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ARTICLE INFO ABSTRACT

Article history:

In recent decades, myriad studies have explored the population dynamics of coevolving populations of
predator and prey. A variety of choices are made in these models: exponential or logistic prey growth
in the absence of a predator, various forms of predator functional response, and uni- or bi-directional
trait axes. In addition, some form of trade-offs are assumed in order to prevent run-away evolution of
the prey and predator traits. While there is a considerable amount of theory regarding various forms
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Keywords: of prey growth rates and predator functional responses, only a few studies have explored how different
Eco-evo feedback types of trade-offs affect predator-prey dynamics. Here, we compared two ditrophic coevolution models
Coevolution incorporating different trade-offs via dual effects of the prey trait on attack rate and either prey carrying
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capacity or intrinsic growth rate. We employed a standard dynamical systems approach to analyze the
equilibrium conditions of each model and find conditions for non-equilibrium oscillatory coexistence.
The exact effect of various parameters on the outcome of predator-prey interactions depends on whether
the trade-offs affect the intrinsic growth rate or carrying capacity. In particular, coexistence is more likely
when prey growth rate is affected by the evolving trait. In addition, in parameter regimes where cycles
occur in both models, oscillations typically have larger periods and amplitudes when prey growth rate is
affected by the evolving trait.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Interactions between predators and their prey are among the
most frequently studied ecological interactions in nature. Classic
ecological theory led to hundreds of experiments that have doc-
umented the relative importance of these interactions (Englund
et al, 1999; Gurevitch et al, 2000) and their cascading effects
on other trophic levels (Schmitz et al., 2000; Shurin et al., 2002).
Classic theory predicts various outcomes in terms of coexistence
of predator and prey, but a common prediction is that predator
and prey coexist in oscillations (Beddington et al., 1975; Berry-
man, 1992; Lotka, 1925; Volterra and Brelot, 1931). In these cases,
predator abundances increase with increasing prey density until
a threshold level where predators overexploit prey, resulting in a
decrease in prey abundance, followed by a decrease in predator
abundance, which ultimately allows the prey population to recover.
Theoretically, predator population cycles should lag behind prey
population cycles by a quarter of a cycle phase (Case and Rough-
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garden, 2000). These dynamics are well supported in some systems
(Lynx-hare (Krebs et al., 2001), rotifer-algae (Yoshida et al., 2003)),
but in other systems, stable coexistence between predator and prey
have proved unlikely (Fujii, 1999; Huffaker, 1958), or predator-prey
cycles do not match those predicted by theory (Hiltunen et al.,
2014; Yoshida et al., 2007, 2003).

One reason that dynamics in natural systems may not match
theoretical predictions is the context-dependency of species in-
teractions. The strength of interactions between species may de-
pend on the environment in which those interactions occur
(Bertness and Callaway, 1994). Moreover, we could broadly define
environmental context to include the genetic environment of the
predator and prey populations. Intraspecific trait variation plays
an important role in the strength of interactions between preda-
tor and prey (Bolnick et al., 2011; Gross et al., 2009; Litchman
and Klausmeier, 2008). For example, different individuals of three-
spined sticklebacks differ in morphology, depending on whether
they come from benthic or limnetic habitats, which affects what
they eat, or by whom they are eaten (Reimchen, 1980; Reimchen
and Nosil, 2001). In addition to such spatial variation in traits,
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temporal trait variability over evolutionary time may also affect
predator-prey interactions.

Recent evidence suggests that evolution can occur on contem-
porary time scales that affect ecological interactions, particularly
when selection pressure is very strong, or when generation times
are very short (Hairston Jr. et al., 2005; Schoener, 2011; Thomp-
son, 1999). Delong et al. (2016) recently quantified that rates of
change of phenotypes are on average % of the concurrent rates
of change of population sizes. In many cases, predators serve as
important selective agents on prey populations (Brodie III., 1992;
Endler, 1991; Walsh and Reznick, 2008) and, conversely, prey can
serve as important selective agents on predator populations (Lill,
2001; Motychak et al., 1999; West et al., 1991). When predators
evolve in response to prey, attack rates or consumption of prey
should increase, thus increasing the strength of ecological inter-
actions between predator and prey (Strauss et al, 2006). Con-
versely, prey that evolve increased escape ability or avoidance of
predators should decrease the strength of the ecological interac-
tion (Strauss et al., 2006).

Evolution can have important consequences for predator-
prey cycles (Hiltunen et al, 2014). Previous models have
shown that incorporating prey evolution can shift predator-prey
population dynamics between equilibrium, stable cycles, and
chaotic coexistence (Abrams and Matsuda, 1997; Saloniemi, 1993).
Yoshida et al. (2007) modeled prey that evolve on ecological time
scales and found that prey evolution largely masked the predator-
prey cycles that occured in the absence of predation. These re-
sults were supported by experiments in laboratory microcosms, in
which algal evolution in response to rotifer predation eliminated
the oscillating cycles that occured when algal population lacked
sufficient genetic variation to evolve (Yoshida et al., 2007; 2003).
Becks et al. (2010) extended this work and found that in the pres-
ence of sufficient genetic variation, populations underwent ecologi-
cal predator-prey oscillations, as defended prey were favored when
predators were abundant and undefended prey were favored when
predators were rare; without initial genetic variation, populations
quickly converged on a steady state equilibrium.

Because both predator and prey species may be important se-
lective agents on each other, coevolution between predator and
prey might be important for determining the stability of the sys-
tem. Early models found that an evolutionary arms race leads to
Red Queen dynamics, in which both predator and prey evolve in
response to fluctuating selection that maintains their ecological
interaction over time (Brodie Il and Brodie Jr., 1999; Van Valen,
1973). However, coevolution need not lead to a stable ecologi-
cal equilibrium (Abrams and Matsuda, 1997; Bengfort et al., 2017;
Cortez and Weitz, 2014; Klauschies et al., 2016; Mougi, 2012;
Mougi and Iwasa, 2011; Saloniemi, 1993; Tien and Ellner, 2012;
Tirok et al.,, 2011; van Velzen and Gaedke, 2017). Small adaptive
trait changes in predator or prey can result in changes in attack
rates that lead to antiphase oscillations (Bengfort et al., 2017).
Similarly, Mougi (2012) suggested that antiphase cycles or cryp-
tic cycles could occur in systems in which both predator and prey
evolve, but not when only a single species evolves. Mougi’s results
seemingly contradict those of Yoshida et al. (2007), who find cryp-
tic cycles in models with on prey evolution. However, their mod-
eling approaches vary in a critical way: Yoshida et al. assume a
unidirectional axis in the prey trait, while Mougi assumes bidirec-
tional axes in both predator and prey. Predator and prey often have
dramatically different generation times, which could lead to dif-
ferences in rates of evolution in each species. Even if generation
times are similar, selection on prey may be stronger because a sin-
gle interaction between predator and prey individuals has a huge
effect on prey fitness, but often less effect on predator fitness (life
vs. lunch; (Brodie Il and Brodie Jr., 1999)). Furthermore, traits in
one species may be more heritable than traits in another, result-

ing in different rates of evolution even under equivalent selection
pressure.

Coevolutionary models can result in unrealistic runaway evo-
lution, unless models incorporate some form of trade-off. For ex-
ample, some models assume an increase in predator or prey traits
on a uni-directional axis linearly also decreases the growth rate of
that species. (e.g. Tien and Ellner, 2012. Other models assume that
increases in predator traits along a uni-directional axis result in
reductions in conversion efficiency (Klauschies et al., 2016; Mougi
and Iwasa, 2011; Tirok et al., 2011; van Velzen and Gaedke, 2017)
or increased death rate (Cortez and Weitz, 2014; Mougi, 2012; Tien
and Ellner, 2012; van Velzen and Gaedke, 2017). Few studies have
explored how the natures of different trade-offs affect ecological
dynamics (Tien and Ellner, 2012).

Because of the variety of results which have arisen out of recent
eco-evolutionary models of coevolving predator and prey, it is cru-
cial that we gain a deeper understanding of how modeling choices
surrounding trade-offs affect the outcomes of population dynam-
ics. Here we analyze and compare two simple models of preda-
tor and prey which contain different trade-offs for the prey pop-
ulation. We assume bi-directional trait axes for both predator and
prey traits (e.g. body size), where attack rates of predator on prey
are maximized if trait matching occurs. Run-away evolution of the
prey is prevented by the tethering of the prey trait to an optimal
value via some form of trade-off, while runaway evolution of the
predator is prevented via the trait matching requirement for attack
rate. For this reason, we do not include additional trade-offs in the
predator. Our goal in this study is to understand how predator-prey
eco-evolutionary dynamics differ under two different trade-offs in
prey.

2. Model formulation

Consider predator and prey species with densities P = P(t)
and N=N(t) at time t, respectively. Assume the predator and
prey populations have mean quantitative traits p=p(t) and n =
n(t), respectively, and that these traits can be measured in the
same unit, or can be transformed into the same unit. Also as-
sume these traits are normally distributed through the popula-
tions with constant phenotypic variances o2 and B2, respectively
(Schreiber et al., 2011). In other words, their trait distributions are
given by

- 1 (p—p)*
q”(p’p)zmexp[_ %07 ]
_ 1 (n—n)?
Qn(n,n)zmexl)[_ 282 ],

where phenotypic variances o2 and 82 have additive genetic (sub-
script G) and environmental (subscript E) components (i.e., 62 =
ol +o0? and B2 = B% + B2).

Assume predator individuals with trait value p attack prey indi-
viduals with trait value n with attack rate a = a(p, n). Also assume
predators have a linear functional response and convert consumed
prey in to offspring with efficiency e and have a constant death
rate d. Then the fitness of predators with trait value p and con-
suming prey individuals with trait value n is

W(N,n, p) =ea(p,n)N —d,

and the per-capita mean fitness of the predator population is

W(N. 7, p) = f W (N, n, p)qp(p. B)qn(n. W)dpdn. (1)
]RZ

Assume prey with trait value n experience density-dependent
logistic-type growth with growth rate r = r(n) and carrying capac-
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ity K = K(n) in the absence of predation. Since the prey trait n af-
fects the predator-prey interaction a in addition to ecological vari-
ables in the absence of predation, we consider the prey trait to be
ecologically pleiotropic. Thus the fitness of prey with trait value n
interacting only with predators with trait value p is

Y(N,P,n, p) =r(n) <1 ) —a(p,n)P,

N
K@

and the per-capita mean fitness of the prey population is

Y(N,P,7i, B) = / Y(N. P, n, p)qn(n. )q,(p. B)dndp. 2)
RZ

Thus, the ecological dynamics are given by

dr __ dN — _

i PW(N,n,p), = NY(N,P,n,p). (3)

Assuming each evolutionary variable stays normally distributed
with unchanging variance, then the change of each evolutionary
variable is proportional to the partial derivative of their mean fit-
ness function with respect to that variable. In other words, evo-
lution is always in the direction which immediately increases the
mean fitness of the population (Lande, 1976). Specifically, the con-
stant of proportionality is the genetic component of the phenotypic
variances. This gives rise to the evolutionary components of this
model:

b _ o 0W i gy OV
dt ap dt on

If there is no evolution, i.e., all of the ecological parameters
are constant (o¢ = B¢ = 0), the dynamics of the resulting purely-
ecological system (4) are well known.

% — PleaN — d], %1;1 = N[r(l - %) - aP] (4)

As a review, the three equilibria of this simplified model are
extinction (P*, N*) = (0,0), (unstable), exclusion (P*,N*) = (0,K)
(locally asymptotically stable if d > Kea), and coexistence (P*, N*) =

r{1_ N d
v ed )

G X (biologically feasible and locally asymptotically

stable if d < Kea). Since the exclusion and coexistence stability con-
ditions are equal and opposite, there is no non-equilibrium dy-
namic. In other words, either the predator becomes extinct and the
prey population asymptotically approaches its carrying capacity, or
the predator and prey asymptotically approach a stable coexistence
state.

However, ecological interactions are often dependent on which
genetic variants are involved in the interactions. Evolutionary
changes in traits may shift the strength of ecological interac-
tions, which may in turn cause feedback by shifting the evolu-
tionary variables via selection by ecological interactions. This eco-
evolutionary feedback loop can affect both ecological and evolu-
tionary outcomes. Since the purely-ecological model (4) is com-
pletely asymptotically stable, incorporating evolution here can only
serve to destabilize the ecological equilibria.

2.0. Model 0 - no stabilizing selection

First we define the attack rate of a predator individual with
phenotype p on a prey individual with phenotype n as a Gaussian
function of their difference. For this study, we assume prey have a
bidirectional axis of vulnerability to predation, which means they
can reduce the successful predation rate by having a phenotype ei-
ther greater or less than the matching predator phenotype. Exam-
ples of foraging traits on bidirectional axes are relative body sizes
of predator and prey, and number and size of gill rakers in preda-
tory freshwater fish (i.e. threespine stickleback) compared to body

size of insect larvae or zooplanktonic prey (Saloniemi, 1993). Sim-
ilar to Schreiber et al. (2011), the attack rate is maximized when
p —n is equal to some optimal difference 8, and decreases hyper-
exponentially as |p — n| diverges from 6,:

_((p—n)—eaﬂ}

a(p,n) =aexp|: 572
a

where « is the maximal attack rate and 7, determines how steeply
the attack rate declines with distance from the optimal trait differ-
ence 0. In effect, 7, determines how phenotypically specialized
the predator must be to consume the prey (Schreiber et al., 2011).
In other words, for large T, only large deviations from the optimal
trait difference will result in large reductions in the attack rate,
while for small 7, even small deviations from the optimal trait dif-
ference have large fitness consequences. Under these assumptions,
the average attack rate of the predator species on the prey species
is

a(p.n) = f a(p, n)qp(p. p)gn(n, M)dpdn

]RZ
at, (P —1) — 6,)?
=P [_214\}

where A := 12 + 02 + B2. If all other ecological parameters (r, K, d,
and e) are constant, this model may result in asymptotically sta-
ble ecological equilibrium, but runaway evolution, i.e., an evolu-
tionary arms race where the population densities are constant but
trait values are unbounded in time (Appendix D). This is not real-
istic because all characters have some constraints on their evolu-
tion (Saloniemi, 1993). Below we introduce two expanded models
which tether the prey character nn to an optimal value via decreases
of vital ecological functions.

2.1. Model 1 - stabilizing selection via prey intrinsic growth rate

It may be the case that there is an optimal prey body size
which maximizes prey intrinsic growth rate (Werner et al., 1984).
If trait matching must occur for the prey species and their re-
source, then it is appropriate to model prey growth rate r as a
Gaussian function of its trait value n, given by

_(n—erﬂ}

r(n) = pexp |: 572
:

where p is the maximal growth rate of the prey species and 7, de-
termines how steeply the growth rate declines with distance from
the optimal trait value ;. In effect, T, determines how far the
prey trait value can deviate from the optimal trait value while still
maintaining an adequate growth rate. In other words, for large 7,
only large deviations from the optimal trait value 8, can result in
large reductions in prey growth rate, while for small 7, even small
deviations from 6, can result in large reductions in prey growth
rate. Under these assumptions, the average growth rate of the prey
species is

VB

where B := 12 + 2. For this first model, we assume the prey trait
does not affect its resource use, i.e., the prey population carrying
capacity K is constant. Thus the ecological and evolutionary dy-
namics of Model 1 are:

% - P[eﬁ(ﬁ, N — d], (5a)

= _ 02
T(n) = /Rr(n)qn(n, n)dn = T exp [ngr)]

& =N (1-§)-am0r] (5b)
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dp ,[eN(l, — (p—1))
ar UG[ A

o ge[rm(1- ) g+ P g | s

ap. ﬁ)], (5¢)

2.2. Model 2 - stabilizing selection via prey carrying capacity

It may be the case that suboptimal investment in prey body size
can result in reduced ability to process resources, which causes
an uptake in prey foraging effort and an increase in intraspecific
competition. A reduction in the carrying capacity K is synonymous
with an increase in intraspecific competition. Thus, for the second
model, we assume the prey trait does not affect its intrinsic growth
rate, i.e., r is constant. Rather, the prey population carrying capac-
ity K is a Gaussian function of its trait value n.

(n— QK)Z]

2
21¢

where « is the maximal carrying capacity of the prey species and
Tk determines how steeply the carrying capacity declines with dis-
tance from the optimal trait value 6. In effect, 1/K(n) gives the
strength of competition of a prey individual with trait value n, and
K(n) gives the carrying capacity of a population consisting entirely
of individuals with trait value n. Thus the ecological and evolution-
ary dynamics of Model 2 are:

K(n) = k exp |:—

% - P[ea(ﬁ, N — d], (6a)
%’;’ _ N[r(1 _ %) — i@, ﬁ)P], (6b)
e = A (6c)

where the harmonic mean of prey carrying capacity is given by
_ 1 — o\ k/C (n—6k)?
K(n) = (/R qu(n, n)dn) = exp |:— ,

2C

and C := 1',% — B2 (note that our use of the harmonic mean here is
a result of the calculation of mean prey fitness (Egs. (2), (3)). This
formulation requires tyx > 8 because C is contained inside a square
root, so no rigorous analysis can be done if 7 < . However, if 7y
approaches f from above, then the peak of the average carrying
capacity function K decreases to 0, which causes immediate extinc-
tion of the prey and thus extinction of the predator. The biological
justification for varying the “carrying capacity” in the prey popula-
tion in Model 2 is that a bidirectional trait like body size could af-
fect how individuals are able to consume resources, which in turn
affects intraspecific competition and decreases the effective carry-
ing capacity of the population in that environment. If this is the
case, then prey populations with high phenotypic variation (large
B) are either unable to adequately consume resources or there is
too much intraspecific competition. In either case, the prey pop-
ulation will not survive. This suggests there is a threshold value
of phenotypic variation (7g) which determines whether or not the
prey population is able to survive in that environment in the ab-
sence of predation. This is also mathematically intuitive since the
harmonic mean is highly sensitive to small numbers. All parame-
ters and their descriptions are listed in Table 1. See Appendix A for
model derivation details.

Table 1
All model parameters and their biological meaning.
Parameter  Description
r, K Prey intrinsic growth rate and carrying capacity
d e Predator death rate and efficiency
o Predator trait distribution variance; 02 = 62 + 07
B Prey trait distribution variance; 8% = B2 + B2
o, Tq, B4 Maximum value, variance, and mean value of the
Gaussian average attack rate function a(p, n)
P, Tr, Or Maximum value, variance, and mean value of the
Gaussian average intrinsic growth rate function 7(n)
K, Tk, Ok Maximum value, variance, and mean value of the
Gaussian average carrying capacity function K(7)
A 2 +o02+ B2
B 2+ B2
c 72— B2
3. Results

3.1. Equilibria and stability analysis

In addition to using standard numerical techniques to simulate
the model (Figs. 1 and 2), we analyze both models by employing a
standard dynamical systems approach, which includes solving for
equilibrium points and determining conditions for local linear sta-
bility. Both models have three types of equilibria (N*, P*, 7", p*):
extinction (of both species), exclusion (of the predator species),
and coexistence. The extinction equilibria are given by

(N*,P*,n",p") = (0,0, %, %), (7)

and are unstable for all biologically relevant parameters (* repre-
sents an arbitrary quantity). The exclusion equilibria are given by

(N*, P*, 7", ") = (K*, 0. Bexct, Oexct + 90), 8)
where
O = {* for Model 1, and
Ok, for Model 2,
K, for Model 1,
K= K;—f for Model 2,

and are stable if
K*eat,
. 9
/A ®)

The coexistence equilibrium is given by

dvA VA N+
(1= & ) oo Bcoex + 6. (10)

d>

(N, P*. 7", P") = (

eat,’ o, K
where
_}6,, for Model 1,
Ocoex = {GK, for Model 2, and
. p rr’ for Model 1,
= B
T, for Model 2,
and is stable if
icz > rstab( _ d\/ﬁ )’ (-l-l)
B2 d Kypeaty
where
PTr _A
S (l B), for Model 1, and

T, for Model 2,
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Fig. 1. Timeseries. The left panels (Fig. 1(a), (c), (e)) depict predator and prey population densities. The right panels (Fig. 1(b), (d), (f)) depict predator and prey mean trait
values. Fig. 1(a) and (b) show stable coexistence equilibrium dynamics in Model 1. Fig. 1(c) and (d) show cyclic coexistence dynamics in Model 1. Fig. 1(e) and (f) show cyclic
coexistence dynamics in Model 2. Parameter values: e = 0.5, « = 0.05, 0 = 8 = 0.25, 6, = 0.1, 6, = 6 = 0. Fig. 1(a) and (b) parameter values: d = 0.1, 7, = 0.05, 7, = 0.55,

oc =0.18, B¢ =0.17, p = 0.2, K = 100. Fig. 1(c)-(f) parameter values: d = 0.05, 7, = 0.1, 7, = 7x = 1.0, 0c = 0.106, Bc =0.1, p =r=0.5, k = K = 225.

K.
Kk~/C

1 —
x| 1+ C)

for Model 1,

Kstap = , for Model 2, .

See Appendices B and C for details of equilibria stability analy-
sis.
In both models, the prey face a trade off between evolution of
anti-predator traits and optimization of growth rate or carrying ca-
pacity. The size of this trade off |17 — Bcpex| is irrelevant when de-
termining stability of the coexistence equilibrium (11). This is be-
cause Models 1 and 2 do not reduce to Model 0 when Ocpex = Oq;
rather, Model 1 and Model 2 reduce to Model 0 when growth
rate and carrying capacity are constant, respectively. This happens
when t,— oo and Tg— oo because t; and T describe the varia-
tion of prey growth rate and carrying capacity caused by variation
in prey genotype. As T,— oo OI Tx— oo, growth rate or carrying
capacity approaches a constant value for the population because
there are few individuals with extreme genotypes. Therefore co-
existence stability is independent of the relative values of 6, and
Oc0ex and dependent on the variance terms 7, and .

Note that if both populations are extinct, their trait values can

be arbitrary because the populations are in ecological equilibrium
for any values of p* and 7n*. Since 6., is arbitrary for Model 1,
there are an infinite number of exclusion equilibria for Model 1.
Thus, when (9) holds, the evolutionary dynamics will approach an
equilibrium based on initial conditions. The prey trait at carrying
capacity is arbitrary since selection on traits which affect intrinsic
growth rate is weak when the prey population is near its carry-
ing capacity. On the other hand, Model 2 has a unique exclusion
equilibrium since selection on traits which affect prey population
carrying capacity is strong when the population is near its carry-
ing capacity. This is intuitive since increasing prey carrying capac-
ity always increases average prey fitness. The predator population
will be excluded if its death rate is sufficiently high. Also, higher
prey carrying capacity, predator efficiency and predator maximum
attack rate can destabilize the exclusion equilibrium in favor of the
internal coexistence equilibrium, which is unique for each model.
When (11) holds, the prey character n reaches its optimal value for
the trait undergoing stabilizing selection, and the predator charac-
ter p reaches the optimal difference to maximize attack rate.
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Fig. 2. Cycle Phaseplanes for Model 1 (Fig. 2(a) and (b)) and Model 2 (Fig. 2(c) and (d)). The left panels (Fig. 2(a), (c)) depict phaseplanes of predator and prey population
densities. The right panels (Fig. 2(b), (d)) depict phaseplanes of predator and prey mean trait values. Fig. 2(a) and (b) are the phaseplanes of the cyclic dynamics of Model 1
shown in Fig. 1(c) and (d). Fig. 2(c) and (d) are the phaseplanes of the cyclic dynamics of Model 2 shown in Fig. 1(e) and (f).

In (11), o¢/B¢ is the ratio of predator and prey speeds of evo-
lution given equivalent selection pressure. This means the coexis-
tence equilibrium (10) is stable if predator evolution can be fast
enough in comparison to prey evolution. More precisely, stable
equilibrium coexistence is more likely if the predator’s trait is more
heritable than the prey’s trait. If this happens, the predator trait
value “catches up” to the prey trait value, which increases the at-
tack rate, hence decreasing prey density, and decreasing |dn/dt|.
The trait dynamics stabilize, resulting in decaying ecological oscil-
lations.

In Model 1, if t2 > 12 — o2, then rg,, < 0. This always results
in stable coexistence provided that (10) is biologically feasible. The
biological feasibility condition for coexistence is the opposite con-
dition as the exclusion stability condition (9). That is, provided
d< Ke%, then stable coexistence is inevitable if the variance of
the attack rate curve 7, is high enough. Biologically, this means
that if the attack rate does not require high predator specificity,
then stable equilibrium coexistence is more likely.

In Model 2, however, the coexistence stability condition bound-
ary can be arranged so that only d is on the left hand side:

B riceataV/C
Z—G:Keata«/f—k r\/ﬁrK(l + %‘)
G

and we find that d decreases to 0 as 7, grows without bound to
oo (since all terms are positive, the numerator is O(t;) and the de-
nominator is O(rg)). This means that for any value of t,, there is
always a value of d such that (9) is not satisfied (Fig. 3). This is a
key difference between the models: in Model 1, high values of 74
never result in cyclic coexistence, whereas in Model 2, high val-
ues of T, may result in cycles for sufficiently low d. For fixed d in
Model 2, however, the stable coexistence condition (11) will hold
for sufficiently high 7,. The notation O(t,) and (9(7.';’) here mean
that as 7, grows indefinitely, the expression grows proportionally

to T4 or T2, respectively. The notation ©®(1) means an expression
approaches a constant value in a given limit.

Note that B = O(‘L’rz) as 7, increases, and thus "—TB' = O(1). This
means rg,, (for Model 1) is eventually an increasing function of
7. Since the right hand side of the coexistence stability condition
(11) is an increasing function of rg,;,, then increasing 7, can desta-
bilize the coexistence equilibrium. Similarly, note that C = O(t,%)

as tg increases, and thus %ﬁ = O(1). This means K, is even-
tually an increasing function of tg. Since the right hand side of
(11) is an increasing function of K, then increasing t can also
destabilize the coexistence equilibrium. Biologically, these results
mean that if prey are not required to be particularly close to the
optimal trait value in order to have adequate growth rate or carry-
ing capacity, then cyclic coexistence is more likely. More precisely,
the coexistence stability condition boundaries are

ptrKeat, (rrz -T2 - 02>
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for Model 2. (b)
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In Model 1, d » K€% 35 7, 00, and in Model 2 d —
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TkexTa as Tg— oo. These limiting values of d are less than

0,
—C keatq+rvVA
52

G
the predator exclusion boundary, so as t; or g — oo, there is an
intermediate range of d values which results in stable coexistence,
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Fig. 3. Bifurcation diagrams for model 1 (Fig. 3(a)) and model 2 (Fig. 3(b)), with predator death rate (d) vs. predator specialization (7). In Fig. 3(a), the coexistence
stability boundary crosses the 7, axis, while in Fig. 3(b), the coexistence stability boundary approaches the 7, axis as 7, — oo. There is a much larger region in parameter
space that results in cyclic behavior in Model 2 than in Model 1. Parameter values: 0 = 8 =025, e=a =0.1, i, =17 =1, 0¢/Bc =04, p =r=0.5, K =k = 225. Fig. 6 ¢
shows cycle maxima, minima, and periods for the parameter values indicated by the dotted line (d = 0.75, 0 <t,<1.1).
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Fig. 5. Bifurcation diagrams for model 1 (Fig. 5(a)) and model 2 (Fig. 5(b)), with prey trait distribution variance (8) vs. prey trade-off strength (t, or tg). Parameter
values: e=0.1, ¥ =0.05,d=05,17=1,0 =1, 06/fc=0.1, p=r=03, K=k = 225.

while low d values will result in cyclic coexistence and high d val-
ues result in predator exclusion (Fig. 4). The models differ, how-
ever, as T, or tg decrease. First, Model 2 predicts both predator
and prey go extinct for T < 8, while coexistence is possible for ar-
bitrarily small 7, in Model 1. In addition, while the denominator of
(12b) is positive for 7 > 8 in Model 2, the denominator of (12a) is
negative for sufficiently small 7, in Model 1.

Fig. 5 shows similar distinctions between the models. The
predator exclusion stability condition (9) is independent of 7, and
thus the boundary between the “Predator Exclusion” and “Equlib-
rium Coexistence” regions is flat for Model 1. However, (9) is de-
pendent on Ty which accounts for the different shape for Model
2. We also see a larger region of coexistence in Model 1 than in
Model 2.

3.2. Qualitative differences in the models’ cycles

Fig. 1(a) and (b) display a stable coexistence dynamic from
Model 1. In this simulation, the initial prey and predator mean
trait values, np and Py, respectively, are far enough apart that
the predator is not a threat. Their initial difference is py—1p =1,
which is large in comparison to the variance of the attack rate
curve 7, = 0.05. This means that only a very small percentage of
predators are initially well suited to attack the prey, resulting in
very strong selective pressure on the predators. In contrast, the
prey population is not initially threatened by the predator, result-
ing in very weak selective pressure on the prey. Once the predator
mean trait value is close enough to the optimal difference 6,, the
predator becomes a viable threat to the prey, increasing predator
density and decreasing prey density. The predator and prey then
undergo dampening oscillations to coexistence equilibrium as their
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mean trait values stabilize. Model 2 simulations resulting in stable
equilibrium coexistence show similar dynamics.

In contrast to the purely ecological system (4), both models’ ex-
clusion and coexistence stability conditions are not equal or oppo-
site, which implies there is at least one type of non-equilibrium
dynamic. Fig. 1(c) and (d) depict long-term stable oscillatory be-
havior in Model 1, and Fig. 1(e) and (f) depict long-term stable
oscillatory behavior in Model 2. In order to achieve a good com-
parison between Models 1 and 2, we matched the parameters as
closely as possible. In particular, we set the constant carrying ca-
pacity K from Model 1 equal to the maximum carrying capacity «
from Model 2, the constant intrinsic growth rate r from Model 2
equal to the maximum intrinsic growth rate o from Model 1, and
the growth rate variance 7, from Model 1 equal to the carrying
capacity variance tg from Model 2.

The oscillations seen in Fig. 1(c)-(f) are similar in many ways,
and we can intuitively understand them by considering the inverse
effects that the evolution of the prey mean trait value sometimes
has on its own fitness. In particular, consider the periods of time
in which the prey mean trait value is undergoing selection away
from the optimal value (6, for Model 1; 6 for Model 2). Since
the predator is a threat, the prey evolves away from the preda-
tor, decreasing attack rate @, and hence increasing its fitness. How-
ever, as the prey evolves away from its optimal value, the trade
off |1 — Ocoex| increases, reducing the average growth rate ¥ (Model
1) or carrying capacity K (Model 2), and thus reducing prey fit-
ness. These two inverse effects nullify each other whenever the
prey mean trait value reaches a minimum or maximum. At these
extrema, both populations are suppressed to low levels (due to ei-
ther low growth rate in Model 1 or low carrying capacity in Model
2), and thus the selection pressure toward the optimal trait value
outweighs the selection pressure of predation. The prey trait value
then reverses direction and evolves toward its optimal value. Dur-
ing this time, prey mean fitness increases for two reasons: a nega-
tive effect on attack rate and a positive effect on the prey trait un-
dergoing selection. Immediately after passing through the optimal
value, however, the inverse effects take hold and the cycle begins
again.

Predator and prey density cycles can be in phase in the larger
evolutionary time scale, and out of phase in the smaller ecological
time scale (Fig. 2). Note the density phase trajectory of Model 1 is
generally positively sloped, which means prey and predator den-
sities reach their minima and maxima at around the same time
(Figs. 2(a) and 1(c)). However, when prey and predator densities
are near their relative maxima, their cycles are temporarily out
of phase, as indicated in Fig. 2(a) by the negative slope of the
top part of the density phase trajectory. In other words, as the
genetic environment changes to favor a high-density equilibrium,
predator and prey densities diverge from the low-density equilib-
rium together, but on the ecological time scale predator and prey
densities undergo out-of-phase, dampening oscillations toward this
high-density equilibrium.

There are qualitative differences between the cycles in these
two models, however, which may be attributed to the decrease in
|dn/dt| (5d) as growth rate decreases, as opposed to the increase
in |dn/dt| (6d) as carrying capacity decreases. This results in more
rapid prey evolution when the prey mean trait is at an extrema in
Model 2, and less rapid prey evolution when the prey mean trait is
at an extrema in Model 1. In addition, prey growth rate in Model
2 is never as low as the mean prey growth rate in Model 1. Higher
prey growth rate causes an increased predator equilibrium density,
which increases selective pressure on the prey, causing bouts of
more rapid prey evolution. On the other hand, the predators in
Model 2 cannot adequately respond to this rapid evolution, result-
ing in a lag time where predator density is exponentially decreas-
ing and the rate of predator evolution is diminished. In the simu-

lations shown in Fig. 1(c)-(f), the increase in the Model 2 period
due to the lag time is outweighed by its decrease due to the in-
crease in |dn/dt| as carrying capacity decreases, and thus we see
longer oscillatory periods in Model 1 (T~4000 in Figs. 1(c), (d),
2(a), and (b)) than in Model 2 (T~ 3300 in Figs. 1(e), (f), 2(c), and
(d)). In Fig. 6 we see that the oscillation periods in Model 1 are
greater than that in Model 2 for intermediate values of t4. This
is intuitive since generalist predators are more able to respond to
bouts of rapid prey evolution than specialist predators, thus re-
moving the period of the exponentially decaying predator popu-
lation. However, at larger values of 74, the oscillation periods in
Model 2 are greater than that of Model 1. This may seem counter-
intuitive, but an increased ability to respond decreases the overall
selective pressure on predators, ultimately resulting in slower evo-
lution and greater oscillatory periods.

Finally, we proved the existence of Hopf bifurcations (Hale and
Kogak, 1991) as parameters are shifted from satisfying the coex-
istence equilibrium stability condition of either model to not sat-
isfying them. Hopf bifurcations occur when a shifting parameter
causes a stable equilibrium to become unstable, while also creating
cyclic behavior around the equilibrium. The existence of Hopf Bi-
furcations in both models suggests the existence of asymptotically
stable limit cycles, which we conjecture are globally stable given
positive density initial conditions. In this study we have shown
the models exhibit stable cyclic behavior using simulations, but we
stop short of rigorously proving the asymptotic stability of the at-
tractors.

4. Summary and discussion

We formulated two coevolutionary predator-prey models which
differ only in the form of an evolutionary trade-off. For both mod-
els, we found all equilibria and their local stability conditions. We
showed the existence of Hopf bifurcations in both models, which
suggests the existence of stable limit cycles (and which we conjec-
ture are globally stable provided positive density initial conditions).
While predator-prey cycles are possible without evolution if the
predator has a saturating functional response, our models show
that coevolution can cause ecological cycles even under the as-
sumption of a linear functional response. This is important because
the predator-prey model with logistic growth and linear functional
response is well-known to not produce stable cycles.

In the first model, prey evolution to avoid predation is halted
by a trade-off due to reductions in growth rate. This is a com-
mon form of trade-off incorporated into models and is a reason-
able choice in many systems (Klauschies et al., 2016; Mougi, 2012;
Mougi and Iwasa, 2010; 2011; van Velzen and Gaedke, 2017). In the
second model, prey evolution is halted by a trade-off due to reuc-
tions in carrying capacity. This is a less common choice but can be
reasonable if shifting a continuous trait (i.e. body size) affects how
prey are able to consume resources, altering their effective carrying
capacity.

Previous models of coevolution in exploiter-victim systems
have incorporated evolutionary trade-offs in various ways.
Iwasa et al. (1991) modeled mate preference as a fitness cost,
and in later analyses, Mougi and Iwasa (2010) found that the
coexistence equilibrium is stable if the evolutionary adaptation of
the prey is faster than that of the predator. These studies assumed
unidirectional trait axes and trade-offs in prey and predator basal
per-capita growth rates. Later, Mougi (2012) analyzed a coevo-
lutionary model with bidirectional traits with trade-offs in prey
growth rate and predator death rate. In contrast to their earlier
studies, they found that the coexistence equilibrium is stable if the
predator can adapt faster than the prey. These conflicting results
may have been a result of choosing unidirectional or bidirectional
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approximately). In Fig. 6(c), oscillation periods of 0 indicate non-oscillatory behavior.

trait axes, but they also may have been a result of choosing
different forms of evolutionary trade-offs.

While many modeling choices can be jusitified by various bi-
ological examples, relatively few studies have explored how these
choices affect results. Tien and Ellner (2012) compared two models
with unidirectional trait axes and density independent and density
dependent trade-offs. Interestingly, they found that stable coexis-
tence is more likely if both predator and prey have fast adaptation
in the density independent trade-off model, while stable coexis-
tence is more likely if predator has faster adaptation than the prey
in the density dependent trade-off model. In our study, both mod-
els resulted in stable coexistence if the ratio of predator to prey
speeds of adaptation is sufficiently high. These conflicting results
highlight the need for theoreticians to consider how the forms of
trade-offs can affect model analyses. It is surprising this has not
been a larger area of research given that trade-offs are so widely
accepted as a necessary component of eco-evo models.

While this study follows the work of Mougi and Iwasa (2010,
2011), Mougi (2012) and Tien and Ellner (2012), who used a
quantitative genetics framework to model trait evolution, others
have utilized adaptive dynamics frameworks (Nuismer et al., 2005)
and/or individual-based frameworks (Calcagno et al., 2010; De-
Long and Gibert, 2016). Quantitative genetics eco-evo models typ-
ically assume that traits stay normally distributed with constant
variance and that selection pressure is proportional to that vari-
ance (Abrams and Matsuda, 1997; Lande, 1976). This is a rea-
sonable assumption according to studies by Gaylord (1953) and
Van Valen (1969), who have noted that variance of morphological
traits in a lineage often remains roughly constant (Lande, 1976).
Others have assumed variance is constant but there is some
other evolutionary force which decreases selective pressure as the
mean trait approaches one or more boundary values (Bengfort
et al,, 2017; Cortez and Weitz, 2014; Klauschies et al., 2016; Sa-
loniemi, 1993; Tien and Ellner, 2012; van Velzen and Gaedke,
2017). Nuismer et al. (2005) used an adaptive dynamics framework

to model the evolution of trait variance for normally distributed
traits, and Tirok et al. (2011) used a quantitative genetics frame-
work to derive differential equations to model the evolution of trait
mean and variance for normally distributed traits.

Any of the above evolutionary modeling choices also
greatly affect analytical results. When using the framework of
Tirok et al. (2011) to incorporate the dynamics of the trait vari-
ance og and ,Bé, we obtain results different from the main text,
as seen in the comparison between Figs. 1 and 7. The shorter
periods seen in the oscillating solutions is a result of increased
and evolving trait variances. We also see coexistence is threat-
ened if prey variance can increase without bound in Model 1.
This is because reductions in growth rates are of little conse-
quence to prey when their population is at its carrying capacity.
Calcagno et al. (2010) utilized an individual-based framework to
model the full distribution of traits and found that rapid predator
evolution resulted in prey and/or predator speciation and fewer
interactions between predator and prey. They also found that
the predator went extinct if its adaptation speed was too slow,
suggesting that predators are more successful if the ratio of speeds
of adaptation of predators and prey is at some optimal level.
We expect that comparing models with different evolutionary
trade-offs and full trait distributions will yield similar results to
Calcagno et al. (2010), and future work will entail modeling the
evolution of the full trait distribution of both predator and prey.

Our study shows that analytical outcomes are affected greatly
by the choice of trade-off in prey species; the specific traits un-
der consideration matter. We investigated the qualitative differ-
ences between cycles produced by the two models using simula-
tions. Since the prey rate of evolution |dn/dt| generally decreases
as prey growth rate decreases but increases as carrying capacity
decreases, there are bouts of more rapid prey evolution in Model 2
that are not present in Model 1 (Fig. 1(d), (f)) These bouts of rapid
evolution present an evolutionary challenge to the predators, who
are suddenly unequipped to deal with the changing genetic land-
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Fig. 7. Timeseries. Parameters are identical to those from Fig. 1, but results were obtained by running the model with evolving variance according to the framework of
Tirok et al. (2011).

scape. This results in periods of time in which the predator popu-
lation decays exponentially and would go extinct if evolution were
to cease (Fig. 1(e)). At these low densities, the predator popula-
tion is able to quickly respond evolutionarily, making them a threat
to the prey, enabling them to recover ecologically. Since generalist
predators (higher 74) are more able to respond to rapid prey evo-
lution than specialist predators, they spend less time at extremely
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low densities. This decrease in selective pressure results in cycles
of longer periods (Fig. 6(c)).

Our models produce cycles with generally in-phase ecologi-
cal dynamics over the longer evolutionary time scale, and out-of-
phase fluctuations on an ecological time scale immediately follow-
ing bouts of more rapid evolution. These ecological fluctuations are
not offset by a quarter cycle, as predicted by classical ecological
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models, but rather resemble dynamics seen in Khibnik and Kon-
drashov (1997) and Mougi (2012) and supported by studies incor-
porating rapid prey evolution (Cortez et al., 2010; Yoshida et al.,
2003).

This study expands our theoretical understanding of predator-
prey eco-evolutionary dynamics. In particular, we explored the ef-
fects of two types of trait linkage on ecological dynamics and con-
cluded that one must be mindful of the type of stabilizing se-
lection included in theoretical models. In reality, many groups of
traits which affect ecological interactions are correlated with vary-
ing strengths, and predator and prey species interact in the context
of a larger food web. Future studies can potentially expand on this
model by considering more complex trait linkage in the context of
multiple prey species, multiple predator species, intraguild preda-
tion, or more general multitrophic food webs.

Acknowledgments

We thank Pablo Chavarria for his assistance, the Pacific Mathe-
matics Alliance and PUMP Program for partially supporting this re-
search (National Science Foundation grant DMS-1247679), and Se-
bastian Schreiber for his helpful feedback.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jthi.2018.08.013.

References

Abrams, PA., Matsuda, H., 1997. Fitness minimization and dynamic instability as a
consequence of predator-prey coevolution. Evol. Ecol. 11 (1), 1-20. doi:10.1023/
A:1018445517101.

Becks, L., Ellner, S.P,, Jones, L.E., Jr, N.G.H., 2010. Reduction of adaptive genetic di-
versity radically alters ecoevolutionary community dynamics. Ecol. Lett. 13 (8),
989-997. doi:10.1111/j.1461-0248.2010.01490.x.

Beddington, J.R., Free, C.A., Lawton, ].H., 1975. Dynamic complexity in predator-prey
models framed in difference equations. Nature 255, 58.

Bengfort, M., van Velzen, E., Gaedke, U., 2017. Slight phenotypic variation in preda-
tors and prey causes complex predator-prey oscillations. Ecol. Complexity 31,
115-124. doi:10.1016/j.ecocom.2017.06.003.

Berryman, A.A., 1992. The origins and evolution of predator-prey theory. Ecology
73(5), 1530-1535.

Bertness, M.D., Callaway, R., 1994. The role of positive forces in natural communi-
ties: a post-cold war perspective.. Trends Ecol. Evolut. 9, 191-193.

Bolnick, D.I, Amarasekare, P., AratGjo, M.S., Biirger, R., Levine, J.M., Novak, M.,
Rudolf, V.H.W., Schreiber, SJ., Urban, M.C., Vasseur, D.A., 2011. Why intraspecific
trait variation matters in community ecology. Trends Ecol. Evol. 26(4), 183-192.

Brodie III., E.D., 1992. Correlational selection for color pattern and antipredator be-
havior in the garter snake thamnophis ordinoides. Evolution 46(5), 1284-1298.

Brodie III, E.D., Brodie Jr., E.D., 1999. Predator-prey arms races. Bioscience 49(7),
557-568.

Calcagno, V., Dubosclard, M., de Mazancourt, C., Weissing, A.E.F]., McPeek, EM.A.,
2010. Rapid exploitervictim coevolution: the race is not always to the swift. Am.
Nat. 176 (2), 198-211.

Case, TJ., Roughgarden, J., 2000. An [llustrated Guide to Theoretical Ecology. Oxford
University Press, p. 449.

Cortez, M., Ellner, S., Keeling, A.E.MJ., McPeek, E.M.A., 2010. Understanding rapid
evolution in predatorprey interactions using the theory of fastslow dynamical
systems. Am. Nat. 176 (5), E109-E127.

Cortez, M.H., Weitz, ].S., 2014. Coevolution can reverse predator-prey cycles. Proc.
Nat. Acad. Sci. 111 (20), 7486-7491. doi:10.1073/pnas.1317693111.

DeLong, J.P, Forbes, V.E., Galic, N., Gibert, J.P,, Laport, R.G., Phillips, J.S., Vavra, J.M.,
2016. How fast is fast? ecoevolutionary dynamics and rates of change in popu-
lations and phenotypes. Ecol. Evol. 6 (2), 573-581. doi:10.1002/ece3.1899.

DelLong, ].P,, Gibert, ].P., 2016. Gillespie ecoevolutionary models (gems) reveal the
role of heritable trait variation in ecoevolutionary dynamics. Ecol. Evol. 6 (4),
935-945. doi:10.1002/ece3.1959.

Endler, J.A., 1991. Variation in the appearance of guppy color patterns to gup-
pies and their predators under different visual conditions. Vision Res. 31(3),
587-608.

Englund, C., Uy, AE., Cantera, R., Mathies, L.D., Krasnow, M.A., Samakovlis, C., 1999.
Adrift, a novel bnl-induced drosophila gene, required for tracheal pathfinding
into the cns. Comp. Biol. Ltd 126, 1505-1514.

Fujii, K., 1999. Overview of s. utida’s research. Res. Popul. Ecol. 41, 11-13.

Gaylord, S.G., 1953. The baldwin effect. Evolution 7 (2), 110-117. doi:10.1111/j.
1558-5646.1953.tb00069.x.

Gross, N., Kunstler, G., Liancourt, P,, de Bello, F, Suding, K.N., Lavorel, S., 2009.
Linking individual response to biotic interactions with community structure: a
trait-based framework. Funct. Ecol. 23, 1167-1178.

Gurevitch, J., Morrison, ].A., Hedges, L.V., 2000. The interaction between competition
and predation: a meta-analysis of field experiments.. Am. Nat. 155(4), 435-453.

Hairston Jr., N.G., Ellner, S.P, Geber, M.A., Yoshida, T, Fox, J.A., 2005. Rapid evo-
lution and the convergence of ecological and evolutionary time.. Ecol. Lett. 8,
1114-1127.

Hale, J., Kogak, H., 1991. Dynamics and Bifurcations, First Springer-Verlag.

Hiltunen, T., Hairston, N.G., Hooker, G., Jones, L.E., Ellner, S.P., Adler, F.,, 2014. A newly
discovered role of evolution in previously published consumerresource dynam-
ics. Ecol. Lett. 17 (8), 915-923. doi:10.1111/ele.12291.

Huffaker, C.B., 1958. Experimental studies on predation: dispersion factors and
predator-prey oscillations.. University of California.

Iwasa, Y., Pomiankowski, A., Nee, S., 1991. The evolution of costly mate preferences
ii. the "handicap” principle. Evolution 45(6), 1431-1442.

Khibnik, A., Kondrashov, A.S., 1997. Three mechanisms of red queen dynamics. Proc.
R. Soc. Lond. 264, 1049-1056.

Klauschies, T., Vasseur, D.A., Gaedke, U., 2016. Trait adaptation promotes species co-
existence in diverse predator and prey communities. Ecol. Evol. 6 (12), 4141-
4159. doi:10.1002/ece3.2172.

Krebs, CJ., Boonstra, R., Boutin, S., Sinclair, A.R.E., 2001. What drives the 10-year
cycle of snowshoe hares? Bioscience 51(1), 25-35.

Lande, R., 1976. Natural selection and random genetic drift in phentypic evolution.
Soc. Study Evol. 30(2), 314-334.

Lill, J.T., 2001. Selection on herbivore life-history traits by the first and third trophic
levels: the devil and the deep blue sea revisited. Evolution 55(11), 2236-2247.

Litchman, E., Klausmeier, C.A., 2008. Trait-based community ecology of phytoplank-
ton. Annu. Rev. Ecol. Evol. Syst. 39, 615-639.

Lotka, AJ., 1925. Elements of Physical Biology. Williams & Wilkins Company.

Motychak, J.E., Brodie Jr., E.D., Brodie III, E.D., 1999. Evolutionary response of preda-
tors to dangerous prey: preadaptation and the evolution of tetrodotoxin resis-
tance in garter snakes. Evolution 53(5), 1528-1535.

Mougi, A., 2012. Predatorprey coevolution driven by size selective predation can
cause anti-synchronized and cryptic population dynamics. Theor. Popul. Biol. 81
(2), 113-118. doi:10.1016/j.tpb.2011.12.005.

Mougi, A., Iwasa, Y., 2010. Evolution towards oscillation or stability in a predator-
prey system. Proc. R. Soc. Lond. B 277 (1697), 3163-3171. doi:10.1098/rspb.2010.
0691.

Mougi, A., Iwasa, Y., 2011. Unique coevolutionary dynamics in a predatorprey sys-
tem. J. Theor. Biol. 277 (1), 83-89. doi:10.1016/j.jtbi.2011.02.015.

Nuismer, S.L., Doebeli, M., Browning, D., 2005. The coevolutionary dynamics of an-
tagonistic interactions mediated by quantitative traits with evolving variances.
Evolution 59 (10), 2073-2082.

Reimchen, T.E., 1980. Spine deficiency and polymorphism in a population of gas-
terosteus aculeatus: an adaptation to predators? Can. J. Zool. 58(7), 1232-1244.

Reimchen, T.E., Nosil, P., 2001. Dietary differences between phenotypes with sym-
metrical and asymmetrical pelvis in the stickleback gasterosteus aculeatus. Can.
J. Zool. 79(3), 533-539.

Saloniemi, 1., 1993. A coevolutionary predator-prey model with quantitative charac-
ters.. Am. Nat. 141, 880-896.

Schmitz, 0.]., Hamback, PA., Beckerman, A.P., 2000. Trophic cascades in terrestrial
systems: a review of the effects of carnivore removals on plants. Am. Nat.
155(2), 141-153.

Schoener, TW., 2011. The newest synthesis: understanding the interplay of evolu-
tionary and ecological dynamics. Science 331(6016), 426-429.

Schreiber, S.J., Biirger, R., Bolnick, D.I, 2011. The community effects of phenotypic
and genetic variation within a predator population. Ecology 92(8), 526-543.
Shurin, J.B., Borer, E.T., Seabloom, E.W., Anderson, K., Blanchette, C.A., Broitman, B.,
Cooper, S.D., Halpern, B.S., 2002. A cross-ecosystem comparison of the strength

of trophic cascades. Ecol. Lett. 5, 785-791.

Strauss, S.Y., Lau, J.A., Carroll, S.P,, 2006. Evolutionary responses of natives to intro-
duced species: what do introductions tell us about natural communities? Ecol.
Lett. 9(3), 357-374.

Thompson, J.N., 1999. Specific hypotheses on the geographic mosaic of coevolution.
Am. Nat. 153(S5), S1-S14.

Tien, RJ., Ellner, S.P,, 2012. Variable cost of prey defense and coevolution in preda-
torprey systems. Ecol. Monogr. 82 (4), 491-504. doi:10.1890/11-2168.1.

Tirok, K., Bauer, B., Wirtz, K., Gaedke, U., 2011. Predator-prey dynamics driven by
feedback between functionally diverse trophic levels. PLoS ONE 6 (11), 1-13.
doi:10.1371/journal.pone.0027357.

Van Valen, L., 1969. Variation genetics of extinct animals. Am. Nat. 103 (931), 193-
224. doi:10.1086/282596.

Van Valen, L., 1973. A new evolutionary law. Evolutionary Theory 1, 1-30.

van Velzen, E., Gaedke, U, 2017. Disentangling eco-evolutionary dynamics of
predator-prey coevolution: the case of antiphase cycles. Sci. Rep. 7 (1), 17125.
doi:10.1038/s41598-017-17019-4.

Volterra, V., Brelot, M., 1931. Lecons sur la theorie mathematique de la lutte pour la
vie. Gauthier-Villars 6, 214.

Walsh, M.R., Reznick, D.N., 2008. Interactions between the direct and indirect ef-
fects of predators determine life history evolution in a Kkillifish. PNAS 105(2),
594-599.

Werner, E.E., Gilliam, J.F, 1984. The ontogenetic niche and species interactions in
size-structured populations. Annu. Rev. Ecol. Syst. 15 (1), 393-425. doi:10.1146/
annurev.es.15.110184.002141.


https://doi.org/10.1016/j.jtbi.2018.08.013
https://doi.org/10.1023/A:1018445517101
https://doi.org/10.1111/j.1461-0248.2010.01490.x
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0003
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0003
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0003
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0003
https://doi.org/10.1016/j.ecocom.2017.06.003
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0005
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0005
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0006
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0006
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0006
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0007
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0008
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0008
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0009
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0009
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0009
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0010
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0010
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0010
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0010
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0010
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0010
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0011
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0011
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0011
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0012
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0012
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0012
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0012
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0012
https://doi.org/10.1073/pnas.1317693111
https://doi.org/10.1002/ece3.1899
https://doi.org/10.1002/ece3.1959
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0016
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0016
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0017
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0017
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0017
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0017
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0017
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0017
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0017
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0018
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0018
https://doi.org/10.1111/j.1558-5646.1953.tb00069.x
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0020
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0020
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0020
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0020
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0020
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0020
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0020
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0021
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0021
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0021
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0021
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0022
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0022
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0022
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0022
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0022
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0022
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0023
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0023
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0023
https://doi.org/10.1111/ele.12291
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0025
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0025
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0026
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0026
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0026
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0026
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0027
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0027
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0027
https://doi.org/10.1002/ece3.2172
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0029
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0029
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0029
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0029
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0029
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0030
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0030
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0031
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0031
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0032
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0032
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0032
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0033
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0033
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0034
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0034
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0034
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0034
https://doi.org/10.1016/j.tpb.2011.12.005
https://doi.org/10.1098/rspb.2010.0691
https://doi.org/10.1016/j.jtbi.2011.02.015
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0038
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0038
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0038
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0038
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0039
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0039
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0040
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0041
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0041
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0042
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0042
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0042
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0042
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0043
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0043
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0044
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0044
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0044
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0044
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0045
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0046
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0046
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0046
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0046
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0047
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0047
https://doi.org/10.1890/11-2168.1
https://doi.org/10.1371/journal.pone.0027357
https://doi.org/10.1086/282596
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0051
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0051
https://doi.org/10.1038/s41598-017-17019-4
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0053
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0053
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0053
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0054
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0054
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0054
https://doi.org/10.1146/annurev.es.15.110184.002141

212 S.R. Fleischer et al./Journal of Theoretical Biology 456 (2018) 201-212

West, K., Cohen, A., Baron, M., 1991. Morphology and behavior of crabs and gas-
tropods from lake tanganyika, africa: implications for lacustrine predator-prey
coevolution. Ecology 45(3), 589-607.

Yoshida, T., Ellner, S.P, Jones, L.E., Bohannan, BJ.M., Lenski, R.E., Hairston Jr., N.G.,
2007. Cryptic population dynamics: rapid evolution masks trophic interactions.
PLoS Biol. 5(9), 1868-1879.

Yoshida, T., Jones, LE., Ellner, S.P, Fussmann, G.F, Hairson Jr, N.G., 2003. Rapid
evolution drives ecological dynamics in a predator-prey system. Nature 424,
303-306.


http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0056
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0056
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0056
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0056
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0057
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0057
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0057
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0057
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0057
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0057
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0057
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0058
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0058
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0058
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0058
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0058
http://refhub.elsevier.com/S0022-5193(18)30386-2/sbref0058

	Pick your trade-offs wisely: Predator-prey eco-evo dynamics are qualitatively different under different trade-offs
	1 Introduction
	2 Model formulation
	2.0 Model 0 - no stabilizing selection
	2.1 Model 1 - stabilizing selection via prey intrinsic growth rate
	2.2 Model 2 - stabilizing selection via prey carrying capacity

	3 Results
	3.1 Equilibria and stability analysis
	3.2 Qualitative differences in the models’ cycles

	4 Summary and discussion
	 Acknowledgments
	 Supplementary material
	 References


