the
attributes A. . . I for brevity. The data has 12960 tuples and
a total of 12960 * 9 = 116640 cells. By increasing the thresh-
old J from 0 to 0.5, we found 415 acyclic schemes (Fig 11),
and show ten of them in detail in Fig. 10. As one can see in
Fig. 10(a), when J = 0, no exact decomposition is possible. As
we increase J, however, we find better and better schemas in
Fig. 10 (b)-(j), in the sense that it decomposes into more rela-
tions, each with fewer attributes. For example, the schema
in (h) (J = 0.277) has 4 relations, BEGI, ABDEHI, CDE, DEF.
For each scheme we report the percentage cell savings, S, and
the percentage of spurious tuples, E. There is a good trade-
off between space savings and error: several schemes have
under 10% spurious tuples yet achieve over 80% space sav-
ing. The space savings are very high (e.g. over 90%), because
the Nursery data is dense: the attribute domains have sizes
3,5,4,4,3,2,3,3,5. For example, the extreme schema where
each attribute is a separate relation (not shown in the Figure)
has3+5+4+4+3+2+3+3+5 = 32 cells and a savings of
(116640 — 32)/116640 i.e. S = 99.9725%; however, its fraction

308

(b) Bridges

%%%MM

0.0 0.1 0.150.17 0.2 0.220.240.260.28 0.3 1.0

(a) BreastCancer

N

It

3
w
S

S

3
N
S

oRoN
e}
3
w
S

15
3

N
S

Spurious Tuples (%)
Spurious Tuples (%)

w
3
=
5

_éi&é%é%

0.0 0.050.08 0.1 0.120.150.17 0.2 0.25 0.3
Q

J-Measure
==

00 005 01 02 025 03 04 >04
J-Measure

o
3

(c) Nursery (d) Echocardiogram

@
3

o

3
-
o
S

(%)
IS
S

%
2o
5 N
S &

Now
S 8
5
o

Spurious Tuples (%)
«
3

Spurious Tuples

-
15

SESEEE

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
J-Measure

o
~N
o

Fig. 12 Spurious Tuples (%) vs. J-measure (see Sec. 8.2).

of spurious tuples is (3%5%4+4%3%2%3%3%5-12960) /12960 = 4,
i.e. E = 400%. Fig. 11 shows the values S, E for all 415 schemes.
Users are likely to select the pareto optimal schemes, i.e.
whose S, E values are not dominated by any other schemes:
the ten pareto optimal schemes in this graph are connected
by aline, and are precisely those we have selected to show in
detail in Fig. 10. In addition to savings S and spurious tuples
E, applications are likely to define their own domain specific
quality measure for choosing the optimal schema.

8.2 Accuracy

Next, we analyzed the relationship between the J-measure
of the acyclic schemes, and the percentage of spurious tuples.
There is no tight theoretical connection between these two
measures, except that /=0 iff there are no spurious tuples,
hence the need for an empirical evaluation. The results are

Research 4: Uncertain, Probabilistic, and Approximate Data

presented in Figure 12. We generated all acyclic schemes with
a threshold ¢ € [0, 0.5], partitioned the schemes into buckets
according to their J-measure, and report the quantiles of the
number of spurious tuples in each bucket. The experiments
confirm a consistent relationship between the J-measure and
the percentage of spurious tuples. Assuming we want to have
no more than 20% spurious tuples, then we can increase J up
to 0.1-0.3, depending on the dataset. The width of the boxes
represent the number of acyclic schemes in that bucket. In
general, as J increases, the number of acyclic schemes will
eventually decrease: this is particularly visible in Fig. 12
(d). The explanation lies in the fact that larger J’s reduce
the size (and, hence, the number) of minimum separators.
If we allowed J to increase further, eventually we find a
single schema, where each attribute is a separate relation,
and where the sole minimal separator is the empty set.

8.3 Scalability

Next, we evaluated the scalability of Maimon. We started
by computing all exact MVDs (¢ = 0) on all 20 datasets and
report the runtimes in Table 2. On five of the datasets, our
system timed out after 5h: for Atom Sites, REFLNS, and Voter
State, it did report a large number of full MVDs, while for
DITAG Feature and Census it did not find any within this
limit, but it terminated on subsets, as we report below.

The discovery of acyclic schemes has three parts: com-
puting all minimal separators (Sec. 6.1), discovering all full
MVDs (Sec. 6.2), and enumerating the acyclic schemes (Sec. 7).
We found that the first step by far dominates the total run-
time, and we report it here; we report the other two runtimes
in the technical report. We report here the time to compute all
minimal separators as a function of #rows, and of #columns.

8.3.1 Row Scalability. We evaluated the algorithm over three
large datsets: Image, foursquare, and Ditag Feature. We in-
cluded all columns, and a subset of 10% to 100% of the tuples.
The results are in Figure 13. In general, we found that the run-
time increases mostly linearly with the size of the data even
when the number of minimal separators is mostly constant,
e.g. for Image and Ditag Feature.

8.3.2 Column Scalability. Next, we varied the number of
columns. Here we kept all rows of the datasets, and included
between 10% to 100% of the columns. The results are pre-
sented in Figure 14. We let the algorithm run for 5 hours
and measured the resulting number of minimal separators.
For example, in the Voter State dataset with 32 columns
Maimon discovered 682, 306 and 242 minimal separators for
thresholds 0,0.01, and 0.1 respectively. We found that the
runtime is affected both by the number of attributes, and,
quite significantly, by the number of minimal separators.
This is explained by considering Corollary 6.3 that analyzes

309

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

the delay between the output of minimal separators. First,
we note that the delay depends exponentially on the number
of attributes (via getFullMVDs, see Sec. 6.2.1) which explains
why the delay significantly increases with the number of
attributes, leading to an overall reduction in the number of
minimal separators returned. Second, it depends on the num-
ber of minimal separators generated up to that point, which
explains the high runtime when the data contains a large
number of minimal separators.

8.4 Quality

We conducted an empirical evaluation of the quality of the
schemes generated by Maimon, and report the results in
Figure 15. Per threshold, we ran the enumeration algorithm
for half an hour and measured the number of schemes gen-
erated (i.e., #schemes), and the following quality measures,
for which we report on their aggregate values.

(1) The number of relations in any scheme S generated,
denoted #relations(S).

(2) The width attained by any generated scheme, where
width refers to the largest number of attributes in any
relation of S. Formally®, width(S) =l max;ef1,m] |il-

(3) The intersection width attained by any scheme gener-
ated, where intersection width refers to the largest size

of any separator of S: intWidth(S) & max; je[1,m] |2iNQ;|.

In Figure 15 we increased the threshold ¢, and report for
each threshold the maximum #relations(S), and the mini-
mum width(S), intWidth(S) for all schemas at that thresh-
old. In general, we observed that, as we increase the thresh-
old, the system can find more interesting schemes. For ex-
ample, for Image and Abalone, width (blue bar) decreases,
which means that the number of attributes in the widest
relation decreases. For Adult and BreastCancer the number
of relations (#relations — gray bar) increases.

9 CONCLUSIONS

We present Maimon, the first system for the discovery of ap-
proximate acyclic schemes and approximate MVDs from data.
To define “approximate”, we used concepts from information
theory, where each MVD or acyclic schema is defined by an
expression over entropic terms; when the expression is 0,
then the MVD or acyclic schema holds exactly. We then pre-
sented the two main algorithms in Maimon, mining all full
&-MVDs with minimal separators, and discovering acyclic
schemes from a set of e-MVDs. Both algorithms improve over
prior work in the literature. We conducted an experimental
evaluation of Maimon on over 20 real-world data sets.

Our approach of using information theory to define ap-
proximate data dependencies differs from the previous defi-
nitions that rely mostly on counting the number of offending

Swidth(S) is precisely the treewidth plus one.

Research 4: Uncertain, Probabilistic, and Approximate Data

(a) Image

14000 160 18000
12000 1405 16000
— 120 & 14000
&) 10000 100 2 $ 12000

5 2,
£| 18000 s & 2 10000
£ 6000 & 5 g 8000
% 4000 10 E 2 6000
2000 0 £ 4000
0 o 2000
0

Rows [%]

0.0 [#MinSeps] = 0.01 [#MinSeps]

Fig. 13

(a) Entity Source

IS
S
3

20000
18000
16000
14000 —
12000
10000
8000
6000
4000
2000

tors

ec

NN W W
S G 8 &
8 & 8 3

Runtime (:

=
1)
5]

#Minimal Separators

Minimal Separa
-
I
g

@
S

0
20
Columns

5 9

0.0 [#MinSeps] mmm 0.01 [#MinSeps]

30

mmm 0.1 [#MinSeps]

S — -

14

mmm 0.1 [#MinSeps]

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Row scalability experiments, for ¢ € {0.0,0.01,0.1} (Sec 8.3.1).

(b) Spots (c) Ditag Feature
- 35
100 0E
= n
80 v 2 5
] 0 2
60 & g
g 15 v
a0 2 T
T
E 10 £
£ 5 S
20 s =
0
0
Busif) 70 & w00 Rows [%]
— 0.0 [sec] —— 0.01 [sec] 0.1 [sec]
(b) Voter State (c) Census
200000 60 18000
pu— | » 180000 50 = 16000
160000 » 14000
140000 £ a0 12000 g
120000 & 5 10000 5
100000 & g 30 8000 £
80000 & E 20 6000 5
60000 < £ 4000
40000 E 10
H 20000 2000
o 0 — .
18 27 32 36 4 # Columns 17
Columns
— 0.0 [sec] —— 0.01 [sec] 0.1 [sec]

Fig. 14 Column scalability experimentsfor ¢ € {0,0.01,0.1} (Sec 8.3.1). We timed out at five hours (red clock).

(a) IMAGE (b) Abalone
12 -~ 2000 8
10 _ 7
_ 1500 & 6
. -
5. o5
R 1000 & 54
£a4 2 53
= 500 g <,
2
1
] — 0 0
0 0.01 0.1
Threshold
Threshold
(e) Bridges (f) Echocardiogram
14
12 "
3500 & - [
=10 3 =
g8 5 g (
5 5 36|
£ 2,1
£ = g |
<4 1000 & ‘4
2 \
0
0 0.005 0.015 0.05 015 05

Threshold Threshold

B Min (Max (Width))

Fig. 15
tuples. On one hand, our definitions provide us with more
powerful mathematical tools, on the other hand the connec-
tion to the actual data quality is less intuitive. We leave it up
to future work to explore the connection between informa-
tion theory and data quality.

Depending on the dataset, Maimon generates hundreds
and even thousands of acyclic e-schemas in as little as 30
minutes. As part of future work we intend to investigate
acyclic schema generation in ranked order. The categories to

~
3

Now
s &

1400
1200
- 1000
800
600
400
‘ - 200

P Min (Max (intWidth))

310

8§88

Acyclic Schemas [#]

B

Acyclic Schemas [#]

1000000

8
8
8
[#

(c) Adult (d) BreastCancer
12 9000 I3
= . :
x g - 6000 2 g
g, 5000 2 8 ‘
2 - 4000 & 36 -
£4 3000 £ 4 | It
= 20004% <, [|
| | 1000 |
0 s 0 0 J ll
QQ?PNQS?% e-&e.@? FF PP °Q§>”°g°°’ Q?\’Q_sf’ RIS PN S
Threshold Threshold
(g) FD_Reduced_15 (h) Hepatitis
14 30 20
S IAT T =
10 ‘ \ L 20 é % 10000
[]
fe) U I (0 . o
SO
g 10
5 <
UEddu ;e R il
0 0.001 0005 001 0015 0.02 005 0. QQ@Q&’ &NQ@?’ & PP
Threshold Threshold
[Max (#relations) #schemas (R, &, t)

Quality of approximate schemas (Sec. 8.4)

rank on may be the extent of decomposition (e.g., width of
the schema), or other measures indicative of how well the

schema meets the requirements of the application.
Acknowledgements. This work was supported by NSF grants I1I-1614738
and I1S-1907997.

Acyclic Schemas

Research 4: Uncertain, Probabilistic, and Approximate Data

REFERENCES

[1] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Pa-

[10

(11

[12

(13

(14

[16

[17

(18

=

=

=

=

]

]

[t

= O

=

]

=

penbrock. Data profiling. Synthesis Lectures on Data Management,
10(4):1-154, 2018.

Catriel Beeri. On the menbership problem for functional and multival-
ued dependencies in relational databases. ACM Trans. Database Syst.,
5(3):241-259, September 1980.

Catriel Beeri and Philip A. Bernstein. Computational problems related
to the design of normal form relational schemas. ACM Trans. Database
Syst., 4(1):30-59, March 1979.

Catriel Beeri, Ronald Fagin, and John H. Howard. A complete ax-
iomatization for functional and multivalued dependencies in database
relations. In Proceedings of the 1977 ACM SIGMOD International Con-
ference on Management of Data, Toronto, Canada, August 3-5, 1977.,
pages 47-61, 1977.

Catriel Beeri, Ronald Fagin, David Maier, Alberto O. Mendelzon, Jef-
frey D. Ullman, and Mihalis Yannakakis. Properties of acyclic database
schemes. In Proceedings of the 13th Annual ACM Symposium on The-
ory of Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA, pages
355-362, 1981.

Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On
the desirability of acyclic database schemes. J. ACM, 30(3):479-513,
July 1983.

Philip A. Bernstein. Synthesizing third normal form relations from
functional dependencies. ACM Trans. Database Syst., 1(4):277-298,
1976.

Tobias Bleifuf3, Susanne Biillow, Johannes Frohnhofen, Julian Risch,
Georg Wiese, Sebastian Kruse, Thorsten Papenbrock, and Felix Nau-
mann. Approximate discovery of functional dependencies for large
datasets. In Proceedings of the 25th ACM International Conference on
Information and Knowledge Management, CIKM 2016, Indianapolis, IN,
USA, October 24-28, 2016, pages 1803-1812, 2016.

Nofar Carmeli, Batya Kenig, and Benny Kimelfeld. Efficiently enu-
merating minimal triangulations. In Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 273-287, 2017.
E. F. Codd. Further normalization of the data base relational model.
IBM Research Report, San Jose, California, RJ909, 1971.

Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Generating all
maximal induced subgraphs for hereditary and connected-hereditary
graph properties. J. Comput. Syst. Sci., 74(7):1147-1159, 2008.

Tim Draeger. Multivalued dependency discovery, 2016. Master’s
Thesis, Hasso-Plattner-Institute, Potsdam.

Ronald Fagin. Multivalued dependencies and a new normal form
for relational databases. ACM Trans. Database Syst., 2(3):262-278,
September 1977.

Ronald Fagin. Horn clauses and database dependencies. J ACM,
29(4):952-985, 1982.

Ronald Fagin, Alberto O. Mendelzon, and Jeffrey D. Ullman. A sim-
plified universal relation assumption and its properties. ACM Trans.
Database Syst., 7(3):343-360, 1982.

Michael L. Fredman and Leonid Khachiyan. On the complexity of dual-
ization of monotone disjunctive normal forms. Journal of Algorithms,
21(3):618 — 628, 1996.

Dan Geiger and Judea Pearl. Logical and algorithmic properties of con-
ditional independence and graphical models. The Annals of Statistics,
21(4):2001-2021, 1993.

Nathan Goodman and Y. C. Tay. A characterization of multivalued
dependencies equivalent to a join dependency. Inf. Process. Lett.,
18(5):261-266, 1984.

311

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Dirk Van Gucht. Interaction-free multivalued dependency sets. Theor.
Comput. Sci., 62(1-2):221-233, 1988.

Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja,
Hannu Toivonen, and Ram Sewak Sharm. Discovering all most specific
sentences. ACM Trans. Database Syst., 28(2):140-174, 2003.

Yka Huhtala, Juha Karkkéinen, Pasi Porkka, and Hannu Toivonen.
TANE: an efficient algorithm for discovering functional and approxi-
mate dependencies. Comput. J., 42(2):100-111, 1999.

David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis.
On generating all maximal independent sets. Inf. Process. Lett.,
27(3):119-123, 1988.

Leonid Khachiyan, Endre Boros, Khaled Elbassioni, and Vladimir Gur-
vich. An efficient implementation of a quasi-polynomial algorithm for
generating hypergraph transversals and its application in joint genera-
tion. Discrete Applied Mathematics, 154(16):2350 — 2372, 2006. Discrete
Algorithms and Optimization, in Honor of Professor Toshihide Ibaraki
at His Retirement from Kyoto University.

Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan
Olteanu, and Maximilian Schleich. AC/DC: in-database learning thun-
derstruck. In Proceedings of the Second Workshop on Data Management
for End-To-End Machine Learning, DEEM@SIGMOD 2018, Houston, TX,
USA, June 15, 2018, pages 8:1-8:10, 2018.

Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: questions
asked frequently. In Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 13-28, 2016.

Jyrki Kivinen and Heikki Mannila. Approximate inference of func-
tional dependencies from relations. Theor. Comput. Sci., 149(1):129-149,
1995.

Sebastian Kruse and Felix Naumann. Efficient discovery of approxi-
mate dependencies. PVLDB, 11(7):759-772, 2018.

V. S. Lakshmanan. Split-freedom and mvd-intersection: A new char-
acterization of multivalued dependencies having conflict-free covers.
Theor. Comput. Sci., 62(1-2):105-122, 1988.

Tony T. Lee. An information-theoretic analysis of relational databases -
part I: data dependencies and information metric. IEEE Trans. Software
Eng., 13(10):1049-1061, 1987.

Tony T. Lee. An information-theoretic analysis of relational databases
- part II: information structures of database schemas. IEEE Trans.
Software Eng., 13(10):1061-1072, 1987.

Mark Levene and George Loizou. Why is the snowflake schema a good
data warehouse design? Inf. Syst., 28(3):225-240, 2003.

Y. Edmund Lien. Hierarchical schemata for relational databases. ACM
Trans. Database Syst., 6(1):48-69, March 1981.

Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover
dependencies from data - A review. IEEE Trans. Knowl. Data Eng.,
24(2):251-264, 2012.

Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener,
and Felix Naumann. Data profiling with metanome. Proc. VLDB Endow.,
8(12):1860-1863, August 2015.

Thorsten Papenbrock and Felix Naumann. A hybrid approach to func-
tional dependency discovery. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 821-833, 2016.
Babak Salimi, Bill Howe, and Dan Suciu. Data management for causal
algorithmic fairness. IEEE Data Engineering Bulletin, vol. 42, no. 3,
2019.

Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. Interven-
tional fairness: Causal database repair for algorithmic fairness. In
Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 -
FJuly 5, 2019, pages 793-810, 2019.

Research 4: Uncertain, Probabilistic, and Approximate Data

[38] Iztok Savnik and Peter A. Flach. Discovery of multivalued dependen-
cies from relations. Intell. Data Anal., 4(3-4):195-211, 2000.
[39] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear
regression models over factorized joins. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 3-18, 2016.
Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q.
Ngo, and XuanLong Nguyen. A layered aggregate engine for ana-
lytics workloads. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019., pages 1642-1659, 2019.
[41] S. K. Michael Wong, Cory J. Butz, and Dan Wu. On the implication
problem for probabilistic conditional independency. IEEE Trans. Sys-
tems, Man, and Cybernetics, Part A, 30(6):785-805, 2000.

[40

=

312

[42]

[43]

[44]

[45]

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. Fastfds:
A heuristic-driven, depth-first algorithm for mining functional depen-
dencies from relation instances - extended abstract. In Data Warehous-
ing and Knowledge Discovery, Third International Conference, DaWaK
2001, Munich, Germany, September 5-7, 2001, Proceedings, pages 101
110, 2001.

Mihalis Yannakakis. Algorithms for acyclic database schemes. In
Proceedings of the Seventh International Conference on Very Large Data
Bases - Volume 7, VLDB 81, pages 82-94. VLDB Endowment, 1981.
Datasets of the metanome data profiling project. https://hpi.de/
naumann/projects/repeatability/data-profiling/fds.html#c168191.

h2 main memory database. https://www.h2database.com/html/main.
html.

	Abstract
	1 Introduction
	2 Running Example
	3 Background
	3.1 Data Dependencies
	3.2 Information Theory

	4 Problem Statement
	5 Three Main Techniques
	5.1 From MVDs to Acyclic Schemas
	5.2 Full MVDs
	5.3 Minimal Separators

	6 Discovering -MVDs
	6.1 Discovering the Minimal Separators
	6.2 Discovering the Full MVDs
	6.3 Computing Entropies Efficiently

	7 Enumerating Acyclic Schemas
	8 Evaluation
	8.1 A Use Case: Nursery
	8.2 Accuracy
	8.3 Scalability
	8.4 Quality

	9 Conclusions
	References

