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a b s t r a c t 

In recent decades, myriad studies have explored the population dynamics of coevolving populations of 

predator and prey. A variety of choices are made in these models: exponential or logistic prey growth 

in the absence of a predator, various forms of predator functional response, and uni- or bi-directional 

trait axes. In addition, some form of trade-offs are assumed in order to prevent run-away evolution of 

the prey and predator traits. While there is a considerable amount of theory regarding various forms 

of prey growth rates and predator functional responses, only a few studies have explored how different 

types of trade-offs affect predator-prey dynamics. Here, we compared two ditrophic coevolution models 

incorporating different trade-offs via dual effects of the prey trait on attack rate and either prey carrying 

capacity or intrinsic growth rate. We employed a standard dynamical systems approach to analyze the 

equilibrium conditions of each model and find conditions for non-equilibrium oscillatory coexistence. 

The exact effect of various parameters on the outcome of predator-prey interactions depends on whether 

the trade-offs affect the intrinsic growth rate or carrying capacity. In particular, coexistence is more likely 

when prey growth rate is affected by the evolving trait. In addition, in parameter regimes where cycles 

occur in both models, oscillations typically have larger periods and amplitudes when prey growth rate is 

affected by the evolving trait. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Interactions between predators and their prey are among the

ost frequently studied ecological interactions in nature. Classic

cological theory led to hundreds of experiments that have doc-

mented the relative importance of these interactions ( Englund

t al., 1999; Gurevitch et al., 20 0 0 ) and their cascading effects

n other trophic levels ( Schmitz et al., 20 0 0; Shurin et al., 2002 ).

lassic theory predicts various outcomes in terms of coexistence

f predator and prey, but a common prediction is that predator

nd prey coexist in oscillations ( Beddington et al., 1975; Berry-

an, 1992; Lotka, 1925; Volterra and Brelot, 1931 ). In these cases,

redator abundances increase with increasing prey density until

 threshold level where predators overexploit prey, resulting in a

ecrease in prey abundance, followed by a decrease in predator

bundance, which ultimately allows the prey population to recover.

heoretically, predator population cycles should lag behind prey

opulation cycles by a quarter of a cycle phase ( Case and Rough-
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E-mail address: SamFleischer@UCDavis.edu (S.R. Fleischer). 

t  

a  

ttps://doi.org/10.1016/j.jtbi.2018.08.013 

022-5193/© 2018 Elsevier Ltd. All rights reserved. 
arden, 20 0 0 ). These dynamics are well supported in some systems

Lynx-hare ( Krebs et al., 2001 ), rotifer-algae ( Yoshida et al., 2003 )),

ut in other systems, stable coexistence between predator and prey

ave proved unlikely ( Fujii, 1999; Huffaker, 1958 ), or predator-prey

ycles do not match those predicted by theory ( Hiltunen et al.,

014; Yoshida et al., 20 07, 20 03 ). 

One reason that dynamics in natural systems may not match

heoretical predictions is the context-dependency of species in-

eractions. The strength of interactions between species may de-

end on the environment in which those interactions occur

 Bertness and Callaway, 1994 ). Moreover, we could broadly define

nvironmental context to include the genetic environment of the

redator and prey populations. Intraspecific trait variation plays

n important role in the strength of interactions between preda-

or and prey ( Bolnick et al., 2011; Gross et al., 2009; Litchman

nd Klausmeier, 2008 ). For example, different individuals of three-

pined sticklebacks differ in morphology, depending on whether

hey come from benthic or limnetic habitats, which affects what

hey eat, or by whom they are eaten ( Reimchen, 1980; Reimchen

nd Nosil, 2001 ). In addition to such spatial variation in traits,

https://doi.org/10.1016/j.jtbi.2018.08.013
http://www.ScienceDirect.com
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temporal trait variability over evolutionary time may also affect

predator-prey interactions. 

Recent evidence suggests that evolution can occur on contem-

porary time scales that affect ecological interactions, particularly

when selection pressure is very strong, or when generation times

are very short ( Hairston Jr. et al., 2005; Schoener, 2011; Thomp-

son, 1999 ). DeLong et al. (2016) recently quantified that rates of

change of phenotypes are on average 1 
4 of the concurrent rates

of change of population sizes. In many cases, predators serve as

important selective agents on prey populations ( Brodie III., 1992;

Endler, 1991; Walsh and Reznick, 2008 ) and, conversely, prey can

serve as important selective agents on predator populations ( Lill,

2001; Motychak et al., 1999; West et al., 1991 ). When predators

evolve in response to prey, attack rates or consumption of prey

should increase, thus increasing the strength of ecological inter-

actions between predator and prey ( Strauss et al., 2006 ). Con-

versely, prey that evolve increased escape ability or avoidance of

predators should decrease the strength of the ecological interac-

tion ( Strauss et al., 2006 ). 

Evolution can have important consequences for predator-

prey cycles ( Hiltunen et al., 2014 ). Previous models have

shown that incorporating prey evolution can shift predator-prey

population dynamics between equilibrium, stable cycles, and

chaotic coexistence ( Abrams and Matsuda, 1997; Saloniemi, 1993 ).

Yoshida et al. (2007) modeled prey that evolve on ecological time

scales and found that prey evolution largely masked the predator-

prey cycles that occured in the absence of predation. These re-

sults were supported by experiments in laboratory microcosms, in

which algal evolution in response to rotifer predation eliminated

the oscillating cycles that occured when algal population lacked

sufficient genetic variation to evolve ( Yoshida et al., 20 07; 20 03 ).

Becks et al. (2010) extended this work and found that in the pres-

ence of sufficient genetic variation, populations underwent ecologi-

cal predator-prey oscillations, as defended prey were favored when

predators were abundant and undefended prey were favored when

predators were rare; without initial genetic variation, populations

quickly converged on a steady state equilibrium. 

Because both predator and prey species may be important se-

lective agents on each other, coevolution between predator and

prey might be important for determining the stability of the sys-

tem. Early models found that an evolutionary arms race leads to

Red Queen dynamics, in which both predator and prey evolve in

response to fluctuating selection that maintains their ecological

interaction over time ( Brodie III and Brodie Jr., 1999; Van Valen,

1973 ). However, coevolution need not lead to a stable ecologi-

cal equilibrium ( Abrams and Matsuda, 1997; Bengfort et al., 2017;

Cortez and Weitz, 2014; Klauschies et al., 2016; Mougi, 2012;

Mougi and Iwasa, 2011; Saloniemi, 1993; Tien and Ellner, 2012;

Tirok et al., 2011; van Velzen and Gaedke, 2017 ). Small adaptive

trait changes in predator or prey can result in changes in attack

rates that lead to antiphase oscillations ( Bengfort et al., 2017 ).

Similarly, Mougi (2012) suggested that antiphase cycles or cryp-

tic cycles could occur in systems in which both predator and prey

evolve, but not when only a single species evolves. Mougi’s results

seemingly contradict those of Yoshida et al. (2007) , who find cryp-

tic cycles in models with on prey evolution. However, their mod-

eling approaches vary in a critical way: Yoshida et al. assume a

unidirectional axis in the prey trait, while Mougi assumes bidirec-

tional axes in both predator and prey. Predator and prey often have

dramatically different generation times, which could lead to dif-

ferences in rates of evolution in each species. Even if generation

times are similar, selection on prey may be stronger because a sin-

gle interaction between predator and prey individuals has a huge

effect on prey fitness, but often less effect on predator fitness (life

vs. lunch; ( Brodie III and Brodie Jr., 1999 )). Furthermore, traits in

one species may be more heritable than traits in another, result-
ng in different rates of evolution even under equivalent selection

ressure. 

Coevolutionary models can result in unrealistic runaway evo-

ution, unless models incorporate some form of trade-off. For ex-

mple, some models assume an increase in predator or prey traits

n a uni-directional axis linearly also decreases the growth rate of

hat species. (e.g. Tien and Ellner, 2012 . Other models assume that

ncreases in predator traits along a uni-directional axis result in

eductions in conversion efficiency ( Klauschies et al., 2016; Mougi

nd Iwasa, 2011; Tirok et al., 2011; van Velzen and Gaedke, 2017 )

r increased death rate ( Cortez and Weitz, 2014; Mougi, 2012; Tien

nd Ellner, 2012; van Velzen and Gaedke, 2017 ). Few studies have

xplored how the natures of different trade-offs affect ecological

ynamics ( Tien and Ellner, 2012 ). 

Because of the variety of results which have arisen out of recent

co-evolutionary models of coevolving predator and prey, it is cru-

ial that we gain a deeper understanding of how modeling choices

urrounding trade-offs affect the outcomes of population dynam-

cs. Here we analyze and compare two simple models of preda-

or and prey which contain different trade-offs for the prey pop-

lation. We assume bi-directional trait axes for both predator and

rey traits (e.g. body size), where attack rates of predator on prey

re maximized if trait matching occurs. Run-away evolution of the

rey is prevented by the tethering of the prey trait to an optimal

alue via some form of trade-off, while runaway evolution of the

redator is prevented via the trait matching requirement for attack

ate. For this reason, we do not include additional trade-offs in the

redator. Our goal in this study is to understand how predator-prey

co-evolutionary dynamics differ under two different trade-offs in

rey. 

. Model formulation 

Consider predator and prey species with densities P = P (t)

nd N = N(t) at time t , respectively. Assume the predator and

rey populations have mean quantitative traits p = p (t) and n =
 (t) , respectively, and that these traits can be measured in the

ame unit, or can be transformed into the same unit. Also as-

ume these traits are normally distributed through the popula-

ions with constant phenotypic variances σ 2 and β2 , respectively

 Schreiber et al., 2011 ). In other words, their trait distributions are

iven by 

 p (p, p ) = 

1 √ 

2 πσ 2 
exp 

[
− (p − p ) 2 

2 σ 2 

]
, 

q n (n, n ) = 

1 √ 

2 πβ2 
exp 

[
− (n − n ) 2 

2 β2 

]
, 

here phenotypic variances σ 2 and β2 have additive genetic (sub-

cript G ) and environmental (subscript E ) components (i.e., σ 2 =
2 
G + σ 2 

E and β
2 = β2 

G + β2 
E ). 

Assume predator individuals with trait value p attack prey indi-

iduals with trait value n with attack rate a = a (p, n ) . Also assume

redators have a linear functional response and convert consumed

rey in to offspring with efficiency e and have a constant death

ate d . Then the fitness of predators with trait value p and con-

uming prey individuals with trait value n is 

 (N, n, p) = ea (p, n ) N − d, 

nd the per-capita mean fitness of the predator population is 

 (N, n , p ) = 

∫ 
R 2 

W (N, n, p) q p (p, p ) q n (n, n )d pd n. (1)

Assume prey with trait value n experience density-dependent

ogistic-type growth with growth rate r = r(n ) and carrying capac-
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ty K = K(n ) in the absence of predation. Since the prey trait n af-

ects the predator-prey interaction a in addition to ecological vari-

bles in the absence of predation, we consider the prey trait to be

cologically pleiotropic. Thus the fitness of prey with trait value n

nteracting only with predators with trait value p is 

 (N, P, n, p) = r(n ) 
(
1 − N 

K(n ) 

)
− a (p, n ) P, 

nd the per-capita mean fitness of the prey population is 

 (N, P, n , p ) = 

∫ 
R 2 

Y (N, P, n, p) q n (n, n ) q p (p, p )d n d p. (2) 

hus, the ecological dynamics are given by 

d P 

d t 
= P W (N, n , p ) , 

d N 

d t 
= N Y (N, P, n , p ) . (3) 

Assuming each evolutionary variable stays normally distributed

ith unchanging variance, then the change of each evolutionary

ariable is proportional to the partial derivative of their mean fit-

ess function with respect to that variable. In other words, evo-

ution is always in the direction which immediately increases the

ean fitness of the population ( Lande, 1976 ). Specifically, the con-

tant of proportionality is the genetic component of the phenotypic

ariances. This gives rise to the evolutionary components of this

odel: 

d p 

d t 
= σ 2 

G 

∂ W 

∂ p 
, 

d n 

d t 
= β2 

G 

∂ Y 

∂ n 
. 

If there is no evolution, i.e., all of the ecological parameters

re constant ( σG = βG = 0 ), the dynamics of the resulting purely-

cological system (4) are well known. 

d P 

d t 
= P [ eaN − d] , 

d N 

d t 
= N 

[ 
r 

(
1 − N 

K 

)
− aP 

] 
(4) 

s a review, the three equilibria of this simplified model are

xtinction (P ∗, N 
∗) = (0 , 0) , (unstable), exclusion (P ∗, N 

∗) = (0 , K)

locally asymptotically stable if d > Kea ), and coexistence (P ∗, N 
∗) =

r 
a 

(
1 − N ∗

K 

)
, d ea 

)
, (biologically feasible and locally asymptotically

table if d < Kea ). Since the exclusion and coexistence stability con-

itions are equal and opposite, there is no non-equilibrium dy-

amic. In other words, either the predator becomes extinct and the

rey population asymptotically approaches its carrying capacity, or

he predator and prey asymptotically approach a stable coexistence

tate. 

However, ecological interactions are often dependent on which

enetic variants are involved in the interactions. Evolutionary

hanges in traits may shift the strength of ecological interac-

ions, which may in turn cause feedback by shifting the evolu-

ionary variables via selection by ecological interactions. This eco-

volutionary feedback loop can affect both ecological and evolu-

ionary outcomes. Since the purely-ecological model (4) is com-

letely asymptotically stable, incorporating evolution here can only

erve to destabilize the ecological equilibria. 

.0. Model 0 – no stabilizing selection 

First we define the attack rate of a predator individual with

henotype p on a prey individual with phenotype n as a Gaussian

unction of their difference. For this study, we assume prey have a

idirectional axis of vulnerability to predation, which means they

an reduce the successful predation rate by having a phenotype ei-

her greater or less than the matching predator phenotype. Exam-

les of foraging traits on bidirectional axes are relative body sizes

f predator and prey, and number and size of gill rakers in preda-

ory freshwater fish (i.e. threespine stickleback) compared to body
ize of insect larvae or zooplanktonic prey ( Saloniemi, 1993 ). Sim-

lar to Schreiber et al. (2011) , the attack rate is maximized when

p − n is equal to some optimal difference θ a and decreases hyper-

xponentially as | p − n | diverges from θ a : 

 (p, n ) = α exp 

[
− ((p − n ) − θa ) 2 

2 τ 2 
a 

]
, 

here α is the maximal attack rate and τ a determines how steeply

he attack rate declines with distance from the optimal trait differ-

nce θ a . In effect, τ a determines how phenotypically specialized

he predator must be to consume the prey ( Schreiber et al., 2011 ).

n other words, for large τ a only large deviations from the optimal

rait difference will result in large reductions in the attack rate,

hile for small τ a even small deviations from the optimal trait dif-

erence have large fitness consequences. Under these assumptions,

he average attack rate of the predator species on the prey species

s 

 ( p , n ) = 

∫ 
R 2 

a (p, n ) q p (p, p ) q n (n, n )d pd n 

= 

ατa √ 

A 
exp 

[
− (( p − n ) − θa ) 2 

2 A 

]
, 

here A := τ 2 
a + σ 2 + β2 . If all other ecological parameters ( r, K, d ,

nd e ) are constant, this model may result in asymptotically sta-

le ecological equilibrium, but runaway evolution, i.e., an evolu-

ionary arms race where the population densities are constant but

rait values are unbounded in time (Appendix D). This is not real-

stic because all characters have some constraints on their evolu-

ion ( Saloniemi, 1993 ). Below we introduce two expanded models

hich tether the prey character n to an optimal value via decreases

f vital ecological functions. 

.1. Model 1 – stabilizing selection via prey intrinsic growth rate 

It may be the case that there is an optimal prey body size

hich maximizes prey intrinsic growth rate ( Werner et al., 1984 ).

f trait matching must occur for the prey species and their re-

ource, then it is appropriate to model prey growth rate r as a

aussian function of its trait value n , given by 

(n ) = ρ exp 

[
− (n − θr ) 2 

2 τ 2 
r 

]
, 

here ρ is the maximal growth rate of the prey species and τ r de-

ermines how steeply the growth rate declines with distance from

he optimal trait value θ r . In effect, τ r determines how far the

rey trait value can deviate from the optimal trait value while still

aintaining an adequate growth rate. In other words, for large τ r 

nly large deviations from the optimal trait value θ r can result in

arge reductions in prey growth rate, while for small τ r even small

eviations from θ r can result in large reductions in prey growth

ate. Under these assumptions, the average growth rate of the prey

pecies is 

 ( n ) = 

∫ 
R 

r(n ) q n (n, n )d n = 

ρτr √ 

B 
exp 

[
− ( n − θr ) 2 

2 B 

]
here B := τ 2 

r + β2 . For this first model, we assume the prey trait

oes not affect its resource use, i.e., the prey population carrying

apacity K is constant. Thus the ecological and evolutionary dy-

amics of Model 1 are: 

d P 

d t 
= P 

[ 
e a ( p , n ) N − d 

] 
, (5a) 

d N 

d t 
= N 

[ 
r ( n ) 

(
1 − N 

K 

)
− a ( p , n ) P 

] 
, (5b) 
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Table 1 

All model parameters and their biological meaning. 

Parameter Description 

r, K Prey intrinsic growth rate and carrying capacity 

d, e Predator death rate and efficiency 

σ Predator trait distribution variance; σ 2 = σ 2 
G + σ 2 

E 

β Prey trait distribution variance; β2 = β2 
G + β2 

E 

α, τ a , θ a Maximum value, variance, and mean value of the 

Gaussian average attack rate function a ( p , n ) 

ρ , τ r , θ r Maximum value, variance, and mean value of the 

Gaussian average intrinsic growth rate function r ( n ) 

κ , τ K , θK Maximum value, variance, and mean value of the 

Gaussian average carrying capacity function K ( n ) 

A τ 2 
a + σ 2 + β2 

B τ 2 
r + β2 

C τ 2 
K − β2 

3

3

 

t  

s  

e  

b  

e  

a

 

a  

s  

 

w

θ

a

d  

T

 

w

θ

a

 

w

d p 

d t 
= σ 2 

G 

[ 
eN(θa − ( p − n )) 

A 
a ( p , n ) 

] 
, (5c)

d n 

d t 
= β2 

G 

[ 
r ( n ) 

(
1 − N 

K 

)
θr − n 

B 
+ 

P (θa − ( p − n )) 

A 
a ( p , n ) 

] 
. (5d)

2.2. Model 2 – stabilizing selection via prey carrying capacity 

It may be the case that suboptimal investment in prey body size

can result in reduced ability to process resources, which causes

an uptake in prey foraging effort and an increase in intraspecific

competition. A reduction in the carrying capacity K is synonymous

with an increase in intraspecific competition. Thus, for the second

model, we assume the prey trait does not affect its intrinsic growth

rate, i.e., r is constant. Rather, the prey population carrying capac-

ity K is a Gaussian function of its trait value n . 

K(n ) = κ exp 

[
− (n − θK ) 

2 

2 τ 2 
K 

]
where κ is the maximal carrying capacity of the prey species and

τ K determines how steeply the carrying capacity declines with dis-

tance from the optimal trait value θK . In effect, 1/ K ( n ) gives the

strength of competition of a prey individual with trait value n , and

K ( n ) gives the carrying capacity of a population consisting entirely

of individuals with trait value n . Thus the ecological and evolution-

ary dynamics of Model 2 are: 

d P 

d t 
= P 

[ 
e a ( p , n ) N − d 

] 
, (6a)

d N 

d t 
= N 

[ 
r 

(
1 − N 

K ( n ) 

)
− a ( p , n ) P 

] 
, (6b)

d p 

d t 
= σ 2 

G 

[ 
eN(θa − ( p − n )) 

A 
a ( p , n ) 

] 
, (6c)

d n 

d t 
= β2 

G 

[ 
− rN( n − θK ) 

K ( n ) C 
+ 

P (θa − ( p − n )) 

A 
a ( p , n ) 

] 
, (6d)

where the harmonic mean of prey carrying capacity is given by 

K ( n ) = 

(∫ 
R 

1 

K(n ) 
q K (n, n )d n 

)
−1 = 

κ
√ 

C 

τK 
exp 

[
− (n − θK ) 2 

2 C 

]
, 

and C := τ 2 
K 

− β2 (note that our use of the harmonic mean here is

a result of the calculation of mean prey fitness ( Eqs. (2) , (3) ). This

formulation requires τ K > β because C is contained inside a square

root, so no rigorous analysis can be done if τ K ≤β . However, if τ K 

approaches β from above, then the peak of the average carrying

capacity function K decreases to 0, which causes immediate extinc-

tion of the prey and thus extinction of the predator. The biological

justification for varying the “carrying capacity” in the prey popula-

tion in Model 2 is that a bidirectional trait like body size could af-

fect how individuals are able to consume resources, which in turn

affects intraspecific competition and decreases the effective carry-

ing capacity of the population in that environment. If this is the

case, then prey populations with high phenotypic variation (large

β) are either unable to adequately consume resources or there is

too much intraspecific competition. In either case, the prey pop-

ulation will not survive. This suggests there is a threshold value

of phenotypic variation ( τ K ) which determines whether or not the

prey population is able to survive in that environment in the ab-

sence of predation. This is also mathematically intuitive since the

harmonic mean is highly sensitive to small numbers. All parame-

ters and their descriptions are listed in Table 1 . See Appendix A for

model derivation details. 
. Results 

.1. Equilibria and stability analysis 

In addition to using standard numerical techniques to simulate

he model ( Figs. 1 and 2 ), we analyze both models by employing a

tandard dynamical systems approach, which includes solving for

quilibrium points and determining conditions for local linear sta-

ility. Both models have three types of equilibria (N 
∗, P ∗, n ∗, p ∗) :

xtinction (of both species), exclusion (of the predator species),

nd coexistence. The extinction equilibria are given by 

(N 
∗, P ∗, n ∗, p ∗) = (0 , 0 , ∗, ∗) , (7)

nd are unstable for all biologically relevant parameters ( ∗ repre-

ents an arbitrary quantity). The exclusion equilibria are given by

(N 
∗, P ∗, n ∗, p ∗) = 

(
K ∗, 0 , θexcl , θexcl + θa 

)
, (8)

here 

excl = 

{
∗, for Model 1 , 
θK , for Model 2 , 

and 

K ∗ = 

{ 

K, for Model 1 , 

κ
√ 

C 

τK 
, for Model 2 , 

nd are stable if 

 > 

K ∗eατa √ 

A 
. (9)

he coexistence equilibrium is given by 

(N 
∗, P ∗, n ∗, p ∗) = 

(
d 
√ 

A 

eατa 
, 
r ∗

√ 

A 

ατa 

(
1 − N 

∗

K ∗

)
, θcoex , θcoex + θa 

)
, (10)

here 

coex = 

{
θr , for Model 1 , 
θK , for Model 2 , 

and 

r ∗ = 

{ 

ρτr √ 

B 
, for Model 1 , 

r, for Model 2 , 

nd is stable if 

σ 2 
G 

β2 
G 

> 

r stab 
d 

(
1 − d 

√ 

A 

K stab eατa 

)
, (11)

here 

r stab = 

{ 

ρτr √ 

B 

(
1 − A 

B 

)
, for Model 1 , 

r, for Model 2 , 
and 
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Fig. 1. Timeseries. The left panels ( Fig. 1 (a), (c), (e)) depict predator and prey population densities. The right panels ( Fig. 1 (b), (d), (f)) depict predator and prey mean trait 

values. Fig. 1 (a) and (b) show stable coexistence equilibrium dynamics in Model 1. Fig. 1 (c) and (d) show cyclic coexistence dynamics in Model 1. Fig. 1 (e) and (f) show cyclic 

coexistence dynamics in Model 2. Parameter values: e = 0 . 5 , α = 0 . 05 , σ = β = 0 . 25 , θa = 0 . 1 , θr = θK = 0 . Fig. 1 (a) and (b) parameter values: d = 0 . 1 , τa = 0 . 05 , τr = 0 . 55 , 

σG = 0 . 18 , βG = 0 . 17 , ρ = 0 . 2 , K = 100 . Fig. 1 (c)–(f) parameter values: d = 0 . 05 , τa = 0 . 1 , τr = τK = 1 . 0 , σG = 0 . 106 , βG = 0 . 1 , ρ = r = 0 . 5 , κ = K = 225 . 
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 stab = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

K, for Model 1 , 

κ
√ 

C 

τK 

(
1 + 

A 

C 

) , for Model 2 , . 

See Appendices B and C for details of equilibria stability analy-

is. 

In both models, the prey face a trade off between evolution of

nti-predator traits and optimization of growth rate or carrying ca-

acity. The size of this trade off | n − θcoex | is irrelevant when de-

ermining stability of the coexistence equilibrium (11) . This is be-

ause Models 1 and 2 do not reduce to Model 0 when θcoex = θa ;
ather, Model 1 and Model 2 reduce to Model 0 when growth

ate and carrying capacity are constant, respectively. This happens

hen τ r → ∞ and τ K → ∞ because τ r and τ K describe the varia-

ion of prey growth rate and carrying capacity caused by variation

n prey genotype. As τ r → ∞ or τ K → ∞ , growth rate or carrying

apacity approaches a constant value for the population because

here are few individuals with extreme genotypes. Therefore co-

xistence stability is independent of the relative values of θ a and

coex and dependent on the variance terms τ r and τ . 
K 
Note that if both populations are extinct, their trait values can

e arbitrary because the populations are in ecological equilibrium

or any values of p ∗ and n ∗. Since θexcl is arbitrary for Model 1,

here are an infinite number of exclusion equilibria for Model 1.

hus, when (9) holds, the evolutionary dynamics will approach an

quilibrium based on initial conditions. The prey trait at carrying

apacity is arbitrary since selection on traits which affect intrinsic

rowth rate is weak when the prey population is near its carry-

ng capacity. On the other hand, Model 2 has a unique exclusion

quilibrium since selection on traits which affect prey population

arrying capacity is strong when the population is near its carry-

ng capacity. This is intuitive since increasing prey carrying capac-

ty always increases average prey fitness. The predator population

ill be excluded if its death rate is sufficiently high. Also, higher

rey carrying capacity, predator efficiency and predator maximum

ttack rate can destabilize the exclusion equilibrium in favor of the

nternal coexistence equilibrium, which is unique for each model.

hen (11) holds, the prey character n reaches its optimal value for

he trait undergoing stabilizing selection, and the predator charac-

er p reaches the optimal difference to maximize attack rate. 
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Fig. 2. Cycle Phaseplanes for Model 1 ( Fig. 2 (a) and (b)) and Model 2 ( Fig. 2 (c) and (d)). The left panels ( Fig. 2 (a), (c)) depict phaseplanes of predator and prey population 

densities. The right panels ( Fig. 2 (b), (d)) depict phaseplanes of predator and prey mean trait values. Fig. 2 (a) and (b) are the phaseplanes of the cyclic dynamics of Model 1 

shown in Fig. 1 (c) and (d). Fig. 2 (c) and (d) are the phaseplanes of the cyclic dynamics of Model 2 shown in Fig. 1 (e) and (f). 
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In (11) , σ G / βG is the ratio of predator and prey speeds of evo-

lution given equivalent selection pressure. This means the coexis-

tence equilibrium (10) is stable if predator evolution can be fast

enough in comparison to prey evolution. More precisely, stable

equilibrium coexistence is more likely if the predator’s trait is more

heritable than the prey’s trait. If this happens, the predator trait

value “catches up” to the prey trait value, which increases the at-

tack rate, hence decreasing prey density, and decreasing | d n / d t | .
The trait dynamics stabilize, resulting in decaying ecological oscil-

lations. 

In Model 1, if τ 2 
a > τ 2 

r − σ 2 , then r stab < 0 . This always results

in stable coexistence provided that (10) is biologically feasible. The

biological feasibility condition for coexistence is the opposite con-

dition as the exclusion stability condition (9) . That is, provided

d < 
Keατa √ 

A 
, then stable coexistence is inevitable if the variance of

the attack rate curve τ a is high enough. Biologically, this means

that if the attack rate does not require high predator specificity,

then stable equilibrium coexistence is more likely. 

In Model 2, however, the coexistence stability condition bound-

ary can be arranged so that only d is on the left hand side: 

d = 

rκeατa 
√ 

C 

σ 2 
G 

β2 
G 

κeατa 
√ 

C + r 
√ 

A τK 

(
1 + 

A 
C 

)
and we find that d decreases to 0 as τ a grows without bound to

∞ (since all terms are positive, the numerator is O( τa ) and the de-
nominator is O 

(
τ 3 
a 

)
). This means that for any value of τ a , there is

always a value of d such that (9) is not satisfied ( Fig. 3 ). This is a

key difference between the models: in Model 1, high values of τ a 

never result in cyclic coexistence, whereas in Model 2, high val-

ues of τ a may result in cycles for sufficiently low d . For fixed d in

Model 2, however, the stable coexistence condition (11) will hold

for sufficiently high τ a . The notation O ( τa ) and O 

(
τ 3 
a 

)
here mean

that as τ a grows indefinitely, the expression grows proportionally
o τ a or τ 3 
a , respectively. The notation O ( 1 ) means an expression

pproaches a constant value in a given limit. 

Note that B = O 

(
τ 2 
r 

)
as τ r increases, and thus 

ρτr √ 

B 
= O ( 1 ) . This

eans r stab (for Model 1) is eventually an increasing function of

r . Since the right hand side of the coexistence stability condition

11) is an increasing function of r stab , then increasing τ r can desta-

ilize the coexistence equilibrium. Similarly, note that C = O 

(
τ 2 
K 

)
s τ K increases, and thus 

κ
√ 

C 
τK 

= O ( 1 ) . This means K stab is even-

ually an increasing function of τ K . Since the right hand side of

11) is an increasing function of K stab , then increasing τ K can also

estabilize the coexistence equilibrium. Biologically, these results

ean that if prey are not required to be particularly close to the

ptimal trait value in order to have adequate growth rate or carry-

ng capacity, then cyclic coexistence is more likely. More precisely,

he coexistence stability condition boundaries are 

 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ρτR Keατa 

(
τ 2 
r − τ 2 

a − σ 2 

)
σ 2 
G 

β2 
G 

Keατa 

(
τ 2 
r + β2 

)3 / 2 

+ ρτr 

(
τ 2 
r − τ 2 

a − σ 2 

)√ 

τ 2 
a + σ 2 + β2

for Model 1, (a ) 

rκeατa 

(
τ 2 
K − β2 

)3 / 2 

σ 2 
G 

β2 
G 

κeατa 

(
τ 2 
K 

− β2 

)3 / 2 

+ rτK 

(
τ 2 
K 

+ τ 2 
a + σ 2 

)√ 

τ 2 
a + σ 2 + β2

for Model 2. (b) 

(12)

n Model 1, d → 
rKeατa 

σ2 
G 

β2 
G 

Keατa + ρ
√ 

A 

as τ r → ∞ , and in Model 2 d →

rκeατa 
σ2 
G 

β2 
G 

κeατa + r 
√ 

A 

as τ K → ∞ . These limiting values of d are less than

he predator exclusion boundary, so as τ r or τ K → ∞ , there is an

ntermediate range of d values which results in stable coexistence,
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Fig. 3. Bifurcation diagrams for model 1 ( Fig. 3 (a)) and model 2 ( Fig. 3 (b)), with predator death rate ( d ) vs. predator specialization ( τ a ). In Fig. 3 (a), the coexistence 

stability boundary crosses the τ a axis, while in Fig. 3 (b), the coexistence stability boundary approaches the τ a axis as τ a → ∞ . There is a much larger region in parameter 

space that results in cyclic behavior in Model 2 than in Model 1. Parameter values: σ = β = 0 . 25 , e = α = 0 . 1 , τr = τK = 1 , σG / βG = 0 . 4 , ρ = r = 0 . 5 , K = κ = 225 . Fig. 6 c 

shows cycle maxima, minima, and periods for the parameter values indicated by the dotted line ( d = 0 . 75 , 0 ≤ τ a ≤1.1). 

Fig. 4. Bifurcation diagrams for model 1 ( Fig. 4 (a)) and model 2 ( Fig. 4 (b)), with predator death rate ( d ) vs. prey trade-off strength ( τ r or τ K ). Parameter values: e = 0 . 1 , 

α = 0 . 05 , τa = 1 , σG / βG = 0 . 2 , ρ = r = 0 . 3 , K = κ = 225 , σ = β = 0 . 25 . 

Fig. 5. Bifurcation diagrams for model 1 ( Fig. 5 (a)) and model 2 ( Fig. 5 (b)), with prey trait distribution variance ( β) vs. prey trade-off strength ( τ r or τ K ). Parameter 

values: e = 0 . 1 , α = 0 . 05 , d = 0 . 5 , τa = 1 , σ = 1 , σG / βG = 0 . 1 , ρ = r = 0 . 3 , K = κ = 225 . 
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hile low d values will result in cyclic coexistence and high d val-

es result in predator exclusion ( Fig. 4 ). The models differ, how-

ver, as τ r or τ K decrease. First, Model 2 predicts both predator

nd prey go extinct for τ K ≤β , while coexistence is possible for ar-

itrarily small τ r in Model 1. In addition, while the denominator of

12b) is positive for τ K > β in Model 2, the denominator of (12a) is

egative for sufficiently small τ r in Model 1. 

Fig. 5 shows similar distinctions between the models. The

redator exclusion stability condition (9) is independent of τ r , and

hus the boundary between the “Predator Exclusion” and “Equlib-

ium Coexistence” regions is flat for Model 1. However, (9) is de-

endent on τ K which accounts for the different shape for Model

. We also see a larger region of coexistence in Model 1 than in

odel 2. 
d  

u  
.2. Qualitative differences in the models’ cycles 

Fig. 1 (a) and (b) display a stable coexistence dynamic from

odel 1. In this simulation, the initial prey and predator mean

rait values, n 0 and p 0 , respectively, are far enough apart that

he predator is not a threat. Their initial difference is p 0 − n 0 = 1 ,

hich is large in comparison to the variance of the attack rate

urve τa = 0 . 05 . This means that only a very small percentage of

redators are initially well suited to attack the prey, resulting in

ery strong selective pressure on the predators. In contrast, the

rey population is not initially threatened by the predator, result-

ng in very weak selective pressure on the prey. Once the predator

ean trait value is close enough to the optimal difference θ a , the

redator becomes a viable threat to the prey, increasing predator

ensity and decreasing prey density. The predator and prey then

ndergo dampening oscillations to coexistence equilibrium as their
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mean trait values stabilize. Model 2 simulations resulting in stable

equilibrium coexistence show similar dynamics. 

In contrast to the purely ecological system (4) , both models’ ex-

clusion and coexistence stability conditions are not equal or oppo-

site, which implies there is at least one type of non-equilibrium

dynamic. Fig. 1 (c) and (d) depict long-term stable oscillatory be-

havior in Model 1, and Fig. 1 (e) and (f) depict long-term stable

oscillatory behavior in Model 2. In order to achieve a good com-

parison between Models 1 and 2, we matched the parameters as

closely as possible. In particular, we set the constant carrying ca-

pacity K from Model 1 equal to the maximum carrying capacity κ
from Model 2, the constant intrinsic growth rate r from Model 2

equal to the maximum intrinsic growth rate ρ from Model 1, and

the growth rate variance τ r from Model 1 equal to the carrying

capacity variance τ K from Model 2. 

The oscillations seen in Fig. 1 (c)–(f) are similar in many ways,

and we can intuitively understand them by considering the inverse

effects that the evolution of the prey mean trait value sometimes

has on its own fitness. In particular, consider the periods of time

in which the prey mean trait value is undergoing selection away

from the optimal value ( θ r for Model 1; θK for Model 2). Since

the predator is a threat, the prey evolves away from the preda-

tor, decreasing attack rate a , and hence increasing its fitness. How-

ever, as the prey evolves away from its optimal value, the trade

off | n − θcoex | increases, reducing the average growth rate r (Model

1) or carrying capacity K (Model 2), and thus reducing prey fit-

ness. These two inverse effects nullify each other whenever the

prey mean trait value reaches a minimum or maximum. At these

extrema, both populations are suppressed to low levels (due to ei-

ther low growth rate in Model 1 or low carrying capacity in Model

2), and thus the selection pressure toward the optimal trait value

outweighs the selection pressure of predation. The prey trait value

then reverses direction and evolves toward its optimal value. Dur-

ing this time, prey mean fitness increases for two reasons: a nega-

tive effect on attack rate and a positive effect on the prey trait un-

dergoing selection. Immediately after passing through the optimal

value, however, the inverse effects take hold and the cycle begins

again. 

Predator and prey density cycles can be in phase in the larger

evolutionary time scale, and out of phase in the smaller ecological

time scale ( Fig. 2 ). Note the density phase trajectory of Model 1 is

generally positively sloped, which means prey and predator den-

sities reach their minima and maxima at around the same time

( Figs. 2 (a) and 1 (c)). However, when prey and predator densities

are near their relative maxima, their cycles are temporarily out

of phase, as indicated in Fig. 2 (a) by the negative slope of the

top part of the density phase trajectory. In other words, as the

genetic environment changes to favor a high-density equilibrium,

predator and prey densities diverge from the low-density equilib-

rium together, but on the ecological time scale predator and prey

densities undergo out-of-phase, dampening oscillations toward this

high-density equilibrium. 

There are qualitative differences between the cycles in these

two models, however, which may be attributed to the decrease in

| d n / d t | (5d) as growth rate decreases, as opposed to the increase

in | d n / d t | (6d) as carrying capacity decreases. This results in more

rapid prey evolution when the prey mean trait is at an extrema in

Model 2, and less rapid prey evolution when the prey mean trait is

at an extrema in Model 1. In addition, prey growth rate in Model

2 is never as low as the mean prey growth rate in Model 1. Higher

prey growth rate causes an increased predator equilibrium density,

which increases selective pressure on the prey, causing bouts of

more rapid prey evolution. On the other hand, the predators in

Model 2 cannot adequately respond to this rapid evolution, result-

ing in a lag time where predator density is exponentially decreas-

ing and the rate of predator evolution is diminished. In the simu-
ations shown in Fig. 1 (c)–(f), the increase in the Model 2 period

ue to the lag time is outweighed by its decrease due to the in-

rease in | d n / d t | as carrying capacity decreases, and thus we see

onger oscillatory periods in Model 1 ( T ≈40 0 0 in Figs. 1 (c), (d),

 (a), and (b)) than in Model 2 ( T ≈3300 in Figs. 1 (e), (f), 2 (c), and

d)). In Fig. 6 we see that the oscillation periods in Model 1 are

reater than that in Model 2 for intermediate values of τ a . This

s intuitive since generalist predators are more able to respond to

outs of rapid prey evolution than specialist predators, thus re-

oving the period of the exponentially decaying predator popu-

ation. However, at larger values of τ a , the oscillation periods in

odel 2 are greater than that of Model 1. This may seem counter-

ntuitive, but an increased ability to respond decreases the overall

elective pressure on predators, ultimately resulting in slower evo-

ution and greater oscillatory periods. 

Finally, we proved the existence of Hopf bifurcations ( Hale and

oçak, 1991 ) as parameters are shifted from satisfying the coex-

stence equilibrium stability condition of either model to not sat-

sfying them. Hopf bifurcations occur when a shifting parameter

auses a stable equilibrium to become unstable, while also creating

yclic behavior around the equilibrium. The existence of Hopf Bi-

urcations in both models suggests the existence of asymptotically

table limit cycles, which we conjecture are globally stable given

ositive density initial conditions. In this study we have shown

he models exhibit stable cyclic behavior using simulations, but we

top short of rigorously proving the asymptotic stability of the at-

ractors. 

. Summary and discussion 

We formulated two coevolutionary predator-prey models which

iffer only in the form of an evolutionary trade-off. For both mod-

ls, we found all equilibria and their local stability conditions. We

howed the existence of Hopf bifurcations in both models, which

uggests the existence of stable limit cycles (and which we conjec-

ure are globally stable provided positive density initial conditions).

hile predator-prey cycles are possible without evolution if the

redator has a saturating functional response, our models show

hat coevolution can cause ecological cycles even under the as-

umption of a linear functional response. This is important because

he predator-prey model with logistic growth and linear functional

esponse is well-known to not produce stable cycles. 

In the first model, prey evolution to avoid predation is halted

y a trade-off due to reductions in growth rate. This is a com-

on form of trade-off incorporated into models and is a reason-

ble choice in many systems ( Klauschies et al., 2016; Mougi, 2012;

ougi and Iwasa, 2010; 2011; van Velzen and Gaedke, 2017 ). In the

econd model, prey evolution is halted by a trade-off due to reuc-

ions in carrying capacity. This is a less common choice but can be

easonable if shifting a continuous trait (i.e. body size) affects how

rey are able to consume resources, altering their effective carrying

apacity. 

Previous models of coevolution in exploiter-victim systems

ave incorporated evolutionary trade-offs in various ways.

wasa et al. (1991) modeled mate preference as a fitness cost,

nd in later analyses, Mougi and Iwasa (2010) found that the

oexistence equilibrium is stable if the evolutionary adaptation of

he prey is faster than that of the predator. These studies assumed

nidirectional trait axes and trade-offs in prey and predator basal

er-capita growth rates. Later, Mougi (2012) analyzed a coevo-

utionary model with bidirectional traits with trade-offs in prey

rowth rate and predator death rate. In contrast to their earlier

tudies, they found that the coexistence equilibrium is stable if the

redator can adapt faster than the prey. These conflicting results

ay have been a result of choosing unidirectional or bidirectional
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Fig. 6. Models 1 and 2 Bifurcation Diagrams ( Fig. 6 (a) and (b)) and oscillation periods ( Fig. 6 (c)). Parameter values match Fig. 3 for predator death rate d = 0 . 75 . Also, 

θa = 0 . 1 , θr = θK = 0 , σG = 0 . 04 , and βG = 0 . 1 . As τ a increases the population moves from predator exclusion, to coexistence equilibrium, to cyclic coexistence, and back 

to coexistence equilibrium. There is a small region of τ a where Model 1 exhibits oscillatory coexistence and Model 2 exhibits coexistence equilibrium ( τ a between 0.18 

and 0.2, approximately) and a larger region of τ a where Model 2 exhibits oscillatory coexistence and Model 1 exhibits coexistence equilibrium ( τ a between 0.71 and 0.93, 

approximately). In Fig. 6 (c), oscillation periods of 0 indicate non-oscillatory behavior. 
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rait axes, but they also may have been a result of choosing

ifferent forms of evolutionary trade-offs. 

While many modeling choices can be jusitified by various bi-

logical examples, relatively few studies have explored how these

hoices affect results. Tien and Ellner (2012) compared two models

ith unidirectional trait axes and density independent and density

ependent trade-offs. Interestingly, they found that stable coexis-

ence is more likely if both predator and prey have fast adaptation

n the density independent trade-off model, while stable coexis-

ence is more likely if predator has faster adaptation than the prey

n the density dependent trade-off model. In our study, both mod-

ls resulted in stable coexistence if the ratio of predator to prey

peeds of adaptation is sufficiently high. These conflicting results

ighlight the need for theoreticians to consider how the forms of

rade-offs can affect model analyses. It is surprising this has not

een a larger area of research given that trade-offs are so widely

ccepted as a necessary component of eco-evo models. 

While this study follows the work of Mougi and Iwasa (2010,

011) , Mougi (2012) and Tien and Ellner (2012) , who used a

uantitative genetics framework to model trait evolution, others

ave utilized adaptive dynamics frameworks ( Nuismer et al., 2005 )

nd/or individual-based frameworks ( Calcagno et al., 2010; De-

ong and Gibert, 2016 ). Quantitative genetics eco-evo models typ-

cally assume that traits stay normally distributed with constant

ariance and that selection pressure is proportional to that vari-

nce ( Abrams and Matsuda, 1997; Lande, 1976 ). This is a rea-

onable assumption according to studies by Gaylord (1953) and

an Valen (1969) , who have noted that variance of morphological

raits in a lineage often remains roughly constant ( Lande, 1976 ).

thers have assumed variance is constant but there is some

ther evolutionary force which decreases selective pressure as the

ean trait approaches one or more boundary values ( Bengfort

t al., 2017; Cortez and Weitz, 2014; Klauschies et al., 2016; Sa-

oniemi, 1993; Tien and Ellner, 2012; van Velzen and Gaedke,

017 ). Nuismer et al. (2005) used an adaptive dynamics framework
o model the evolution of trait variance for normally distributed

raits, and Tirok et al. (2011) used a quantitative genetics frame-

ork to derive differential equations to model the evolution of trait

ean and variance for normally distributed traits. 

Any of the above evolutionary modeling choices also

reatly affect analytical results. When using the framework of

irok et al. (2011) to incorporate the dynamics of the trait vari-

nce σ 2 
G 

and β2 
G 
, we obtain results different from the main text,

s seen in the comparison between Figs. 1 and 7 . The shorter

eriods seen in the oscillating solutions is a result of increased

nd evolving trait variances. We also see coexistence is threat-

ned if prey variance can increase without bound in Model 1.

his is because reductions in growth rates are of little conse-

uence to prey when their population is at its carrying capacity.

alcagno et al. (2010) utilized an individual-based framework to

odel the full distribution of traits and found that rapid predator

volution resulted in prey and/or predator speciation and fewer

nteractions between predator and prey. They also found that

he predator went extinct if its adaptation speed was too slow,

uggesting that predators are more successful if the ratio of speeds

f adaptation of predators and prey is at some optimal level.

e expect that comparing models with different evolutionary

rade-offs and full trait distributions will yield similar results to

alcagno et al. (2010) , and future work will entail modeling the

volution of the full trait distribution of both predator and prey. 

Our study shows that analytical outcomes are affected greatly

y the choice of trade-off in prey species; the specific traits un-

er consideration matter. We investigated the qualitative differ-

nces between cycles produced by the two models using simula-

ions. Since the prey rate of evolution | d n / d t | generally decreases
s prey growth rate decreases but increases as carrying capacity

ecreases, there are bouts of more rapid prey evolution in Model 2

hat are not present in Model 1 ( Fig. 1 (d), (f)) These bouts of rapid

volution present an evolutionary challenge to the predators, who

re suddenly unequipped to deal with the changing genetic land-
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Fig. 7. Timeseries. Parameters are identical to those from Fig. 1 , but results were obtained by running the model with evolving variance according to the framework of 

Tirok et al. (2011) . 
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scape. This results in periods of time in which the predator popu-

lation decays exponentially and would go extinct if evolution were

to cease ( Fig. 1 (e)). At these low densities, the predator popula-

tion is able to quickly respond evolutionarily, making them a threat

to the prey, enabling them to recover ecologically. Since generalist

predators (higher τ a ) are more able to respond to rapid prey evo-

lution than specialist predators, they spend less time at extremely
ow densities. This decrease in selective pressure results in cycles

f longer periods ( Fig. 6 (c)). 

Our models produce cycles with generally in-phase ecologi-

al dynamics over the longer evolutionary time scale, and out-of-

hase fluctuations on an ecological time scale immediately follow-

ng bouts of more rapid evolution. These ecological fluctuations are

ot offset by a quarter cycle, as predicted by classical ecological
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odels, but rather resemble dynamics seen in Khibnik and Kon-

rashov (1997) and Mougi (2012) and supported by studies incor-

orating rapid prey evolution ( Cortez et al., 2010; Yoshida et al.,

003 ). 

This study expands our theoretical understanding of predator-

rey eco-evolutionary dynamics. In particular, we explored the ef-

ects of two types of trait linkage on ecological dynamics and con-

luded that one must be mindful of the type of stabilizing se-

ection included in theoretical models. In reality, many groups of

raits which affect ecological interactions are correlated with vary-

ng strengths, and predator and prey species interact in the context

f a larger food web. Future studies can potentially expand on this

odel by considering more complex trait linkage in the context of

ultiple prey species, multiple predator species, intraguild preda-

ion, or more general multitrophic food webs. 
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